铝及铝合金在焊接过程中出现的一些问题分析

合集下载

铝及铝合金焊接缺陷预防措施分析

铝及铝合金焊接缺陷预防措施分析

铝 及 铝 合 金 的 外 观 呈 银 白色 ,密 度 小 、 电 阻率 低 ,热 温度 降低 ,则抗 拉 强 度就 增 高 ,延伸 率 随 之增 加 。 5与 钢 相 比铝 的 导 热率 高 . 膨 胀 系 数 和 导 热 系 数 大 。 由 于 铝 为 面 心 立 方 结 构 , 无 同 素
如 身体 状 况 、 智 力 等 ,而 其 它 与工 作 无 关 的 因 素 如 种 族 、 民 族 、 宗 教 、 籍 贯 、 阶级 、政 治 面 貌等 在任 何 情 况 下 都 不 得 成 为 限 制 就 业 的标 ; 身 体 状 况 和 智 力 因 素 的 区 别 对 待 隹。 也 要 依 据工 作 性 质 ,而不 是 无 限 制 的。 3. 立专 门的 反 就业 歧 视 机构 设 发 达 国 家 大 多 建 立 了专 门 的反 就 业 歧 视 机 构 ,而 且 效
果 很 好 。 如 美 国 的 “ 等 就 业 机 会 委 员 会 ” 、荷 兰 的 “ 平 平 等 待 遇 委 员会 ” 、德 国 的 “ 邦 反 歧 视 局 ” 、英 国 的 “ 联 平 等 机 会 委 员 会 ” 。成 立 一 个 专 门 的 反 就 业 歧 视 机 构 将 分 散
目前 以间 接 歧 视 为主 :而 我 国 由 于 对 就 业 歧 视 并 不 重 视 , 直 接 歧 视 仍 然 大 行 其 道 。 因此 ,我 国 立 法 必 须 明 确 直 接 歧
金 的 基 本 性 能 、 焊 接 特 点 、焊 接 材 料 、焊 接 设 备 、 焊 接 操
作 方 法 的 基 础 上 ,还 要 掌 握 避 免 在 焊 接 过 程 中 出 现 焊 接 缺
常 温 加 热 到 熔 化 状 态 时 ,没 有颜 色 的 变 化 ,这 就 使 判 断 是

铝合金焊接常见缺陷的产生原因及质量控制分析

铝合金焊接常见缺陷的产生原因及质量控制分析

铝合金焊接常见缺陷的产生原因及质量控制分析摘要:铝合金材料在现代装备制造业中应用广泛,铝合金材料的可焊性较差,焊接过程中会出现很多缺陷,主要是气孔和裂纹较多。

分析了铝合金焊接过程中造成气孔和裂纹的因素,提出减少气孔和裂纹的质量控制措施。

关键词:铝合金;焊缝;缺陷;措施1 焊接性能简介(1)氧化能力强。

Al与O2在空气中结合生成致密的Al2O3薄膜,厚度约为0.1μm,熔点高达2050℃,密度大,在焊接过程中氧化膜会阻碍金属之间的良好结合,并且容易造成夹渣,氧化膜还会吸附水分,焊接时易生成焊缝气孔。

(2)铝的比热大,导热速度快。

因导热快,散热也快,焊接一般采用能量集中功率大的焊接热源,有时还需预热,才能获得高质量的焊接接头。

(3)线膨胀系数大。

铝及铝合金线膨胀系数大,金属凝固时体积收缩率也大,易产生焊接变形。

(4)容易形成气孔。

H2是铝及铝合金焊接时产生气孔的主要原因,H2主要来源于焊接材料(母材、焊丝、保护气体)吸附的水分。

(5)合金元素蒸发和烧损。

铝合金的某些合金元素,在高温下容易蒸发烧损,从而改变了焊缝金属的化学成份,降低了焊接接头的性能。

(6)铝及铝合金熔化时无色泽变化。

铝及铝合金焊接时,由固态转变为液态时,没有明显的颜色变化,给焊接操作带来一定困难。

2 TIG焊常见缺陷及防止措施铝及铝合金TIG焊的各种缺陷,既有与其他电弧焊相同的,也有一些是其特有的。

铝及铝合金TIG焊的焊接质量与焊前准备情况、保护气体纯度、焊接参数的正确性、电极材料的质量、操作技术的熟练程度、焊接电源等因素有关。

其常见缺陷产生原因及对策阐述如下。

2.1气孔在焊接过程中,熔池中的气体未在金属凝固前逸出,残存于焊缝中的空穴被称为气孔。

气孔是比较多见的焊接缺陷,在焊缝的各个位置都可能发现气孔。

铝合金焊接时生成气孔的气体主要是氢气,氢气主要来自电弧周围的空气,母材和焊丝表面的杂质,如油污,水分等的分解燃烧。

气孔是铝合金焊接时最容易出现的一种体积型缺陷,气孔的存在减少了焊缝的受力截面,有些针形气孔会使焊缝疏松,从而降低了接头的强度,还有就是降低了焊缝的力学性能。

铝合金激光焊接难点及解决对策

铝合金激光焊接难点及解决对策

铝合金激光焊接难点及解决对策一、概述铝合金具有高比强度、高比模具和高疲劳强度以及良好的断裂韧性和较低的裂纹扩展率,同时还具有优良的成形工艺性和良好的抗腐蚀性。

因此,广泛应用于各种焊接结构和产品中。

传统的铝合金焊接一般采用TIG焊或MIG焊工艺,但所面临的主要问题是焊接过程中较大的热输入使铝合金变形大,焊接速度慢,生产效率低。

由于焊接变形大,随后的矫正工作往往浪费大量的时间,增加了制造成本,影响了生产效率和生产质量,而激光焊接具有功率密度高、焊接热输入低、焊接热影响区小和焊接变形小等特点,使其在铝合金焊接领域受到格外的重视。

铝合金激光焊接的主要难点在于:1、铝合金对激光束的高初始反射率及其本身的高导热性,使铝合金在未熔化前对激光的吸收率低,“小孔”的诱导比较困难。

2、铝的电离能低,焊接过程中光致等离子体易于过程和扩散,使得焊接稳定性差。

3、铝合金激光焊接过程中容易产生气孔和热裂纹。

4、焊接过程中合金元素的烧损,使铝合金焊接接头的力学性能下降。

二、铝合金激光焊接的问题和对策1、铝合金对激光的吸收率问题材料对激光的吸收率由下式决定ε=0.365{ρ[1+β(т-20)]/λ}1/2式中ρ—铝合金20度的直流电阻率,Ω.Mβ—电阻温度系数,℃-1т—温度,℃λ—激光束的波长对于铝合金来说,吸收率是温度的函数,在铝合金表面熔化、汽化前。

由于铝合金对激光的高反射,吸收率将随温度的升高而缓慢增加,一旦铝合金表面熔化、汽化,对激光的吸收率就会迅速增加。

为提高铝合金对激光的吸收,可以采用以下方法:ü采取适当的表面预处理工艺表1所示为铝在原始表面(铣、车加工后)、电解抛光、喷砂(300目砂子)及阳极氧化(氧化层厚度u m级)4种表面状态下对入射光束能量的吸收情况。

由此可见,阳极氧化和喷砂处理可以显著提高铝对激光束的能量吸收。

另外,砂纸打磨、表面化学浸蚀、表面镀、石墨涂层及空气炉中氧化等表面预处理措施对激光束的吸收是有效的。

铝焊常见缺陷及原因

铝焊常见缺陷及原因

铝焊常见缺陷原因及措施(一)焊接缺陷种类常见的缺陷主要有焊缝成形差、裂纹、气孔、烧穿,未焊透、未熔合、夹渣等。

1、焊缝成形差产生原因:焊接规范选择不当;焊枪角度不正确;焊工操作不熟练;导电嘴孔径太大;焊接电弧没有严格对准坡口中心;焊丝、焊件及保护气体中含有水分。

焊缝成形差主要表现在焊缝波纹不美观,且不光亮;焊缝弯曲不直,宽窄不一,接头太多;焊缝中心突起,两边平坦或凹陷;焊缝满溢等。

2、气孔产生原因:氩气纯度低或氩气管路内有水分、漏气等;焊丝或母材坡口附近焊前未清理干净或清理后又被污物、水分等沾污;焊接电流和焊速过大或过小;熔池保护欠佳,电弧不稳,电弧过长,钨极伸出过长等。

焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。

在MIG焊接过程中,气孔是不可避免的,只能尽量减少它的存在。

在培训的过程中,仰角焊、立向上焊气孔倾向尤为明显,根据DIN30042标准规定,单个气孔的直径最大不能超过0.25α(α为板厚),密集气孔的单个直径最大不超过0.25+0.01α(α为板厚)。

氢是铝及铝合金熔化焊产生气孔的主要原因。

氮不溶于液态铝,铝又不含碳,因此铝合金中不会产生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在,所以也不会产生氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。

但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,不利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。

氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的产生常常占有突出的地位。

厂房空气中的湿度也影响弧柱气氛。

MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的,由于弧柱温度最高,熔滴比表面积很大,故有利于熔滴金属吸收氢,产生气孔的倾向也更大些。

弧柱中的氢之所以能够形成气,与它在铝合金中的溶解度变化有。

铝及铝合金焊接中常见焊接缺陷及其对策

铝及铝合金焊接中常见焊接缺陷及其对策

铝及铝合金焊接中常见焊接缺陷及其对策摘要:铝及铝合金的应用范围随着社会经济的发展在不断扩大,在轨道交通、建筑、桥梁、船舶中都有被应用。

又随着近些年来更高效率和更高想能的焊接技术的推广,铝及铝合金被运用得越来越广泛,相应的技术也得到了一定的发展。

不过,在铝及铝合金的实际运用过程中,由于其存在着容易氧化、熔点低、导热性高、热容量大以及膨胀系数大的特点,也给其焊接工艺造成了一定的影响,容易出现一些焊接缺陷。

本文主要对铝及铝合金焊接中的常见缺陷进行分析,并提出相应的解决措施。

希望能够对铝及铝合金的焊接行业有所帮助,提高焊接效率与焊接质量。

关键词:铝及铝合金;焊接缺陷;对策引言:铝及铝合金耐腐性较好,并且轻度较高,还具有导电性以及导电性好的特点,因此,铝及铝合金在工业中得到了广泛应用。

因此,相关焊接人员在进行铝及铝合金焊接时,对其性能、焊接方式、焊接材料、焊接缺陷等都需要有充分的把握。

只有对相应的焊接知识熟练掌握之后才能够更好的开展铝及铝合金的焊接工作。

1铝及铝合金的焊接性能要想充分掌握铝及铝合金的焊接技巧,就需要对其的焊接性能有所掌握。

铝及铝合金具有以下焊接性能:1)比热大、导热快。

由于铝及铝合金导热较快,其散热速度也相对较快,在进行焊接工作时,一般使用功率较大的焊接热源,有时候焊接热源的热度不够,还需要对热源进行预热。

2)膨胀系数大。

由于具有膨胀系数大的特点,在焊接之后,金属凝固后的收缩率也较大。

因此,在焊接中容易出现变形的情况。

3)容易形成气孔。

氢气是铝及铝合金焊接时容易出现气孔的主要原因,其中主要来自于焊接材料中含有的水分。

2铝及铝合金中常见焊接缺陷铝及铝合金在我国工业中被应用得十分广泛,虽具有许多的优势,但是也有一些常见的焊接缺陷,要想提高铝及铝合金的焊接效率和焊接质量,就需要对相应的焊接缺陷进行充分的把握,在把握相应焊接缺陷的基础上,再提出相应的解决措施。

铝及铝合金焊接中的常见缺陷主要有裂纹、凹陷、烧穿、气孔凹陷等,以下是对这些缺陷的分点阐述。

焊接出现的疑难问题以及解决方案

焊接出现的疑难问题以及解决方案

焊接出现的疑难问题以及解决方案作为一个专业焊接研究者,在我们的工作中接触到的材料、结构不可能是一成不变的。

在当前的经济形式下,企业为了生存需要创新、转型,手里的“活儿”自然也会不断创新。

今天,帮大家归纳整理了一下,在焊接中经遇到的疑难问题以及最终的解决措施,先来看看您工作中是否也遇到了同样的问题。

疑难问题1:铝及铝合金焊接时极易产生气孔,尤其是纯铝和防锈铝的焊接。

原因分析:氢是铝及铝合金焊接时产生气孔的主要原因,这已为实践所证明。

氢的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其中焊丝及母材表面氧化膜的吸附水分,以焊缝气孔的产生,常常占有突出的地位。

铝及铝合金的液体熔池很容易吸收气体,在高温下溶入的大量气体,在由液态凝固时,溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。

解决措施:为了防止气孔的产生,以获得良好的焊接接头,对氢的来源要加以严格控制,焊前必须严格限制所使用焊接材料(包括焊丝、焊条、熔剂、保护气体)的含水量,使用前要进行干燥处理。

清理后的母材及焊丝最好在2-3小时内焊接完毕,最多不超过24小时。

TIG焊时,选用大的焊接电流配合较高的焊接速度。

MIG焊时,选用大的焊接电流慢的焊接速度,以提高熔池的存在时间。

Al-Li合金焊接时,加强正、背面保护,配合坡口刮削,清除概况氧化膜,可有效地防止气孔。

疑难问题2:采用熔化极气体保护焊或药芯焊丝气体保护焊将一薄金属盖焊接在较厚钢管上,怎么操作?原因分析:进行焊接时如果不能正确调整焊接电流,可能会导致两种情况:一是为了防止薄金属烧穿而减小焊接电流,此时不能将薄金属盖焊接到厚钢管上;二是焊接电流过大会烧穿薄金属盖。

解决措施:①调整焊接电流避免烧穿薄金属盖,同时用焊炬预热厚钢管,然后采用薄板焊接工艺对两金属结构进行焊接。

②调整焊接电流以适合于厚钢管的焊接。

进行焊接时,保持焊接电弧在厚钢管上的停留时间为90%,并减少在薄金属盖上的停留时间。

铝合金焊接常见缺陷和防治措施

铝合金焊接常见缺陷和防治措施

铝及铝合金焊丝的选择主要根据母材的种类,对接头抗裂性能、力学性能及耐蚀性等方面的要求综合考虑。

有时当某项成为主要矛盾时,则选择焊丝就着重从解决这个主要矛盾入手,兼顾其它方面要求。

一般情况下,焊接铝及铝合金都采用与母材成分相同或相近牌号的焊丝,这样可以获得较好的耐蚀性;但焊接热裂倾向大的热处理强化铝合金时,选择焊丝主要从解决抗裂性入手,这时焊丝的成分与母材的差别就很大。

常见缺陷(焊接问题)及防止措施1、烧穿产生原因:a、热输入量过大;b、坡口加工不当,焊件装配间隙过大;c、点固焊时焊点间距过大,焊接过程中产生较大的变形量。

防止措施:a、适当减小焊接电流、电弧电压,提高焊接速度;b、大钝边尺寸,减小根部间隙;c、适当减小点固焊时焊点间距。

2、气孔产生原因:a、母材或焊丝上有油、锈、污、垢等;b、焊接场地空气流动大,不利于气体保护;c、焊接电弧过长,降低气体保护效果;d、喷嘴与工件距离过大,气体保护效果降低;e、焊接参数选择不当;f、重复起弧处产生气孔;g、保护气体纯度低,气体保护效果差;h、周围环境空气湿度大。

防止措施:a、焊前仔细清理焊丝、焊件表面的油、污、锈、垢和氧化膜,采用含脱氧剂较高的焊丝;b、合理选择焊接场所;c、适当减小电弧长度;d、保持喷嘴与焊件之间的合理距离范围;e、尽量选择较粗的焊丝,同时增加工件坡口的钝边厚度,一方面可以允许使用大电流,微信公众号:焊王,另一方面也使焊缝金属中焊丝比例下降,这对降低气孔率是行之有效的;f、尽量不要在同一部位重复起弧,需要重复起弧时要对起弧处进行打磨或刮除;一道焊缝一旦起弧要尽量焊长些,不要随意断弧,以减少接头量,在接头处需要有一定焊缝重叠区;g、换保护气体;h、检查气流大小;i、预热母材;j、检查是否有漏气现象和气管损坏现象;k、在空气湿度较低时焊接,或采用加热系统。

3、电弧不稳产生原因:电源线连接、污物或者有风。

防止措施:a、检查所有导电部分并使表面保持清洁;b、将接头处的脏物清除掉;c、尽量不要在能引起气流紊乱的地方进行焊接。

铝合金焊接缺陷及检验论述

铝合金焊接缺陷及检验论述

焊接缺陷及焊接质量检验论述第一节焊接缺陷焊接缺陷:焊接接头中产生的不符合设计或工艺文件要求的缺陷一、焊接缺陷的分类按焊接缺陷在焊缝中的位置,可分为外部缺陷与内部缺陷两大类。

外部缺陷位于焊缝区的外表面,肉眼或用低倍放大镜即可观察到。

例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。

内部缺陷位于焊缝内部,需用破坏性实验或探伤方法来发现。

例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。

二、常见电焊缺陷(1)焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不足或过高等。

焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。

焊接坡口角度不当或装配间隙不均匀,焊接电流过大或过小,运条方式或速度及焊角角度不当等均会造成焊缝尺寸不符合要求。

(2)咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。

咬边使母材金属的有效截面减小,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。

产生咬边的原因操作方式不当,焊接规范选择不正确,如焊接电流过大,电弧过长,焊条角度不当等。

咬边超过允许值,应予补焊。

(3)焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤即为焊瘤。

焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。

对于管道接头来说,管道内部的焊瘤还会使管内的有效面积减少,严重时使管内产生堵塞。

焊瘤常在立焊和仰焊时发生。

焊缝间隙过大,焊条角度和运条方法不正确,焊条质量不好,焊接电流过大或焊接速度太慢等均可引起焊瘤的产生。

(4)烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。

烧穿常发生于打底焊道的焊接过程中。

发生烧穿,焊接过程难以继续进行,是一种不允许存在的焊接缺陷。

造成烧穿的主要原因是焊接电流太大或焊接速度太低;坡口和间隙太大或钝边太薄以及操作不当等。

铝及铝合金常见焊接缺陷的原因及对策

铝及铝合金常见焊接缺陷的原因及对策

() 1 焊前彻底清理焊缝 区和焊丝 ;
般采用能量集 中功率大的焊接热源 , 有时还需预热 , 才能获
() 3 线膨胀系数大 。铝及 铝合金线膨胀系数大 , 金属凝固
() 2 采用合格 的保护气体 , 纯度应符合规范 ;
() 3 供气 系统保持干燥 , 防止漏气漏水 ;
() 4 焊接 工艺参数选择要合理 ;
Eq i me t u p n Ma u a t n e h o o y No7, 01 n fcr g T c n l g . 2 0 i
铝及铝合金常见焊接缺 陷的原 因及对 策
谢业东 , 琪 农
( 广西工业职业技术学院 , 广西 南宁 5 0 0 ) 3 0 1
摘 要 : 绍 了铝 及 铝 合金 的 焊接 性 能 , 析 其 焊 接 缺 陷产 生 的 原 因 , 出了控 制 焊接 缺 陷 的对 策。 介 分 提 关键 词 : 合金 ; 铝 焊接 ; 陷 ; 极 惰 性 气 体 保 护 G 焊 常见缺 陷及 防止措 施 I
铝及铝合 金 TG焊的各 种缺陷 ,既有 与其 他电弧焊相 同 I
的, 也有一些是其特有 的。 铝及铝合金 T G焊 的焊 接质量与焊 I
前准备情况 、 保护气 体纯度 、 焊接参数 的正确性 、 电极材料 的
铝及 铝合金 的 TG焊 ,也称为钨极惰性气体保护 电弧焊 I ( T w)是铝及铝合金 比较完善 的焊接方法。 GA , 其特点是 : 保护 效果好 , 缝质量 高 , 焊 能焊接大 多数金 属 , 弧稳定 、 量集 电 热 中, 于全方位焊接 , 适 操作技术容易且便于实现焊接 自动化l l 】 。
中图分 类号:G4 17 T 4.
文献标识码: B

第七章铝及铝合金常见焊接缺陷、原因分析和控制规则

第七章铝及铝合金常见焊接缺陷、原因分析和控制规则

第七章铝及铝合金常见焊接缺陷、原因分析和控制规则焊接缺陷在焊接施工过程中,做到完全避免是不可能的,缺陷来自工艺缺陷和设计缺陷两部分,工艺缺陷需要在生产过程中,进行严格的质量控制、装备和人员配置要合理化、试验和培训要按着规程去执行,如气孔、咬边、起楞、裂纹、未焊透等均定义为工艺缺陷。

设计缺陷是指结构产生的缺陷,如焊缝过密、交叉过多、焊缝板厚差过大、材料匹配不良等导致的裂纹属于设计缺陷。

工艺缺陷可以通过优化施工条件和增加工艺装备解决,设计缺陷可以通过优化结构来完成,对于结构特殊的要求和限制,可能会有一些焊缝很难焊好,如需要盲焊等操作,在这种条件下,需要进行大量的模拟培训,实现合格的焊接质量。

工艺和设计导致的缺陷种类繁多,以下是一些重点缺陷的定义和产生原因分析。

第一节气孔气孔是铝合金焊接过程中最容易出现的焊接缺陷,无论工艺措施多么严格到位,要想完全做到克服气孔是很难得,气孔从位置上可区分为表面气孔和内部气孔,从性质上可区分为密集气孔和离散气孔,气孔产生的原因有外部原因和内在原因,外在原因主要是操作、环境方面的因素,内在原因主要是材料、位置方面本身造成的结果。

一、外在原因导致的气孔1 环境湿度导致的气孔铝合金表面的氧化膜有很强的吸水性,当环境湿度很大时,侵入铝合金表层的水很大,当电弧产生时,水分子会电离出氢,氢在熔池中来不及溢出而产生气孔,因此,铝合金焊接现场的湿度控制是非常必要的措施。

2 焊接保护不当造成的气孔当焊接保护气体流量过大、过小,均会造成气孔缺陷,这部分气孔主要是氮气孔或氧气孔,焊接过程中,外界风的干扰会使保护气流紊乱而产生气孔,焊接过程中,要加强防风措施。

3 油污、灰尘、赃物导致的气孔当工件表面有油污和有机赃物时,焊接过程会融入焊接熔池,有机碳水化合物分解会导致气孔产生。

4 操作不当导致的气孔当焊接前倾角度过小或操作不稳,均会导致焊接气孔的产生,在焊接培训过程中,焊接操作避免气孔的技能需要必备的。

铝及铝合金的焊接性分析

铝及铝合金的焊接性分析

铝及铝合金的焊接性分析铝及其合金化学活泼性很强,表面易形成氧化膜,且多具有难熔性质(如Al2O3的熔点约为2050℃,MgO的熔点约为2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。

由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属的夹杂物。

同时,氧化膜(特别是有MgO存在的不很致密的氧化膜)可以吸收较多的水分而常常成为形成焊缝气孔的重要原因之一。

此外,铝及其合金的线胀系数大(约为钢的2倍),导热性又强(比钢约大一倍多),焊接时容易产生翘曲变形。

一.焊缝气孔(一)铝及铝合金熔焊时形成气孔的特点铝及其合金熔焊时最常见的缺陷是焊缝气孔,尤其是纯铝和防锈铝的焊接。

氢是铝及其合金熔焊时产生气孔的主要原因,氢的来源,主要是弧柱气氛中的水分、焊接材料以及母材所吸附的水分。

其中,焊丝及母材表面氧化膜的吸附水分,对焊缝气孔的产生,常占有突出地位。

1.弧柱气氛中水分的影响弧柱空间总是或多或少存在一定量的水分,尤其是在潮湿季节或湿度大的地区进行焊接时。

由弧柱气氛中水分分解而来的氢,熔入过热的熔融金属中,可成为焊缝气孔的主要原因。

此时所形成的气孔,具有白亮内壁的特征。

弧柱气氛中的氢之所以能使焊缝形成气孔,与它在铝及其合金中的溶解度变化特性有关。

在平衡条件下,氢在铝中的溶解度在凝固点时可从 1.69突降到0.036ml/100g,相差约20倍(在钢中只相差不到2倍),其次,由于铝的导热性很强,在同样的工艺条件下,铝熔合区的冷却速度可为高强钢的4-7倍,不利于气泡的逸出,而残留在焊缝金属中形成气孔。

实际的冷却条件下并非平衡状态,伴随着凝固过程的发展,在已结晶的枝晶前沿形成许多微小气泡,枝晶晶体的交互生长致使气泡的成长受到限制,并且不利于浮出,因而可沿结晶的层状线形成均布形式小气孔。

不同的合金系统,对弧柱气氛中水分的敏感性是不同的,纯铝对气氛中水分最为敏感。

Al-Mg合金含Mg量增加,氢的溶解度和引起气孔的临界分压PH2均随之增大,因而对吸收气氛中的水不太敏感,相比起来,仅对焊接气氛中的水分而言,同样焊接条件下,纯铝焊缝产生气孔的倾向要大些。

铝与铝合金焊接的缺陷与检验

铝与铝合金焊接的缺陷与检验

第五节:铝及铝合金焊接缺陷与检验铝及铝合金焊接时,由于其特殊的物理和化学特性以及焊接过程操作的难度,容易出现焊接缺陷。

作为焊工,必须了解焊接缺陷产生的原因,掌握防止和消除焊接缺陷的对策和方法,才能实现保证焊接质量、制造优良焊件的目的。

相比钢铁的焊接,铝及铝合金焊接缺陷也存在同样多的种类,导致缺陷产生的原因也更复杂。

铝及铝合金焊接缺陷主要为未熔合、气孔、下塌、热裂纹、夹杂等。

一、未熔合1.导致产生未熔合的原因未熔合通常表现为焊丝熔化、母材未熔化或是同一焊缝上一侧母材熔化、另一侧母材未熔化而形成的焊接接头。

铝及铝合金的导热系数大,约是钢的2~3倍;其比热也很大。

这样,要使铝及铝合金接头熔化后焊到一起,必须使用能量集中、功率大的热源。

在焊接方法确定的条件下,结构的形状、尺寸、位置、表面状态的差异,以及焊工操作的熟练程度都可以产生未熔合的缺陷。

未熔合的产生与焊件的坡口形状和焊接规有很大关系。

尤其当采用MIG 焊进行厚板多层焊时,常常会在图2-5-1所示的部位产生未熔合,即:图2-5-1 MIG多层焊时易产生未熔合的典型情况a一坡口侧面的未熔合b一清根后的焊道根部未熔合(1)在焊根或第二层焊道以下的坡口面上,由于焊接规的变化而产生未熔合。

(2)清根处理后在封底焊的根部焊道金属中产生未熔合。

焊接规对产生未熔合的影响,首先取决于焊件的坡口根部形状和尺寸,焊接电流的影响也很大。

通过对厚度为50 mm的板材在不同大小坡口根部半径和焊接电流下产生未熔合的影响的研究可知:未熔合随坡口根部半径和焊接电流的增大而减小。

U形坡口比V形坡口产生未熔合的可能性要小,横焊时的实测结果是这样,立焊时也可以得到同样的结果。

电弧电压对产生未熔合的影响没有焊接电流和坡口根部半径变化对其的影响那么明显。

焊接电流对焊缝熔深的影响非常直接,熔深随坡口根部半径和焊接电流的增大而增大。

通过用断面检验法我们掌握了未熔合与熔深的关系。

当熔深小于1 mm时,很容易产生未熔合;当熔深大于l mm时,则不产生未熔合。

铝焊裂纹最佳解决方案(3篇)

铝焊裂纹最佳解决方案(3篇)

第1篇摘要:铝焊裂纹是铝焊接过程中常见的问题,严重影响了焊接质量和使用性能。

本文针对铝焊裂纹产生的原因进行了深入分析,并提出了相应的最佳解决方案,旨在提高铝焊接质量,延长焊接件使用寿命。

一、引言铝焊接技术在航空、航天、汽车、建筑等领域有着广泛的应用。

然而,铝焊裂纹是铝焊接过程中常见的问题,严重影响了焊接质量和使用性能。

为了解决这一问题,本文将对铝焊裂纹产生的原因进行分析,并提出相应的最佳解决方案。

二、铝焊裂纹产生的原因1. 焊接材料问题(1)铝及铝合金材料自身存在缺陷,如夹杂、气孔等,导致焊接过程中裂纹产生。

(2)焊接材料质量不达标,如焊接丝、焊剂等,导致焊接过程中裂纹产生。

2. 焊接工艺问题(1)焊接电流过大或过小,导致熔池不稳定,易产生裂纹。

(2)焊接速度过快或过慢,影响熔池的稳定性,易产生裂纹。

(3)焊接过程中预热不足或过热,导致热影响区宽度过大,易产生裂纹。

(4)焊接过程中层间温度控制不当,导致焊接层间残余应力过大,易产生裂纹。

3. 焊接设备问题(1)焊接设备精度不高,如焊接电源、焊接变压器等,导致焊接过程中电流不稳定,易产生裂纹。

(2)焊接设备冷却系统不完善,导致焊接过程中热量无法有效散发,易产生裂纹。

4. 环境因素(1)焊接过程中环境温度过低,导致焊接材料脆性增加,易产生裂纹。

(2)焊接过程中环境湿度较大,导致焊接材料表面氧化,易产生裂纹。

三、铝焊裂纹最佳解决方案1. 选择优质焊接材料(1)选用优质铝及铝合金材料,确保材料质量稳定。

(2)选用优质焊接丝、焊剂等焊接材料,提高焊接质量。

2. 优化焊接工艺(1)根据焊接材料特性和焊接要求,选择合适的焊接电流、焊接速度等焊接参数。

(2)加强预热,控制热影响区宽度,降低焊接层间残余应力。

(3)严格控制层间温度,确保焊接层间质量。

3. 改善焊接设备(1)提高焊接设备精度,确保焊接过程中电流稳定。

(2)完善焊接设备冷却系统,确保焊接过程中热量有效散发。

铝合金结构焊接质量缺陷及处理方法

铝合金结构焊接质量缺陷及处理方法

铝合金结构焊接质量缺陷及处理方法铝合金结构在工程领域中被广泛应用,而焊接是制造铝合金结构中常用的连接方法之一。

然而,焊接过程中可能会出现质量缺陷,影响结构的强度和稳定性。

本文将介绍一些常见的焊接质量缺陷及其处理方法。

1. 焊缝裂纹:焊缝裂纹是焊接过程中常见的质量缺陷之一。

裂纹可能出现在焊缝中或与焊缝平行。

裂纹的形成可能是由于焊接过程中的应力集中、材料的变形或焊缝设计不当等原因引起的。

处理方法包括优化焊接参数、使用合适的焊接材料和设计合理的焊缝形状。

2. 焊接变形:焊接过程中,热量会引起材料的膨胀和收缩,导致结构产生变形。

焊接变形可能会导致尺寸偏差、强度降低或导致零件之间的不匹配。

为了减少焊接变形,可以采取以下措施:使用预热、控制焊接速度、合理排布焊接顺序和使用局部焊接等方法。

3. 焊接气孔:焊接气孔是焊接过程中可能出现的气体残留物。

气孔的存在会降低焊缝的强度和密封性。

避免气孔的方法包括:保证焊接材料和焊接区域的清洁、使用适当的焊接电流和气体保护、控制焊接速度等。

4. 焊接夹渣:焊接夹渣是指焊缝中残留的金属或非金属夹杂物。

夹渣的存在会降低焊缝的强度和质量。

为了避免焊接夹渣,应选择合适的焊接材料和填充材料,并确保焊接区域干净。

5. 焊接缩孔:焊接缩孔是指焊缝中存在的空洞或孔洞。

焊接缩孔可能是由于焊接过程中的材料收缩过程中产生的缺陷引起的。

控制焊接工艺参数、选择合适的填充材料和使用适当的焊接技术可以减少焊接缩孔的发生。

综上所述,了解铝合金结构焊接质量缺陷及其处理方法对于确保结构的质量和稳定性至关重要。

通过优化焊接参数、合理设计焊缝和采取适当的焊接技术,可以有效地减少焊接质量缺陷的发生。

铝及铝合金在焊接时容易出现哪些问题

铝及铝合金在焊接时容易出现哪些问题

铝及铝合金在焊接时容易出现哪些问题?1、极易敏化铝不论是固态或液态都极易氧化,生成三氧化二铝薄膜。

氧化膜熔点很高,为2050℃,而铝的熔点仅为658℃。

A1203具有很高的电阻,在电弧焊中,相当于电弧与工件之间有一层绝缘层,使电弧燃烧不稳定。

氧化膜妨碍焊接过程的顺利进行,而且氧化铝的密度大于铝,因此造成焊缝夹渣和成形不良。

2、熔化时无颜色变化铝从固体到液体的升温过程中没有颜色变化,温度稍高就会造成金属塌陷和熔池烧穿。

再者,由于高熔点的氧化膜覆盖在熔池表面,给观察母材的熔化、熔合情况带来困难。

这样就增加了焊接工艺上控制温度的难度,稍不注意,整个接头就会塌落,所以铝的焊接比钢材焊接要困难得多。

3、易变形由于铝的导热系数是铁的2倍,凝固时的收缩率比铁大2倍,所以铝焊件变形大,如果措施不当就会产生裂纹;并且在焊接时,因导热性好,需要较大的焊接热量才能熔化接头。

因此,一般要求对焊件预热,并采用强规范,由此也恶化了焊接工艺条件。

4、易产生气孔铝及铝合金在焊接时,在空气中马上氧化生成A1203,不但阻碍金属熔合,还会吸收一定的水分。

焊丝表面和母材表面氧化膜吸收的水分,在电弧作用下分解出来的氢被液态金属铝吸收。

此外,焊条药皮中的潮气、空气中的水分也都是氢的来源。

铝合金的一个特征是,氢在液态金属中的溶解度随温度变化的幅度大,又由于铝导热性能好,焊缝凝固快,因此来不及逸出的氢气便形成很多气孔。

铝的纯度愈高,产生气孔的倾向就愈大。

5、易开裂铝合金的凝固不是在某一温度下进行,而是在一温度区间进行。

在开始凝固时温度较高,焊缝呈液-固状态,液态金属比较多,此时的收缩量可由未凝固的液态金属补充;在最后凝固之前,焊缝呈固液状态,液态金属已很少,以间层状存在,由于此时温度处于凝固温度区间的下限,已产生很大的收缩,这样就会在液态的层间处拉开,若无液体补充,便形成裂纹。

一般说,纯铝不易产生凝固裂纹,防锈铝合金裂纹倾向也很小,但硬铝、超硬铝等经热处理强化的铝合金的热裂纹倾向较大。

铝焊常见缺陷及原因

铝焊常见缺陷及原因

精心整理铝焊常见缺陷原因及措施(一)焊接缺陷种类常见的缺陷主要有焊缝成形差、裂纹、气孔、烧穿,未焊透、未熔合、夹渣等。

1、焊缝成形差产生原因:焊接规范选择不当;焊枪角度不正确;焊工操作不熟练;导电嘴孔径太大;焊接电弧没有严格对准坡口中心;焊丝、焊件及保护气体中含有水分。

焊缝成形差主要表现在焊缝波纹不美观,且不光亮;焊缝弯曲不直,宽窄不一,接头太多;焊缝中心突起,两边平坦或凹陷;焊缝满溢等。

2、气孔产生原因:氩气纯度低或氩气管路内有水分、漏气等;焊丝或母材坡口附近焊前未清理干净或清理后又被污物、水分等沾污;焊接电流和焊速过大或过小;熔池保护欠佳,电弧不稳,电弧过长,钨极伸出过长等。

焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。

在MIG焊接过程中,气孔是不可避免的,只能尽量减少它的存在。

在培训的过程中,仰角焊、立向上焊气孔倾向尤为明显,根据DIN30042标准规定,单个气孔的直径最大不能超过0.25α(α为板厚),密集气孔的单个直径最大不超过0.25+0.01α(α为板厚)。

氢是铝及铝合金熔化焊产生气孔的主要原因。

氮不溶于液态铝,铝又不含碳,因此铝合金中不会产生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在,所以也不会产生氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。

但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,不利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。

氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的产生常常占有突出的地位。

厂房空气中的湿度也影响弧柱气氛。

MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的,由于弧柱温度最高,熔滴比表面积很大,故有利于熔滴金属吸收氢,产生气孔的倾向也更大些。

弧柱中的氢之所以能够形成气,与它在铝合金中的溶解度变化有。

铝合金焊接开裂原因

铝合金焊接开裂原因

铝合金焊接开裂原因铝合金是一种常见的工程材料,因其具有良好的强度和轻质特性而被广泛应用于各种工业领域。

然而,铝合金在焊接过程中容易出现开裂问题,这给焊接工艺和焊接质量带来了一定的挑战。

本文将探讨铝合金焊接开裂的原因,并提出相应的解决方法。

铝合金焊接开裂的原因可以归结为以下几个方面。

一、热裂纹铝合金焊接过程中,由于热应力的作用,易发生热裂纹。

热裂纹主要是由于焊接过程中产生的局部高温引起的。

铝合金的热导率较高,容易导致焊缝局部温度升高,当焊接过程中产生的热应力超过了铝合金的塑性极限时,就会发生热裂纹。

二、固溶体析出铝合金焊接后,焊缝区域会发生固溶体析出现象。

固溶体析出是指在焊接过程中,由于铝合金的化学成分和热处理条件的改变,使得合金中的某些元素从固溶体中析出出来。

这种析出现象会导致焊缝区域的组织结构不均匀,从而引发开裂问题。

三、应力集中焊接过程中,由于热应力和残余应力的作用,焊缝区域容易出现应力集中现象。

应力集中会导致焊缝区域的应力超过材料的强度极限,从而引起开裂。

应力集中现象通常发生在焊缝的两端或焊缝与基材的交界处。

四、气孔铝合金焊接过程中,气孔是另一个常见的开裂原因。

气孔是指焊接过程中由于气体无法完全排出而形成的孔洞。

气孔会导致焊缝区域的强度降低,从而引发开裂。

针对上述问题,我们可以采取一些措施来预防铝合金焊接开裂。

一、合理控制焊接温度通过合理控制焊接温度,可以减少焊缝区域的热应力,从而降低热裂纹的风险。

可以采用预热和后热处理的方法,使焊接温度均匀分布,避免局部温度过高。

二、选择适当的焊接材料和焊接工艺选择适当的焊接材料和焊接工艺,可以减少固溶体析出和应力集中的问题。

合理选择焊接材料的成分和焊接工艺的参数,确保焊缝区域的组织结构均匀,避免应力集中。

三、控制焊接过程中的气体通过控制焊接过程中的气体,可以减少气孔的形成。

可以采用惰性气体保护和适当的焊接速度,避免气体进入焊接区域,减少气孔的发生。

铝合金焊接开裂是由多种因素共同作用导致的。

铝合金焊接层状撕裂的原因

铝合金焊接层状撕裂的原因

铝合金焊接层状撕裂的原因
铝合金焊接时出现层状撕裂可能是由于凝固时发生了低熔点相的液态融化和再凝固引起的。

以下是导致铝合金焊接层状撕裂的主要原因:
1.成分不均匀:
铝合金中的合金元素分布不均匀,特别是低熔点元素(如铝-硅合金)。

焊材和母材的成分差异较大,导致在焊接区域出现合金元素不均匀的情况。

2.低熔点相的液态融化:
在焊接过程中,合金元素可能由于高温而液化,形成低熔点相的液态。

这些液态相在凝固过程中可能会引起凝固线附近的脆性裂纹。

3.冷却速率过快:
过快的冷却速率可能促使液态相在凝固时无法充分扩散和混合。

过快的冷却还可能导致组织过于脆性,容易发生撕裂。

4.焊接热输入过高:
过高的焊接热输入会导致焊缝区域温度升高,促使低熔点相液态化。

这种情况下,即使冷却速率适中,仍可能出现层状撕裂。

5.合金固溶度范围宽:
部分铝合金的固溶度范围较宽,使得在焊接过程中容易形成液态相。

如果焊缝区域的合金处于固溶度范围内,就容易发生层状撕裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时还要避免用十字形接头及不适当的定位、 焊接顺序; 在焊接结束或中断时, 还
要 及时填 满 弧坑 , 随后 再移 去热 源 , 否 则将 会引起 弧坑 裂纹 。 通 过大量 试验 , 我 们也 可 以发现 : 母 材和填 充材料 的表面清 理工作 对于铝 及铝合金 的焊接 也是极
为 重要 的 , 这 也是 引起 裂纹 的原 因。
工 业技 术
C hi n a s c i e n c e a n d Te c h n ol o g y R e v i e w

铝 及 铝 合 金 在 焊 接 过 程 中 出现 的 一 些 问题 分 析
杨 丽 平
( 胜利石油管理局热电联供中心胜 中热力热力五队)
[ 摘 要]近年 来 , 在 焊接 技术 不 断进 步 的状 况下 高效 率 和高 性能 的 焊接 方法 也得 到 了大 力推 广 。 铝 及铝 合 金 的应用 十分 广泛 , 尤其 是在 船舶 、 桥梁、 车辆 、
化膜。 =. 易 产生 裂纹
三. 易 形成气 孔 铝及铝 合金 在焊接 时接 头 中极 易产 生气 孔 , 这 是一个 主要 缺陷 , 尤其 是 纯 铝和 防锈铝 的焊接 。 大量 实践 已经证实 , 铝及 铝合金 焊接时所 产生 的气孔 , 其 主 要原 因就 是氢 。 氢 主要 是来 源于 弧柱气 氛 中的水分 、 焊 接材料 及母 材所 吸附 的 水分 , 其 中焊丝及 母材表 面氧化 膜的 吸附水分 , 以焊 缝气 L 的产生 , 一般 占有 突
另外 , 铝及 铝合 金 的液 体熔池 也很容 易 吸收气 体 , 在 高 温下溶人 的大 量气 体后 , 再 由液态凝 固时 , 此时 溶解度便 会急剧 下降 , 因焊后 冷却凝 固过程 中来不 及析 出 , 所 以就 聚集在 焊 缝 中形成气 孔 。 具 体措 施 如下 : 严 格控 制 氢 的来 源 , 焊 接之 前要 严格 限 制所使 用焊 接材 料 ( 包 括焊 丝 、 焊 条、 熔剂 、 保 护气 体 ) 的含 水量 , 做 好干燥 处理 。 处 理后 , 母 材及焊 丝最 好在 2 -3 小时 内焊接完 毕 , 最多 不要超 过2 4 小时 。 MI G 焊时, 用大的焊 接 电流 慢的焊 接速 度, 可以提 高熔 池的存 在 时间 ; 日G焊接时 , 可 以选用大 的焊 接 电流配合 较高 的 焊接速 度 , 而 一Ⅱ合 金在焊 接时 , 加强 正 、 背面保 护 , 清除概况 氧化膜 , 配 合坡 口刮 削 , 便可 有效 地 防止气 孔 。 四. 焊 接热 对基 体金 属 的影响 非 热处理强化 铝合金 若在冷作 硬化状 态下焊接 , 热影 响区的峰 值温度超 过
建筑 、 化 工 机械 等方 面 的应用 不 断扩大 。 但是 , 铝 及铝 合 金在焊 接过 程 中也 会 出现一 些 问题 , 这就 需要 做好 防 范措施 。 [ 关 键词 ] 铝 铝合 金 焊接 氧化 中图 分类 号 : TF 文 献标识 码 : A 文章编 号 : 1 0 0 9 — 9 1 4 X ( 2 0 1 4 ) 0 8 — 0 0 5 9 一 O 1
具 体措 施如 下 :
在铝结 构装 配、 施 焊时 , 不让焊缝 承受较大 的锕 陛, 在工艺 上可 以采取 以下
措施: 分段 焊 、 预热 或适 当降低 焊接速 度等 。 通 过预 热 , 可 以使 得试 件相对 膨 胀 量 较小 , 从而 降低了焊 接应力 的产生 ; 尽量 采用开 坡 口和 留小 间隙的对接 焊 , 同
出 的地 位 。
焊接 过程 是一 系列 不平衡 的工 艺过程 的综 合 , 从本质 上看 , 热裂纹 产生 多 是 与焊 接接 头金 属断 裂的 冶金 因素和 力学 因素 发生重 要 的联系 , 例如: 焊接 工 艺 过程 与冶 金过程 的产物 即物理 的 、 化学 的与 组织上 的 不均匀 性 、 熔渣 与夹 杂 物、 气 体元 素与 处于 过饱 和浓度 的 空位等 , 以上这 些都 是与 萌生裂 纹及 其发展 有 着密切 联 系 的冶 金 因素 。 从力 学 因素来 看 , 在 一定 的拘 束条件 下 , 焊接 热循环 特定 的温 度梯 度与冷 应力— 应变状 态 , 从而为 裂纹 的萌生 与发展提 供 了必要 的条 件 。 在焊 接 过程 中 , 冶 金 因素及力 学 因素 的综合 作用 可 以归结为
l 、 焊 前应 严格 清 除焊件 表 面 的氧 化膜 , 以防 止在焊 接 过程 中焊 接 区再 氧
化l
2 、 焊 接过程 中对 熔化金 属和处于 高温 下的金属 进行有 效的保 护 , 可以采用 合 格 的保 护气体 来 进行 , 这 也是 铝 及铝合 金 焊接 的一 个重 要特 点 , 3 、 在气 焊时 , 可 以 采用熔 剂 , 在焊 接过程 中不 断用焊 丝挑 破熔 池表 面的 氧


极 易 ห้องสมุดไป่ตู้化
向性强的粗大柱状晶, 改善了抗裂性。 采用小的焊接电流, 减慢焊接速度 , 可有
效 减少熔 池过 热的情 况 , 也能 改善抗 裂性 。 而提高 焊接速度 , 可以增大 焊接接 头 的应变速 度及 热裂的倾 向 。 所以, 增 大焊 接速度和 焊接 电流 , 都 会促使 裂纹倾 向
增大。
铝 与氧 的亲 和力很 强 , 在任 何温度 下都 会氧 化 , 一 般来 说铝 与氧 在空 气 中
结合 会生 成致 密 而 结实 的AL 2 0 3 薄膜 , 厚 度 约0 . 1 " 0 . 2 p m, 熔 点高 达2 0 5 0 " C。
在 焊接 的过程 中 , 氧化铝 薄膜会 阻碍金 属之 间的 良好 结合 , 并易 造成夹 渣 氧化 膜 密度 大 ( 约 为铝 的 1 . 4 倍) , 不易浮 出熔 池表 面 , 容 易 在焊 缝 中形成 夹渣 缺陷 。 氧化膜 还 会吸 附水分 , 焊 接 时会促 使焊缝 生成 气 孔 , 焊 接 时该氧 化膜 妨碍母 材 熔 化和熔 合 , 易 出现未焊 透缺 陷 ; 由于 氧化膜 电子 逸出功低 , 易发射 电子使 电弧 漂 移不 定 。 上 述 这些 问题 , 必 将会 降低 焊接 接头 的性 能 。
相关文档
最新文档