高中数学 第二章 圆锥曲线 2_1 截面欣赏 直线与球 2_2 平面与球的位置关系课后作业 北师大版选修4-11

合集下载

高中数学 第二章 圆锥曲线 2.2 直线与球、平面与球的位置关系 切线素材 北师大版选修41

高中数学 第二章 圆锥曲线 2.2 直线与球、平面与球的位置关系 切线素材 北师大版选修41

切线
几何上,切线指的是一条刚好触碰到曲线上某一点的直线。

更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的,此时,“切线在切点附近的部分”最接近“曲线在切点附近的部分”(无限逼近思想)。

tangent在拉丁语中就是“to touch”的意思。

类似的概念也可以推广到平面相切等概念中。

曲线切线和法线的定义
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT 的直线PN叫做曲线C在点P的法线(无限逼近的思想)
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l 尽管和曲线C只有一个交点,但它却不是曲线C的切线。

性质和定理
切线的性质定理
圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。

切线判定定理
一直线若与一圆有交点,且连接交点与圆心的直线与该直线垂直,那么这条直线就是圆的切线。

一般可用:
1、作垂直证半径
2、作半径证垂直。

北师版高中数学教材目录

北师版高中数学教材目录

北师大版高中教材目录第一章 集合§1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算 3.1 交集与并集3.2 全集与补集第二章 函数§1 生活中的变量关系 §2 对函数的进一步认识 2.1 函数概念2.2 函数的表示法 2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像 4.2 二次函数的性质§5 简单的幂函数第三章 指数函数和对数函数 §1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充 2.2 指数运算的性质§3 指数函数3.1 指数函数的概念3.2 指数函数x y 2= 和xy ⎪⎭⎫ ⎝⎛=21 的图像和 性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算 4.2 换底公式§5 对数函数5.1 对数函数的概念 5.2 对数函数x y 2log =的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章 函数应用 §1 函数与方程1.1 利用函数性质判断方程解的存在 1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画 2.2 用函数模型解决实际问题 2.3 函数建模案例第一章 立体几何初步 §1 简单几何体1.1 简单旋转体 1.2 简单多面体§2 直观图 §3 三视图3.1 简单组合体的三视图 3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识 4.2 空间图形的公理§5 平行关系5.1 平行关系的判定 5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定 6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积§8 面积公式和体积公式的简单应用第二章 解析几何初步 §1 直线与直线的方程1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系 1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程 2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差 4.2 标准差§5 用样本估计总体5.1 估计总体的分别5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2 变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3模拟方法——概率的应用第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性4.3 单位圆与诱导公式§5 余弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3 正弦函数的性质§6 余弦函数的图像与性质6.1 余弦函数的图像6.2 余弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像和性质7.3 正切函数的诱导公式§8 函数)sin(ϕ+ω=xAy的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表述4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数 2.3 两角和与差的正切函数§3 二倍角的三角函数第一章数列§1 数列1.1 数列的概念1.2 数列的函数特性§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大小值§4 简单线性规划4.1 二元一次不等式组与平面区域 4.2 简单线性规划4.3 简单线性规划的应用第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.3 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分背景——面积和路程问题 1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章计数原理§1 分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2 分类乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 独立性检验2.2 独立性检验的基本思想2.3 独立性检验的应用第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用 2.2 最大值、最小值问题第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法。

立体几何截面问题的十大热门题型未接内接

立体几何截面问题的十大热门题型未接内接

立体几何截面问题的十大热门题型未接内接
立体几何截面问题的十大热门题型未接内接是高中数学中的一个重要知识点,主要考察学生的空间想象能力和逻辑推理能力。

以下是一些常见的立体几何截面问题题型:
1. 平面与立体图形的截面问题:求一个平面与立体图形相交所得的截面图形,并证明该截面图形的性质。

2. 平面与球的截面问题:求一个平面与球相交所得的截面图形,并证明该截面图形的性质。

3. 直线与平面平行的判定与证明:判定一条直线是否与某个平面平行,并证明该直线的性质。

4. 平面与平面平行的判定与证明:判定两个平面是否平行,并证明该平面的性质。

5. 直线与球的位置关系问题:判断一条直线与球的位置关系(相交、相切、相离),并证明该位置关系的性质。

6. 平面与球的位置关系问题:判断一个平面与球的位置关系(相交、相切、相离),并证明该位置关系的性质。

7. 立体图形的内切问题:求一个立体图形内切球或内切多边形的半径,并证明该半径的性质。

8. 立体图形的外接问题:求一个立体图形外接球或外接多边形的半径,并证明该半径的性质。

9. 立体图形的表面积和体积问题:求一个立体图形的表面积和体积,并证明该表面积和体积的性质。

10. 立体几何中的向量问题:利用向量运算解决立体几何中的问题,如求向量的模长、向量的夹角、向量的投影等。

这些题型都需要学生具备扎实的基础知识和灵活的解题技巧,通过不断的练习和总结,才能提高自己的解题能力。

高中数学第二章圆锥曲线1截面欣赏2直线与球平面与球的位置关系学案北师大版选修2.doc

高中数学第二章圆锥曲线1截面欣赏2直线与球平面与球的位置关系学案北师大版选修2.doc

§1 & §2截面欣赏直线与球、平面与球的位置关系[对应学生用书P33][自主学习]1.直线与球的位置关系有相离、相切、相交.2.从球外一点作球的切线,它们的切线长相等,所有的切点组成一个圆.3.平面与球的位置关系有相离、相切、相交.4.一个平面与球面相交,所得的交线是一个圆,且圆心与球心的连线垂直于这一平面.[合作探究]1.用一平面去截正方体时,其截面可能是几边形?提示:三角形(锐角三角形、等腰三角形、等边三角形)四边形(长方形、正方形、梯形)五边形、六边形2.直线与球的位置关系的判定与直线与圆的位置关系判定一样吗?提示:一样.都是利用点到直线的距离与半径r的关系去判定.3.平面与球的位置关系如何判定?提示:平面α,球O,球心O到α的距离为OH,球半径为R.若OH>R,则相离;若OH =R,则相切;若OH<R,则相交.[对应学生用书P33][例1]底面为底,下底面中心为顶点的圆锥,得到如图所示的几何体,如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积(阴影部分).[思路点拨] 本题主要考查截面问题,解题时根据题意画出轴截面可直观求解.[精解详析] 轴截面如图所示:被平行于下底面的平面所截的圆柱的截面圆的半径O 1C =R ,圆锥的截面圆的半径O 1D 设为x .∵OA =AB =R ,∴△OAB 是等腰直角三角形. 又CD ∥OA ,则CD =BC ,故x =l . ∴截面面积S =πR 2-πl 2=π(R 2-l 2).解决这类问题的关键是准确分析出组合体的结构特征,发挥自己的空间想象能力,正确作出几何体的轴截面等,把立体图和截面图对照分析,找出几何体中的数量关系.把空间几何问题转化在同一平面内利用平面几何的知识解决,即用空间问题平面化的解题策略.1.一长方体木料,沿如图所示平面EFGH 截长方体,若AB ⊥CD ,那么下列四个图形中是截面的是( )解析:选A 因为AB ,MN 两条交线所在平面(侧面)互相平行,故AB ,MN 无公共点;又AB ,MN 在平面EFGH 内,故AB ∥MN .同理易知,AN ∥BM .又AB ⊥CD ,所以截面必为矩形.[例2] 个球过这个正方体的各个顶点,求这三个球的表面积之比.[思路点拨] 本题主要考查平面、直线与球的位置关系的应用.解此题时分别作出三种情况的截面图,可求解.[精解详析] 设正方体的棱长为a .(1)正方形的内切球球心是正方体的中心,切点是六个面正方形的中心,经过四个切点及球心作截面如图①,所以有2r 1=a ,r 1=a2,所以S 1=4πr 21=πa 2.(2)球与正方体的各棱的切点在每条棱的中点, 过球心作正方体的对角面得截面,如图②,2r 2=2a ,r 2=22a, 所以S 2=4πr 22=2πa 2.(3)正方体的各个顶点在球面上,过球心作正方体的对角面得截面,如图③,所以有2r 3=3a ,r 3=32a ,所以S 3=4πr 23=3πa 2. 综上可得S 1∶S 2∶S 3=1∶2∶3.与球有关的截面问题,为了增加图形的直观性,解题时常常画一个截面圆起衬托作用.2.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是( )A .22B .32C . 2D . 3解析:选C 由题意结合图形分析知:截面过球心,且交AB 于E 点,则E 为AB 的中点,即可得△ECD 为等腰三角形,又CD =2,CE =DE =3,可求得S △ECD = 2.[例3] 如图,球O 的半径为2,圆O 1是一小圆,O 1O =2,A ,B 是圆O 1上两点.若∠AO 1B =π2,则A ,B 两点间的球面距离为 .[精解详析] 如图,OB =OA =2,O 1O =2,∴O 1A =2, ∴AB =2,∴△OAB 为正三角形, ∴∠AOB =π3.∴A ,B 两点间的球面距离为π3×2=2π3. [答案]2π3若一平面与球面相交所得交线是一个圆,且圆心与球心的连线垂直于这一平面,该圆心与球心距离为d ,圆半径为r ,球半径为R ,则d 2+r 2=R 2.本例条件变为“如图,球O 的半径为2,圆O 1是一小圆,O 1O =2,A ,B 是圆O 1上两点.若A ,B 两点间的球面距离为2π3”,则∠AO 1B = . 解析:由A ,B 间的球面距离为2π3知∠AOB =π3,所以△AOB 为等边三角形,AB =2;又由球O 的半径为2,O 1O =2知O 1A =O 1B =2,所以△AO 1B 为等腰直角三角形,∠AO 1B =π2.答案:π2本课时常考查截面问题,是每年命题的热点内容之一.属中档题.[考题印证]平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π[命题立意]本题主要通过截面问题考查球的性质及球的体积公式. [自主尝试] 设球的半径为R ,由球的截面性质得R =22+12=3,所以球的体积V =43πR 3=43π.[答案] B[对应学生用书P35]一、选择题1.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为( )A .1∶ 3B .1∶9C .1∶3 3D .1∶(33-1)解析:选D 由面积比等于边长比的平方,体积比为边长比的立方可求得D 正确. 2.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则该截面的面积是( )A .πB .2πC .3πD .23π解析:选 A 设截面的圆心为O ′,由题意得:∠OAO ′=60°,O ′A =1,S =π·12=π.3.如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为( )A .4 3B .3 3C .8 3D .6 3解析:选C 由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21得a 2+b 2=24,可得a =22,b =4,∴V =34×(22)2×4=8 3. 4.正方体ABCD -A 1B 1C 1D 1中,P ,Q ,R 分别是AB ,AD ,B 1C 1的中点,则正方体的过P ,Q ,R 的截面图形是( )A .矩形B .正五边形C .正六边形D .菱形解析:选C 如图,利用空间图形的公理作出截面,可知截面为正六边形.二、填空题5.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .若圆M 的面积为3π,则球O 的表面积等于 .解析:记球O 的半径为R ,圆M 的半径为r ,则依题意得r 2=3,R 2=r 2+⎝ ⎛⎭⎪⎫R 22,故R 2=4,球O 的表面积等于4πR 2=16π.答案:16π6.直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于 .解析:在△ABC 中AB =AC =2,∠BAC =120°,可得BC =23,由正弦定理,可得△ABC 外接圆半径r =2,设此圆圆心为O ′,球心为O ,在Rt △OO ′B 中,易得球半径R =5,故此球的表面积为4πR 2=20π.答案:20π7.已知点A ,B ,C 在球心为O 的球面上,△ABC 的内角A ,B ,C 所对应的边长分别为a ,b ,c ,且a 2=b 2+c 2-bc ,a =3,球心O 到截面ABC 的距离为2,则该球的表面积为 .解析:由a 2=b 2+c 2-bc 可得A =π3,再由正弦定理可得球的小圆半径为r =1,进而可得球的半径为R =3,该球的表面积为12π.答案:12π8.在2π3的二面角内,放一个半径为5的球切两半平面于A ,B 两点,那么这两个切点在球面上最短距离是 .解析:两切点对球心的张角为π3,∴球面距为5π3.答案:5π3三、解答题9.已知棱长为a 的正方体ABCD -A ′B ′C ′D ′中,M ,N 分别是CD ,AD 的中点,求证:MNA ′C ′是梯形.证明:如图,连接AC .∵M ,N 分别为CD ,AD 的中点, ∴MN 綊12AC .由正方体性质可知AC 綊A ′C ′, ∴MN 綊12A ′C ′,∴四边形MNA ′C ′是梯形.10.在北纬45°的纬度圈上有A ,B 两点,它们分别在东经70°与东经160°的经度圈上,设地球半径为R ,求A ,B 两点间的球面距离.解:如图,设北纬45°圈的圆心为O 1,地球中心为O , 则∠AO 1B =160°-70°=90°,∠OBO 1=45°,OB =R , ∴O 1B =O 1A =22R ,AB =R . 连接AO ,AB ,则AO =BO =AB =R , ∴∠AOB =60°,∴AB =16·2πR =13πR .故A ,B 两点间的球面距离为13πR .11.如图所示,三棱锥V -ABC 中,VA ⊥底面ABC ,∠ABC =90°.(1)求证:V ,A ,B ,C 四点在同一球面上.(2)过球心作一平面与底面内直线AB 垂直.求证:此平面截三棱锥所得的截面是矩形.证明:(1)取VC 的中点M . ∵VA ⊥底面ABC ,∠ABC =90°,∴BC ⊥VB .在Rt △VBC 中,M 为斜边VC 的中点, ∴MB =MC =MV .同理,在Rt △VAC 中,MA =MV =MC .∴MV =MC =MA =MB ,∴V,A,B,C四点在同一球面上,M是球心.(2)取AC,AB,VB的中点分别为N,P,Q,连接NP,PQ,QM,MN.则MNPQ就是垂直于AB的三棱锥V-ABC的截面,易证PQMN是平行四边形,又VA⊥BC,PQ∥VA,NP∥BC,∴QP⊥PN,故截面MNPQ是矩形.。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。

2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。

3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。

二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。

2019-2020学年高中数学北师大版选修4-1同步配套教学案:第二章 §1 & §2 截面欣赏 直线与球、平面与

2019-2020学年高中数学北师大版选修4-1同步配套教学案:第二章 §1 & §2 截面欣赏 直线与球、平面与

§对应学生用书P33][自主学习]1.直线与球的位置关系有相离、相切、相交.2.从球外一点作球的切线,它们的切线长相等,所有的切点组成一个圆.3.平面与球的位置关系有相离、相切、相交.4.一个平面与球面相交,所得的交线是一个圆,且圆心与球心的连线垂直于这一平面.[合作探究]1.用一平面去截正方体时,其截面可能是几边形?提示:三角形(锐角三角形、等腰三角形、等边三角形)四边形(长方形、正方形、梯形)五边形、六边形2.直线与球的位置关系的判定与直线与圆的位置关系判定一样吗?提示:一样.都是利用点到直线的距离与半径r的关系去判定.3.平面与球的位置关系如何判定?提示:平面α,球O,球心O到α的距离为OH,球半径为R.若OH>R,则相离;若OH=R,则相切;若OH<R,则相交.对应学生用书P33]截面问题[例1]从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如图所示的几何体,如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积(阴影部分).[思路点拨]本题主要考查截面问题,解题时根据题意画出轴截面可直观求解.[精解详析]轴截面如图所示:被平行于下底面的平面所截的圆柱的截面圆的半径O 1C =R ,圆锥的截面圆的半径O 1D 设为x .∵OA =AB =R ,∴△OAB 是等腰直角三角形. 又CD ∥OA ,则CD =BC ,故x =l . ∴截面面积S =πR 2-πl 2=π(R 2-l 2).解决这类问题的关键是准确分析出组合体的结构特征,发挥自己的空间想象能力,正确作出几何体的轴截面等,把立体图和截面图对照分析,找出几何体中的数量关系.把空间几何问题转化在同一平面内利用平面几何的知识解决,即用空间问题平面化的解题策略.1.一长方体木料,沿如图所示平面EFGH 截长方体,若AB ⊥CD ,那么下列四个图形中是截面的是( )解析:选A 因为AB ,MN 两条交线所在平面(侧面)互相平行,故AB ,MN 无公共点;又AB ,MN 在平面EFGH 内,故AB ∥MN .同理易知,AN ∥BM .又AB ⊥CD ,所以截面必为矩形.[2]有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.[思路点拨] 本题主要考查平面、直线与球的位置关系的应用.解此题时分别作出三种情况的截面图,可求解.[精解详析] 设正方体的棱长为a .(1)正方形的内切球球心是正方体的中心,切点是六个面正方形的中心,经过四个切点及球心作截面如图①,所以有2r 1=a ,r 1=a2,所以S 1=4πr 21=πa 2.(2)球与正方体的各棱的切点在每条棱的中点, 过球心作正方体的对角面得截面,如图②,2r 2=2a ,r 2=22a, 所以S 2=4πr 2=2πa 2.(3)正方体的各个顶点在球面上,过球心作正方体的对角面得截面,如图③,所以有2r 3=3a ,r 3=32a ,所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.与球有关的截面问题,为了增加图形的直观性,解题时常常画一个截面圆起衬托作用.2.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是( )A .22B .32C .2D .3解析:选C 由题意结合图形分析知:截面过球心,且交AB 于E 点,则E 为AB 的中点,即可得△ECD 为等腰三角形,又CD =2,CE =DE =3,可求得S △ECD =2. [例3] 如图,球O 的半径为2,圆O 1是一小圆,O 1O =2,A ,B 是圆O 1上两点.若∠AO 1B =π2,则A ,B 两点间的球面距离为 .[精解详析] 如图,OB =OA =2,O 1O =2, ∴O 1A =2,∴AB =2,∴△OAB 为正三角形, ∴∠AOB =π3.∴A ,B 两点间的球面距离为π3×2=2π3.[答案] 2π3若一平面与球面相交所得交线是一个圆,且圆心与球心的连线垂直于这一平面,该圆心与球心距离为d ,圆半径为r ,球半径为R ,则d 2+r 2=R 2.本例条件变为“如图,球O 的半径为2,圆O 1是一小圆,O 1O =2,A ,B 是圆O 1上两点.若A ,B 两点间的球面距离为2π3”,则∠AO 1B = .解析:由A ,B 间的球面距离为2π3知∠AOB =π3,所以△AOB 为等边三角形,AB =2;又由球O 的半径为2,O 1O =2知O 1A =O 1B =2,所以△AO 1B 为等腰直角三角形,∠AO 1B =π2.答案:π2本课时常考查截面问题,是每年命题的热点内容之一.属中档题.[考题印证]平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π[命题立意]本题主要通过截面问题考查球的性质及球的体积公式.[自主尝试] 设球的半径为R ,由球的截面性质得R =错误!=错误!,所以球的体积V =错误!πR 3=4错误!π.[答案] B对应学生用书P35]一、选择题1.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为( )A .1∶3B .1∶9C .1∶33D .1∶(33-1)解析:选D 由面积比等于边长比的平方,体积比为边长比的立方可求得D 正确.2.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则该截面的面积是( )A .πB .2πC .3πD .23π解析:选A 设截面的圆心为O ′,由题意得:∠OAO ′=60°,O ′A =1,S =π·12=π.3.如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为( )A .43B .33C .83D .63解析:选C 由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b24=12.又由BC 2+CC 21=BC 21得a 2+b 2=24,可得a =22,b =4,∴V =34×(22)2×4=83.4.正方体ABCD -A 1B 1C 1D 1中,P ,Q ,R 分别是AB ,AD ,B 1C 1的中点,则正方体的过P ,Q ,R 的截面图形是( )A .矩形B .正五边形C .正六边形D .菱形解析:选C 如图,利用空间图形的公理作出截面,可知截面为正六边形.二、填空题5.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .若圆M 的面积为3π,则球O 的表面积等于 .解析:记球O 的半径为R ,圆M 的半径为r ,则依题意得r 2=3,R 2=r 2+⎝ ⎛⎭⎪⎫R 22,故R 2=4,球O 的表面积等于4πR 2=16π.答案:16π6.直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于 .解析:在△ABC 中AB =AC =2,∠BAC =120°,可得BC =23,由正弦定理,可得△ABC 外接圆半径r =2,设此圆圆心为O ′,球心为O ,在Rt △OO ′B 中,易得球半径R =5,故此球的表面积为4πR 2=20π.答案:20π7.已知点A ,B ,C 在球心为O 的球面上,△ABC 的内角A ,B ,C 所对应的边长分别为a ,b ,c ,且a 2=b 2+c 2-bc ,a =3,球心O 到截面ABC 的距离为2,则该球的表面积为 .解析:由a 2=b 2+c 2-bc 可得A =π3,再由正弦定理可得球的小圆半径为r =1,进而可得球的半径为R=3,该球的表面积为12π. 答案:12π8.在2π3的二面角内,放一个半径为5的球切两半平面于A ,B 两点,那么这两个切点在球面上最短距离是 .解析:两切点对球心的张角为π3,∴球面距为5π3.答案:5π3三、解答题9.已知棱长为a 的正方体ABCD -A ′B ′C ′D ′中,M ,N 分别是CD ,AD 的中点,求证:MNA ′C ′是梯形.证明:如图,连接AC .∵M ,N 分别为CD ,AD 的中点, ∴MN 綊12AC .由正方体性质可知AC 綊A ′C ′, ∴MN 綊12A ′C ′,∴四边形MNA ′C ′是梯形.10.在北纬45°的纬度圈上有A ,B 两点,它们分别在东经70°与东经160°的经度圈上,设地球半径为R ,求A ,B 两点间的球面距离.解:如图,设北纬45°圈的圆心为O 1,地球中心为O , 则∠AO 1B =160°-70°=90°,∠OBO 1=45°,OB =R , ∴O 1B =O 1A =22R ,AB =R .连接AO ,AB ,则AO =BO =AB =R , ∴∠AOB =60°=16·2πR =13πR .故A ,B 两点间的球面距离为13πR . 11.如图所示,三棱锥V -ABC 中,VA ⊥底面ABC ,∠ABC =90°.(1)求证:V ,A ,B ,C 四点在同一球面上.(2)过球心作一平面与底面内直线AB 垂直.求证:此平面截三棱锥所得的截面是矩形.证明:(1)取VC的中点M.∵VA⊥底面ABC,∠ABC=90°,∴BC⊥VB.在Rt△VBC中,M为斜边VC的中点,∴MB=MC=MV.同理,在Rt△VAC中,MA=MV=MC.∴MV=MC=MA=MB,∴V,A,B,C四点在同一球面上,M是球心.(2)取AC,AB,VB的中点分别为N,P,Q,连接NP,PQ,QM,MN.则MNPQ就是垂直于AB的三棱锥V-ABC的截面,易证PQMN是平行四边形,又VA⊥BC,PQ∥VA,NP∥BC,∴QP⊥PN,故截面MNPQ是矩形.。

高中数学目录

高中数学目录

人教版一般高中课程标准实验教科书数学必修一第一章集合与函数概念 1.1 集合1.2 函数及其表示 1.3 函数的大体性质第二章大体初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数第三章函数的应用 3.1 函数与方程3.2 函数模型及其应用必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程 4.2 直线、圆的位置关系4.3 空间直角坐标系必修三:第一章算法初步1.1 算法与程序框图 1.2 大体算法语句1.3 算法案例第二章统计2.1 随机抽样阅读与试探一个闻名的案例阅读与试探广告中数据的靠得住性阅读与试探如何取得灵敏性问题的老实反映 2.2 用样本估量整体阅读与试探生产进程中的质量操纵图2.3 变量间的相关关系阅读与试探相关关系的强与弱第三章概率3.1 随机事件的概率阅读与试探天气转变的熟悉进程 3.2 古典概型 3.3 几何概型阅读与试探概率与密码必修四:第一章三角函数1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx+ψ) 1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及大体概念 2.2 平面向量的线性运算2.3 平面向量的大体定理及坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切高中各年级课件教案习题汇总语文数学英语物理化学[键入文字]高中数学2公式3.2 简单的三角恒等变换必修五:第一章解三角形 1.1 正弦定理和余弦定理探讨与发觉解三角形的进一步讨论 1.2 应用举例阅读与试探海伦和秦九韶 1.3 实习作业第二章数列 2.1 数列的概念与简单表示法阅读与试探斐波那契数列阅读与试探估量根号下2的值 2.2 等差数列 2.3 等差数列的前n项和 2.4 等比数列2.5 等比数列前n项和阅读与试探九连环探讨与发觉购房中的数学第三章不等式 3.1 不等关系与不等式 3.2 一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性计划问题阅读与试探错在哪儿信息技术应用用Excel解线性计划问题举例 3.4 大体不等式选修1-1第一章经常使用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词第二章圆锥曲线与方程 2.1 椭圆探讨与发觉什么缘故截口曲线是椭圆信息技术应用用《几何画板》探讨点的轨迹:椭圆 2.2 双曲线 2.3 抛物线阅读与试探圆锥曲线的光学性质及其应用第三章导数及其应用 3.1 转变率与导数 3.2 导数的计算探讨与发觉牛顿法──用导数方式求方程的近似解 3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质 3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例 1.1 回归分析的大体思想及其初步应用 1.2 独立性查验的大体思想及其初步应用实习作业第二章推理与证明 2.1 合情推理与演绎证明阅读与试探科学发觉中的推理 2.2 直接证明与间接证明第三章数系的扩充与复数的引入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四那么运算第四章框图4.1 流程图 4.2 结构图信息技术应用用Word2002绘制流程图选修2-1:第一章经常使用逻辑用语 1.1 命题及其关系[键入文字]高中数学31.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词第二章圆锥曲线与方程 2.1 曲线与方程 2.2 椭圆探讨与发觉什么缘故截口曲线是椭圆信息技术应用用《几何画板》探讨点的轨迹:椭圆 2.3 双曲线探讨与发觉 2.4 抛物线探讨与发觉阅读与试探第三章空间向量与立体几何 3.1 空间向量及其运算阅读与试探向量概念的推行与应用 3.2 立体几何中的向量方式选修2-2:第一章导数及其应用 1.1 转变率与导数 1.2 导数的计算1.3 导数在研究函数中的应用 1.4 生活中的优化问题举例 1.5 定积分的概念 1.6 微积分大体定理 1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理 2.2 直接证明与间接证明 2.3 数学归纳法第三章数系的扩充与复数的引入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四那么运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探讨与发觉子集的个数有多少 1.2 排列与组合探讨与发觉组合数的两个性质 1.3 二项式定理探讨与发觉“杨辉三角”中的一些秘密第二章随机变量及其散布2.1 离散型随机变量及其散布列 2.2 二项散布及其应用阅读与试探如此的买彩票方式可行吗探讨与发觉服从二项散布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差 2.4 正态散布信息技术应用μ,σ对正态散布的阻碍第三章统计案例3.1 回归分析的大体思想及其初步应用 3.2 独立性查验的大体思想及其初步应用实习作业选修3-1:第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探讨与发觉子集的个数有多少 1.2 排列与组合探讨与发觉组合数的两个性质 1.3 二项式定理探讨与发觉“杨辉三角”中的一些秘密第二章随机变量及其散布2.1 离散型随机变量及其散布列 2.2 二项散布及其应用阅读与试探如此的买彩票方式可行吗[键入文字]高中数学4探讨与发觉服从二项散布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差 2.4 正态散布信息技术应用μ,σ对正态散布的阻碍第三章统计案例3.1 回归分析的大体思想及其初步应用 3.2 独立性查验的大体思想及其初步应用实习作业选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的大体图形一极与赤道二球面二角形三球面三角形 1.球面三角形 2.三面角 3.对顶三角形 4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等 1.“边边边”(s.s.s)判定定理 2.“边角边”(s.a.s.)判定定理 3.“角边角”(a.s.a.)判定定理 4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方式证明球面上的余弦定理 1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与试探非欧几何简史选修3-4:第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的概念 2.平面刚体运动的性质二对称变换1.对称变换的概念2.正多边形的对称变换 3.对称变换的合成 4.对称变换的性质 5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一样概念 2.直积[键入文字]高中数学5第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1:第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质 1.相似三角形的判定 2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2:第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵 1.逆变换与逆矩阵 2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组 1.二元一次方程组的矩阵形式 2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特点向量一变换的不变量——矩阵的特点向量 1.特点值与特点向量 2.特点值与特点向量的计算二特点向量的应用 1.Aa的简单表示 2.特点向量在实际问题中的应用选修4-5:第一讲不等式和绝对值不等式一不等式1.不等式的大体性质2.大体不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的大体方式一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一样形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一1、集合的基本关系ﻫ·2、集合·第一章集合(考点的难度不是很大,是高考的必考点)ﻫ·的含义与表示ﻫ·3、集合的基本运算(重点)(2课时)1、生活中的变量关系··第二章函数ﻫ·4、二次函数性质的再研究(重点)3、函数的单调性(重点)ﻫ· 2、对函数的进一步认识ﻫ··5、简单的幂函数(5课时)ﻫ·第三章指数函数和对数函数·2、指数概念的扩充·1、正整数指数函数ﻫ· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)ﻫ·第四章函数应用ﻫ·1、函数与方程ﻫ·2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步ﻫ·1、简单几何体ﻫ2、三视图(重点)·· 3、直观图(1课时)ﻫ·4、空间图形的基本关系与公理(重点)ﻫ·5、平行关系(重点)ﻫ·6、7、简单几何体的面积和体积(重点)·垂直关系(重点)ﻫ· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步·3、空间直角坐标系· 1、直线与直线的方程ﻫ·2、圆与圆的方程ﻫ(4课时)北师大版高中数学必修三1、统计活动:随机选取数字··第一章统计ﻫ· 2、从普查到抽样ﻫ·3、抽样方法6、用样本估计总体·4、统计图表ﻫ·5、数据的数字特征(重点)ﻫ·· 7、统计活动:结婚年龄的变化· 8、相关性ﻫ·9、最小二乘法(3课时)ﻫ·第二章算法初步· 1、算法的基本思想·3、排序问题(重点)· 2、算法的基本结构及设计(重点)ﻫ·4、几种基本语句(2课时)1、随机事件的概率(重点)··第三章概率ﻫ· 2、古典概型(重点)·3、模拟方法――概率的应用(重点、难点)(4课时)ﻫ北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数ﻫ·2、角的概念的推广ﻫ·3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)·7、函数的图像(重点)·8、同角三角函数的基本关系(重点、难点)(5课时)1、从位移、速度、力到向量ﻫ·2、从位移的合成到向量的加法(重ﻫ·第二章平面向量ﻫ·3、从速度的倍数到数乘向量(重点)·点)ﻫ· 4、平面向量的坐标(重点)·5、从力做的功到向量的数量积(重点)ﻫ·6、平面向量数量积的坐标表示(重点)·7、向量应用举例(难点)(5课时)ﻫ·第三章三角恒等变形(重点)·2、二倍角的正弦、余弦和正切·1、两角和与差的三角函数ﻫ·3、半角的三角函数·4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列ﻫ·1、数列的概念· 2、数列的函数特性4、等差数列的前n项和(重点)· 3、等差数列(重点)ﻫ·· 5、等比数列(重点)·6、等比数列的前n项和(重点)ﻫ·7、数列在日常经济生活中的应用·3、2、正弦定理ﻫ1、正弦定理与余弦定理正弦定理ﻫ(6课时)ﻫ·第二章解三角形(重点)ﻫ··4、三角形中的几何计算(难点)ﻫ·5、解三角形的实际应用举例·余弦定理ﻫ(6课时)ﻫ·第三章不等式·1、不等关系ﻫ· 1.1、不等式关系· 1.2、比较大小(重点)ﻫ2,一元二次不等式(重点)ﻫ·2.1、一元二次不等式的解法(重点)ﻫ·2.2、一元二次不等式的应用【4课时】· 3、基本不等式(重点)3.1 基本不等式· 3.2、基本不等式与最大(小)值4线性规划(重点)·4.1、二元一次不等式(组)与平面区(重点)ﻫ·4.2、简单线性规划(重点)· 4.3、简单线性规划的应用(重点、难点) 【3课时】选修1-1第一章常用逻辑用语1命题2.2必要条件2充分条件与必要条件(重点)ﻫ2.1充分条件ﻫ2.3充要条件3全称量词与存在量词ﻫ3.1全称量词与全称命题ﻫ3.2存在量词与特称命题ﻫ3.3全称命题与特称命题的否定ﻫ4逻辑联结词“且’’‘‘或…‘非(重点)4.1逻辑联结词“且ﻫ4.2逻辑联结词“或4.3逻辑联结词‘‘非【1.5课时】ﻫ第二章圆锥曲线与方程(重点)ﻫ1椭圆ﻫ1.1椭圆及其标准方程1.2椭圆的简单性质ﻫ2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3 曲线3.2双曲线的简单性质3.1双曲线及其标准方程ﻫ【8课时】第三章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念ﻫ2.2导数的几何意义3计算导数(重点)ﻫ4导数的四则运算法则(重点)ﻫ4.1导数的加法与减法法则4.2导数的4.2导数的乘法与除法法则ﻫ第四章导数应用(重点)ﻫ4.1导数的加法与减法法则ﻫ乘法与除法法则【6课时】ﻫ选修1-2第一章统计案例1 回归分析ﻫ1.1 回归分析ﻫ1.2相关系数ﻫ1.3可线性化的回归分析ﻫ2独立性检验(重点、重点)2.1条件概率与独立事件2.2独立性检验2.3独立性检验的基本思想ﻫ2.4独立性检验的应用(重点、难点)【4课时】第二章框图(重点,高考必考点)1 流程图ﻫ2结构图【1.5课时】第三章推理与证明1归纳与类比ﻫ1.1归纳推理1.2类比推理ﻫ2数学证明3综合法与分析法3.1综合法3.2分析法4反证法【2课时】1.2复1.1数的概念的扩充ﻫﻫ第四章数系的扩充与复数的引入ﻫ1数系的扩充与复数的引入ﻫ数的有关概念(重点)ﻫ2复数的四则运算(重点、高考必考点)2.1复数的加法与减法ﻫ2.2复数的乘法与除法【1.5课时】ﻫ选修2-1ﻫ第一章常用逻辑用语1命题2充分条件与必要条件ﻫ3全称量词与存在量词4逻辑联结词“且”“或”“非”&…&…(重点)【1.5课时】第二章空间向量与立体几何(重点,在解决立体几何方面有很大的帮助)1 从平面向量到空间向量2 空间向量的运算ﻫ3向量的坐标表示和空间向量基本定理4用向量讨论垂直与平行ﻫ5夹角的计算ﻫ6距离的计算【6课时】ﻫ第三章圆锥曲线与方程(重点、高考大题必考知识点)1 椭圆ﻫ1.1椭圆及其标准方程1.2 椭圆的简单性质2 抛物线2.1抛物线及其标准方程3.1双曲线及其标准方程ﻫ3.2双曲线的简单性质2.2抛物线的简单性质ﻫ3双曲线ﻫﻫ4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征ﻫ4.3 直线与圆锥曲线的交点【8课时】选修2-2第一章推理与证明(重点)ﻫ1归纳与类比ﻫ2综合法与分析法ﻫ3反证法4数学归纳法【2课时】ﻫ第二章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义ﻫ3计算导数ﻫ4导数的四则运算法则4.1导数的加法与减法法则ﻫ4.2导数的乘法与除法法则5简单复合函数的求导法则【2课时】第三章导数应用(重点)1函数的单调性与极值1.1导数与函数的单调性ﻫ1.2函数的极值(重、难点)ﻫ2导数在实际问题中的应用ﻫ2.1实际问题中导数的意义2.2最大、最小值问题(重、难点)【5课时】第四章定积分1定积分的概念1.1定积分背景-面积和路程问题(重点)ﻫ1.2定积分2微积分基本定理3定积分的简单应用(重点)3.1平面图形的面积3.2简单几何体的体积【4课时】ﻫ第五章数系的扩充与复数的引入(重点)1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2复数的四则运算ﻫ2.1复数的加法与减法2.2复数的乘法与除法【2课时】选修2-3第一章计数原理(重点)1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2分步乘法计数原理ﻫ2.排列(重点、难点)ﻫ2.1排列的原理2.2排列数公式3.组合3.1 组合及组合数公式3.2 组合数的两个性质ﻫ4.简单计数问题ﻫ5.二项式定理(重、难点)5.2二项式系数的性质5.1二项式定理ﻫ【8课时】第二章概率(重点)ﻫ1.离散型随机变量及其分布列2.超几何分布ﻫ3.条件概率与独立事件4.二项分布5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差(一)5.2离散型随机变量均值与方差(二)6.正态分布6.1 连续型随机变量6.2正态分布【4课时】ﻫ第三章统计案例1.1回归分析1.回归分析ﻫ1.2 相关系数1.3 可线性化的回归分析2.1独立性检验2.独立性检验(重点)ﻫ2.2 独立性检验的基本思想2.3 独立性检验的应用【2课时】选修3-1ﻫ第一章数学发展概述第二章数与符号ﻫ第三章几何学发展史ﻫ第四章数学史上的丰碑----微积分第五章无限第六章数学名题赏析ﻫ选修3-2选修3-3ﻫ第一章球面的基本性质1.直线、平面与球面的我诶制关系ﻫ2.球面直线与球面距离ﻫ第二章球面上的三角形1.球面三角形2.球面直线与球面距离ﻫ3.球面三角形的边角关系4.球面三角形的面积【2课时】ﻫ第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较ﻫ选修4-1第一章直线、多边形、圆(重点)1.全等与相似ﻫ2.圆与直线ﻫ3.圆与四边形【2课时】第二章圆锥曲线ﻫ1.截面欣赏ﻫ2.直线与球、平面与球的位置关系3.柱面与平面的截面ﻫ4.平面截圆锥面5.圆锥曲线的几何性质【3课时】ﻫ选修4-2ﻫ第一章平面向量与二阶方阵ﻫ1平面向量及向量的运算2向量的坐标表示及直线的向量方程ﻫ3二阶方阵与平面向量的乘法ﻫ第二章几何变换与矩阵1几种特殊的矩阵变换2 矩阵变换的性质ﻫ第三章变换的合成与矩阵乘法ﻫ1变换的合成与矩阵乘法2矩阵乘法的性质ﻫ第四章逆变换与逆矩阵1 逆变换与逆矩阵2 初等变换与逆矩阵ﻫ3二阶行列式与逆矩阵4 可逆矩阵与线性方程组第五章矩阵的特征值与特征向量ﻫ1矩阵变换的特征值与特征向量ﻫ2特征向量在生态模型中的简单应用ﻫ选修4-4ﻫ第一章坐标系1 平面直角坐标系2 极坐标系ﻫ3柱坐标系和球坐标系ﻫ第二章参数方程ﻫ1参数方程的概念2 直线和圆锥曲线的参数方程ﻫ3参数方程化成普通方程4平摆线和渐开线ﻫ选修4-5第一章不等关系与基本不等式(重点)l不等式的性质ﻫ2含有绝对值的不等式(难点)3平均值不等式ﻫ4不等式的证明5不等式的应用第二章几个重妻的不等式1柯西不等式ﻫ2排序不等式ﻫ3数学归纳法与贝努利不等式选修4-6第一章带余除法与书的进位制1、整除与带余除法ﻫ2、二进制ﻫ第二章可约性1、素数与合数2、最大公因数与辗转相除法ﻫ3、算术基本定理及其应用ﻫ4、不定方程第三章同余ﻫ1、同余及其应用ﻫ2、欧拉定理还在更新。

北师大版高中数学课本目录(2021年整理)

北师大版高中数学课本目录(2021年整理)

北师大版高中数学课本目录(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版高中数学课本目录(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版高中数学课本目录(word版可编辑修改)的全部内容。

必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3。

2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2。

1 函数概念2。

2 函数的表示法2。

3 映射§3 函数的单调性§4 二次函数性质的再研究4。

1 二次函数的图像4。

2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2。

1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3。

3 指数函数的图像和性质§4 对数4。

1 对数及其运算4.2 换底公式§5 对数函数5。

1 对数函数的概念5。

2 y=log2x的图像和性质5。

3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1。

1 利用函数性质判定方程解的存在1。

2 利用二分法求方程的近似解§2 实际问题的函数建模2。

1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4。

人教版高中数学选修2-1《圆锥曲线起始课》教学设计(特级教师一等奖)

人教版高中数学选修2-1《圆锥曲线起始课》教学设计(特级教师一等奖)

人教版高中数学选修2-1《圆锥曲线起始课》教学设计(特级教师一等奖)“圆锥曲线起始课”教学设计一.【教学内容解析】1.圆锥曲线是平面解析几何的重要组成部分,也可以说是核心内容.它是继研究了以直线和圆为代表的简单图形之后,用平面几何的方法无法研究的较为复杂的图形.圆锥曲线能充分体现解析几何研究方法.2.圆锥曲线是体现数形结合思想的重要载体.圆锥曲线的研究不是采用逻辑推理的形式,而是运用代数的方法.即以代数为工具解决几何问题,用代数的语言来描述几何图形,把几何问题转化为代数问题,实施代数运算,求解代数问题,再将代数解转化为几何结论,这一过程体现了从形到数的数形结合的思想.3.圆锥曲线是二次曲线非常重要的数学模型,同时它的几何性质在日常生活,社会生产以及其他科学中都有着重要而广泛的应用,宇宙天地的运动,光学仪器,建筑学等等.因此圆锥曲线的研究对学生进一步理解数学模型的意义,树立观念都非常有价值.本节课的内容是选自XXX《高中数学选修2-1》第三章知识的引言部分,属于策略性和介绍性为主的起始课.二.【教学目标设置】1.知识与技能目标本节课的主线为圆锥曲线的发展史,从中参插各种情景.通过用平面对圆锥面的不同的截法,产生三种不同的圆锥曲线,经历概念的形成过程,从整体上认识三种圆锥曲线的内在关系,通过具体情境,从中抽象出椭圆、双曲线、抛物线模型的过程,理解它们的定义(主要是椭圆).2.过程与方法目标初步了圆锥曲线研究的内容;通过动手试验、互相讨论等环节,使学生形成自主研究以及相互协作的团队精神;通过对具体情形的分析,归纳得出一般规律,让学生具备初步归纳能力;借助实物模型,通过整体观察、直观感知,使学生形成积极主动、勇于探索的研究方式,完善思维结构,体会解析几何的研究方法.3.情感、态度与价值观目标通过以圆锥曲线的发展史为主线,设立多种情景引入方式,让学生激发研究圆锥曲线的兴趣,能够自主研究、自我探索,形成注重实践、热爱科学、勇于创新的情感、态度与价值观.4.重难点重点:圆锥曲线的发展史及定义,椭圆的定义.难点:用Dandelin双球发现椭圆的定义,通过椭圆的定义类比双曲线定义.三.【学生学情阐发】1.这节课的授课工具是高中二年级的学生,他们有较好的研究惯,有一定的口头和书面表达的能力.在知识层面上,高一阶段已研究了立体几何空间旋转体中的圆锥,学生具有一定的空间想象能力,学生还研究相识析几何中的直线和圆,具有一定的用解析方法处理题目的能力.在方法的层面,学生在高1、高二年级的研究中基本把握了数形结合的脑筋与类比与转化脑筋.2.学生在研究过程中,也可能会遇到诸多艰巨:从空间的圆锥截出平面图形的转化题目,特别是通过Dandelin双球发觉椭圆的定义;还有理解椭圆,双曲线定义时点的轨迹及静态题目.四.【讲授策略阐发】1.整个课堂的主线是圆锥曲线的发展史,使学生产生兴趣,并以润物细无声的方法安排各种情景,让学生很自然进入研究圆锥曲线的研究,为后面采用解析的方法研究埋下了伏笔.2.由于是起始课,因此多采取直观的演示幻灯片、动画、实验和使用实物模型,直观感知、操1作确认,避免过分抽象.思争吵证、度量计算等手腕在后续课程中再接纳.3.在处理椭圆定义的环节,创造条件让学生亲自动手画出椭圆,并安排了一系列情节引导学生在操作过程中注意细节,鼓励学生通过动手实验、独立思考、相互讨论等手段得出结论,鼓励学生表达自己的见解.4.从多种具体情形出发,引导学生归纳出一般规律,培养学生的归纳总结能力.采用模型和软件,使学生的想法能够即时得到实现,所想即所见,快速形成正确认知,提高教学实效性.五.【教学过程】环节1.课题引入教学过程和师生活动通过生活中的一系列图片让学生在认知的曲线.意图,理念与备注1.从实践生活出发,直观感知各种圆锥曲线的存在,使学生在脑筋中产生各类曲线的开端印象,为下一步的数学抽象做准备.2.特别是“愤怒的小鸟”这个抛物线段片让学生马上产生兴趣,积极参与发现与探索,加深直观印象.师生活动:让学生踊跃讲话.2.复和准备1.温圆锥的形成2.由圆锥的形成过程引入圆锥面注:这里还要提出圆锥的轴截面是等腰三角形,并引入顶角的一半,为后面轴截面和旋转轴所成的角的大小截出分歧的曲线留下知识.师生活动:教师引导学生回忆知识,尽量让学生口述其过程。

高中数学课本目录

高中数学课本目录

新人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1集合1.2函数及其表示1.3函数(de)基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数(de)应用3.1函数与方程3.2函数模型及其应用必修2第一章空间几何体1.1空间几何体(de)结构1.2空间几何体(de)三视图和直观图1.3空间几何体(de)表面积与体积第二章点、直线、平面之间(de)位置关系2.1空间点、直线、平面之间(de)位置关系2.2直线、平面平行(de)判定及其性质2.3直线、平面垂直(de)判定及其性质第三章直线与方程3.1直线(de)倾斜角与斜率3.2直线(de)方程3.3直线(de)交点坐标与距离公式第四章圆与方程4.1圆(de)方程4.2直线、圆(de)位置关系4.3空间直角坐标系必修3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样阅读与思考一个着名(de)案例阅读与思考广告中数据(de)可靠性阅读与思考如何得到敏感性问题(de)诚实反应2.2用样本估计总体阅读与思考生产过程中(de)质量控制图2.3变量间(de)相关关系阅读与思考相关关系(de)强与弱第三章概率3.1随机事件(de)概率3.2古典概型3.3几何概型必修4第一章三角函数1.1任意角和弧度制1.2任意角(de)三角函数1.3三角函数(de)诱导公式1.4三角函数(de)图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型(de)简单应用第二章平面向量2.1平面向量(de)实际背景及基本概念2.2平面向量(de)线性运算2.3平面向量(de)基本定理及坐标表示2.4平面向量(de)数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差(de)正弦、余弦和正切公式3.2简单(de)三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形(de)进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业第二章数列2.1数列(de)概念与简单表示法2.2等差数列2.3等差数列(de)前n项和2.4等比数列2.5等比数列前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单(de)线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单(de)逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数(de)计算3.3导数在研究函数中(de)应用3.4生活中(de)优化问题举例选修1-2第一章统计案例1.1回归分析(de)基本思想及其初步应用1.2独立性检验(de)基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系(de)扩充与复数(de)引入3.1数系(de)扩充和复数(de)概念3.2复数代数形式(de)四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语命题及其关系充分条件与必要条件简单(de)逻辑联结词全称量词与存在量词第二章圆锥曲线与方程曲线与方程椭圆双曲线抛物线选修2-2第一章导数及其应用变化率与导数导数(de)计算导数在研究函数中(de)应用生活中(de)优化问题举例定积分(de)概念微积分基本定理定积分(de)简单应用第二章推理与证明合情推理与演绎推理直接证明与间接证明数学归纳法第三章数系(de)扩充与复数(de)引入数系(de)扩充和复数(de)概念复数代数形式(de)四则运算选修2-3第一章计数原理分类加法计数原理与分步乘法计数原理排列与组合二项式定理第二章随机变量及其分布离散型随机变量及其分布列二项分布及其应用离散型随机变量(de)均值与方差正态分布第三章统计案例回归分析(de)基本思想及其初步应用独立性检验(de)基本思想及其初步应用选修3-1数学史选讲第一讲早期(de)算术与几何一古埃及(de)数学二两河流域(de)数学三丰富多彩(de)记数制度第二讲古希腊数学一希腊数学(de)先行者二毕达哥拉斯学派三欧几里得与原本四数学之神──阿基米德第三讲中国古代数学瑰宝一周髀算经与赵爽弦图二九章算术三大衍求一术四中国古代数学家第四讲平面解析几何(de)产生一坐标思想(de)早期萌芽二笛卡儿坐标系三费马(de)解析几何思想四解析几何(de)进一步发展第五讲微积分(de)诞生一微积分产生(de)历史背景二科学巨人牛顿(de)工作三莱布尼茨(de)“微积分”第六讲近代数学两巨星一分析(de)化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式(de)发现二高次方程可解性问题(de)解决三伽罗瓦与群论四古希腊三大几何问题(de)解决第八讲对无穷(de)深入思考一古代(de)无穷观念二无穷集合论(de)创立三集合论(de)进一步发展与完善第九讲中国现代数学(de)开拓与发展一中国现代数学发展概观二人民(de)数学家──华罗庚三当代几何大师──陈省身选修3-3球面上(de)几何引言第一讲从欧氏几何看球面一平面与球面(de)位置关系二直线与球面(de)位置关系和球幂定理三球面(de)对称性第二讲球面上(de)距离和角一球面上(de)距离二球面上(de)角第三讲球面上(de)基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间(de)关系二、球面“等腰”三角形三球面三角形(de)周长四球面三角形(de)内角和第五讲球面三角形(de)全等第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体(de)欧拉公式三用球面多边形(de)内角和公式证明欧拉公式第七讲球面三角形(de)边角关系一球面上(de)正弦定理和余弦定理二用向量方法证明球面上(de)余弦定理1.向量(de)向量积2.球面上余弦定理(de)向量证明三从球面上(de)正弦定理看球面与平面四球面上余弦定理(de)应用──求地球上两城市间(de)距离第八讲欧氏几何与非欧几何一平面几何与球面几何(de)比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何(de)意义选修3-4对称与群引言第一讲平面图形(de)对称群一平面刚体运动1.平面刚体运动(de)定义2.平面刚体运动(de)性质二对称变换1.对称变换(de)定义2.正多边形(de)对称变换3.对称变换(de)合成4.对称变换(de)性质5.对称变换(de)逆变换三平面图形(de)对称群第二讲代数学中(de)对称与抽象群(de)概念一n元对称群Sn二多项式(de)对称变换三抽象群(de)概念1.群(de)一般概念2.直积第三讲对称与群(de)故事一带饰和面饰二化学分子(de)对称群三晶体(de)分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形(de)判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形(de)判定及性质1.相似三角形(de)判定2.相似三角形(de)性质四直角三角形(de)射影定理第二讲直线与圆(de)位置关系一圆周角定理二圆内接四边形(de)性质与判定定理三圆(de)切线(de)性质及判定定理四弦切角(de)性质五与圆有关(de)比例线段第三讲圆锥曲线性质(de)探讨一平行射影二平面与圆柱面(de)截线三平面与圆锥面(de)截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵(de)相等二二阶矩阵与平面向量(de)乘法(二)一些重要线性变换对单位正方形区域(de)作用第二讲变换(de)复合与二阶矩阵(de)乘法一复合变换与二阶矩阵(de)乘法二矩阵乘法(de)性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵(de)性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组(de)矩阵形式2.逆矩阵与二元一次方程组第四讲变换(de)不变量与矩阵(de)特征向量一变换(de)不变量——矩阵(de)特征向量1.特征值与特征向量2.特征值与特征向量(de)计算二特征向量(de)应用(de)简单表示2.特征向量在实际问题中(de)应用选修4-5不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式(de)基本性质2.基本不等式3.三个正数(de)算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式(de)解法第二讲讲明不等式(de)基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式(de)柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步引言第一讲整数(de)整除一整除1.整除(de)概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余(de)概念2.同余(de)性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程(de)特解三多元一次不定方程第四讲数伦在密码中(de)应用一信息(de)加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——法1.黄金分割常数2.黄金分割法——法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法(de)最优性五其他几种常用(de)优越法1.对分法2.盲人爬山法3.分批试验法4.多峰(de)情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果(de)分析4.正交表(de)特性二正交试验(de)应用选修4-9风险与决策引言第一讲风险与决策(de)基本概念一风险与决策(de)关系二风险与决策(de)基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策第二讲决策树方法第三讲风险型决策(de)敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下(de)马尔可夫型决策理论1.马尔可夫链(de)平稳分布2.平稳分布与马尔可夫型决策(de)长期准则3.平稳准则(de)应用案例。

圆锥曲线的定义、概念与定理

圆锥曲线的定义、概念与定理

圆锥曲线的定义、概念与定理 圆锥曲线包括椭圆,抛物线,双曲线。

那么你对圆锥曲线的定义了解多少呢?以下是由店铺整理关于圆锥曲线的定义的内容,希望⼤家喜欢! 圆锥曲线的定义 ⼏何观点 ⽤⼀个平⾯去截⼀个⼆次锥⾯,得到的交线就称为圆锥曲线(conic sections)。

通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括⼀些退化情形。

具体⽽⾔: 1) 当平⾯与⼆次锥⾯的母线平⾏,且不过圆锥顶点,结果为抛物线。

2) 当平⾯与⼆次锥⾯的母线平⾏,且过圆锥顶点,结果退化为⼀条直线。

3) 当平⾯只与⼆次锥⾯⼀侧相交,且不过圆锥顶点,结果为椭圆。

4) 当平⾯只与⼆次锥⾯⼀侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

5) 当平⾯只与⼆次锥⾯⼀侧相交,且过圆锥顶点,结果为⼀点。

6) 当平⾯与⼆次锥⾯两侧都相交,且不过圆锥顶点,结果为双曲线(每⼀⽀为此⼆次锥⾯中的⼀个圆锥⾯与平⾯的交线)。

7) 当平⾯与⼆次锥⾯两侧都相交,且过圆锥顶点,结果为两条相交直线。

代数观点 在笛卡尔平⾯上,⼆元⼆次⽅程的图像是圆锥曲线。

根据判别式的不同,也包含了椭圆、双曲线、抛物线以及各种退化情形。

焦点--准线观点 (严格来讲,这种观点下只能定义圆锥曲线的⼏种主要情形,因⽽不能算是圆锥曲线的定义。

但因其使⽤⼴泛,并能引导出许多圆锥曲线中重要的⼏何概念和性质)。

给定⼀点P,⼀直线L以及⼀⾮负实常数e,则到P的距离与L距离之⽐为e的点的轨迹是圆锥曲线。

根据e的范围不同,曲线也各不相同。

具体如下: 1) e=0,轨迹为圆(椭圆的特例); 2) e=1(即到P与到L距离相同),轨迹为抛物线 ; 3) 0<e<1,轨迹为椭圆; 4) e>1,轨迹为双曲线的⼀⽀。

圆锥曲线的概念 (以下以纯⼏何⽅式叙述主要的圆锥曲线通⽤的概念和性质,由于⼤部分性质是在焦点-准线观点下定义的,对于更⼀般的退化情形,有些概念可能不适⽤。

人教版数学选修21第二章直线与圆锥曲线讲义

人教版数学选修21第二章直线与圆锥曲线讲义

案例(二)---精析精练课堂 合作 探究重点难点突破知识点一直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系根据曲线和方程的理论,如果直线和椭圆有交点,那么交点坐标就应该同时满足直线和椭圆的方程,否则就不满足,因此我们可以将直线和椭圆的位置关系转化为对直线的方程与椭圆的方程所联立的方程组上来,即通过考查方程组解的情况来判断直线和椭圆的位置关系,也就是:设直线方程y=kx+m,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx+c=0(a ≠0),①△>0,直线与椭圆有两个交点,直线与椭圆相交;②△=0时,直线与椭圆有个公共点,直线与椭圆相切;③△<0时,直线与椭圆没有公共点,直线与椭圆相离.在直线与椭圆相交的问题中,两公共点之间的距离,也即直线被椭圆截得的弦长可以用下面的公式来求取.设直线与椭圆的两个交点为A(x 1,y 1),B(x 2,y 2),直线方程为y=kx+m(k ≠0)则|AB|=221221)()(y y x x -+-=221221)()(m kx m kx x x --++-=21k +|x 1-x 2|或者|AB|=211k |y 1-y 2|;当k=0时直线平行于x 轴,|AB|=|x 1-x 2|. (2)直线与双曲线的位置关根据曲线和方程的理论,如果直线和双曲线有交点,那么交点坐标就应该to 同时满足直线和双曲线的方程,否则就不满足.因此我们可以将直线和双曲线的位置关系转化为对直线的方程与双曲线的方程所联立的方程组上来,即通过考查方程组解的情况来判断直线和双曲线的位置关系,也就是:设直线方程y=kx+m,若直线与双曲线方程联立,消去y 得关于x 的一元二次方程:ax 2+bx+c=0,当二次项前面的系数为零时,直线与双曲线有一个交点,直线与渐近线平行;当二次项前面的系数不为零时,①△>0,直线与双曲线有两个交点,直线与双曲线相交;②△=0时,直线与双曲线有一个公共点,直线与双曲线相切;③△<0时,直线与双曲线没有公共点,直线与双曲线相离.在直线与双曲线相交的问题中,两公共点之间的距离,也即三直线被双曲线截得的弦长可以用上面的公式来求取.直线和双曲线的位置关系的判别比较复杂,需要耐心细致地处理,主要原因在于双曲线不是封闭的曲线.(3)直线与抛物线的位置关系的处理在处理直线与抛物线的交点问题,特别是抛物线的弦的问题时,往往采取设而不求的方法,以及直线方程和抛物线方程联立方程组,借助根与系数关系来解,可达到化繁为简的目的.这里要注意:当直线与抛物线相切时,直线与抛物线只有一个交点,当直线与抛物线的对称轴平行时,直线与抛物线也只有一个交点,造成这样情况的原因在于抛物线和双曲线一样,它们都是不封闭曲线,因此在处理直线和抛物线的问题时,要关注消元后的一元二次方程的二次项前的系数以及判别式.另外,前面所提的弦长公式仍然适用.利用抛物线的对称性解题往往会柳暗花明又一村.知识点二直线与圆锥曲线位置关系的三种题型.(1)直线与圆锥曲线的交点问题常用方法是代数方法和几何方法,但在代数方法中,要注意二次项前面系数是0的情况,在几何方法中,要注意直线与圆锥曲线相切不是直线与圆锥曲线只有一个交点的充要条件.(2)与弦的中点有关的问题常用方法是韦达定理和点差法.(3)弦长问题求弦长的方法:①公式法;②如果弦经过圆锥曲线的焦点,可利用焦半径公式.典型例题分析题型1 直线与圆锥曲线的交点问题【例1】直线1:y=kx+1,抛物线C:y2=4x,当k为何值时l与C有:(1)一个公共点;(2)两个公共点;(3)没有公共点.解析讨论直线与圆锥曲线的位置关系时,一般都将两个方程联答案 将l 和C 的方程联立⎩⎨⎧=+=.4,12x y kx y消去y 得k 2x 2+(2k-4)x+1=0. ①当k=0时,方程①只有一个解x=41,此时y=1.∴直线l 与C 只有一个公共点(41,1),此时直线l 平行于抛物线的对称轴.当k ≠0时,方程①是一个一元二次方程,△=(2k-4)2-4k 2=-16k+16=-16(k-1).(1) 当△>0,即k<1,且k ≠0时,l 与C 有两个公共点,此时称直线1与C 相交(2) 当△=0,即k=1时,与C 有一个公共点,此时称直线l 与C 相切;(3) 当△<0,即k>1时,与C 没有公共点,此时称直线l 与C 相离. 综上所述,当k=0,或k=1时,与C 有一个公共点;当k<1时,与C 有两个公共点;当k>1时,与C 没有公共点.规律总结 (1)直线与抛物线相切,则直线与抛物线只有个公共点.反过来,直线与抛物线只有一个公共点,则直线与抛物线不一定是相切的;(2)解析中方程①的二次项系数带有字母,不可忽视对字母k 的讨【变式训练1】直线l:ax+by-3a=0与双曲线9922y x -=1只有一个公共点,则l 共有 条,它们的方程是 .答案 (1)当b=0时,l:x=3,9922y x -=1, ∴y=0,此时,l 与双曲线只有一个公共点.(2)当b ≠0时,⎪⎩⎪⎨⎧=--=3694)3(22y x b x a y 得(4b 2-9a 2)x 2+54a 2x-9(9a 2+4b 2)=0.①a.若462-9a 2=0,即=±32时,只有一个公共点,此时l:y=±32(3-x),即2x+3y-6=0.b.4b2-9a2≠0,即b a ≠±32时,二次方程①△=542a 4+36(4b 2-9a 2)(4b 2+9a 2)=36(81a 4+16b 4-81a 4)=36×16b 4>0,此时直线l 与双曲线必有两个交点.综上所述,共有3条,其方程为x3=0或2x+3y-6=0.题型2 弦长问题【例2】 已知直线y=x-4被抛物线y 2=2mx(m ∈R)截得的弦长为62,求抛物线的标准方程.解析 直线和抛物线的位置关系仍然是转化为对直线的方程与椭圆的方程所联立的方程组上来,即通过考查方程组解的情况来判断直线和抛物线的位置关系;同时弦长公式仍然适用.答案 由⎩⎨⎧-==,4,22x y mx y 得x 2-2(4+m)x+16=0, 弦长=2212))(1(x x k -+=[]164)4(422⨯-+m=2)8(22m m +.由2)8(22m m +=62,得m=1或m=-9,经检验,m=1或m=-9均符合题意.∴所求抛物线标准方程为y 2=2x 或y 2=-18x.规律总结 由于m ∈R,故m 的几何意又发生了变化,此时,|m|才表示焦点到准线的距离.【变式训练2】 椭圆ax 2+by 2=1与直线x+y=1相交于A 、B 两点,若|AB|=22,且AB 的中点C 与椭圆中心连线的斜率为22,求实数a 、b 的值.答案 设椭圆与直线交于A(x 1,y 1),B(x 2,y 2)两点,则由⎩⎨⎧=+=+,1,122y x by ax 可得(a+b)x 2-2bx+b-1=0.所以x 1+x 2=b a b +2,x 1+x 2=ba b +-1,所|AB|=2)1(1-+·|x 1-x 1|=2·ba ab b a +-+2=22,得(a+b)2=a+b-ab ①.又因为kx=222121x x y y ++=2121x x y y ++=2121)1()1(x x x x +-+-=212x x +-1=b a =22,所以a=22b ②.把②代人①,得b=32,a=31. 题型3 中点弦问题【例3】设A 、B 是双曲线x 2-22y =1上的两点,点N(1,2)是线段AB 的中点.(1)求直线AB 的方程. (2) 如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?解析 涉及直线截圆锥曲线所得弦长及弦的中点的有关问题,常常要运用根与系数的关系.答案 (1)显然,AB 与x 轴不垂直,设其斜率为k,其方程为y=k(x-1)+2,代入双曲线方程并整理得(2-k 2)x 2-2k(2-k)x-k 2+4k-6=0.设A 、B 两点的坐标分别为(x 1,y 1)、(x 2,y 2),由根与系数的关系及N 是AB 的中点,知22)2(2k k k --=2. 解得 k=1.因此,直线AB 的方程为y=x+1.(2)线段AB 的垂直平分线的方程为y=-x+3,代入双曲线方程,得x 2+6x-11=0.设C 、D 两点坐标分别为(x 3,y 3)、(x 4,y 4),由根与系数的关系,得x 3+x 4=-6,x 3x 4=-11.|x 3-x 4|=432434)(x x x x -+=45,据弦长公式得|CD|=21k +|x 3-x 4|=410.又设CD 中点为M,求得M 点的坐标为(-3,6)点A(-1,0)到点M 的距离|MA|=210.由于C 、D 是线段AB 垂直平分线上的两点,点B 到点M 的距离等于点A 到点M 的距离.这样点A 、B 、C 、D 到点M 的距离均等于2√10,因此四点 共圆规律总结 本题考查了直线、圆、双曲线的有关内容,是综合性较强的一个题目;证明四点共圆时,要充分利用CD 是直径这一隐含条件.【变式训练3】 直线l:6x-5y-28=0交椭圆2222by a x +=1(a>b>2)于B 、C 两点,A(0,b)是椭圆的一个顶点,且△ABC 重心与椭圆的右焦点F 重合,求椭圆的方程.答案 设B(x 1,y 1),C(x 2,y 2),设BC 的中点D(x 0,y 0),F(c,0),A(0,b),可利用|AF|:|FD|=2:1,结合定比分点公式求得x0=23c,y0=-2b .由于点D 在BC 的直线上,则18c+5b-56=0,①将B 、C 两点坐标代入椭圆方程并作差:2212122121))(())((b y y y y a x x x x +-++-=0,∴KAB ·=00x y -22ab , ∴2a 2=5bc. ②由于b 2+c 2=a 2 ③,由①②③可得:41c 2-194c+224=0,∴c=2或c=41112. ∵a>b>2,∴c=2,从而b=4,a 2=20,∴椭圆方程为:162022y x +=1 题型4 最值及参数范围问题【例4】在直线l:x+y-4=0上任取一点M,过M 且以椭圆121622y x +=1的焦点为焦点作椭圆,问M 点在何处,所作椭圆的长轴最短,并求此椭圆的方程.解析 椭圆的长轴的长的2倍即为椭圆上点到两焦点距离的和,这样,求过直线l 上点M 所作长轴最短的椭圆,即转化为求直线l 上一点,使这点到两焦点F 1、F 2的距离之和最小.答案 a 2=16,b 2=12,∴c 2=a 2-b 2=4.故已知椭圆121622y x +=1的两焦点F 1(-2,0),F 2(2,0),过F 2向引垂直线l ′:y=x-2,求出F 2关于l 的对称点F ´2,则F 2的坐标(4,2)(如右图),直线F 1F 2′的方程为x-3y+2=0.∴⎩⎨⎧=-+=+-,04,023y x y x 解得⎪⎪⎩⎪⎪⎨⎧==,35,25y x ∴M ⎪⎭⎫ ⎝⎛23,25即为所求的点. 此时,|MF 1|+|MF 2|=|MF 1|+|MF ′2|=|F1F ′2|=210. 设所求椭圆方程为2222by a x +=1, ∴a=10,c=2,∴b2=a2-c2=10-4=6, ∴所求椭圆方程为61022y x +=1 规律总结 本题的实际几何意义是:待求椭圆与已知直线l 相切时,长轴最短.【变式训练4】从椭圆2222by a x +=1(a>b>0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F1,且其长轴端点A 及短轴端点B 的连线AB 平行于OM,若Q 为椭圆上任一点,F 2是右焦点,求∠F 1QF 2的最大值. 解析 利用OM ∥AB,得a,b,c 的关系,由cos ∠F 1QF 2的取值范围确定∠F 1QF 2的最大值.答案 如右图,点M 的坐标为(-c,ab 2),因为OM ∥AB,所以k CM =k AB ,∴-acb a b 2-=,即b=c,a=2c.设|QF 1|=m,|QF 2|=n, ∠F 1QF 2=θ由余弦定理,得cos θ=|QF ||QF |2|F ||QF ||QF |212212221•-+F=mn c mn n m 242)(22--+=mn b mn mn b 222224=--1≥1)2(222-+n m b =222ab -1=0. 当|QF 1|=|QF 2|时,等号成立. ∴0≤cos θ≤1.∴θ的最大值为2π,即∠F 1QF 2的最大值为2π.【例5】已知双曲线2222by a x -=1(a>0,b>0)的离心率е=332,过点A(0,-b)和B(a,0)的直线与原点的距离为23. (1)求双曲线的方程;(2)直线y=kx+m(k ≠0,m ≠0)与该双曲线交于不同的两点C,D,且C,D 两点都在以A 为圆心的同一圆上,求m 的取值范围. 解析 (1)依条件建立ab 的关系,求a 2,b 2;(2)利用直线与圆锥曲线有交点的条件,结合韦达定理作转化.答案 (1)由题设,得⎪⎪⎩⎪⎪⎨⎧=+=+=,23,34122222b a ab a b λ解得a 2=3,b 2=1,∴双曲线的方程为32x -y 2=1.(2)把直线方程y=kx+m 代入双曲线方程,并整理得(1-3k 2)x 2-6kmx-3m 2-3=0.因为直线与双曲线交于不同两点, 所以⎩⎨⎧≠+>∆,031,02k 即k 2≠31,且m 2+1-3k 2>0. ①设C(x 1,,y 1),D(x 2,y 2),则x 1+x 2=2316kkm-, y 1+y 2=k(x 1+x 2)+2m=2312k m-, 设CD 中点为P(x 0,y 0),其中则依题意,AP ⊥CD,∴kAP=22313131k km k m-+-=-k 1,整理得3k 2=4m+1. ② 将②式代入①式得m 2-4m>0, ∴m>4,或m<0,k 2≠31,3k 2≠1, ∴4m+1≠1,即m ≠0. 又3k 2=4m+1>0,即m>=-41, ∴m 的取值范围为m>4,或-4<m<0.规律总结 (1)应熟练掌握研究直线与圆锥曲线相交问题的一般方法;(2)第(2)小题中注意将点C 、D 都在以A 为圆心的同一圆上的条件转化为AP ⊥CD,进而转化为斜率关系,同时掌握设点不求点的处理技巧.【变式训练5】已知椭圆的两个焦点为F 1(0,-22),F 2(0,22),离心率e=322. (1)求椭圆方程;(2)一条不与坐标轴平行的直线l 与椭圆交于不同的两点M 、N,且线段MN 中点的横坐标为-21,求直线l 倾斜角的取值范围.答案(1)∵c=22,322=a c ,∴a=3,c=22, ∴b 2=1.∴椭圆方程为92y +x 2=1.(2)设M(x 1,y 1),N(x 2,y 2),且MN 中点为P(-21,y 0),k MN =k(k ≠0),则921y +x 21=1,922y +x 22=1.相减,得9))((2121y y y y +-+(x 1-x 2)(x 1+x 2)=0. ∴21212121)(9y y x x x x y y ++=--,∴y0=k29. 由于点(-21,k29)在椭圆92y +x2=1内部,∴4191)2(922+•k <1,∴k 2>3, ∴k>3或k<-3.∴直线l 倾斜角的取值范围是⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛32,22,3ππππY .规律 方法 总结(1) 直线与圆锥曲线的位置关系问题可消元构造一元二次方程,利用判别式来解决,并应注意讨论,不要漏项,也可利用图形的性质来解决.(2)涉及圆锥曲线的弦长,一般用弦长公式|AB|=21k +|x1-x2|=211k+ |y1-y2|,弦过焦点时,也可用定义或焦点弦来解决.(2)解决弦的中点问题常用方法:一是用韦达定理及中点坐标公式的构造.二是利用端点在曲线上,坐标满足方程,作差构造出中点坐标和直线的斜率.(4)设而不求的方法,是直线与圆锥曲线位置关系的常用方法. (5)有关直线与圆锥曲线位置关系的存在性问题,一般采用假设反证法”或“假设验证法”,同时要注意直线与圆锥曲线的交点是否存在,即判断△与0的关系.定时 巩固 检测第1课时直线与圆锥曲线的位置关系基础训练1. 过点A(-p,p)作直线l 与抛物线y 2=2px 仅有一个公共点的直线共有( )A.1条B.2条C.3条D.不能确定【答案】 C(点拨:注意有一条直线与抛物线的对称轴平行.) 2. 直线l:y=k(x-2)与曲线x 2-y 2=1(x>0)相交于A 、B 两点,则直线l 的倾斜角范围是 ( )A.[0,π)B.(2π,2π)∪(2π,43π) C.[0,2π)∪(2π,π) D.(4π,43π) 【答案】 D(点拨:当直线l 与x 轴垂直时符合题意;另外,直线l 的斜率必须满足k>1或k 1<-1)3. 直线y=kx+1与椭圆my x 225+=1恒有公共点,且椭圆焦点在x 轴上,则m 的取值范围是 .【答案】1≤m<5(点拨:直线y=kx+1过定点(0,1),该点应在椭圆的内部(含短轴的端点).)4. 直线x+y=1与椭圆mx 2+ny 2=1相交于A 、B 两点,过A 、B 中点和坐标原点的直线的斜率为22,则nm的值为 . 【答案】22(点拨:利用点差法处理.) 能力提升5. 设直线y=k(x+3)与抛物线y=ax 2交于A(x1,y1)、B(x2,y2)两点,则2111x x +的值是 ( ) A.-31 B.31C.-3D.不能确定与k 的值有关【答案】 A(点拨:将直线的方程代入抛物线方程中,利用韦达定理解决.)6. 已知双曲线方程2422y x -=1,.是否存在直线l,使N(1,21)为l 被双曲线所截弦的中点.若存在,求出直线l 的方程;若不存在,请说明理由. 【答案】 假设过N 的直线交双曲线于A(x 1,y 1),B(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧=-=-②,124①,12422222121y x y x 作差得2))((4))((21212121y y y y x x x x -+--+=0, 所以k AB =2121x x y y --=1,∴l 为:y=x-21,但由⎪⎪⎩⎪⎪⎨⎧=--=124,2122y x x y 得:2x 2-4x+9=0,△<0,所以无实根,因此直线l 与双曲线无交点,这一矛盾说明满足条件的直线l 不存在.7.已知直线y=-x+1与椭圆2222by a x +=1(a>b>0)相交于A 、B 两点,且线段AB 的中点在直线l:x-2y=0上. (1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点的在圆x 2+y 2=4上,求此椭圆的方程.【答案】 (1)设A 、B 两点的坐标分别为A(x 1,y 1),B(x 2,y 2).则由⎪⎩⎪⎨⎧=++-=1,12222b y ax x y 得:(a 2+b 2)x 2-2a 2x+a 2-a 2b 2=0 根据韦达定理,得x 1+x 2=2222b a a +,y 1+y 2=-(x 1+x 2)+2=2222ba b +,∴线段AB 的中点坐标为⎪⎪⎭⎫⎝⎛++222222,b a b b a a .由已知得222222ba b b a a +-+=0,∴,a 2-2b 2=2(a 2-c 2),∴a 2=2c 2,故椭圆的离心率为е=22. (2)由(1)知b=c,从而椭圆的右焦点坐标为F(b,0),设F(b,0)关于直线l:x-2y=0的对称点为(x 0,y 0),则21000•--b x y =-1且20b x +-2×20y=0, 解得x 0=53b 且y 0由已知得x 20+y 20=4,∴22)54()53(+b =4,∴b 2=4,故所求的椭圆方程为4822y x +=1.8. 若抛物线y=x 2上存在两点P,Q 关于直线 y=m(x-3)对称,求实数m 的取值范围. 【答案】 如右图,设P(x1,x 21),Q(x2,x 22),过这两点的直线的斜率为k=212221x x x x --=x1+x2=-m 1,线段PQ 的中点坐标x中=221x x ++2=-m21.又由y=m(x3)⇒y 中=m (-m 21-3)=-m(m21+3),由于中点总在抛物线之内部,∴-m(m 21+3)>(-m 21)2(横坐标为-m21的抛物线上的点的纵坐标),从而有12m 3+2m 2+1<0,即m<-21.第2课时直线与圆锥曲线位置关系的应用 基础训练1.直线y=x+b(b 为参数)被椭圆42x +y 2=1截得的弦长的最值是 ( )A.2B.554 C.5104 D.5108 【答案】 C(点拨:设直线与椭圆的交点为A(x 1,y 1),B(x 2,y 2),由⎪⎩⎪⎨⎧=++=,14,22y x b x y 消去y 得5x 2+8bx+4b 2-4=0,x1+x2=-58b,x1x2=5442-b ,|AB|=11+212214)(x x x x -+=516162564222--b b =55242+-b ≤5104,所以所求最大值为5104.) 2.过原点的直线与椭圆2222by a x +=1(a>b>0)相交于A 、B 两点,若F(-c,0)是椭圆的左焦点,则△FAB 的最大面积是( ) A.bc B.ab C.ac D.b 2【答案】 A(点拨:S △FAB =21c|yA-yB|,因为|yA-yB|max =2b,所以S △FAB 的最大值为21·c ·2b=bc.)3.设P(8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在的直线方程是 .【答案】 2x-y-15=0(点拨:设弦所在直线的方程为y-1=k(x-8),由⎩⎨⎧-=-=-),8(1,4422x k y y x 消去y 得(1-4k 2)x 2-8(1-8k)kx-4(1-8k)2-4=0,由x 1+x 2=241)81(8k kk --=16得k=2,所以所求直线的方程为2x-y-15=0.)4.抛物线x 2=21y 上两点A(x 1,y 1),B(x 2,y 2)关于直线l:y=x+m 对称,若x 1x 2=-21,则m= .【答案】 设AB 中点M(x 0,y 0),点M 在l 上,kAB=-1,⇒⎪⎪⎩⎪⎪⎨⎧==2221212121y x y x (x2+x1)(x2-x1)=21(y2-y1)⇒2x0=(-1),∴x0=-41⇒y0=-41+m,又y0=221y y +=x 21+x 22=(x1+x2)2-2x1x2=45212212=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-∴m=23. 能力提升5.直线y=x+3与曲线492xx y -=1A.没有交点B.只有一个交点C. 有两个交点D.有三个交点【答案】 D(点拨:曲线492x x y -=1的图象是双曲线的y 轴右侧部分和椭圆在y 轴的左侧部分.)6.椭圆22a x +22by =1,(a>b>0)与直线x+y-1=0相交于P 、Q 且OP ⊥OQ(O 为坐标原点),求证:21a +21b等于定值. 【答案】由⎩⎨⎧=+=-+,,01222222b a y a x b y x 消去y 得(a 2+b 2)x 2-2a 2x+a 2(1-b 2)=0, ∵有两个交点,△>0,即4a 4-4(a 2+b 2)a 2(1-b 2)>0,即b 2(a 2+b 2-1)>0,∵b ≠0,∴a 2+b 2>1设P(x 1,y 1),Q (x 2,y 2),则x 1+x 2=2222b a a +,x 1x 2=()22221b a b a +-, 由OP ⊥OQ 得x 1x 2+y 1y 2=0,又y 1=1-x 1,y 2=1-x 2得:2x 1x 2-(x 1+x 2)+1=0,∴2()22221b a b a +--2222b a a ++1=0, 化简得:a 2+b 2=2a 2b 2,故21a +21b =2为定值. 7.设抛物线x 2=-y 与直线y=3x-4交于M 、N 两点,点P 在抛物线上由M 到N 运动(1)求△PMN 的面积取得最大值时P 点的坐标(x 0,y 0);(2)证明:与线段MN 平行的直线和抛物线交于A 、B 两点,则 线段AB 被直线x=x 0平分【答案】(1)由⎩⎨⎧-=-=43,2x y y x 得:x1=-4,x 2=1,即M(-4,-16,N(1,.-1),因此∣MN ∣=510,要使S △PMN 的面积最大,只需P 到直线MN 的距离最大, 令P(x,y), d=d=1042523104-x 3x 104-y -3x 22-⎪⎭⎫ ⎝⎛+=+=x ,由于-4<x<1,当x=-23时,d 达到最大,此时y=-49,故P 点坐标为(-23,-49) (2)设与MN 平行的直线截抛物线的弦AB 所在直线为:y=3x+b.由⎩⎨⎧-=+=yx b x y 2,3得 x 2+3x+b=0,则由△>0得b<49令A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-3,即AB 中点的横坐标为-23,即线段AB 被直线x=-23平分.8.过抛物线y 2=4x 的焦点F 的直线与这条抛物线交于A 、B 两点,O 为坐标原点.(1)△AOB 的重心G 的轨迹方程;(2)当直线l 的倾斜角为45︒时,试求抛物线上一点P 的坐标, 使AP ⊥BP【答案】(1)抛物线的焦点坐标为(1,0).当直线l 不垂直于x 轴时,设l:y=k(x-1),代入y 2=4x 得k 2x 2-2(k 2+2)x+k 2=0∵与抛物线相交于两点,∴k ≠0设A(x 1,y 1)、B(x 2,y 2),根据韦达定理x 1+x 2=()2222k k +,x 1x 2=1 ⎩⎨⎧-=-=kkx y k kx y 2211,从而y 1+y 2=k(x 1+x 2-2)=k 4, y 1y 2=k 2(x 1-1)(x 2-1)=-4设△AOB 的重心G(x,y)则⎪⎪⎩⎪⎪⎨⎧=++=+=++=k y y y k x x x 343034323021221 消去k 并整理得y 2=9834-x当l 垂直于x 轴时,A 、B 的坐标分别是(1,2)和(1,-2) △AOB 的重心G(32,0)也透合y 2=9834-x因此所求轨迹方程为y 2=9834-x(3) 当直线l 的倾斜角为4︒时,k=1 ∴x 1+x 2=6,y 1+y 2=4设抛物线的准线上一点P(-1,y 0)∵AP ⊥BP.∴11202101+-•+-x y y x y y =-1, 即()()121212021021+++++-x x x x y y y y y y =-1,16144200+++--y y =-1 (4)解得y 0=2,故所求点P 的坐标为(-1,2)。

高中数学第二章圆柱、圆锥与圆锥曲线2.1.1平行投影的性质2.1.2圆柱面的平面截线课件新人教B版选修4_1

高中数学第二章圆柱、圆锥与圆锥曲线2.1.1平行投影的性质2.1.2圆柱面的平面截线课件新人教B版选修4_1

D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
1234 5
4.在梯形ABCD中,AB∥CD,若梯形不在平面α内,则它在平面α上的 平行投影是 . 解析:若梯形ABCD所在平面平行于投影方向,则梯形ABCD在平面α 上的平行投影是一条线段.
若梯形ABCD所在平面不平行于投影方向,则梯形ABCD在平面α 内的平行投影仍是梯形. 答案:一条线段或一个梯形
答案:(2)(3) 反思判断平行投影的形状时,常常先确定图形中各顶点的投影,再 依次连接各顶点的投影即可;同一图形在平行平面上的平行投影是 相同的.
M Z Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
M Z Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
2.点的投影与图形的投影间的区别与联系 剖析图形是由点组成的集合,因而图形的投影是被投影图形上各 点在平面α上的投影的集合,所以,要找到一个图形的投影只需找到 组成这个图形的关键点的投影即可.
M Z Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
【做一做1】 △ABC在平面α上的正投影是( )
A.三角形 B.直线

空间解析几何中的球面与圆锥曲线

空间解析几何中的球面与圆锥曲线

空间解析几何中的球面与圆锥曲线空间解析几何是研究二维和三维空间中图形的位置、形状和性质的数学分支。

在空间解析几何中,球面和圆锥曲线是两个重要的图形,对于它们的了解对于理解几何学原理和应用非常重要。

本文将介绍球面和圆锥曲线的基本概念以及它们的性质和应用。

一、球面球面是空间中的一个特殊曲面,它的每个点到固定点的距离都相等。

该固定点被称为球心,相等的距离被称为半径。

我们可以用数学方程来表示一个球面,其中(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2代表了以(a, b, c)为球心,半径为r的球面。

球面具有以下重要性质:1. 任意直径都通过球心:无论选择球面上的任意两个点,通过它们的直径都会经过球心。

2. 球面上任意两点之间的最短路径是弧线:在球面上,两点之间的最短路径实际上是一条弧线,这条弧线是球面上两点之间的一段圆弧。

3. 半径垂直于球面上的切线:球面上任意一点的切线垂直于该点处的球面半径。

由于其特殊的性质,球面在几何学和物理学等领域具有广泛的应用。

例如,地球就是一个近似的球体,我们可以利用球面几何来研究地球的形状和地理现象。

二、圆锥曲线圆锥曲线是通过一个平面和一个过平面外一点的直线相交而形成的曲线。

根据平面与直线的相对位置,圆锥曲线可以分为三种类型:椭圆、抛物线和双曲线。

1. 椭圆:当平面与直线相交于直线的两侧时,就形成了一个椭圆。

椭圆具有两个焦点和一个长轴和短轴。

所有位于相交平面内部的点到两个焦点的距离之和是固定的。

2. 抛物线:当平面与直线相交于直线的一侧时,就形成了一个抛物线。

抛物线具有一个焦点和一个与焦点垂直的直线称为准线。

3. 双曲线:当平面与直线相交于直线的两侧时,就形成了一个双曲线。

双曲线具有两个焦点和两条渐近线。

所有位于相交平面内部的点到两个焦点的距离之差是固定的。

圆锥曲线在科学、工程和艺术等领域都有广泛应用。

例如,在天文学中,行星的轨道可以用椭圆来描述;在建筑设计中,拱门和拱顶的形状可以通过双曲线来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 截面欣赏
§2直线与球、平面与球的位置关系
课后作业提升
1下面能体现截面的作用的是( ).
A.建筑工人看图纸再施工
B.某人在汽车4S店购买汽车时,销售人员提供了汽车的三视图
C.某人卖西瓜时,把一个西瓜切开让想买西瓜的人看
D.在某刑事案件中,通过目击证人描述画出了犯罪嫌疑人的肖像
答案:C
2半径r=的球的球心O到平面α的距离d=1,则平面α与球O的位置关系是( ).
A.相离
B.相切
C.相交
D.相交或相切
解析:由于d<r,所以平面α与球O相交.
答案:C
3已知直线l上A,B两点到点O的距离分别为5,12,球O的半径为,且∠AOB=90°,则直线l与球O的位置关系是( ).
A.相离
B.相切
C.相交
D.相交或相切
解析:设球O的半径为r,球心O到直线l的距离为d,
则d==r,所以直线l与球O相切.
答案:B
4用平面截正方体,若所得的截面是一个三角形,则留下的较大的一个几何体一定有( ).
A.7个面
B.15条棱
C.7个顶点
D.10个顶点
解析:用一个平面截正方体ABCD-A1B1C1D1后,所得的截面是一个三角形,仅有两种情况,如图(1)(2)所示.
图(1)
图(2)
图(1)中留下的较大的一个几何体有7个面,15条棱,10个顶点;图(2)中留下的较大的一个几何体有7个面,12条棱,7个顶点.则留下的较大的一个几何体一定有7个面.
答案:A
5已知球O的一个截面圆的半径为1,球心O到这个截面的距离为1,则该球的半径
为.
解析:设球O的半径为R,又截面圆的半径r=1,
则R=.
答案:
6设P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,且PA=3,PB=4,PC=5,则球O的体积为.
解析:如图所示,把三棱锥P-ABC补成一个长方体PBDC-AB1D1C1
,
则球O的直径2r是长方体PBDC-AB1D1C1的对角线,则有2r==5,则r=, 则球O的体积V=π.
答案:π
7在半径是13的球面上有A,B,C三点,AB=6,BC=8,CA=10,求球心到平面ABC的距离.
解:由于AB2+BC2=62+82=100=102=CA2,则△ABC是直角三角形,
所以过A,B,C 三点的截面圆的半径为CA=5,
所以球心到平面ABC 的距离是=12.
8已知过球O外一点P的直线PB交球O于A,B两点,直线PD交球O于C,D两点,若
PA=4,PB=5,PD=10,求PC的长.
解:如图所示,过PB和球心O作球的截面,过点P作截面圆的切线PT,T是切点,截面圆的半径等于球O的半径.
由切割线定理知,PT2=PA·PB,
所以PT2=4×5=20,同理可得PT2=PC·PD,
所以20=10PC,所以PC=2.
2。

相关文档
最新文档