展开与折叠2——常见几何体的表面展开图

合集下载

展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。

第十四讲立体图形的展开与折叠

第十四讲立体图形的展开与折叠

第十四讲 立体图形的展开与折叠山东 石少玉14.1 图形的展开与折叠基础盘点1.平面图形与立体图形2.正方体的表面展开图(共11种):一四一型二三一型 二二二型 三三型方法指导1. 结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.例1 (2016·丽水)下列图形中,属于立体图形的是( )A B C D解析:角、圆、三角形都是平面图形;圆锥是立体图形,故选C .评注:立体图形是由一个或多个面围成的三维图形,各部分不在同一平面内.2.点、线、面、体经过运动可组合成不同的几何图形.具体解答时,要充分运用空间想象力来理解.例2 如图1所示,将平面图形绕轴旋转一周,得到的几何体是( )A B C D 图1解析:可以通过实际操作或进行充分想象,得出旋转后的立体图形是球.故选C.评注:本题从运动的角度来认识立体图形,充分锻炼了同学们的动手操作能力和空间想象能力.例3 (2016·河北)图2和图3中所有的正方形都全等,将图2的正方形放在图3中的①②③④某一位置,几何图形 平面图形立体图形 柱体锥体球体折叠 展开 点、线、面、体 点动成线 线动成面 面动成体所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④图2 图3解析:根据四棱柱的特征及正方体展开图的各种情形.观察可发现:将图2的正方形放在图3中①的位置出现重叠的面,所以不能围成正方体.故选A.评注:本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用正方体展开图的“一线不过四,田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.4.对于正方体的相对面问题的判断,一般是通过具体操作解决,即用纸按图的样子折叠.但在中考中,这种方法耗时费力不可取,可用下面的“诀窍”解决:方法一:“目”字型:在正方体的表面展开图中,形如“目”字型的三个面中,位于“目”字两端的两个面是相对面,即位于同一行(或同一列),且中间隔一个正方形的两个面是相对面.其特点可概括为:对面相隔不相连.如图4,面A 和面B 是相对面.图4 图5方法二:“Z ”字型:在正方体的表面展开图中,形如“Z ”字型的几个面,位于“Z ”字两端的两个面是相对面,即位于同一行(或同一列)的两旁,且与其相连的两个面是相对面.如图5,面A 和面B 是相对面.例4 (2016·枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图6),请你根据图形判断涂成绿色一面的对面的颜色是( )A .白B .红C .黄D .黑图6解析:解答本题要牢记一个原则“相对不相邻,相邻不相对”,即:如果两个面是对面,那么一定不相邻;如果两个面相邻,那么一定不相对.由图6可知,六个面上的颜色分别为:白、黑、红、绿、黄、蓝.又由第1 个图可知涂成绿色的面相邻面的颜色是白和黑;由第2个图可知涂成绿色的面相邻面的颜色是红和蓝.所以涂成绿色一面的对面的颜色是黄.故选C.评注:正方体的展开图有11种情况,在复习时应分析平面展开图的各种情况后再准确识别哪两个面是相对面.14.2 投影基础盘点1.平行投影时间早上 上午 正午 下午 傍晚 影子方向正西 西偏北 正北北偏东 正东 影子大小 最长 变短 最短 变长 最长 绿 白 黑 红 绿 蓝 白黄红2. 中心投影:由同一点(点光源)发出的光线形成的投影叫做______投影.如:物体在灯光的照射下形成的影子就是中心投影.方法指导1. 判断投影是否是平行投影的方法是看光线是否平行.如果光线是平行的,所得到的投影就是平行投影.例1 (2016·南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A B C D 图1解析:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.评注:一个立体图形在一个平面上的正投影是一个平面图形.同时,立体图形的正投影可以归结为点、线段及平面图形.物体正投影的形状、大小与物体相对投影面的位置有关.正投影是特殊的平行投影.2. 中心投影的光线特点是从一点发出的投射线.物体与投影面平行时,投影是放大(即位似变换)的关系.判断投影是中心投影的方法是看光线是否相交于一点,如果光线相交于一点,那么所得到的投影就是中心投影.例2如图2,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).图2解析:(1)根据小军和小丽的身高与影长即可得到光源所在,点P就是所求的点,如图3所示;(2)根据光源所在和小华的身高即可得到相应的影长.EF就是小华此时在路灯下的影子.图3评注:两个影长的顶端与物高的顶端的连线的交点为点光源的位置.找出光源位置,从而易得影长.例3(2016•北京)如图4,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为___________m.度4 图5解析:如图5,因为CD∥AB∥MN,所以△ABE∽△CDE,△ABF∽△MNF.所以CDAB=DEBE,FNFB=MNAB,即1.8AB=1.81.8BD+,1.5AB=1.51.52.7BD+-,解得AB=3.所以路灯的高为3m.评注:解决此类题的关键是确定影长,进而利用相似三角形的知识解决问题.14.3 三视图基础盘点1.主视图是指从______看到的图形,左视图是指从______看到的图形,俯视图是指从______看到的图形.2.画三视图的原则:(1)大小:长对正,高平齐,宽相等;(2)虚实:在画图时看得见的轮廓线通常画成实线,看不见的部分的轮廓线通常画成虚线.方法指导1.对于简单几何体的三视图的识别,只要把握住三视图的定义即可正确解答.例1(2016·临沂)如图1,一个空心圆柱体,其主视图正确的是()A B C D 图1解析:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故主视图中应有两条虚线,故选B.评注:画三视图应注意所有的轮廓都要表现在三视图中,看不见的轮廓线要画成虚线.2. 画简单组合体的三视图要仔细观察和想象,视图中每一个闭合的线框都是组成物体的一个平面,注意判断相连的两个闭合线框是否在一个平面上.例2 (2016·常德)如图2是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A B C D 图2解析:从上面看第一行中间有1个正方形,第二行有3个正方形,第三行左边有1个正方形,故选A.评注:简单组合体的三视图解答时,一要分清是哪类视图,是从哪个方向观察的;二是分清哪些看得到,哪些看不到.3. 由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.具体解答时可以从以下途径进行分析:①根据主视图、俯视图和左视图推断几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④由三视图画几何体与由几何体画三视图的互逆过程,反复练习,不断总结方法.例3 (2016·牡丹江)由若干个小正方体搭成的几何体的主视图和俯视图,如图3所示,则搭成该几何体所用的小正方体的个数最少是()A.8 B.9 C.10 D.11图3解析:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有3个小立方体,第三层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是9个,故选B.评注:能搭成如上主视图和俯视图的小正方体的个数不唯一,特别注意这里是求最少个数.4. 画立体图形的三视图具体画法及步骤如下:①确定主视图位置,画出主视图;②在主视图的下边画出俯视图,注意与主视图“长对正”;③在主视图的右边画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.同时几何体看得见部分的轮廓线要画成实线,被其他部分遮挡而看不见的部分的轮廓线画成虚线.例4 画出下面实物的三视图. 图4解析:认真观察实物,可得主视图为三角形,左视图为长方形,俯视图为两个长方形组成的长方形.三视图如图5所示:图5评注:画实物体的三视图时,一定要将物体的边缘、棱、顶点都体现出来,切记看不见的轮廓线画成虚线,不能漏掉.数学思想化归思想例1 (2016•宁波)如图1,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2图1解析:因为h=8,r=6,可设圆锥母线长为l ,由勾股定理,2286+圆锥侧面展开图的面积为:S 侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm 2.故选C . 评注:本题将立体图形转化为平面图形来求解.解答的关键有两点,一是明确圆锥的侧面展开图是一个扇形;二是要正确利用底面半径及高求出母线长.分类讨论思想例2 (2016•云南)如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于_______________.解析:分两种情况:①底面周长为6,高为16π;②底面周长为16π,高为6.先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.①底面周长为6,高为16π,π×(62π)2×16π=π×29π×16π=144; ②底面周长为16π,高为6,π×(ππ216)2×6=π×64×6=384π.故答案为:144或384π. 评注:这里要考虑展开图折叠成几何体是否有多样性,注意分类讨论,不要漏解.方程思想例3 (2016•泰安)如图2,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为( )图2解析:因为圆锥的底面半径为3,所以圆锥的底面周长为6π.因为圆锥的高是2()22362+设扇形的圆心角为n°,所以9180n π⨯=6π,解得n=120.故选B . 评注:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为等量关系,列方程求解.。

立体图形的展开图ppt课件

立体图形的展开图ppt课件
1
常见平面图形:
三角形
正方形
长方形
平行四边形
菱形
2
圆形 扇形
圆环
椭圆形
3
常见立体图形:
正方体
长方体
4
圆柱体
圆锥体
5
四棱锥
三棱柱
6
三棱台
圆台
球体
7
你认为设计制作一个包装盒 需要了解什么? 要包装的物体的形状、大小; 它展开后的形状、大小; 材料、美术设计等等。
8
许多立体图形是由一些 平面图形围成的,将它 们适当的剪开,就可以 展开成平面图形.这就 是立体图形的平面展开 图.
21
想一想:图中的几个图形能否折叠 成为棱柱?
(1) (3)
(2)
(4)
22
这些图案分别在 正方体的哪个面 上?23能找出 符合要求 的展开图 吗?
(1)
(2)
(3)
24
(4)
猜猜哪 个才是
左 上后
“我”? 前 右

下 (1)



下 左后
上右 (3)
右 上
后 左前
下 (2)

下 前 上后
9
长方体的平面展开图
长方体
10
棱锥的平面展开图
三棱锥
11
圆柱体的平面展开图
圆柱体
12
圆锥体的平面展开图
圆锥体
13
棱台的平面展开图
三棱台
14
圆台的平面展开图
圆台
15
球体是否可以 展成平面图形? 球体
16
连一连
17
下列图形能折叠成什么图形?
圆柱体 圆锥
五棱柱

最新北师大版数学七年级上册《1.2 展开与折叠(第2课时 )》精品教学课件

最新北师大版数学七年级上册《1.2 展开与折叠(第2课时 )》精品教学课件

课堂小结
名称
常见几何体的表面展开图 立体 表面 底面 侧面 图形 展开图 形状 形状
侧面展开 图的形状
正方体
正方形 正方形 长方形
长方体
长方形 长方形 长方形
圆柱
圆 曲面 长方形
圆锥
圆 曲面
扇形
课后研讨
1.说一说本节课的收获。 2.谈谈在解决实际问题中有哪些需要 注意或不太懂的地方。
请以课堂反思的方式写 一写你的收获。




探究新知 知识点 2 圆柱、圆锥的展开图
圆柱展开后的平面图形是什么样的?
思考1 圆柱侧面展开后,得到的平面图形是什么样的?
探究新知
思考2 圆柱展开后的平面图形是什么样的?
结论:圆柱展开图是由两个等圆 和一个长方形组成,其中侧面展 开图的一边的长是底面圆的周长, 另一边的长是圆柱的高.
探究新知
连接中考
如图,一个几何体上半部为正四棱锥,下半部为立方体,且有 一个面涂有颜色,该几何体的表面展开图是( B )
A.
B.
C.
D.
课堂检测
基础巩固题
1. 如图是某个几何体的展开图,该几何体是( A )
A. 三棱柱 B.圆锥 C.四棱柱 D.圆柱
课堂检测
基础巩固题
2. 如果圆柱的母线长为5cm,底面半径为2cm,那么这 个圆柱的侧面积是( D )
布置作业
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
总结点评 同学们,我们今天的探索很成
功,但探索远还没有结束,让我们 在今后的学习生涯中一起慢慢去发 现新大陆吧!
再见
下列图形中可以作为三棱柱的展开图的是( A )

5.3展开与折叠(课件)-七年级数学上册(苏科版)【01】

5.3展开与折叠(课件)-七年级数学上册(苏科版)【01】

02 知识精讲 注意:下列平面图形不是正方体的展开图哦~
正方体的展开图
L型
田字型
凹字型
02 知识精讲
探究2:为什么要剪7条棱, 才能得到正方体的展开图呢?
∵正方体共12条棱, 每种展开图内都有5条棱相连, ∴要剪7条棱。
03 典例精析
例1、下列七个图形中是正方体的平面展开图的有( B )
“二二二”型,√
02 知识精讲
同一个正方体展开所得到的平面图形有11种, 在展成平面图形的过程中,一共剪了7条棱。
02 知识精讲 探究1:11种展开图,如何快速记忆呢?
做好分类就行 啦~
“一四一”型
02 知识精讲 “三三”型
“二三一”型 “二二二”型
02 知识精讲
正方体的展开图
“一四一”型:6个 “二三一”型:3个 “三三”型:1个 “二二二”型:1个
× “一四一”型,√
×
×
A. 1个
×
B. 2个
×
C. 3个
D. 4个
03 典例精析
例2、如图是一个正方体,如图哪个选项是它的展开图( B )
A.
B.
C.
D.
03 典例精析 例3、一个正方体的表面展开图如图所示,把它折成正方体后
,与“山”字相对的字是(D )
A.水 B.绿 C.建 D.共
正方体找某一面的对面的口诀: 隔面有面是对面,隔面无面就拐弯。
例3、如图是一个不完整的正方体平面展开图,需再添上一个面, 折叠后才能围成一个正方体.下列添加方式(图中阴影部分)正
确的是( D )
A.
×
B.
×
C.
×
D.
√常见几何体的侧面展开图:来自(1)圆柱:矩形(长方形) (2)圆锥:扇形 (3)正方体:矩形(长方形)

几何体的表面展开图PPT课件

几何体的表面展开图PPT课件

Thank
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story 讲师:XXXXXX XX年XX月XX日
28
你有何高招?
● 蚊子
壁虎 ●
26
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
27
2
4
5
提示:先想好从哪剪开
6
14
活动二 用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比 比哪一小组的展开图更与众不同。
15
16
第一类,中间四连方,两侧各一 个,共六种。(一四一型)
17
第二类,中间三连方,两侧各有 一、二个,共三种。(二三一型)
18
第三类,中间二连方,两侧各有二 个,只有一种。(二二二型)
第四类,两排各三个,只有一种。 (三三型)
19
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A
B
C
D
E
F
G
20
下面的图形是正方体的表面展开图吗?
×
×
×
×
×

21
“考考你”活动
1.下图是一个长方体展开图,图中已标出三个 面在正方体中的位置,f表示前面,r表示右面,d表 示上面,你能判断另外三个面a,b,c在正方体中的位 置吗?

简单几何体表面展开图

简单几何体表面展开图

开图的智能化生成,提高设计效率和质量。
02
虚拟现实与增强现实技术结合
结合虚拟现实和增强现实技术,可以在虚拟环境中实现几何体的动态展
开和交互操作,为设计、教学和娱乐等领域带来新的体验。
03
拓展应用领域
随着科技的进步和社会的发展,几何体表面展开图的应用领域将不断拓
展,例如在生物医学、环境科学等领域发挥更大的作用。
便于计算与制造
在制造和设计领域,展开图可用于计算材料的用 量和成本,以及指导实际的生产和加工过程。
3
广泛应用于多个领域
几何体表面展开图在建筑、机械、电子、艺术等 领域都有广泛的应用,是不可或缺的技术手段。
未来发展趋势和应用前景
01
智能化生成
随着计算机图形学和人工智能技术的发展,未来有望实现几何体表面展
THANKS
感谢观看
可变性
由于锥体的形状和大小可 以变化,因此其展开图也 具有可变性。
04
球体表面展开图
球体的基本概念
球体定义
球体是一个连续曲面的立 体图形,所有点到中心的 距离都相等。
球心与半径
球体的中心称为球心,从 球心到球面上任意一点的 距离称为球的半径。
球面与截面
球体的表面称为球面,通 过球心且与球面相交的平 面截得的圆称为截面圆。
真实性
展开图是按照一定的比例和投影 规律绘制的,能够真实地反映组
合体的实际形状和大小。
多样性
由于组合体的形状和结构各异, 其表面展开图也具有多样性,需 要根据具体情况进行分析和绘制

06
总结与展望
几何体表面展开图的重要性
1 2
直观理解三维形状
通过展开图,可以直观地理解三维几何体的表面 结构和形状特征,有助于空间想象和思维发展。

12展开与折叠(2)

12展开与折叠(2)
做一做
• 准备一样大的三边都相等的三角形,用 透明胶粘贴成下面的三种形状,你能想 象出哪一个可以叠成多面体?
三棱锥的平面展开图
试一试
• 下面四个图形是多面体的展开图, 你能说出这些多面体的名称吗?
• 圆柱的侧面展开图是长方形,圆锥 的侧面展开图是扇形 。在实际生活中常 常需要了解整个立体图形展开的形状, 如包装一个长方体形状的物体,需要根 据其平面展开图来裁剪纸张.今天我们要 讨论的是一些简单多面体的平面展开图
棱数 顶点数
e
v
6
4
12
8
12
6
30
20
30 12
f+v-e
2 2 2 2 2
结论:面数f +顶点数v -棱数e = 2
(net).
• 多面体(polyhedron)是由 平面图形围成的立体图形, 沿着多面体的棱将它剪开, 可以把多面体变成一个平 面图形.
• 同一个立体图形,按不同的方式展 开得到的平面展开图是不一样的.想想看, 下面的图形都是正方体的展开图吗?
• 练习
• 1.下列图形是某些多面体的平面展开图, 说出这些多面体的名称.
A
B
C
D
E
F
G
有一个正方体,在它的各个面上分别涂了
白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
黑 红兰

白 黄红

绿 兰黄 丙
根据正多面体填写下表
名称 各面形状 面数f
正四面体 正三角形 4 正六面体 正方形 6 正八面体 正三角形 8 正2面体 正五边形 12 正20面体 正三角形 20

简单几何体表面展开图 ppt课件

简单几何体表面展开图  ppt课件
21
根据下面几个表面展开图你能制作出这些立体 图形吗?
ppt课件
22
下列的三幅平面图都是三棱柱的表面展开图吗?
三 棱 柱

ppt课件 乙

23
下面的图形是正方体的平面展开图,如果把
它们叠成正方体,哪个字母与哪个字母对应(即 哪个面与哪个面是对面的)
AB CD E F
AB C D EF
ppt课件
杜登尼(Dudeney,1857-1930年)是19世纪英国知 名的谜题创作者.“蜘蛛和苍蝇”问题最早出现 在1903年的英国报纸上,它是杜登尼最有名的谜 题之一.它对全世界难题爱好者的挑战,长达四 分之三个世纪.
B
ppt课件
A
1
把你们小组所做的立方体纸盒沿着某些棱剪开, 且使六个面连在一起,然后铺平,把你所得到的图形画 出来,数一数剪了几刀?并比一比,有何异同?
2
c 7 -1 b
a
ppt课件
9
合作游戏----争连做连小看小数学家
有如一图种,牛上奶面包的装图盒形如分图别所是示下。面为哪了个生立产体这图种形包展装开 盒的,形需状要?先把画它出们展用开线图连纸起样来。。
(1)如图给出的三种纸样,它们都正确吗? (2)从已知正确的纸样中选出一种,标注上尺寸; (3)利用你所选的一种纸样,求出包装盒的侧面积 和表面积(侧面积与两个底面积的和)

乙 ppt课件
丙 10
如图,有一边长4米立方体形的房间,一只蜘蛛在A处,一只 苍蝇在B处。⑴试问,蜘蛛去抓苍蝇需要爬行的最短路程是多少?
⑵若苍蝇在C处,则最短路程是多少? C”(C)
C
4cm
B
4cm
C’(C)
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档