同底数幂的除法同步练习及答案

合集下载

2020-2021学年六年级数学鲁教版(五四制)下册6.3同底数幂的除法同步培优训练(附答案)

2020-2021学年六年级数学鲁教版(五四制)下册6.3同底数幂的除法同步培优训练(附答案)

鲁教版2021年度六年级数学下册《6.3同底数幂的除法》同步培优训练(附答案)1.下列计算正确的是()A.a3﹣a2=a B.a6÷a2=a3C.a6﹣a2=a4D.a3÷a2=a2.已知3a=10,9b=5,则3a﹣2b的值为()A.5B.C.D.23.计算x5m+3n+1÷(x n)2•(﹣x m)2的结果是()A.﹣x7m+n+1B.x7m+n+1C.x7m﹣n+1D.x3m+n+14.计算(﹣a)3÷(﹣a)2的结果是()A.a B.﹣a C.a5 D.﹣a55.已知32m=5,32n=10,则9m﹣n+1的值是()A.B.C.﹣2D.46.若a﹣4b﹣2=0,则3a÷81b等于()A.9B.C.6D.7.化简(x﹣y)3(y﹣x)4÷(y﹣x)3÷(x﹣y)得()A.(x﹣y)3B.﹣(x﹣y)3C.(x﹣y)5D.﹣(x﹣y)5 8.若2a=3,2b=6,2c=12,则a,b,c的关系:①c=a+2;②c﹣b=1;③a+c=2b;④a+b=c+1,其中正确的是()A.①②③④B.①②③C.①②④D.②③④9.10m=2,10n=3,则103m+2n﹣1的值为()A.7B.7.1C.7.2D.7.410.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16B.﹣16C.8D.411.若x a=4,x b=3,x c=8,则x2a+b﹣c的值为.12.计算(﹣a3)5÷[(﹣a2)•(﹣a3)2]=.13.已知a m=﹣3,a n=2,则a3m﹣2n=.14.已知5m=2,5n=3,则53m+n﹣1的值为.15.已知3×9m÷27m=316,则m=.16.若2x=2,2y=3,2z=5,则23x+y﹣2z的值为.17.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=.18.已知10a=20,10b=,则3a÷3b=.19.若x=2n+1+2n,y=2n﹣1+2n﹣2,其中n为整数,则x与y的数量关系为.20.已知a m=3,a n=2,则a﹣m﹣n=.21.已知5a=3,5b=8,5c=72.(1)求(5a)2的值.(2)求5a﹣b+c的值.(3)直接写出字母a、b、c之间的数量关系为.22.已知3a=4,3b=5,3c=8.(1)填空:32a=;(2)求3b+c的值;(3)求32a﹣3b的值.23.若32•92a+1÷27a+1=81,求a的值.24.已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n﹣k的值;(2)求k﹣3m﹣n的值.25.(1)已知2x+3y+2=0,求9x•27y的值;(2)已知2m=,32n=2,求23m﹣10n的值.26.计算:(a2)5•(﹣a)4÷(﹣a2)327.已知:10m=5,10n=6,求:(1)102m+103n的值;(2)102m﹣3n的值.28.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2参考答案1.解:A、a3﹣a2无法计算,故此选项错误;B、a6÷a2=a4,故此选项错误;C、a6﹣a2无法计算,故此选项错误;D、a3÷a2=a,故此选项正确.故选:D.2.解:∵9b=5,∴32b=5,又∵3a=10,∴3a﹣2b=3a÷32b=10÷5=2.故选:D.3.解:x5m+3n+1÷(x n)2•(﹣x m)2=x5m+3n+1÷x2n•x2m=x5m+3n+1﹣2n+2m=x7m+n+1.故选:B.4.解:(﹣a)3÷(﹣a)2=﹣a;故选:B.5.解:原式=[(3)2]m﹣n+1=32m﹣2n+2=32m÷32n×32∵32m=5,32n=10,∴原式=5÷10×9=.故选:A.6.解:∵a﹣4b﹣2=0,∴a﹣4b=2,∴3a÷81b=3a÷34b=3a﹣4b=32=9,故选:A.7.解:(x﹣y)3(y﹣x)4÷(y﹣x)3÷(x﹣y)=(x﹣y)3(x﹣y)4÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)3+4﹣3﹣1=﹣(x﹣y)3,故选:B.8.解:∵2c÷2a=2c﹣a=12÷3=4,∴c﹣a=2,即c=2+a,故①正确;∵2c÷2b=2c﹣b=12÷6=2,∴c﹣b=1,故②正确;∵2a•2c=2a+c=3×12=36,22b=62=36,∴a+c=2b,故③正确;∵2a•2b=2a+b=3×6=18,2c×2=2c+1=24,∴a+b≠c+1.故④错误.故选:B.9.解:∵10m=2,10n=3,∴103m+2n﹣1=103m×102n÷10=(10m)3×(10n)2÷10=23×32÷10=7.2.故选:C.10.解:∵2x﹣3y+z﹣2=0,∴2x﹣3y+z=2,则原式=(24)x÷(23)2y×(22)z=24x÷26y×22z=22(2x﹣3y+z)=24=16,故选:A.11.解:因为x a=4,x b=3,x c=8,可得x2a+b﹣c=(x a)2•x b÷x c=42×3÷8=6,故答案为:612.解:(﹣a3)5÷[(﹣a2)•(﹣a3)2]=(﹣a15)÷[(﹣a2)•a6]=(﹣a15)÷(﹣a8)=a7.故答案为:a7.13.解:∵a m=﹣3,a n=2,∴a3m﹣2n=(a m)3÷(a n)2=(﹣3)3÷22=﹣27÷4=﹣.故答案为:﹣.14.解:∵5m=2,5n=3,∴53m+n﹣1=(5m)3×5n÷5=8×3÷5=.故答案为:.15.解:∵3×9m÷27m=3×32m÷33m=31﹣m=316,∴1﹣m=16,则m=﹣15.故答案为:﹣1516.解:∵2x=2,2y=3,2z=5,∴23x+y﹣2z=23x•2y÷22z=8×3÷25=,故答案为:.17.解:∵2m=12,2n=48,∴2m﹣n=12÷48==2﹣2,∴m﹣n=﹣2,∴(﹣3)m﹣n=(﹣3)﹣2=.故答案为:.18.解:∵10a=20,10b=,∴10a÷10b=20÷=100,∴10a﹣b=102,∴a﹣b=2,∴3a÷3b=3a﹣b=32=9.故答案为:9.19.解:∵====4,∴x=4y.故答案为:x=4y.20.解:∵a m=3,a n=2,∴原式==,故答案为:21.解:(1)∵5a=3,∴(5a)2=32=9;(2)∵5a=3,5b=8,5c=72,∴5a﹣b+c==.=27;(3)c=2a+b;故答案为:c=2a+b.22.解:(1)32a=(3a)2=42=16;故答案为:16;(2)3b+c=3b•3c=5×8=40;(3)32a﹣3b=32a÷33b=(3a)2÷(3b)3=42÷53=.23.解:∵32•92a+1÷27a+1=81,∴32•34a+2÷33a+3=34,∴2+4a+2﹣3a﹣3=4,解得:a=3.24.解:(1)∵a3m=23,a2n=42=24,a k=32=25,∴a3m+2n﹣k=a3m•a2n÷a k=23•24÷25=23+4﹣5=22=4;(2)∵a k﹣3m﹣n=25÷23÷22=20=1=a0,∴k﹣3m﹣n=0,即k﹣3m﹣n的值是0.25.解:(1)∵2x+3y+2=0,∴2x+3y=﹣2,∴9x•27y=32x×33y=32x+3y=3﹣2=;(2)∵2m=,32n=2,∴23m﹣10n=23m÷210n=(2m)3÷(32n2=()3÷22=.26.解:(a2)5•(﹣a)4÷(﹣a2)3=a10•a4÷(﹣a6)=﹣a8.27.解:(1)102m+103n=(10m)2+(10n)3=25+216=241;(2)102m﹣3n═(10m)2÷(10n)3=25÷216=.28.解:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9。

初二同底数幂除法练习题及答案

初二同底数幂除法练习题及答案

初二同底数幂除法练习题及答案题目一:计算下列幂的商并化简结果:(2^7) ÷ (2^4)解答:根据同底数幂除法的性质,我们知道当除数和被除数的底数相同时,可以将底数保持不变,指数相减。

所以,(2^7) ÷ (2^4) = 2^(7-4) = 2^3 = 8答案:8题目二:计算下列幂的商并化简结果:(5^6) ÷ (5^3)解答:同样利用同底数幂除法的性质,我们可以得到:(5^6) ÷ (5^3) =5^(6-3) = 5^3 = 125答案:125题目三:计算下列幂的商并化简结果:(10^5) ÷ (10^2)解答:= 10^3 = 1000答案:1000题目四:计算下列幂的商并化简结果:(3^8) ÷ (3^5)解答:通过同底数幂除法,我们有:(3^8) ÷ (3^5) = 3^(8-5) = 3^3 = 27答案:27题目五:计算下列幂的商并化简结果:(4^9) ÷ (4^6)解答:根据同底数幂除法规则,我们可以得到:(4^9) ÷ (4^6) = 4^(9-6) = 4^3 = 64答案:64题目六:计算下列幂的商并化简结果:(6^5) ÷ (6^2)解答:6^3 = 216答案:216题目七:计算下列幂的商并化简结果:(7^10) ÷ (7^7)解答:通过同底数幂除法,我们有:(7^10) ÷ (7^7) = 7^(10-7) = 7^3 = 343答案:343题目八:计算下列幂的商并化简结果:(9^4) ÷ (9^3)解答:根据同底数幂除法规则,我们可以得到:(9^4) ÷ (9^3) = 9^(4-3) = 9^1 = 9答案:9题目九:计算下列幂的商并化简结果:(2^6) ÷ (2^2)解答:2^4 = 16答案:16题目十:计算下列幂的商并化简结果:(8^7) ÷ (8^5)解答:通过同底数幂除法,我们有:(8^7) ÷ (8^5) = 8^(7-5) = 8^2 = 64答案:64总结:通过以上题目的练习,我们可以发现,无论底数大小如何,只要底数相同,我们可以利用同底数幂除法的性质来计算幂的商,只需保持底数不变,将指数进行相减,从而得到简化结果。

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)1.计算:$(-2m^2)^3+m^7/m$。

2.计算:$3(x^2)^3x^3-(x^3)^3+(-x)^2x^9/x^2$。

3.已知 $a_m=3$,$a_n=4$,求 $a_{2m-n}$ 的值。

4.已知 $3^m=6$,$3^n=-3$,求 $3^{2m-3n}$ 的值。

5.已知 $2a=3$,$4b=5$,$8c=7$,求 $8a+c-2b$ 的值。

6.如果 $x^m=5$,$x^n=25$,求 $x^{5m-2n}$ 的值。

7.计算:$a^{n+5}/a^7$($n$ 是整数)。

8.计算:(1) $-m^9/m^3$;(2) $(-a)^6/(-a)^3$;(3) $(-8)^6/(-8)^5$;(4) $6^{2m+3}/6^m$。

9.计算:$33\times36/(-3)^8$。

10.把下式化成 $(a-b)^p$ 的形式:$15(a-b)^3[-6(a-b)^p+5](b-a)^2/45(b-a)^5$。

11.计算:(1) $(a^8)^2/a^8$;(2) $(a-b)^2(b-a)^{2n}/(a-b)^{2n-1}$。

12.$(a^2)^3(a^2)^4/(-a^2)^5$。

13.计算:$x^3(2x^3)^2/(x^4)^2$。

14.若 $[(x^m/x^{2n})^3]/x^{m-n}$ 与 $4x^2$ 为同类项,且 $2m+5n=7$,求 $4m^2-25n^2$ 的值。

15.计算:(1) $m^9/m^7$;(2) $(-a)^6/(-a)^2$;(3) $(x-y)^6/(y-x)/(x-y)$。

16.已知 $2^m=8$,$2^n=4$,求:(1) $2^{m-n}$ 的值;(2) $2^{m+2n}$ 的值。

17.(1) 已知 $x^m=8$,$x^n=5$,求 $x^{m-n}$ 的值;(2) 已知 $10^m=3$,$10^n=2$,求 $10^{3m-2n}$ 的值。

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习题(有答案)

同底数幂的除法专项练习30题1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5 11.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7=_________;(2)(﹣a)6÷(﹣a)2=_________;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=_________.16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n同底数幂的除法---- 120.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4 (2)(﹣m)8÷(﹣m)3 (3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法--- 2参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b ==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=同底数幂的除法--- 327.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.同底数幂的除法--- 4。

初中数学同底数幂除法基础习题含答案

初中数学同底数幂除法基础习题含答案

同底数幂除法一.选择题(共30小题)1.若2x=8,4y=16,则2x﹣2y的值为()A.B.﹣2C.D.2.若a=﹣3﹣2,b=(﹣)﹣2,c=(﹣)0,则a,b,c大小关系正确的是()A.a<b<c B.c<a<b C.b<c<a D.a<c<b3.下列计算正确的是()A.m2+m3=m5B.m2•m3=m6C.m2÷m2=0D.m4÷m2=m2 4.下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a45.下列运算正确的是()A.(a3)2=a5B.a3×a2=a6C.(ab)4=a4b4D.a6÷a3=a2 6.计算3﹣2的结果是()A.﹣6B.C.9D.﹣97.若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥18.a11÷(﹣a2)3•a5的值为()A.1B.﹣1C.﹣a10D.a99.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3或x≠2D.x≠3且x≠2 10.已知a m=2,a n=4,则a3m﹣2n=()A.﹣B.C.1D.211.若等式(a﹣2)3﹣2a=1成立,则a的值可能为()A.3或1或1.5B.3或1.5C.3或1D.1或1.5 12.计算:=()A.2B.﹣2C.D.13.已知a=(﹣5)2,b=(﹣5)﹣1,c=(﹣5)0,那么a,b,c之间的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b14.74÷72的值是()A.49B.14C.2D.15.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x616.已知a m=9,a n=3,则a m﹣n的值是()A.﹣3B.3C.D.117.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.18.计算:x5÷x2等于()A.x2B.x3C.2x D.2x19.已知5x=2,5y=3,则53x﹣2y的值为()A.1B.C.D.﹣120.已知a m=3,a n=5,则a2m﹣n的值为()A.4B.C.D.21.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.922.计算a5÷a﹣2÷a3的结果是()A.a4B.a﹣4C.a7D.a1423.若代数式(x﹣1)﹣1有意义,则x应满足()A.x=0B.x≠0C.x≠1D.x=124.(﹣)0=()A.﹣B.1C.0D.﹣25.下列运算正确的是()A.x6÷x=x6B.x3+x5=x8C.x2•x2=2x4D.(﹣x2y)3=﹣x6y326.计算的结果是()A.6B.C.8D.27.若3m=5,3n=2,则3m﹣2n等于()A.B.9C.D.28.若a m=6,a n=2,则a m﹣n的值为()A.8B.4C.12D.329.若a=,b=﹣0.32,c=﹣3﹣2,d=,则它们的大小关系是()A.a<b<c<d B.b<c<d<a C.a<d<c<b D.c<b<d<a 30.当代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等时,x=()A.7B.﹣7C.8D.﹣8二.填空题(共19小题)31.计算:5﹣2+(﹣2019)0=______.32.满足等式(3x+2)x+5=1的x的值为______.33.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是______.34.计算:()0×10﹣1=______.35.计算:(﹣8)0+(﹣2)2=______.36.计算:(﹣2)0+|﹣3|=______.37.已知:5x=6,5y=3.则5x+2y﹣1=______.38.计算:=______.39.已知3a=5,9b=10,则3a﹣b=______.40.若a x÷a3×a5=a6,则x=______.41.若(x+3)x﹣3=1,则x=______.42.计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=______.43.若代数式(m+2)0+(m﹣2)﹣2有意义,则m的取值范围是______.44.已知a5=6,a2=2,则a3=______.45.计算:(π﹣2019)0+(﹣)3=______.46.若(a﹣3)0=1,则a的取值范围是______.47.已知10m=20,10n=,则10m﹣n=______;9m÷32n=______ 48.若x m=6,x n=9,则x2m﹣n=______.49.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=______.三.解答题(共1小题)50.计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0同底数幂除法参考答案与试题解析一.选择题(共30小题)1.若2x=8,4y=16,则2x﹣2y的值为()A.B.﹣2C.D.解:∵2x=8,4y=16,∴2x﹣2y=2x÷22y=2x÷4y=8÷16=.故选:A.2.若a=﹣3﹣2,b=(﹣)﹣2,c=(﹣)0,则a,b,c大小关系正确的是()A.a<b<c B.c<a<b C.b<c<a D.a<c<b解:∵a=﹣3﹣2=﹣,b=(﹣)﹣2=9,c=(﹣)0=1,∴a<c<b.故选:D.3.下列计算正确的是()A.m2+m3=m5B.m2•m3=m6C.m2÷m2=0D.m4÷m2=m2解:A.m2与m3不是同类项,所以不能合并,故本选项不合题意;B.m2•m3=m5,故本选项不合题意;C.m2÷m2=1,故本选项不合题意;D.m4÷m2=m2,正确,故本选项符合题意.故选:D.4.下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a4解:A.a3•a4=a7,故本选项不合题意;B.(a4)4=a16,故本选项不合题意;C.a5÷a3=a2,故本选项不合题意;D.(﹣2a2)2=4a4,故本选项符合题意.故选:D.5.下列运算正确的是()A.(a3)2=a5B.a3×a2=a6C.(ab)4=a4b4D.a6÷a3=a2解:A、应为(a3)2=a6,故本选项错误;B、应为a3×a2=a5,故本选项错误;C、(ab)4=a4b4,故本选项正确;D、应为a6÷a3=a3,故本选项错误.故选:C.6.计算3﹣2的结果是()A.﹣6B.C.9D.﹣9解:3﹣2=.故选:B.7.若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥1解:由题意知,a﹣1≠0.解得a≠1.故选:B.8.a11÷(﹣a2)3•a5的值为()A.1B.﹣1C.﹣a10D.a9解:a11÷(﹣a2)3•a5=a11÷(﹣a6)•a5=﹣a11﹣6+5=﹣a10.故选:C.9.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3或x≠2D.x≠3且x≠2解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.10.已知a m=2,a n=4,则a3m﹣2n=()A.﹣B.C.1D.2解:∵a m=2,a n=4,∴a3m﹣2n=(a m)3÷(a n)2=23÷42=.故选:B.11.若等式(a﹣2)3﹣2a=1成立,则a的值可能为()A.3或1或1.5B.3或1.5C.3或1D.1或1.5解:当3﹣2a=0,即a=1.5时,等式(a﹣2)3﹣2a=1成立;当a﹣2=1,即a=3时,等式(a﹣2)3﹣2a=1成立;综上所述,当等式(a﹣2)3﹣2a=1成立,则a的值可能为3或1.5,故选:B.12.计算:=()A.2B.﹣2C.D.解:=2,故选:A.13.已知a=(﹣5)2,b=(﹣5)﹣1,c=(﹣5)0,那么a,b,c之间的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b解:a=25,b=,c=1,∴b<c<a,故选:B.14.74÷72的值是()A.49B.14C.2D.解:74÷72=74﹣2=72=49.故选:A.15.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x6解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.16.已知a m=9,a n=3,则a m﹣n的值是()A.﹣3B.3C.D.1解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3,故选:B.17.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.解:∵3a=5,3b=10,∴3a﹣b=.故选:A.18.计算:x5÷x2等于()A.x2B.x3C.2x D.2x 解:x5÷x2=x5﹣2=x3.故选:B.19.已知5x=2,5y=3,则53x﹣2y的值为()A.1B.C.D.﹣1解:∵5x=2,5y=3,∴53x﹣2y=(5x)3÷(5y)2=23÷32=.故选:B.20.已知a m=3,a n=5,则a2m﹣n的值为()A.4B.C.D.解:∵a m=3,a n=5,∴.故选:B.21.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.9解:原式=1××(﹣)=﹣,故选:B.22.计算a5÷a﹣2÷a3的结果是()A.a4B.a﹣4C.a7D.a14解:原式=a7÷a3=a4,故选:A.23.若代数式(x﹣1)﹣1有意义,则x应满足()A.x=0B.x≠0C.x≠1D.x=1解:若代数式(x﹣1)﹣1有意义,则x﹣1≠0,解得:x≠1.故选:C.24.(﹣)0=()A.﹣B.1C.0D.﹣解:(﹣)0=1.故选:B.25.下列运算正确的是()A.x6÷x=x6B.x3+x5=x8C.x2•x2=2x4D.(﹣x2y)3=﹣x6y3解:x6÷x=x5,故选项A错误;x3与x5不是同类型,故不能合并,故选项B错误;x2•x2=x4,故选项C错误;(﹣x2y)3=﹣x6y3.故选项D正确.故选:D.26.计算的结果是()A.6B.C.8D.解:原式=23=8,故选:C.27.若3m=5,3n=2,则3m﹣2n等于()A.B.9C.D.解:∵3m=5,3n=2,∴3m﹣2n=3m÷(3n)2=5÷22=.故选:C.28.若a m=6,a n=2,则a m﹣n的值为()A.8B.4C.12D.3解:∵a m=6,a n=2,∴原式=a m÷a n=3,故选:D.29.若a=,b=﹣0.32,c=﹣3﹣2,d=,则它们的大小关系是()A.a<b<c<d B.b<c<d<a C.a<d<c<b D.c<b<d<a解:∵a==9,b=﹣0.32=﹣0.09,c=﹣3﹣2=﹣,d==1,∴c<b<d<a.故选:D.30.当代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等时,x=()A.7B.﹣7C.8D.﹣8解:∵代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等,∴=,则3(x+1)=2(x﹣2),故3x+3=2x﹣4,解得:x=﹣7,检验:当x=﹣7时,(x+1)(x﹣2)≠0,故x=﹣7是方程的解.故选:B.二.填空题(共19小题)31.计算:5﹣2+(﹣2019)0=1.解:原式=+1=1.故答案为:1.32.满足等式(3x+2)x+5=1的x的值为﹣,﹣1或﹣5.解:(1)当3x+2=1时,x=﹣,此时(﹣1+2)=1,等式成立;(2)当3x+2=﹣1时,x=﹣1,此时(﹣3+2)﹣1+5=1,等式成立;(3)当x+5=0时,x=﹣5,此时(﹣15+2)0=1,等式成立.综上所述,x的值为:﹣,﹣1或﹣5.故答案为:﹣,﹣1或﹣5.33.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是﹣7.解:∵2(x+1)﹣1与3(x﹣2)﹣1的值相等,∴=,则2x﹣4=3x+3,解得:x=﹣7,检验:x=﹣7时,(x+1)(x﹣2)≠0,故x=﹣7是原方程的根.故答案为:﹣7.34.计算:()0×10﹣1=.解:原式=1×=,故答案为:.35.计算:(﹣8)0+(﹣2)2=5.解:原式=1+4=5.故答案为:5.36.计算:(﹣2)0+|﹣3|=4.解:原式=1+3=4.故答案为:4.37.已知:5x=6,5y=3.则5x+2y﹣1=.解:∵5x=6,5y=3,∴5x+2y﹣1=5x•(5y)2÷5=6×32÷5=6×9÷5=.故答案为:38.计算:=2.解:原式=1﹣3+4=2,故答案为:239.已知3a=5,9b=10,则3a﹣b=.解:∵9b=32b=10,∴3b=,∵3a=5,∴3a﹣b=3a÷3b=5=,故答案为:40.若a x÷a3×a5=a6,则x=4.解:∵a x÷a3×a5=a6,∴x﹣3+5=6x=4.故答案为4.41.若(x+3)x﹣3=1,则x=3或﹣2.解:由题意得:①x﹣3=0,解得:x=3,②x+3=1,解得:x=﹣2,③x+3=﹣1,且x﹣3为偶数,解得:无解,故答案为:3或﹣2.42.计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=﹣.解:原式=﹣﹣1=﹣.故答案为:.43.若代数式(m+2)0+(m﹣2)﹣2有意义,则m的取值范围是m≠±2.解:∵(m+2)0+(m﹣2)﹣2有意义,∴m+2≠0且m﹣2≠0,解得:m≠±2.故答案为:m≠±2.44.已知a5=6,a2=2,则a3=3.解:∵a5=6,a2=2,∴a3=6÷2=3.故答案为:3.45.计算:(π﹣2019)0+(﹣)3=.解:(π﹣2019)0+(﹣)3=1﹣=.故答案为:.46.若(a﹣3)0=1,则a的取值范围是a≠3.解:∵(a﹣3)0=1,∴a﹣3≠0,故a≠3.故答案为:a≠3.47.已知10m=20,10n=,则10m﹣n=100;9m÷32n=81解:∵10m=20,10n=,∴10m﹣n=10m÷10n==100;∴m﹣n=2,9m÷32n=32m÷32n=32m﹣2n=32(m﹣n)=34=81.故答案为:100;81.48.若x m=6,x n=9,则x2m﹣n=4.解:∵x m=6,∴x2m=62=36,∴x2m﹣n=36÷9=4.故答案为:4.49.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=.解:∵2m=12,2n=48,∴2m﹣n=12÷48==2﹣2,∴m﹣n=﹣2,∴(﹣3)m﹣n=(﹣3)﹣2=.故答案为:.三.解答题(共1小题)50.计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2。

同底数幂的除法同步练习(解析版)

同底数幂的除法同步练习(解析版)

同底数幂的除法同步练习一、单选题(共4题;共8分)1、下列运算中,正确的是()A、x3+x3=2x6B、x2•x3=x6C、x18÷x3=x6D、(x2)3=x62、下列运算正确的是()A、a2•a3=a6B、(﹣a2)3=﹣a6C、(ab)2=ab2D、a6÷a3=a23、下列运算中,正确的是()A、3a﹣2a=aB、(a2)3=a5C、a2•a3=a6D、a10÷a5=a24、计算(﹣x)2•x3所得的结果是()A、x5B、﹣x5C、x6D、﹣x6二、填空题(共5题;共7分)5、计算:3a3•a2﹣2a7÷a2= ________.6、若5m=3,5n=2,则52m+n=________.7、若3n=2,3m=5,则32m+3n﹣1=________.8、已知8×2x=212,那么x=________.9、22•(﹣2)3=________;()0×3﹣2=________;(﹣0.25)2013×42014=________.三、计算题(共10题;共60分)10、[(x﹣y)2]3•(x﹣y)3.11、(x﹣2y)3•(x﹣2y)5÷[(2y﹣x)2]3.12、已知10a=5,10b=6,求102a+3b的值.13、已知x3n=2,求x6n+x4n•x5n的值.14、已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)m的值.15、已知:x3n﹣2÷x n+1=x3﹣n•x n+2,求n的值.16、已知x4n+3÷x n+1=x n+3•x n+5,求n的值.17、已知a m•a n=a7,a m÷a n=a5,求mn的值.18、计算。

(1)若2•8n•16n=222,求n的值.(2)已知3m=6,9n=2,求32m﹣4n的值.19、计算:(1)x3•x5•x+(x3)12+4(x6)2(2)﹣2(a3)4+a4•(a4)2答案解析部分一、单选题1、【答案】 D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、x3+x3=2x3,故此选项错误; B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则和同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.2、【答案】B【考点】同底数幂的乘法,同底数幂的除法【解析】【解答】解:A、应为a2•a3=a5,故本选项错误;B、(﹣a2)3=﹣a6,正确;C、应为(ab)2=a2b2,故本选项错误;D、应为a6÷a3=a3,故本选项错误.故选B.【分析】根据同底数相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.3、【答案】 A【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、合并同类项系数相加字母及指数不变,故A正确; B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:A.【分析】根据合并同类项系数相加字母及指数不变,幂的乘方底数不变指数相乘,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.4、【答案】 A【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:(﹣x)2x3=x2•x3=x5.故选A.【分析】积的乘方,等于把每个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加,计算后直接选取答案.二、填空题5、【答案】 a5【考点】同底数幂的乘法,同底数幂的除法【解析】【解答】3a3•a2﹣2a7÷a2=3a5-2a5=a5.故答案为a5.【分析】根据同底数幂的乘法和同底数幂的除法的法则计算.6、【答案】18【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.7、【答案】【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:∵3n=2,3m=5,∴32m+3n﹣1=(3m)2×(3n)3÷3=25×8÷3= .故答案为:【分析】所求式子利用同底数幂的乘除法则变形,再利用幂的乘方法则变形,将已知等式代入计算即可求出值.8、【答案】9【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:8•2x=23•2x=2x+3=212,∴x+3=12,解得:x=9.故答案为:9.【分析】由8是2的3次方,根据同底数幂的乘法法则,得到结果.9、【答案】﹣32;;﹣4【考点】同底数幂的乘法,幂的乘方与积的乘方,零指数幂,负整数指数幂【解析】【解答】解:22•(﹣2)3,=﹣22•23,=﹣25,=﹣32;()0×3﹣2,=1× ,= ;(﹣0.25)2013×42014,=(﹣0.25)2013×4×42013,=(﹣0.25×4)2013×4,=﹣1×4,=﹣4.故答案为:﹣32,,﹣4.【分析】根据同底数幂相乘,底数不变指数相加;根据任何非零数的零指数次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解;把42014写成4×42013,然后根据积的乘方的性质进行计算即可得解.三、计算题10、【答案】解:原式=(x﹣y)6•(x﹣y)3=(x﹣y)9.【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【分析】先根据幂的乘方法则得到原式=(x﹣y)6•(x﹣y)3,然后根据同底数幂的乘法法则进行计算即可.11、【答案】解:(x﹣2y)3•(x﹣2y)5÷[(2y﹣x)2]3=(x﹣2y)3•(x﹣2y)5÷[(x﹣2y)2]3=(x﹣2y)8÷(x﹣2y)6=x2﹣4xy+4y2【考点】同底数幂的乘法,同底数幂的除法【解析】【分析】根据同底数的除法的运算法则求解即可求得答案.12、【答案】解:∵10a=5,10b=6,∴102a+3b=102a×103b=(10a)2×(10b)3=52×63=25×216=5400【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【分析】先根据同底数幂变形,再根据幂的乘方进行变形,最后代入求出即可.13、【答案】解:∵x3n=2,∴x6n+x4n•x5n=(x3n)2+x9n=(x3n)2+(x3n)3=4+8=12.【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【分析】首先根据同底数幂的乘法运算性质,可知x4n•x5n=x9n,然后运用幂的乘方的运算性质,将x6n与x9n都表示成x3n的形式,从而得出结果.14、【答案】解:3×9m×27m=321,31+2m+3m=321,m=4,(﹣m2)3÷(m3•m2)m=﹣m6÷m5m=﹣46÷45×4=﹣46﹣20=﹣4﹣14=﹣.【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【分析】根据同底数幂的乘法,可得m的值,根据积的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.15、【答案】解:x3n﹣2÷x n+1=x3n﹣2﹣n﹣1=x2n﹣3, x3﹣n•x n+2=x3﹣n+n+2=x5,∵x2n﹣3=x5,∴2n﹣3=5,解得:n=4.【考点】同底数幂的乘法,同底数幂的除法【解析】【分析】分别按照同底数幂的除法法则和同底数幂的乘法法则求出等式两边的数,根据两式相等,列出关于n的方程,求出n的值.16、【答案】解:∵x4n+3÷x n+1=x(4n+3)﹣(n+1)=x3n+2, x n+3•x n+5=x(n+3)+(n+5)=x2n+8,∴3n+2=2n+8,解得:n=6.【考点】同底数幂的乘法,同底数幂的除法【解析】【分析】由x4n+3÷x n+1=x n+3•x n+5,根据同底数的除法与同底数幂的乘法的性质,可得方程:3n+2=2n+8,解此方程即可求得答案.17、【答案】解:由题意得,a m+n=a7,a m﹣n=a5,则,解得:,故mn=6【考点】同底数幂的乘法,同底数幂的除法【解析】【分析】根据同底数幂的乘除法则,可得m+n及m﹣n的值,联立求解可得出m、n的值,代入可求出mn的值.18、【答案】(1)解:2•8n•16n, =2×23n×24n,=27n+1,∵2•8n•16n=222,∴7n+1=22,解得n=3(2)解:∵3m=6,9n=2,∴32m=(3m)2=36,34n=(32n)2=(9n)2=4,则32m﹣4n= = =9【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【分析】(1)把等号左边的数都能整理成以2为底数的幂相乘,再根据同底数幂相乘,底数不变指数相加计算,然后根据指数相等列式求解即可;(2)先根据幂的乘方的法则分别求出32m和34n的值,然后根据同底数幂的除法法则求解19、【答案】(1)解:)x3•x5•x+(x3)12+4(x6)2,=x3+5+1+x3×12+4x6×2,=x9+x36+4x12(2)解:﹣2(a3)4+a4•(a4)2,=﹣2a3×4+a4•a8,=﹣2a12+a12,=﹣a12【考点】同底数幂的乘法,幂的乘方与积的乘方【解析】【分析】(1)根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘计算;(2)根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加计算,然后再根据合并同类项的法则计算.。

同底数幂的除法习题带答案

同底数幂的除法习题带答案

同底数幂的除法习题带答案同底数幂的除法习题带答案在数学学习中,我们经常会遇到同底数幂的除法运算。

这种运算需要我们了解指数的性质,并运用相应的规则进行计算。

下面,我将为大家提供一些同底数幂的除法习题,并附上详细的答案解析,希望对大家的学习有所帮助。

1. 计算:(2^5) ÷ (2^3) = ?解析:根据指数的性质,同底数幂的除法可以简化为底数不变,指数相减的形式。

所以,(2^5) ÷ (2^3) = 2^(5-3) = 2^2 = 4。

答案:42. 计算:(5^4) ÷ (5^2) = ?解析:同样地,根据指数的性质,(5^4) ÷ (5^2) = 5^(4-2) = 5^2 = 25。

答案:253. 计算:(10^6) ÷ (10^3) = ?解析:利用指数的性质,(10^6) ÷ (10^3) = 10^(6-3) = 10^3 = 1000。

答案:10004. 计算:(8^3) ÷ (8^2) = ?解析:根据指数的性质,(8^3) ÷ (8^2) = 8^(3-2) = 8^1 = 8。

答案:85. 计算:(3^7) ÷ (3^4) = ?解析:同样地,(3^7) ÷ (3^4) = 3^(7-4) = 3^3 = 27。

答案:27通过以上的习题,我们可以看到,同底数幂的除法运算可以通过简化指数的方式进行计算。

这种运算规则在解决实际问题时非常有用。

除了简单的习题,我们也可以通过复杂一些的例子来加深对同底数幂的除法运算的理解。

例题1:计算:(2^8) ÷ (2^5) = ?解析:根据指数的性质,(2^8) ÷ (2^5) = 2^(8-5) = 2^3 = 8。

答案:8例题2:计算:(6^5) ÷ (6^3) = ?解析:同样地,(6^5) ÷ (6^3) = 6^(5-3) = 6^2 = 36。

同底数幂的除法同步练习题3套(含答案)

同底数幂的除法同步练习题3套(含答案)

同底数幂的除法同步练习题3套(含答案)同底数幂的除法(一)同步练习【知识提要】 1.理解并掌握同底数幂的除法法则. 2.会熟练地进行同底数幂的除法运算.【学法指导】 1.运算时,如果底数相同,则用法则运算;如果底数不同,•但可能化为同底数,则先转化,后运算. 2.混合运算时,要按运算顺序进行.范例积累【例1】(1)a9÷a3;(2)212÷27;(3)(-x)4÷(-x);(4).【解】(1)a9÷a3=99-3=66;(2)212÷27=212-7=25=32;(3)(-x)4÷(-x)=(-x)3=-x3;(4)=(-3)11-8=(-3)3=-27.【注意】指数相等的同底数的幂相除,商等于1.【例2】计算:(1)a5÷a4•a2;(2)(-x)7÷x2;(3)(ab)5÷(ab)2;(4)(a+b)6÷(a+b)4.【解】(1)a5÷a4•a2=a5-4•a2=a3;(2)(-x)7÷x2=-x7÷x2=-x7-2=-x5;(3)(ab)5÷(ab)2=(ab)5-2=(ab)3=a3b3;(4)(a+b)6÷(a+b)4=(a+b)6-4=(a+b)2=a2+2ab+b2.【注意】同底数幂乘除运算是同级运算,按从左到右的顺序进行运算.基础训练 1.判断题(对的打“∨”,错的打“×”)(1)a9÷a3=a3;()(2)(-b)4÷(-b)2=-b2;()(3)s11÷s11=0 ;()(4)(-m)6÷(-m)3=-m3;()(5)x8÷x4÷x2=x2;()(6)n8÷(n4×n2)=n2.() 2.填空:(1)1010÷______=109;(2)a8÷a4=_____;(3)(-b)9÷(-b)7=________;(4)x7÷_______=1;(5)(y5)4÷y10=_______ ;(6)(-xy)10÷(-xy)5=_________. 3.计算:(s-t)7÷(s-t)6•(s-t). 4.下列计算错误的有()①a8÷a2=a4;②(-m)4÷(-m) 2=-m2;③x2n÷xn=xn;④-x=2÷(-x)2=-1. A.1个 B.2个 C.3个 D.4个 5.下列计算结果正确的是() A.(mn)6÷(mn)3=mn3 B.(x+y)6÷(x+y)2•(x+y)3=x+y C.x10÷x10=0 D.(m-2n)3÷(-m+2n)3=-1 6.下面计算正确的是() A.712÷712=0 B.108÷108=0 C.b10÷b5=b5 D.m6-m6=1 7.100m÷100 0n的计算结果是() A. B.100m-2n C.100m-n D.102m-3n提高训练 8.计算:[(xn+1)4•x2]÷[(xn+2)3÷(x2)n].9.天文学上常用地球和太阳的平均距离1.4960×108千米作为一个天文单位,•明明总是抱怨家离学校太远,他家距学校2992米,你能把这个距离折合成天文单位吗?10.解方程:(1)x6•x=38;(2) x=()5.应用拓展 11.若a2m=25,则a-m等于() A. B.-5 C.或- D. 12.现定义运算a*b=2ab-a-b,试计算6*(3*2)的值.答案: 1.(1)× (2)× (3)× (4)∨ (5)∨ (6)∨ 2.(1)10 (2)a4 (3)b2 (4)x7 (5)y10 (6)-x5y5 3.s2-2st+t2 4.B 5.D 6.C 7.D 8.x3n 9.2×10-5•个天文单位 10.(1)x=9 (2)x=()4= 11.C 12.16。

同底数幂的除法同步练习及答案

同底数幂的除法同步练习及答案

同底数幂的除法同步练习及答案Document number:BGCG-0857-BTDO-0089-20221.3同底数幂的除法1.下列计算正确的是 ( )A.a m·a2=a2m B.(a3)2=a3C.x3·x2·x= x5 D.a3n-5÷a5-n= a4n-10 2.若(x -2) 0=1,则 ( )A.x≠0 B.x≥2 C.x≤2 D.x≠23.在243-⎪⎭⎫⎝⎛,256⎪⎭⎫⎝⎛,076⎪⎭⎫⎝⎛这三个数中,最大的是 ( )A.243-⎪⎭⎫⎝⎛ B.256⎪⎭⎫⎝⎛ C.076⎪⎭⎫⎝⎛ D.不能确定4.下列各式中不正确的是 ( )A.2913⎪⎭⎫⎝⎛⨯-=1 B.2212⎪⎭⎫⎝⎛-a=1C.(|a|+1)0=1 D.(-1- a2) 0=1 5.(1)x( )÷( )5=x 3;(2)( ) 5÷y2=y( );(3) x2m÷x( )=( )m;(4) x m÷x( )=x m-1;(5)32⎪⎭⎫⎝⎛-÷(-5)( )=1;6.求下列各式中m的取值范围.(1)( m+3)0=1;(2) ( m-4)0=1;(3) ( m+5)-3有意义.7.计算.(1)a24÷[(a2)3)4;(2)( a3·a4)2÷(a3)2÷a;(3)- x12÷(-x4)3;(4)( x6÷x4·x2)2;(5)( x-y)7÷(y-x)2÷( x-y)3;(6)231⎪⎭⎫⎝⎛-+31⎪⎭⎫⎝⎛+331-⎪⎭⎫⎝⎛;(7)(-2)0-421-⎪⎭⎫⎝⎛-+1101-⎪⎭⎫⎝⎛+231-⎪⎭⎫⎝⎛·021⎪⎭⎫⎝⎛;(8) a4m+1÷(-a)2m+1 (m为正整数).8.用科学记数法表示纯小数,是把纯小数表示为a×10-p的形式,其中p 是正整数,a是大于0小于10的整数,请把下列各数用科学记数法表示出来.(1)0.00000015;(2)-0.00027;(3)(5.2×1.8) ×0.001;(4)1÷(2×105) 2.9.已知2×5m=5×2m,求m的值.参考答案1.D[提示:A,C两项根据同底数幂相乘性质计算,均不正确;B项根据幂的乘方性质计算,结果错误;D项根据同底数幂除法性质计算,正确.故选D.]2.D[提示:根据零指数幂的性质求解.]3.A[提示:分别计算求解.]4.B[提示:计算哪个选项中的零指数幂的底数可能为0,即为答案.]5.(1)8 x (2) y 3 (3)m x (4)1 (5)06.(1)m ≠-3. (2) m ≠4. (3) m ≠-5.7.(1)1. (2) a 7. (3)1. (4) x 8. (5)(x-y )2. (6)2891. (7)4. (8) –a 2m . 8.(1)1.5×10-7. (2)-2.7×10-4. (3)9.36×10-3. (4) 2.5×10-11.9.解:由2×5m =5×2m 得5m-1=2m -1,即5m-1÷2m -12=1,125-⎪⎭⎫ ⎝⎛m =1,因为底数25不等于0和l ,所以125-⎪⎭⎫ ⎝⎛m =025⎪⎭⎫ ⎝⎛,所以m -1=0,解得m =1.。

同底数幂的除法试题精选附答案

同底数幂的除法试题精选附答案

同底数幂的除法试题精选附答案1.已知 $a=6$,$a=3$,则 $a^{2m-3n}$ 的值为()。

A。

9.B。

$6^{2m-3n}$。

C。

2.2.下列计算:①$x÷x=x$,②$(x^m)^n=x^{mn}$,③$(3xy)^2=9x^2y^2$。

其中正确的计算有()。

A。

个。

B。

1个。

C。

2个。

3.已知$x^m=2$,$x^n=3$,则$x^{2m-3n}$ 的值为()。

A。

$-5$。

B。

$\dfrac{1}{6}$。

C。

$-\dfrac{1}{5}$。

4.若 $3x=15$,$3y=5$,则 $3x-y$ 等于()。

A。

5.B。

3.C。

15.5.($-2$)$^{2014}÷$($-2$)$^{2013}$ 等于()。

A。

$-2$。

B。

2.C。

$-2^{2012}$。

6.下面是某同学在一次测验中的计算摘录,其中正确的是()。

A。

$b^3·b^3=b^6$。

B。

$(a^5)^2=a^{10}$。

C。

$(ab^2)^3=a^3b^6$。

7.若 $a^m=2$,$a^n=3$,则 $a^{2m-n}$ 的值是()。

A。

1.B。

12.C。

18.8.$x^{15}÷x^3$ 等于()。

A。

$x^5$。

B。

$x^{45}$。

C。

$x^{12}$。

9.已知 $\dfrac{2amb^4}{4abn}=\dfrac{1}{2}$,则 $m$,$n$ 的值分别为()。

A。

$m=1$,$n=4$。

B。

$m=2$,$n=3$。

C。

$m=3$,$n=4$。

10.若 $m$,$n$ 都是正整数,$a^{mn}÷a^n$ 的结果是()。

A。

$a^m$。

B。

$a^{mn-n}$。

C。

$a^n$。

11.若 $x^{-2y+1}=0$,则 $2x÷4y×8$ 等于()。

A。

1.B。

4.C。

8.12.如果 $a^m=3$,$a^n=6$,则 $a^{n-m}$ 等于()。

同底数幂的除法试题精选(三)附答案

同底数幂的除法试题精选(三)附答案

同底数幂的除法试题精选(三)一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=_________.2.(1)a2•a3=_________;(2)x6÷(﹣x)3=_________.3.若2m=5,2n=6,则2m﹣2n=_________.若3m+2n=6,则8m×4n=_________.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=_________.5.①若m x=4,m y=3,则m x+y=_________;②若,则9x﹣y=_________.6.a5•a÷a2=_________;(x﹣y)(y﹣x)2(x﹣y)3=_________;(a2)m﹣a m=_________.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式_________.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是_________.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=_________.11.如果2x=5,2y=10,则2x+y﹣1=_________.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n=_________.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_________.14.(2007•仙桃)计算:a2•a3÷a4的结果是_________.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的_________倍.16.(2005•河南)计算:(x2)3÷x5=_________.17.(2001•济南)_________÷a=a3.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.19.(2a+b)4÷(2a+b)2.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.21.已知5x=36,5y=2,求5x﹣2y的值.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.23.利用幂的性质进行计算:.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.同底数幂的除法试题精选(三)附答案参考答案与试题解析一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=1.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:(﹣b2)•b3÷(﹣b)5,=﹣b5÷(﹣b5),=1.点评:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,要注意符号的运算.2.(1)a2•a3=a5;(2)x6÷(﹣x)3=﹣x3.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)是考查同底数幂的乘法,底数不变指数相加.(2)是考查同底数幂相除,底数不变指数相减.解答:解:(1)a2•a3=a5(2)x6÷(﹣x)3=﹣x3故答案为:a5,﹣x3点评:这道题主要考查了同底数幂的乘法和除法,熟记计算法则是解题的关键.3.若2m=5,2n=6,则2m﹣2n=.若3m+2n=6,则8m×4n=64.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把2m﹣2n化为2m÷(2n)2计算,把8m×4n化为23m+2n计算即可.解答:解:∵2m=5,2n=6,∴2m﹣2n=2m÷(2n)2=5÷36=,∵3m+2n=6,∴8m×4n=(2)3m•22n=23m+2n=26=64.故答案为:,64.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是正确运用法则进行变式.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=0.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方、同底数幂的除法,可得答案.解答:解:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=﹣a2×3+a3×2﹣a2+4+a9﹣3=﹣a6+a6﹣a6+a6=0,故答案为:0.点评:本题考查了同底数幂的除法,幂的乘方底数不变指数相乘,同底数幂的乘法,底数不变指数相加,同底数幂的除法,底数不变指数相减.5.①若m x=4,m y=3,则m x+y=12;②若,则9x﹣y=.考点:同底数幂的除法.分析:①把m x+y化为m x•m y求解,②把9x﹣y化为(3x)2÷(3y)2求解.解答:解:①∵m x=4,m y=3,∴m x+y=m x•m y=4×3=12,②∵,∴9x﹣y=(3x)2÷(3y)2=÷=,故答案为:12,.点评:本题主要考查了同底数幂的除法,解题的关键是通过转化,得到含有已知的式子求解.6.a5•a÷a2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)6;(a2)m﹣a m=a m.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减,同底数幂的乘法,底数不变指数相减,可得答案.解答:解:a5•a÷a2=a5+1﹣2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)1+2+3=(x﹣y)6;(a2)m﹣a m=a2m﹣m=a m,故答案为:a4,(x﹣y)6,a.点评:本题考查了同底数幂的除法,根据乘方化成同底数的幂乘法是解题关键.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式a4•a2=a6(答案不唯一).考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.专题:开放型.分析:根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.解答:解:a4•a2=a6.故答案是a4•a2=a6(答案不唯一).点评:本题考查了同底数幂的乘方,解题的关键是注意掌握同底数幂的运算法则.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的8.8×105倍.(结果保留两个有效数字)考点:同底数幂的除法.专题:应用题.分析:首先根据题意可得:光速是声速的(3×108)÷(3.4×102)倍,利用同底数幂的除法法则求解即可求得答案.解答:解:∵光在空气中的传播速度约为3×108米/秒,声音在空气中的传播速度约为3.4×102米/秒,∴(3×108)÷(3.4×102)=(3÷3.4)×(108÷102)≈0.883×106≈8.8×105,∴光速是声速的8.8×105倍.故答案为:8.8×105.点评:本题考查同底数幂的除法.注意将实际问题转化为数学问题是解此题的关键.9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是18.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方把原式化为含有4x,3y的式子求解.解答:解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是运用法则把6x+y•23x﹣y÷3x化为6x•6y•23x÷2y÷3x.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=x3.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先根据有理数乘方的意义计算符号,再利用同底数幂相除,底数不变指数相减进行计算即可得解.解答:解:(﹣x)10÷(﹣x)5÷(﹣x)÷x,=x10÷x5÷x÷x,=x10﹣5﹣1﹣1,=x3.故答案为:x3.点评:本题主要考查了同底数幂相除,底数不变指数相减的性质,计算时要注意符号的处理,这也是本题最容易出错的地方.11.如果2x=5,2y=10,则2x+y﹣1=25.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂的除法底数不变指数相减,可得计算结果.解答:解:2x+y﹣1=2x×2y÷2=5×10÷2=25.故答案为:25.点评:本题考查了同底数幂的除法,底数不变指数相减.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n= 4.5.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,同底数幂的除法,同底数幂的乘法的逆运算整理成已知条件的形式,然后代入数据求解即可.解答:解:∵a m=9,a n=8,a k=4,∴a m﹣2k+n=a m÷a2k•a n,=a m÷(a k)2•a n,=9÷16×8,=4.5.点评:本题主要考查幂的乘方,同底数幂的乘法,同底数幂的除法性质的逆运用,熟练掌握运算性质并灵活运用是解题的关键.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.考点:同底数幂的除法.专题:应用题.分析:首先根据里氏震级的定义,得出9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,然后列式表示9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是109÷107,最后根据同底数幂的除法法则计算即可.解答:解:∵地震所释放的相对能量E与地震级数n的关系为:E=10n,∴9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,∴109÷107=102=100.即9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.故答案为100.点评:本题考查了同底数幂的除法在实际生活中的应用.理解里氏震级的定义,正确列式是解题的关键.14.(2007•仙桃)计算:a2•a3÷a4的结果是a.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:a2•a3÷a4=a2+3﹣4=a,故答案为:a.点评:本题考查了同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的106倍.考点:同底数幂的除法.专题:应用题.分析:用摩托车的声音强度除以说话声音强度,再利用同底数幂相除,底数不变指数相减计算.解答:解:1011÷105=1011﹣5=106.答:摩托车的声音强度是说话声音强度的106倍.点评:本题主要考查同底数幂的除法的运算性质,熟练掌握运算性质是解题的关键.16.(2005•河南)计算:(x2)3÷x5=x.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减计算即可.解答:解:(x2)3÷x5=x6÷x5=x.点评:本题考查幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质是解题的关键.17.(2001•济南)a4÷a=a3.考点:同底数幂的除法.分析:根据同底数幂的除法法则计算即可.解答:解:a4÷a=a3,故答案为a4.点评:本题考查了同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.考点:同底数幂的除法;同底数幂的乘法.分析:运用同底数幂的除法及同底数幂的乘法法则求解即可.解答:解:(x﹣y)12×(y﹣x)2÷(y﹣x)3,=(x﹣y)14÷(y﹣x)3.=﹣(x﹣y)11.点评:本题主要考查了同底数幂的除法及同底数幂的乘法,解题的关键是注意运算符号.19.(2a+b)4÷(2a+b)2.考点:同底数幂的除法.分析:运用同底数幂的除法法则:底数不变,指数相减运算,再运用完全平方公式展开.解答:解:(2a+b)4÷(2a+b)2=(2a+b)2=4a2+4ab+b2点评:本题主要考查了同底数幂的除法和完全平方公式,解题的关键是熟记法则.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把原式化为关于a x,a y式子,再代入求解即可.解答:解:(1)∵a x=2,a y=3,∴a2x+y=(a x)2a y=4×3=12,(2)∵a x=2,a y=3,∴a3x﹣2y=(a x)3÷(a y)2=8÷9=.点评:本题主要考查了同底数幂的除法,同底数幂的乘法和幂的乘方与积的乘方,解题的关键是把原式化为关于a x,a y式子求解.21.已知5x=36,5y=2,求5x﹣2y的值.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法底数不变指数相减,可得答案.解答:解:(5y)2=52y=4,5x﹣2y=5x÷52y=36÷4=9.点评:本题考查了同底数幂的除法,底数不变指数相减.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的乘法与除法以及幂的乘方运算即可.解答:解:(1)∵x m=3,x n=2,∴x m+n=x m•x n=3×2=6,(2)∵x m=3,x n=2,∴x2m﹣3n=(x m)2÷(x n)3=9÷8=,点评:此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题的关键是熟记法则.23.利用幂的性质进行计算:.考点:实数的运算;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.分析:把式子化成指数幂的形式,通过同底数指数相乘,底数不变,指数相加即得.解答:解:原式=×=×=.点评:本题考查了实数运算,把根下化成指数幂,从而很容易解得.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可化已知成要求的形式,根据已知,可得答案.解答:解:4m=22m=y﹣1,9n=32n=x,原式等价于;2×22m÷(32n÷3)=12,2(y﹣1)÷(x÷3)=122y﹣2=12(x÷3)2y﹣2=4xy=2x+1.点评:本题考查了同底数幂的除法,把已知化成要求的形式是解题关键.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)根据同底数幂的乘法、幂的乘方,可算出乘方,根据合并同类项,可得答案;(2)根据先算积的乘方,可得同底数幂的除法,再根据同底数幂的除法,可得答案.解答:解:(1)原式=(﹣x)1+5+x2×3=x6+x6=2x6;(2)原式=﹣a2×3÷a3×2=﹣a6÷a6=﹣1.点评:本题考查了同底数幂的除法,(1)先算同底数幂的乘法幂的乘方,再合并同类项,(2)先算积的乘方,再算算幂的乘方,最后算同底数幂的除法,底数不变指数相减.。

七下数学每日一练:同底数幂的除法练习题及答案_2020年计算题版

七下数学每日一练:同底数幂的除法练习题及答案_2020年计算题版

1.答案:
2.答案:
3.答案:
4.答案:
5.答案: 6.答案: 7.答案: 8.答案: 9.答案:
10.答案:
(4)
考点: 含乘方的有理数混合运算;合并同类项法则及应用;同底数幂的乘法;积的乘方;同底数幂的除法;
答案
~~第3题~~
(2019泰州.七下期中) (1) 已知
,求 的值.
(2) 先化简再求值:
,其中 ,
.
考点: 同底数幂的乘法;幂的乘方;同底数幂的除法;整式的混合运算;
答案
~~第4题~~
(2019茂名.七下期中) 已知:xm=4,xn=8.
考点: 同底数幂的乘法;同底数幂的除法;
答案
~~第7题~~
(2018.七下期中) 利用幂的运算性质计算:
考点: 同底数幂的乘法;同底数幂的除法;
答案
~~第8题~~
(2018苏州.七下期中) 若33×9m+4÷272m—1的值为729,求m的值.
考点: 同底数幂的乘法;幂的乘方;同底数幂的除法;
答案
~~第9题~~
七下数学每日一练:同底数幂的除法练习题及答案_2020年计算题版
2020年 七 下 数 学 : 数 与 式 _整 式 _同 底 数 幂 的 除 法 练 习 题
~~第1题~~
(2019阜阳.七下期中) 已知

,求
的值.
考点: 同底数幂的乘法;同底数幂的除法;平方差公式及应用;
答案
~~第2题~~ (2019东台.七下期中) 计算 (1) (2) (3)
(1) 求x2m的值;
(2) 求xm+n的值;
(3) 求x3m﹣2n的值.
考点: 同底数幂的乘法;幂的乘方;同底数幂若

同底数幂的除法-练习题(含答案)

同底数幂的除法-练习题(含答案)

同底数幂的除法练习题[课内四基达标]1.选择题(1)下列算式中正确的是( ).A.(0.001)0=0B.(0.1)-2=0.01C.(10-2×5)0=1D.10-4=0.0001(2)下列计算正确的是( ).A.a3m-5÷a5-m=a4m+10B.x4÷x3÷x2=x3C.(-y)5÷(-y)3=-y2D.m a+2b÷m b-a=m2a+b(3)若x2m+n y n÷x2y2=x5y,则m、n的值分别为( ).A.m=3,n=2B.m=2,n=2C.m=2,n=3D.m=3,n=12.填空题(1)(-a2)3÷a3=.(2)108÷104=.(3)y10÷(y8÷)=y4.(4)(5x-2y)4÷(2y-5x)2=.1,则x=.(5)若32x-1=1,则x=;若3x=27(6)用科学记数法表示0.0001234×108=.3.用整数或小数表示下列各数(1)9.932×103(2)7.21×10-5(3)-4.21×107(4)-3.021×10-34.用科学记数法表示下列各数(1)732400 (2)-6643919000(3)0.00000006005 (4)-0.000002175.计算(1)(x 3)2÷x 2÷x +x 3÷(-x )2·(-x )2(2)(-21)8÷[(-21)3×(-21)2](3)(x 2a +3b +4c )m ÷(x a )2m ÷(x 3)bm ÷(x m )4c(4)(x +y -z )5÷(z -x -y )3(5)[12(x +y )3-(-x -y )3+3(-x -y )3]÷(-y -x )[能力素质提高]1.已知252m ÷52m -1=125,求m 的值.2.已知[(2x 2+3y 2)2]3÷(2x 2+3y 2)4=0,求x 、y 的值.3.已知x a =24,x b =16,求x a -b 的值.[渗透拓展创新]填空:∵a m ÷a m =m ma a =1(a ≠0),又∵a m ÷a m =a m -m =a 0(a ≠0), ∴a 0=(a 0).[中考真题演练]已知a =6915681467136612651170156914681367126611⋅+⋅+⋅+⋅+⋅⋅+⋅+⋅+⋅+⋅·100,问a 的整数部分是多少?参考答案[课内四基达标]1.选择题(1)D(2)D(3)C2.填空题(1)-a3(2)104=10000(3)y2(4)25x2-20xy+4y21,-3(5)2(6)1.234×1043.用整数或小数表示下列各数(1)9932(2)0.0000721(3)-42100000(4)-0.0030214.用科学记数法表示下列各数(1)7.324×105(2)-6.643919×109(3)6.005×10-8(4)-2.17×10-65.计算(1)2x3.1(2)-8(3)1(4)-x2-y2-z2-2xy+2xz+2yz(5)-10x2-20xy-10y2[能力素质提高]1.m=12.x=0,y=033.2[渗透拓展创新]1,≠[中考真题演练]100,提示:设68=m。

同底数幂的除法专项练习

同底数幂的除法专项练习

. .同底数幂的除法专项练习30题(有答案)1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)511.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7= _________ ;(2)(﹣a)6÷(﹣a)2= _________ ;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)= _________ .16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________ 19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n20.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4(2)(﹣m)8÷(﹣m)3(3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法50题参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=27.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.。

8.3同底数幂的除法(讲+练)(原卷版)

8.3同底数幂的除法(讲+练)(原卷版)

8.3同底数幂的除法同底数幂的除法a m÷a n=a m−n(a≠0, m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减零指数幂符号语言:a0=1(a≠0)文字语言:任何不等于0的数的0次幂等于1强调:零的零次幂无意义幂的运算中值恒为1的三种情况①任何不等于0的数的0次幂等于1②1的任何次幂等于1③-1的偶数次幂等于1负整数指数幂符号语言:a−n=1(a≠0,n是正整数).a n文字语言:任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数.题型1:同底数幂的除法1.已知a m =6,a n =2,则a m ﹣n = . 题型2:零指数幂2. 计算:(12)0+|﹣1|= . 题型3:负整数指数幂3. 计算:3﹣1﹣π0= . 题型4:含负整数指数幂的科学记数法4. 0.000000358用科学记数法可表示为 .题型5:幂的运算的综合运用5.已知10﹣2α=3,10−β=−15,求106α+2β的值.一.选择题(共5小题)1.下列运算错误的是()A.(2ab)4=8a4b B.a8÷a2=a6C.(a2)3=a6D.a2•a3=a52.大型纪录片《厉害了,我的国》上映25天,累计票房约为4.027×108成为中国纪录电影票房冠军,这个用科学记数法表示的数据的原数为()A.0.000000004027B.0.00000004027C.402700000D.40270000003.已知4x=18,8y=3,则52x﹣6y的值为()A.5B.10C.25D.504.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3B.6C.7D.85.纳米(nm)是长度的单位,1nm=10﹣3μm,1μm=10﹣3mm,如果将在2022年底攻克20nm工艺芯片技术的难关,其中20nm等于()A.2.0×10﹣5mm B.2.0×10﹣6mm C.2.0×10﹣7mm D.20×10﹣5mm二.填空题(共5小题)6.某种细菌的直径为0.00000014m,请用科学记数法表示该直径是m.7.已知2m=a,16n=b,m、n为正整数,则24m+8n=.8.若(x−2x+2)0有意义,则x的取值范围是.9.若[(a﹣2)2]3=(a﹣2)(a﹣2)a(a≠2),则a的值为.10.如果(a﹣1)a+4=1成立,那么满足它的所有整数a的值是.三.解答题(共6小题)11.计算:(1)−12030+|−6|−(π−3.14)0+(−13)−2;(2)x3y(12x−1y3)−2.12.若a+b+c=3,求22a﹣1•23b+2•2a+3c的值.13.在一次测验中有这样一道题:“|a|n=12,|b|n=3,求(ab)2n的值.”马小虎是这样解的:解:(ab)2n=(a n b n)2=(12×3)2=94.结果卷子发下来,马小虎这道题没得分,而答案确实是94,你知道这是为什么吗?请你作出正确的解答14.如果x n=y,那么我们规定(x,y)=n.例如:因为32=9,所以(3,9)=2.(1)(理解)根据上述规定,填空:(2,8)=,(2,14)=;(2)(说理)记(4,12)=a,(4,5)=b,(4,60)=c.试说明:a+b=c;(3)(应用)若(m,16)+(m,5)=(m,t),求t的值.15.规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(3,1)=,(2,18)=;(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),并作出了如下的证明:∵设(3,4)=x,则3x=4,∴(3x)n=4n,即(3n)x=4n,∴(3n,4n)=x∴(3n,4n)=(3,4).试参照小明的证明过程,解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法,写出(7,45),(7,9),(7,5)之间的等量关系.并给予证明.16.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N,比如指数式24=16可转化为4=log216,对数式2=log525互转化为52=25.我们根据对数的定义可得对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0)解决以下问题:(1)将指数43=64转化为对数式;(2)试说明log a MN=log a M−log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log32+log36﹣log34=。

(完整版)知识点052同底数幂的除法(解答题)

(完整版)知识点052同底数幂的除法(解答题)

一、解答题(共30小题)1.计算:(﹣2 m2)3+m7÷m.考点:同底数幂的除法;幂的乘方与积的乘方。

分析:本题计算时注意顺序:先乘方(幂运算),再乘除,最后算加减.解答:解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m6.点评:本题主要考查同底数幂的除法,底数不变,指数相减;幂的乘方,底数不变,指数相乘.注意计算顺序:先乘方(幂运算),再乘除,最后加减.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方。

专题:计算题。

分析:根据幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;合并同类项,只需把系数相加减,字母和字母的指数不变,计算即可.解答:解:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2,=3x6•x3﹣x9+x2•x9÷x2,=3x9﹣x9+x9,=3x9.点评:本题主要考查幂的乘方,同底数幂的除法,同底数幂的乘法,熟练掌握运算性质是解题的关键.3.已知a m=3,a n=4,求a2m﹣n的值.考点:同底数幂的除法;幂的乘方与积的乘方。

分析:首先应用含a m、a n的代数式表示a2m﹣n,然后将a m、a n的值代入即可求解.解答:解:∵a m=3,a n=4,∴a2m﹣n=a2m÷a n,=(a m)2÷a n,=32÷4,=.故答案为:.点评:本题主要考查同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.4.已知3m=6,3n=﹣3,求32m﹣3n的值.考点:同底数幂的除法;幂的乘方与积的乘方。

分析:根据幂的乘方的性质,同底数幂的除法的性质的逆用代入计算即可.解答:解:∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n,=(3m)2÷(3n)3,=62÷(﹣3)3,=﹣.点评:本题主要考查同底数幂的除法,幂的乘方的性质,熟练掌握性质并灵活运用是解题的关键.5.如果(20﹣2x)2+|y﹣1|=0,请你计算3(x﹣7)12÷(y+1)5的值.38.考点:同底数幂的除法;非负数的性质:绝对值;非负数的性质:偶次方。

初一数学第二学期第1章第3节同底数幂的除法_练习题和答案

初一数学第二学期第1章第3节同底数幂的除法_练习题和答案

同底数幂的除法【知识点考查题】一、容易题1.(2017-2018山东德州联考)下列计算正确的是( )A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

【答案】B【考点】幂的乘方【考查能力】运算求解能力2.(2017-2018河南郑州枫杨外国语月考)下列运算中,正确的个数是( )①2352x x x +=; ②()326x x =; ③03215⨯-=; ④538--+=;⑤11212÷⨯= A. 1个 B. 2个 C. 3个 D. 4个【答案】A【考点】幂的乘方【考查能力】运算求解能力3.(2018湖北随州中考模拟)若5x =125y ,3y =9z ,则x :y :z 等于( )A. 1:2:3B. 3:2:1C. 1:3:6D. 6:2:1【答案】D【考点】幂的乘方【考查能力】运算求解能力4.(2017-2018吉林长春中考模拟)计算(x 2y )3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 3【答案】A【考点】幂的乘方【考查能力】运算求解能力二、中等题5.(2017-2018山东济南历城区期中)若错误!未找到引用源。

,则错误!未找到引用源。

__________【答案】4【考点】幂的乘方【考查能力】运算求解能力6.(2017--2018江苏靖江靖城中学)已知2错误!未找到引用源。

=错误!未找到引用源。

,4错误!未找到引用源。

=y ,用含有字母错误!未找到引用源。

的代数式表示y ,则y =__________.【考查能力】运算求解能力7.(原创题)已知错误!未找到引用源。

,则mn(mn-1)的值为______________________.【答案】20【考点】幂的乘方【考查能力】运算求解能力【技能技巧考查题】一、较难题8.(2017-2018江苏徐州月考)若错误!未找到引用源。

(错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幕的除法
1 •下列计算正确的是
A. a m• a2= a2m
C. x3• x2• x= x5
2.若(x -2) 1,则
A. XM 0
B. x> 2
2 2
c 亠3 6 6
3 .在—
4 5 7
2 2
“ 3 c 6
A. B.—
4 5
4.下列各式中不正确的是
2 1
A. 32=1
B.
9
C. (|a|+1)°= 1 D
5.⑴乂)-(
)5= x 3;
( )
B. (a3)2= a3
D. a3n-5十a5-n= a4n-10
( )
C. x< 2
D. x 工 2
这三个数中,最大的是(
C. 6
D.不能确定
7
()
2a2 1=1
2
(-1- a2) 0= 1
(2)( ) 5宁y2=y()
(3) x2m- x( )= ( )m
⑷ x m十x()= x m-
1;
2 0
⑸2宁(-5)(丄1 ;
6.求下列各式中m的取值范围.
(1)( m+3)0= 1;
(2)(m-4)0= 1;
(3)( m+5)-3有意义.
7.计算.
(1)a2—[(a2)3)4;
(2)( a3•
a4)2*(a3)2*a;
(3)- x12* (-x4)3;
(4)(x6十x4• x2)2;
(5)( x-y)7- (y-x)2- ( x-y)3;
s、 1 2 0
1
3 1 ;
⑹+ _ +
3 3 3
4 1 2 0
(7)(-2)- 1 + 1 + 1 1
. ・2 10 3 2
(8) a4m+1- (-a)2m+1 (m 为正整数).
8.用科学记数法表示纯小数,是把纯小数表示为a x 10-P的形式,其中p是正整数,a是大于0小于10的整数,请把下列各数用科学记数法表示出来.
(1);
(2);
(3)x x 0. 001;
(4)1 - (2x 105) 2.
9.已知2X 5m= 5X 2m,求m的值.
参考答案
1.D提示:A,C两项根据同底数幕相乘性质计算,均不正确;B项根据幕的乘
方性质计算,结果错误;D项根据同底数幕除法性质计算,正确.故选D.]
2.D提示:根据零指数幕的性质求解.]
3.A[提示:分别计算求解.]
4 . B[提示:计算哪个选项中的零指数幕的底数可能为0,即为答案.]
5.(1)8 x (2) y 3 (3)m x (4)1 (5)0
6.(1)m M-3. (2) m工4. (3) m^-5.
1
7.(1)1. (2) a7. (3)1. ⑷ x8. (5)(x-y)2. (6)28- . (7)4. (8) -2m
9
8.(1)x 10-7. ⑵x 10-4. ⑶x 10-3. ⑷ x 10-11.
m 1
9.解:由 2 x 5m= 5 x 2m得5m-1= 2m-1,即5m-1- 2m-12= 1,- =1,因为底数
m 1 0
5不等于0和I,所以5= 5,所以m-仁0,解得m=1.
2 2 2。

相关文档
最新文档