切削力

合集下载

切 削 力

切  削 力
削厚度增大,切削变形系数减小,故切削力减小。若主偏角从60增加 至90,圆弧刀尖在切削刃上占切削宽度增大,使切屑流出时挤压加剧, 切削力逐渐增大。
➢ (4)刀尖圆弧半径——刀尖圆弧半径增大,刀刃上参加切削的曲线
部分越长,平均切削厚度减小,切削变形增大,使切削力增大。
前角与刃倾角对切削力的影响
主偏角对切削力的影响
➢ 通常工件材料的强度和硬度越高,剪切屈服强度越高,
产生的切削力也越大。
➢ 在强度和硬度相近的材料中,其塑性和韧性越高,切削
变形系数越大,切屑与刀具间摩擦增加,故切削力越大;
加工硬化严重的材料,切削力也越大。
➢ 切削铸铁等脆性材料时,切削层的塑性变形很小、摩擦
小,加工硬化小,故产生的切削力也小。
3.刀具几何参数的影响
切向力是设计机床主轴、齿轮和计算主运 动功率的主要依据;它决定刀杆、刀片的尺寸; 它是设计夹具和选择切削用量的重要依据。
背向力是作用在吃刀方向上的切削分力,不 消耗切削功率。
纵车外圆时,如果加工工艺系统刚性不足, 背向力是影响加工工件精度、引起切削振动的主 要原因。
轴向力是作用在进给方向上的切削分力,消 耗总功率的 1%~5%。
各 参 数 对 切 削 力 影 响 的 修 正 系 数 值
1.6 切削力计算举例
切 削 力 计 算 例
2 解 题 步 骤
金属切削加工
2.切力的分解
切向力(主切削 力)——在主运动 方向上的分力; 背向力(径向力或 切深抗力)——在 垂直于工作表面上 的分力; 进给力(轴向力 力)——在进给运 动方向上的分力。
1.2 分力 的作用
1.切向力(主切削力)
2.背向力(径向力)
3.轴向力(进给抗力)

切削力_切削热_切削液

切削力_切削热_切削液
(2)工件材料强度、硬度高时,应选较低的v。
(3)切削合金钢比切削中碳钢切削速度应降低20%~ 30%;切削调质状态的钢比正火、退火状态钢要 降低20%~ 30%;切削有色金属比切削中碳钢的 切削速度可提高100%~ 300%;
(4)刀具材料的切削性能愈好,切削速度也选得愈高。
(5)精加工时,应尽量避开积屑瘤和鳞刺产生的区域。 (6)断续切削及加工大件、细长件和薄壁工件时,应
合理切削用量是指使刀 具的切削性能和机床的动力性能 得到充分发挥,并在保证加工质 量的前提下,获得高生产率和低 加工成本的切削用量。
2、被吃刀量、进给量和切削速度的选定
1)、被吃刀量的选定
粗加工时,一次走刀尽可能切除全部余量,被吃刀量 等于加工余量。
半精加工时,被吃刀量取为0.5~2mm。 精加工时,被吃刀量取为0.1~0.4mm
精加工刀具切削负荷小,刀具耐用度应比粗加工刀具选得
高些。
大件加工时,为避免一次进给中中途换刀,刀具耐用度应
选得高些。
(五)、影响刀具寿命的因素
刀具寿命:刀具从开始投入使用到完全报废的总切削时

刀具几何参数 刀 具 材 料 工 件 材 料 切 削 用 量
五、 切削用量的选择
1、选择切削用量的原则
3)切削液的清洗作用
切削液
切削液(cutting fluid)的冷却作用主要靠
热传导带走大量的切削热, 从而降低切削温度,提高刀 具寿命;减少工件、刀具的 热变形,提高加工精度;降 低断续切削时的热应力,防 止刀具热裂破损等。
使用切削液后,切屑、工 件与刀面之间形成完全的润滑油膜, 成为流体润滑摩擦,此时摩擦系数 很小;实际情况是属于边界润滑摩 擦,其摩擦系数大于流体润滑,但 小于干摩擦。

3-2切削力

3-2切削力
这些作用在刀具上所有力的合力称为总切削力, 这些作用在刀具上所有力的合力称为总切削力,用F来表示。 总切削力 来表示
生产中,为了分析切削力对工件、 生产中,为了分析切削力对工件、刀具和机床的 影响,通常把总切削力 分解为三个分力。如图3-15 总切削力F分解为三个分力 影响,通常把总切削力 分解为三个分力。如图 所示。其中: 所示。其中: 也称主切削力, 切削力 ——也称主切削力,车外圆时,又称切向力。 也称主切削力 车外圆时,又称切向力。 它是总切削力在主运动方向的分力, 切削速度的方向 它是总切削力在主运动方向的分力,与切削速度的方向 主运动方向的分力 一致。消耗90﹪以上的切削功率,是计算刀具强度、 一致。消耗 ﹪以上的切削功率,是计算刀具强度、机 床功率的主要依据。 床功率的主要依据。
2.切削用量
(1)背吃刀量和进给量 )
ap
f
背吃刀量和进给量f加大, 背吃刀量和进给量 加大,均使切削力增大,但两 加大
者的影响程度不同。见表3-1。 者的影响程度不同。见表 。
f
ap
进给量不变背吃刀量增加一倍,切削力也增大一倍。 进给量不变背吃刀量增加一倍,切削力也增大一倍。
不变,进给量增大一倍时,切削力不成正比例增加, 不变,进给量增大一倍时,切削力不成正比例增加,增 大0.7~0.8倍。上述影响反映在切削力实验公式中指数, 倍
vc
vc
率,又使切削力减小。 又使切削力减小。
3.刀具几何参数 (1)前角 γ o ) γ 切削塑性材料时, 增大,变形减小, 切削塑性材料时, o 增大,变形减小,切削力
Fc、Fp、Ff降低。如图 、 、 降低 如图3-18所示。 降低。 所示。 所示 切削脆性材料时,由于变形小,摩擦小, 切削脆性材料时,由于变形小,摩擦小,前角对 切削力的影响不明显。 切削力的影响不明显。 负倒棱使切削刃变钝,切削力增加。 (2)负倒棱 负倒棱使切削刃变钝,切削力增加。 ) (3)主偏角 ) r 由图3-20可知,主偏角的变化,改变背向力和进给力的比 可知, 由图 可知 主偏角的变化, 主偏角增大,背向力减少, 例,主偏角增大,背向力减少,进给力增大。生产 车细长轴时 系统刚性差, 中,车细长轴时,系统刚性差,止工件在背向力 ° ° 甚至大于90°),以防止工件在背向力 腰鼓形工件 作用下变形而加工出腰鼓形工件。 作用下变形而加工出腰鼓形工件。

各种加工方法切削力计算

各种加工方法切削力计算

各种加工方法切削力计算切削力是在切削过程中,刀具对工件产生的力。

准确计算切削力是非常重要的,能够帮助我们选择合适的切削工艺和切削参数,以确保工件的切削质量和刀具的使用寿命。

在刀具加工过程中,常见的加工方法包括车削、铣削和钻削。

下面分别介绍这几种加工方法的切削力计算方法。

1.车削加工中的切削力计算车削过程中切削力的计算是根据切削力公式来进行的。

常见的切削力公式有以下几种:(1)柯氏切削力公式F=K×ae×fz其中,F为切削力,单位为N;ae为等效切削宽度,单位为mm;fz为进给量,单位为mm/转;K为比例系数,不同材料和刀具有不同的系数。

(2)安培切削力公式F=ae×kc×kc1其中,F为切削力,单位为N;ae为等效切削宽度,单位为mm;kc为切削力系数,不同材料根据实际情况选择;kc1为一修正系数,通常取值为12.铣削加工中的切削力计算铣削过程中切削力的计算相对复杂,需要考虑多个因素。

常见的切削力计算方法有以下几种:(1)柯氏切削力公式F=K×ae×ap其中,F为切削力,单位为N;ae为等效切削宽度,单位为mm;ap 为铣削深度,单位为mm;K为比例系数,不同材料和刀具有不同的系数。

(2)Johnson-Cook切削力公式F=A×(1+ln(sin(α))×(1-Tn))其中,F为切削力,单位为N;A为切削力系数,不同材料根据实际情况选择;α为铣削刀具入射角,单位为度;T为切削温度,单位为℃;n为切削力指数。

3.钻削加工中的切削力计算钻削过程中切削力的计算相对简单,常见的切削力计算方法有以下几种:(1)库珀切削力公式F=π×D×f×kc其中,F为切削力,单位为N;D为钻头直径,单位为mm;f为进给率,单位为mm/转;kc为切削力系数,不同材料根据实际情况选择。

(2)李氏切削力公式F=0.551×π×D×f×kc其中,F为切削力,单位为N;D为钻头直径,单位为mm;f为进给率,单位为mm/转;kc为切削力系数,不同材料根据实际情况选择。

切削力

切削力
τAc τac aw = sinφcos(φ + β - γ o ) sinφcos(φ + β - γ o )
Fr =
可知, 由 可知, 被 加工材料的抗剪变形、 切削面积愈大, 剪切角、 加工材料的抗剪变形、 切削面积愈大, 剪切角、 前 角愈小, 则切削力愈大。 具体分析如下: 角愈小, 则切削力愈大。 具体分析如下:
二、切削用量
◆背吃刀量与切削力近似成正比; 背吃刀量与切削力近似成正比; 进给量增加,切削力增加,但不成正比; ◆进给量增加,切削力增加,但不成正比; ◆切削速度对切削力影响复杂
1、 背吃刀量ap、进给量f
ap 、f增大,切削宽度aw 、切削厚度ac 增大,切削面积Ac 增 增大, 增大,
抗力和摩擦力增加, 则切削力增大,但影响程度不一。 大,抗力和摩擦力增加, 则切削力增大,但影响程度不一。 因刀刃钝圆半径 的关系,刃口处的变形大, 增大时( 因刀刃钝圆半径rβ的关系,刃口处的变形大,ap增大时(如图 (b)所示 (a)所示 ) 该处变形成比例增大; 增大时( 如图(b) 所示) (a) 所示), 该处变形成比例增大 ; f 增大时 ( 如图 (b) 所示 ) , 所示 该处变形比例基本不变, 变大,变形减小。 该处变形比例基本不变,而ac变大,变形减小。所以增加ap时 的增大影响明显。 切削力的增大较 f 的增大影响明显。 一般切削力实验公式中 ap 的指数接近于1 的指数接近于0 75也可说明这一点 也可说明这一点。 的指数接近于1;f的指数接近于0.75也可说明这一点。 可见,在同样切削面积下, 省力。 可见,在同样切削面积下,采用大的f较采用大的ap省力。
在设计机床选择电机功率PE时,应按下式计算
PE ≥
ηm
Pm

1.4.2 切削力

1.4.2  切削力

二、总切削力的分解
1、切削力Fc
——是指总切削力在主运动方向上的正投影,它消 耗的功率最多,是计算机床动力设备强度和刚度、 刀具强度的基本依据。
2、进给力Ff
——指总切削力在进给运动方向上的正投影,它是 设计和校验走刀机构的主要依据。
3、背向力Fp
——指总切削力在垂直于进给运动方向上的分力, 它作用在工艺系统刚度最薄弱的方向,容易引起振 动和形状误差,是设计和校验工艺系统刚度和精度 的基本数据。
切削液能将切屑、金属粉尘和砂轮上脱落的磨粒等及时地 从工件、切削工具上冲走,以免其堵塞并划伤已加工表面。
4). 防锈作用 切削液能够减轻工件、机床、刀具受周围介质(空气、 水分等)的腐蚀作用。 2、切削液的种类 1). 水溶液 水溶液的主要成分是水及防锈剂、防霉剂等,主要起 冷却作用,常用于粗加工中。 2). 乳化液
是矿物油、乳化剂及添加剂预先配制好的乳化油,使用 时加水稀释而成。 乳化液中含乳化油少的(低浓度3%~5%),冷却清洗 作用好,适用范围于粗车或磨削;含乳化油多的(高浓 度10%~20%),润滑作用较好,适用于精加工。 3). 合成切削液 它是由水、各种表面活性剂和化学添加剂组成,具有 良好的冷却、润滑、清洗和防锈性能,热稳定性好, 使用周期长等特点。 4). 微乳化液 它是介于乳化液和合成液之间的新型切削液,它是微乳化 油经水高倍稀释后形成的微乳状、半透明的液体。它克服 了乳化液易腐蚀、清洗性能差及合成切削液侵蚀机床漆面、 润滑性能差等缺陷,避免了油污污染、发霉变质等弊病, 综合了乳化液和合成液的优点,有润滑、冷却、防锈和清
(2)切削用量;在切削用量三要素中,切削速度对切削温 度的影响最大,其次是进给量,背吃刀量影响最小。 (3)刀具角度;在刀具几何角度中,前角和主偏角对切削 温度的影响较大。适当增大前角,切削层金属变形减小 , 可降低切削温度。减小主偏角,切削时切削刃工作长度增加, 散热条件好,降低了切削温度,主偏角为Kr=75°的车刀比 主偏角为Kr=90°的车刀更合适 。 (4)切削液;在切削过程中,合理选用并正确加注切削液 可改善刀具和工件的润滑条件及散热条件,并能带走一部分 热量,可以有效地降低切削温度。 1.4.4 切 削 液

切削力

切削力
第四章 切削力
第一节
第二节 第三节 第四节 第五节
切削力的来源、切削合力及其分解、切削功率
切削力的测量及切削力的计算 切削力的指数公式和切削力的预报及估算 影响切削力的因素 切削力的理论研究
第一节 切削力的来源、切削合力及其分解、切 削功率
一、切削力的来源
切削时作用在刀具上的力,由下列两个方面组成: ① 变形区内产生的弹性变形抗力和塑性变形抗力 ② 切屑、工件与刀具间的摩擦力。
Z w 1000 vc fa p
整理后得
Ps p 10
6
通过实验求得p后,反过来可以求得Pm,然后再计算Fz。
四、 机床电机功率
在设计机床选择电机功率PE时,应按下式计算
PE
m
Pm
式中
ηm —— 机床传动效率,通常η= 0.75~0.85
第四节
影响切削力的因素
切削力来源于工件材料的弹塑性变形及刀具与切屑、 工件表面的摩擦,因此凡是影响切削过程中材料的变形 及摩擦的因素都影响切削力。 影响因素主要为:工件材料;切削用量;刀具几何 参数;其他因素。
◆主偏角 κr 对主切削力影响不大,对吃刀抗力和进给 抗力影响显著( κr ↑—— Fy↓,Fx↑) ◆ 与主偏角相似,刃倾角 λs 对主切削力影响不大,对 吃刀抗力和进给抗力影响显著( λs ↑ —— Fy↓, Fx↑)
◆ 刀尖圆弧半径 rε 对主切削力影响不大,对吃刀抗力 和进给抗力影响显著( rε ↑ —— Fy↑,Fx↓) ;
F
Ff 进给抗力
Ff · p
Fc 主切削力
F 切削合力 切削力的分解
ቤተ መጻሕፍቲ ባይዱ
切削力的分解
由图可知,合力与各分力间关系为:

第4讲 切削力

第4讲 切削力

主偏角对切削力的影响
ac=f sin Kr Kr < 60 时:Kr ac Fz 降低; Kr> 75 时:虽然Kr ac ,但是 Kr 但刀 尖圆弧刃工作长度 ,且占主导作用 Fz增大 Kr Fy Kr Fx 对脆性材料,作用不明显,Kr Fz 降低。
机床和装夹
(一)工件材料方面
工件材料物理力学性能、化学成分、热处理状态和切削
前材料的加工状态都影响切削力的大小。 工件材料强度、硬度愈大、切削力愈大。 工件材料化学成份不同,如合碳量多少,是否含有合金 元素等,切削力不同。 热处理状态不同,硬度不同,切削力也不同(淬火、调 质、正火)。
Pm=Fzv10-3KW
由切削功率Pm可求得机床电机功率PE,即:
式中 m机床传动效率,一般为0.75~0.85。
切削力的计算
1. 测量机床功率计算切削力 2. 切削力试验的测量
3. 经验公式(查手册)
4. FEM分析计算 5. 理论公式(计算与预报)
切削力的计算方法
(1)测量机床功率
利用功率表直测量机床的功率,然后求得切削力的 大小。该方法较粗糙,误差大。
注意,Fz、Fx、Fy之间比例关系随刀具材料、几何参数、工 件材料及刀具磨损状态不同在较大范围内变化。
(3)切削功率
切削功率Pm切削力在切削过程中所作的功率。即
式中 Fz—切削力(N);v—切削速度(m/s);Fx—进给力(N) ;nw—工件转速(r/s); f—进给量(mm/r)。 式中第二项相对第一项很小(<1~2%)可忽略不计,于是,
材料硬化指数不同如不锈钢硬化指数大,切削力大,铜、
铝硬化指数小,铸铁及脆性材料硬化指数小,切削力就 小。

切削力

切削力
第二章 金属切削过程
Wang chenggang
Company Logo
第五节
切削热和切削温度
二、切削温度
切削温度一般指切削区域的 平均温度。 切削温度的高低与被加工材 料、刀具材料、刀具几何角度、 切削用量等因素有关。 最高温度
在前刀面和切屑接触长度的中间 部位,说明摩擦集中在切屑底层; 在已加工表面上,相对较高的温 度仅存在于刀刃附近很小范围内, 说明温度的升降是在极短的时间 内完成的。
Company Logo
三、影响切削力的主要因素
主要因素:工件材料、切削用量、刀具几何参数
1.工件材料
强度、硬度。工件材料的强度、硬度越高,材料的剪切
屈服强度越大,变形抗力也越大,切削力就越大。 塑性或韧性。强度、硬度相近的材料,其塑性或韧性越
大,切屑越不易折断,使切屑与前刀面之间的摩擦增加,
直接受刃口挤压的切屑底层金 属△ac变形较严重,其它部分 只受前刀面挤压,变形较小。
2.切削用量
(1)背吃刀量的影响 切削面积Ac 切削力
背吃刀量 单位切削力Fc 进给量 对比
背吃刀量增加一倍:切削层的 切削面积增加一倍,底层的严 重变形层占整个切削面积的比 例不变,故Fc不变,但Ac增加 一倍,故切削力增加一倍; 第二章 金属切削过程
第二章
金属切削过程
第一节 金属切削刀具基础 第二节 切削变形 第三节 切屑的类型及控制
第四节 切削力
第五节 切削热和切削温度 第六节 刀具磨损
第七节 刀具几何参数和切削用量的选择
第四节
切削力
一、 切削力的来源和分解
1.切削力:刀具切削时受到的阻力,称为切削力。 切削力来源 变形抗力 磨擦阻力

第四章切削力

第四章切削力

主切削力Fc(Fz):主运动方向上的切削分力。用于计算切削功率、校核机 床及工夹具强度和刚度。切削力,它垂直于基面pr,与切削速度方向一致, 它消耗机床的主要功率,是计算切削功率、选取机床电动机功率和设计机床 主传动机构的依据; 背向力Fp (Fy) (径 向分力Fy): 它作用于基面 pr内,与进给 方向垂直,它 能使工件产生 变形,过大会 引起工艺系统 的变形和振动, 降低加工质量。 机床设计时, 用于主轴轴承 寿命计算、轴 承选择、主轴 弯曲刚度校验 等。
2)压电式测力仪
• • • • • 压电式测力仪具有灵敏度高、刚度 大、自振频率高、线性度和抗相互干 扰性较好,无惯性、精度高的优点,适 用于测量动态切削力和瞬时切削力。其 缺点是易受湿度影响,连续测量稳定的或变化不大的切削力时,存在电 荷泄漏,致使零点漂移,影响测量精度。 • 这种测力仪利用某些材料(如石英品体或压电陶瓷)的压电效应。即当 受力时其表面产生电荷,电荷的多少仅与所施加的外力的大小成正比。 用电荷放大器将电荷转换成相应的电压参数就可以测出力的大小。图为 单一压电传感器原理图。电压参数就可以测出力的大小。图3.34为单一 压电传感器原理图。压力F通过小球1及金属薄片2传给压电晶体3。两压 电晶体间有电极4,由压力产生的负电荷集中在电极4上,通过有绝缘层 的导体5传出,而正电荷则通过金属片2或测力仪体接地传出。导体5输 出的电荷通过电荷放大器放大后用记录仪器记录下来,在事先标定的标 定曲线图上即可查出切削力的数值。在测力仪中沿三个方向上都装有传 感器,可以分别测出三向分力。
CFc , CFp , CFf —与工件、刀具材料有关系数; xFc , xFp , xFf —— 背吃刀量ap 对切削力影响指数; yFc , yFp , yFf —— 进给量 f 对切削力影响指数; KFc , KFp , KFf —— 考虑切削速度、刀具几何参数、刀具 磨损等因素影响的修正系数。

切削力计算

切削力计算

切削力计算的经验公式通过试验的方法,测出各种影响因素变化时的切削力数据,加以处理得到的反映各因素与切削力关系的表达式,称为切削力计算的经验公式。

在实际中使用切削力的经验公式有两种:一是指数公式,二是单位切削力。

1 .指数公式主切削力(2-4)背向力(2-5)进给力(2-6)式中F c————主切削力(N);F p————背向力(N);F f————进给力(N);C fc、C fp、C ff————系数,可查表2-1;x fc、y fc、n fc、x fp、y fp、n fp、x ff、y ff、n ff ------ 指数,可查表2-1。

K Fc、 K Fp、 K Ff ---- 修正系数,可查表 2-5,表 2-6。

2 .单位切削力单位切削力是指单位切削面积上的主切削力,用 kc表示,见表 2-2。

kc=Fc/A d=Fc/(a p·f)=F c/(b d·h d) (2-7)式中A D -------切削面积( mm 2);a p ------- 背吃刀量( mm);f - ------- 进给量( mm/r);h-------- 切削厚度( mm );db-------- 切削宽度( mm)。

d已知单位切削力 k c ,求主切削力 F cF c=k c·a p·f=k c·h d·b d (2-8)式 2-8中的 k c是指 f = 0.3mm/r 时的单位切削力,当实际进给量 f大于或小于 0.3mm /r时,需乘以修正系数 K fkc,见表 2-3。

表 2-3 进给量?对单位切削力或单位切削功率的修正系数 K fkc, K fpsf /(mm/r)0.1 0.15 0.2 0.25 0.3 0.350.40.45 0.5 0.6K fkc, K fps1.18 1.11 1.061.031 0.97 0.96 0.94 0.9250.9切削力的来源、切削分力金属切削时,切削层及其加工表面上产生弹性和塑性变形;同时工件与刀具之间的相对运动存在着摩擦力。

第四章 切削力

第四章 切削力

式中:nw——工件转速,r/s; Fz ——切削力(N); vc——切削速度,m/s;Fx ——进给力(N); f ——进给量,mm/r。
由于进给运动相对于主运动消耗的功很少(小于1 %~2%),可以忽略不计,于是有
Pm Fz vc 10
3
( KW )
按上式求得切削功率后,如要计算机床电机的功率以便 选择机床电机时,还应除以机床的传动效率,即:
1)电阻应变式测力仪 电阻应变式测力仪具有灵敏度高、线性度好、量程范围 大、使用可靠、测量精度较高等优点,适用于切削力的动态、 静态测量。
这种测力仪常用的电阻元件叫做电阻应变片。其特点是 受到张力时,其长度增大,截面积减小,致使电阻值增大; 受到压力时,其长度缩短,截面积增加,致使电阻值减小。 将若干电阻应变片紧贴在测力仪的弹性元件的不同受力位置, 分别联成电桥。在切削力作用下,电阻应变片随着弹性元件 发生变形,使应变片的电阻值改变,破坏了电桥的平衡,于 是电流表中有与切削力大小相应的电流通过,经电阻应变仪 放大后得电流示数。再按此电流示数从标定曲线上可以读出 三向切削力之值。
第三节、切削力的指数公式及预报与估算
切削力的大小计算有理论公式和实验公式。理论公式通常
供定性分析用,一般使用实验公式计算切削力。 常用的实验公式分为两类:一类是用指数公式计算,另一 类是按单位切削力进行计算。 在金属切削中广泛应用指数公式计算切削力。不同的加工 方式和加工条件下,切削力计算的指数公式可在切削用量手册 中查得。r分解 为相互垂直的三个分力: 切削力Fc(FZ)、进给力 Ff (FX)、背向力 Fp (Fy)
切削力Fz(Fc)
(旧称主切削力,用Fz表示)——总切削力在主运动方向的分力。 它切于过渡表面,并垂直于基面Pr,与切削速度vc方向一致, 它消耗机床的主要功率,是计算机床切削功率、选配机床电机、 校核机床主传动机构、设计机床部件及计算刀具强度等必不可 少的依据。

切削力

切削力
18
1.1.4 影响切削力的因素
1. 工件材料
•影响较大的因素主要是工件材料的强度、硬 度和塑性。 •材料的强度、硬度越高,则屈服强度越高, 切削力越大。 •在强度、硬度相近的情况下,材料的塑性、 韧性越大,则刀具前面上的平均摩擦系数越 大,切削力也就越大。 •灰铸铁及其他脆性材料,切削力较小。
19
11
课堂问题?
切削力来源及分力特点?
1.3.2 切削力的计算
1. 切削力的理论公式
Fc s h D b D (1 . 4 C ) s a p f (1 . 4 C )
式中 C — 与前角有关的系数。
它反映了材料性能( s )、切屑变形( ξ)、切削用量 (ap、f)、切削层参数(hD、bD)及刀具前角的内在联系 。
工件材料的导热系数越低,通过工件和切屑传导出去
的切削热量越少,这就必然会使通过刀具传导出去的热
量增加。 例如切削航空工业中常用的钛合金时,因为它的导热
系数只有碳素钢的1/3~1/4,切削产生的热量不易传出, 切削温度因而随之增高,刀具就容易磨损。
38
1.4.1 切削热的产生与传导
2.切削热的传出
重点难点

影响切削温度的因素;
学习目标
1. 掌握切削热的产生 2. 掌握切削温度的影响因素; 3. 了解切削温度的测量方法。

33
1.4.1 切削热的产生与传导 1.切削热的产生
金属切削过程的三个变形区就是产生切削热 (cutting heat)的三个热源:
1)切削层金属发生弹性、塑性变形所产生的热 量,是切削热的主要来源; 2)切屑与刀具前刀面之间的摩擦所产生的热量; 3)工件与刀具后刀面之间的摩擦所产生的热量。

切削力

切削力

• (2)切深抗力Fy 切深方向的分力; 也称径向力、吃刀力。不消耗功率, 但在机床一工件-夹角-刀具工艺 系统刚性不足时,是造成振动的主 要因素。
• (3)进给抗力Fx
• 进给方向的分力。
• 也称轴向力、走刀力。
• 消耗了总功率5%左右,它是验算 机床进给系统主要零、部件强度和 刚性的依据。
2、切削力测定和车削力实验公式
切屈服强度越高,切削力越大。
• 工件材料的塑性或韧性越高,切屑越不易折 断,使切屑与前刀面间摩擦增加,故切削力 增大。
• 注意点:材料硬化能力越高,则力越大。
• 奥氏体不锈钢,强度低、硬度低,但强化系 数大,较小的变形就会引起材料硬度提高, 所以切削力大。
• 铜、铅等塑性大,但变形时,加工硬化小, 则切削力小。
切削力增大;前角γO1负值增大,变形加大,切削力 增大。
刀尖圆弧半径 刀尖圆弧半径越大,圆弧刀刃参加工作比
例越多,切削变形和摩擦越大,切削力越大。 由于圆弧刀刃上主偏角是变化的,使参加
工作刀刃上主偏角的平均值减小,因此使FY增 大,并较易引起振动。
• 刀具磨损
• 刀具磨损,使刀刃变钝、后刀面与 加工表面间挤压和摩擦加剧,切削 力增大,振动加大。
• 切削速度
• 加工塑性金属时,主要因素为积屑瘤与摩擦。 • 低、中速(5-20m/min):υ提高,切削变形减小,
故Fz逐渐减小;积屑瘤渐成。 • 中速时(20m/min左右):变形值最小,Fz减至最
小值,积屑瘤最高,大前角作用。 • 超过中速,υ提高,切削变形增大,故Fz逐渐增大。
积屑瘤消失。 • 高速(υ>60m/min),切削变形随着切削速度增加
(2)切削用量的影响
• 切削深度和进给量 • 切削深度ap和进给量f增大,分别使切削

切削力

切削力
•材料的强度、硬度越高,则屈服 强度越高,切削力越大。
•在强度、硬度相近的情况下,材 料的塑性、韧性越大,则刀具前面
上的平均摩擦系数越大,切削力也 就越大。
进给量f和背吃刀量ap
进给量f和背吃刀量ap增加,使切 削力Fc增加,但影响程度不同。 进给量f 增大时,切削力有所增
加;而背吃刀量ap增大时,切削 刃上的切削负荷也随之增大,即
KFc , KFp , KFf —— 考虑切削速度、刀具几何参数、 刀具磨损等因素影响的修正系数。
A
29
切削力与切削功率——2. 切削功率
单位切削力
切除单位切削层面积的主切削力(令修正系数KFc =1)
pF c C F cap xF c fyF c
A D
apf
K F c
a C pF cfa 1 p xy F F cc
A
11
图 1-44 电阻应变片
A
12
图 1-43 电阻应变片
A
13
• (2)车削力经验公式及切削分力计算 • 1)经验公式及建立方法简介 切削力经验公式是在通过切
削实验取得大量数据的基础上,经适当的数据处理后得到 的关于切削力与可变因素(切削条件)之间的定量关系式。 由于建立这种关系的依据是经验数据,故称为经验公式。 目前,在计算一定切削条件下的切削力数值时,多采用经 验公式。 • 建立经验公式时,为便于进行数据处理并保证经验公式的 可靠性,通常多采用单因素实验法或正交实验法,而在处 理数据时采用图解法或线性回归法。 • 下面将单因素实验法建立车削力经验公式的主要过程作一 简要介绍。 • 在影响车削力的因素中,影响最大,也最直接的是切削深 度ap和进给量f。其他因素则主要通过对切屑变形和摩擦 的影响而影响切削力。因此,目前,普遍使用的车削力经 验公式的基本形式均采用各切削分力与ap、f之关系的形 式,对其他因素的影响,再通过修正系数加以考虑。

切削力

切削力

机械制造技术切削力在金属切削时,刀具切入工件,使被加工材料发生变形并成为切屑所需的力,称为切削力。

切削力直接影响切削热的产生,并进一步影响刀具磨损、寿命、加工精度和已加工表面质量。

1.切削力的产生和分解切削力来源于三个变形区内切削层金属、切屑和工件表面的变形抗力和刀具与切屑、刀具与工件表面的摩擦阻力。

在实际应用中常将总切削分解成3个相互垂直的切削分力,如图1所示。

图1 外圆车削时力的分解主切削力F C:垂直于基面,与切削速度方向平行的切削分力。

吃刀抗力(背向分力)F P:在基面内与进给运动相垂直,即吃刀方向上的分力。

进给抗力F f:在基面内,与进给运动方向相平行,即沿进给方向的切削分力。

u(1)主切削力FC主切削力是最大的分力,是校验机床动力、设计机床主传动系统零件、夹具强度和刚度的主要依据,也是计算刀具强度和选择切削用量的依据。

u(2)吃刀抗力(背向分力)FP吃刀抗力对工件的加工精度影响最大。

切削工件时,易使其产生弹性弯曲,引起振动。

车削刚性差的细长轴类工件时,Fp对其加工精度的影响尤其显著。

u(3)进给抗力Ff进给抗力Ff是设计和验算进给运动机构零件强度和刚度的依据。

22222c f p c DF F F F F F =++=+式中,F D 为推力,是总切削力F 在切削层尺寸平面上的投影,单位为N。

它与背向力F p 和进给力F f 的关系为:F p =F D cos k r , F f =F D sin k r2. 切削力与切削功率的计算u(1)计算切削力的指数公式u(2)切削功率的计算切削功率Pc用于核算加工成本和计算能量消耗,并在设计机床时根据它来选择机床主电动机功率。

主运动消耗的切削功率:式中 F c—主切削力,N;υc—切削速度,m/min。

根据切削功率P c可计算或校核机床主电动机的功率P E (单位为kW):cE mP P η=ηm 为机床传动效率,ηm =0.75~0.85。

u(3)按单位切削力计算切削力和切削功率单位切削力kc是指单位切削面积上的切削力:3. 影响切削力的因素在切削过程中,切削力可能使工艺系统产生变形,影响加工精度。

切削力 _??????

切削力 _??????

切削力在切削加工中,切削力是一个特别重要的参数,切削热、刀具磨损等物理现象都与切削力有关,切削力还是设计和使用机床、刀具、夹具的重要依据。

一、切削力与切削功率1.切削力切削时,使被加工材料发生变形成为切屑所需的力称为切削力。

使被加工材料发生变形所需克服的力主要是:1)切削层材料和工件表面层材料对弹性变形、塑性变形的抗力。

2)刀具前刀面与切屑、刀具后刀面与工件表面间的摩擦阻力。

2.切削合力与分力上述各力的总和形成作用在车刀上的合力。

可将分解为、和三个相互垂直的分力。

垂直于基面,与切削速度的方向全都,称为切削力(也称切向力、主切削力)。

是计算切削功率和设计机床的主要参数。

平行于基面,并与进给方向相垂直,称为背向力。

平行于基面,并与进给方向平行,称为进给力。

在上述三个分力中,值最大,约为,约为。

3.切削功率消耗在切削过程中的功率称为切削功率,用表示。

由于在方向的位移微小,可以近似认为不作功,不消耗功率。

依据切削功率选择机床电动机功率时,还要考虑机床的传动效率。

4.单位切削力的概念单位切削面积上的切削力称为单位切削力。

二、切削力阅历计算公式1.切削力的测量2.切削力阅历计算公式三、影响切削力的因素1.工件材料的影响工件材料的强度、硬度越高,切削力越大。

切削脆性材料时,被切材料的塑性变形及它与前刀面的摩擦都比较小,故其切削力相对较小。

2.切削用量的影响(1)背吃刀量和进给量和增大,都会使切削力增大,但两者的影响程度不同。

增大时,变形系数不变,切削力成正比增大;增大时,有所下降,故切削力不成正比增大。

在车削力的阅历计算公式中,的指数近似等于1,的指数小于1。

在切削层面积相同的条件下,采纳大的进给量比采纳大的背吃刀量的切削力小。

(2)切削速度切削塑性材料时,在无积屑瘤产生的切削速度范围内,随着的增大,切削力减小;这是由于增大时,切削温度上升,摩擦系数减小,从而使减小,切削力下降。

在产生积屑瘤的状况下,刀具的实际前角是随积屑瘤的成长与脱落变化的。

认识切削力

认识切削力
如下页图b所示,进给量 f 增大,切削厚度 hD 增大,而切削宽度 bD 不变。此时,切削面积 AD 按比例增 大,但切屑与前刀面的接触面积却未变化,因此第Ⅱ变形区的变形未按比例增大。由于进给量 f 增大,切 削变形程度减小,根据P44页续表可得,单位切削力 p 变小。因此,切削力 Fr 的增大与进给量 f 不成正比。 进给量 f 增大一倍时,切削力 Fr 增大70%~80%。
Ff
机械制造基础
7
一、切削力
机械制造基础
式中:CFc,CF,p CFf ——分别为三个ቤተ መጻሕፍቲ ባይዱ力的系数,其大小与工件材料和切削条件有关;
x
Fc,x
,x Fp
Ff
——分别为三个分力公式中背吃刀量
ap
的指数;
y
Fc,y
,y Fp
Ff
——分别为三个分力公式中进给量
f
的指数;
nFc,nFp,nFf ——分别为三个分力公式中切削速度 vc 的指数;
1.工件材料
工件材料的硬度、强度越高,剪切屈服强度越大,切削力 Fr 越大。硬度、强度相近的材料,塑性或韧性 越好,切屑越不易折断,切屑与前刀面的摩擦越大,切削力 Fr 越大。例如,不锈钢1Cr18Ni9Ti的硬度与45钢 接近,但其延伸率是45钢的4倍,所以,在同样条件下不锈钢产生的切削力 Fr 较45钢增大了25%。
跳到 P146
10
二、切削功率及其计算
机械制造基础
续表
f/(mm/r) 0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.6
kfp
1.18
1.11
1.06
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档