新课标高中数学测试题(必修2)含答案
普通高中数学新课程标准检测题(含答案)
实验中学普通高中数学新课程标准检测题(总分 100 分,考试时间 40 分钟)学校: ________________ 教师姓名: ____________ 考试成绩 :__________一、选择题(每题2分,共40分)1.下面关于高中数学课程结构的说法正确的是()A.高中数学课程可分为必修与选修两类B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要2.在教学中激发学生的学习积极性方法说法正确的是()A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义3.高中数学新课程习题设计需要()A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是()A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神5.《高中数学课程标准》在课程目标中提出的基本能力是()A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括6.要实现数学课程改革的目标,关键是依靠()A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是()A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是()①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋;③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。
高中数学必修二好题解答题精选(附答案)
一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).参考答案与试题解析一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.【解答】解:(1)不存在点M,使得FM⊥平面BDM.证明如下:∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,∴DA,DC,DE所在直线两两互相垂直,以D为坐标原点,分别以DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系.则D(0,0,0),F(2,0,2),B(2,2,0),设M(0,b,c),则,,.设平面DBM的一个法向量为,由,取y=﹣1,则.若与共线,则,即c2﹣2c+2=0,此方程无解.∴不存在点M,使得FM⊥平面BDM;(2)由(1)知,是平面BDM的一个法向量,而ABF的一个法向量为.由|cos<>|==,得,即b=2c.再由与共线,可得b=2c=2.即点M为EC中点,此时,S△DEM=2,AD为三棱锥B﹣DEM的高,∴.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.【解答】解:(1)连接BD1,在△DD1B中,E、F分别为线段DD1、BD的中点,∴EF为中位线,∴EF∥D1B,∵D1B?面ABC1D1,EF?面ABC1D1,∴EF∥平面ABC1D1;(2)由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,∵四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,∴四棱柱ABCD﹣A1B1C1D1的外接球的半径R=2,设AA1=a,则,解得a=,在直四棱柱ABCD﹣A1B1C1D1中,∵BC⊥平面CDD1C1,CD1?平面CD﹣D1C1,∴BC⊥CD1,在RT△CC1D1中,BC=2,CD1=,D1C⊥BC,∴tan∠D1BC=,则∠D1BC=60°,∴异面直线EF与BC所成的角为60°.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【解答】(1)解:∵PA⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵PA⊥平面ABCD,∴PA⊥AB,又∵PA=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又PA⊥BC,BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,又AF?平面PAB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE?平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.【解答】解:(I)连接AB1交A1B于点M,连接MD.∵三棱柱ABC﹣A1B1C1是正三棱柱,∴四边形BAA1B1是矩形,∴M为AB1的中点.∵D是AC的中点,∴MD∥B1C.又MD?平面A1BD,B1C?平面A1BD,∴B1C∥平面A1BD.(II)作CO⊥AB于点O,则CO⊥平面ABB1A1,以O为坐标原点建立空间直角坐标系,假设存在点E,设E(1,a,0).∵AB=2,AA1=,D是AC的中点,∴A(1,0,0),B(﹣1,0,0),C(0,0,),A1(1,,0),B1(﹣1,,0),C1(0,,).∴D(,0,),=(,0,),=(2,,0).设是平面A1BD的法向量为=(x,y,z),∴,,∴,令x=﹣,得=(﹣,2,3).∵E(1,a,0),则=(1,a﹣,﹣),=(﹣1,0,﹣).设平面B1C1E的法向量为=(x,y,z),∴,.∴,令z=﹣,得=(3,,﹣).∵平面B1C1E⊥平面A1BD,∴=0,即﹣3+﹣3=0,解得a=.∴存在点E,使得平面B1C1E⊥平面A1BD,且AE=.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.【解答】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又MF不在平面ABCD内,AN?平面ABCD,∴MF∥平面ABCD.(2)连BD,由直四棱柱ABCD﹣A1B1C1D1,可知A1A⊥平面ABCD,又∵BD?平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形,故NA∥BD,∴NA⊥平面ACC1A1,又∵NA?平面AFC1,∴平面AFC1⊥ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.【解答】(Ⅰ)证明:连接AC,交BD于O,则O为AC的中点,连接OM,∵M为PC的中点,则OM∥PA,∵OM?平面BMD,PA?平面BMD,∴PA∥平面BMD,∵PA?平面GPA,平面GPA∩平面MDB=GH,∴PA∥GH,而PA?平面PAD,GH?平面PAD,∴GH∥面PAD;(Ⅱ)解:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(2,0,0),P(0,0,2),M(0,1,1),设=(0,λ,λ),则,=(0,λ,λ﹣2),设平面PAG的一个法向量为.由,取z=1,得.,由PD与面GAP所成的角的正弦值为,得|cos<>|=,解得:或λ=﹣1(舍).∴G为DM的中点,则H为OD的中点,此时,PA=,GH==,.D到平面PCAH的距离d==.由,,得cos<>===.∴sincos<>=.则GH与PA间的距离为h=.∴四棱锥D﹣PAHG的体积V==.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.【解答】(Ⅰ)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.∵BD2+BC2=DE2+BE2+BC2=DC2,∴∠CBD=90°,∴BD⊥BC.又AC⊥平面CDE,BD?平面BCDE,∴BD⊥AC,故BD⊥平面ABC.∵BD?平面ABD,∴平面ABD⊥平面ABC.(Ⅱ)解:过点D作DH⊥CE.∵AC⊥DH,∴DH⊥平面ACE.∴∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,∴CE=,∴DH===.∵AC==,∴AD==,在Rt△AHD中,sin∠DAH==.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.【解答】(Ⅰ)证明:∵AD⊥平面PCD,∴AD⊥PC,又∵CD⊥PC,AD∩CD=D,∴PC⊥平面ABCD,∵BD?平面ABCD,∴PC⊥BD,设AB=AD=1,则CD=2,由题意知在梯形ABCD中,有BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,又PC∩BC=C,∴BD⊥平面BCP.∵BD?平面BDP,∴平面BPD⊥平面BCP.(2)解:以点D为原点,DA、DC、DQ为x轴、y轴、z轴建立空间直角坐标系.设AB=1,PC=a,则D(0,0,0),A(1,0,0),B(1,1,0),P(0,2,a),=(1,0,0),=(0,2,a),设=(x,y,z)为平面ADP的一个法向量,则==0,可得,令z=﹣2,则y=a,∴=(0,a,﹣2).同理可得平面ABP的一个法向量=(a,0,1).∴|cos|===,解得:a=,∴λ=.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.【解答】解:(Ⅰ)化圆C:x2+y2﹣2mx﹣y=0(m>0)为.则圆心坐标为C(m,),∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k=,∴m=2或m=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5;(Ⅱ)点A(0,2)关于直线x+y+2=0的对称点为A′(﹣4,﹣2),则|PA|+|PQ|=|PA′|+|PQ|≥|A′Q|,又A′到圆上点Q的最短距离为|A′C|﹣r=﹣=3﹣=2.∴|PA|+|PQ|的最小值为2,直线A′C的方程为y=x,则直线A′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.【解答】(1)解:由题意可得点C和点M(﹣6,6)关于直线x﹣y+6=0对称,且圆C和圆M的半径相等,都等于r.设C(m,n),由且,解得:m=0,n=0.故原C的方程为x2+y2=r2.再把点P(2,2)代入圆C的方程,求得r=.故圆的方程为:x2+y2=8;(2)证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y﹣2=k(x﹣2),PB:y﹣2=﹣k(x﹣2).由,得(1+k2)x2+4k(1﹣k)x+4(1﹣k)2﹣8=0,∵P的横坐标x=2一定是该方程的解,∴,同理,x B=.由于AB的斜率k AB====1=k OP(OP的斜率),∴直线AB和OP一定平行.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.【解答】解:①由题意可知,设圆心为(a,a+1),则圆C为:(x﹣a)2+[y﹣(a+1)]2=2,∵圆C经过点P(3,6)和点Q(5,6),∴,解得:a=4.则圆C的方程为:(x﹣4)2+(y﹣5)2=2;②当直线l的斜率存在时,设直线l的方程为y=k(x﹣3)即kx﹣y﹣3k=0,∵过点(3,0)的直线l截圆所得弦长为2,∴,则.∴直线l的方程为12x﹣5y﹣36=0,当直线l的斜率不存在时,直线l为x=3,此时弦长为2符合题意,综上,直线l的方程为x=3或12x﹣5y﹣36=0.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.【解答】解:(Ⅰ)设圆C的标准方程为:(x﹣1)2+(y﹣1)2=r2(r>0),则圆心C(1,1)到直线x+y﹣1=0的距离为:,…(2分)则,∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1;…(5分)(Ⅱ)①当切线的斜率不存在时,切线方程为:x=2,此时满足直线与圆相切;…(6分)②当切线的斜率存在时,设切线方程为:y﹣3=k(x﹣2),即y=kx﹣2k+3;则圆心C(1,1)到直线kx﹣y﹣2k+3=0的距离为:,…(8分)化简得:4k=3,解得,∴切线方程为:3x﹣4y+6=0;…(11分)综上,切线的方程为:x=2和3x﹣4y+6=0.…(12分)13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.【解答】解:(Ⅰ)由题可设圆心C(a,a),半径r,∵.∴a=±1.又∵圆C与x轴正半轴相切,∴a=1,r=1.∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1.(Ⅱ)①当直线l的斜率不存在时,直线l的方程为x=1,此时弦长|AB|=2.②当直线l的斜率存在时,设直线l的方程:点C到直线l的距离,弦长,当k=0时,弦长|AB|取最小值,此时直线l的方程为.由①②知当直线l的方程为时,弦长|AB|取最小值为.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.【解答】解:(1)解方程组,得交点M(1,2).……………………………(3分)将点M(1,2)的坐标代入直线l3:2x+my﹣8=0的方程,得m=3.…………(6分)(2)法一:设点N的坐标为(m,n),则由题意可………(9分)解得…………………………………………………………………………(12分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)法二:由(1)知M(1,2),所以,过M且与x﹣3y﹣5=0垂直的直线方程为:y﹣2=﹣3(x﹣1),即3x+y﹣5=0.…………………………………………………………………(8分)解方程组得交点为H(2,﹣1)………………………………………(10分)因为M,N的中点为H,所以,x N=2×2﹣1=3,y N=2×(﹣1)﹣2=﹣4.……(13分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.【解答】解:(Ⅰ)经过点(2,1)与点(﹣2,﹣3)的直线方程为,即y=x﹣1.由题意可得,圆心在直线y=3上,联立,解得圆心坐标为(4,3),故圆C1的半径为4.则圆C1的方程为(x﹣4)2+(y﹣3)2=16;(Ⅱ)∵圆C1的方程为(x﹣4)2+(y﹣3)2=16,即x2+y2﹣8x﹣6y+9=0,圆C2:x2+y2﹣6x﹣3y+5=0,两式作差可得两圆公共弦所在直线方程为2x+3y﹣4=0.圆C1的圆心到直线2x+3y﹣4=0的距离d=.∴两圆的公共弦MN的长为2=2.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.【解答】(Ⅰ)解:由题意,,即2a2﹣a﹣1=0,解得a=1(a>0).∴圆心坐标为(0,1),半径为1,由圆心到直线2x+y+m=0的距离d==,可得m=0或m=﹣2,∵点F(,)在直线2x+y+m=0上,∴m=﹣2.故m=﹣2,圆C的方程为x2+(y﹣1)2=1;(Ⅱ)证明:设Q(t,﹣2),则QC的中点坐标为(),以QC为直径的圆的方程为,即x2+y2﹣tx+y﹣2=0.联立,可得AB所在直线方程为:tx﹣3y+2=0.∴直线AB恒过定点(0,);(Ⅲ)解:由题意可设直线l的方程为y=kx+t,△ABC的面积为S,则S=|CA|?|CB|?sin∠ACB=sin∠ACB,∴当sin∠ACB最大时,S取得最大值.要使sin∠ACB=,只需点C到直线l的距离等于,即=,整理得:k2=2(t﹣1)2﹣1≥0,解得t≤1﹣.①当t∈[0,1﹣]时,sin∠ACB最大值是1,此时k2=2t2﹣4t+1,即u=2t2﹣4t+1.②当t∈(1﹣,1)时,∠ACB∈(,π).∵y=sin x是(,π)上的减函数,∴当∠ACB最小时,sin∠ACB最大.过C作CD⊥AB于D,则∠ACD=∠ACB,∴当∠ACD最大时,∠ACB最小.∵sin∠CAD=,且∠CAD∈(0,),∴当|CD|最大时,sin∠CAD取得最大值,即∠CAD最大.∵|CD|≤|CP|,∴当CP⊥l时,|CD|取得最大值|CP|.∴当△ABC的面积最大时,直线l的斜率k=0,∴u=0.综上所述,u=.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.【解答】解:(1)由题意知,a=4时圆心M坐标为(0,﹣2),半径为2,圆心到直线距离d=,∴弦|AB|=;(2)设A(x1,y1),B(x2,y2),联立,整理得50y2+(28+a)y+4=0.∵△=(28+a)2﹣16×50>0,∴.,则,.于是==.∴a=2.∴圆的方程为x2+y2+2y=0.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.【解答】解:(1)①设点P的坐标为(,y0),∵OP=,∴+y02=,解得y0=±1.又点P在第一象限,∴y0=1,即P的坐标为(,1).易知过点P的圆O的切线的斜率必存在,可设切线的斜率为k,则切线为y﹣1=k(x﹣),即kx﹣y+1﹣k=0,于是有=1,解得k=0或k=.因此过点P的圆O的切线方程为:y=1或24x﹣7y﹣25=0;②设A(x,y),则B(,),∵点A、B均在圆O上,∴有圆x2+y2=1与圆(x+)2+(y+y0)2=4有公共点.于是1≤≤3,解得﹣≤y0≤,即点P纵坐标的取值范围是[﹣,];(2)设M(x,y),假设存在点D(m,n),使为定值t(t>0),则MC2=t2MD2,即(x﹣2)2+y2=t2(x﹣m)2+t2(y﹣n)2,∴,∵M在圆O:x2+y2=1上,∴,解得t=,m=,n=0.∴存在定点D(),使为定值.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.【解答】(Ⅰ)证明:因为ABC﹣A1B1C1是正三棱柱,所以CC1⊥平面ABC因为AD?平面ABC,所以CC1⊥AD因为△ABC是正三角形,D为BC中点,所以BC⊥AD,…(4分)因为CC1∩BC=C,所以AD⊥平面B1BCC1.…(5分)(Ⅱ)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是正三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,…(8分)因为A1B?平面ADC1,OD?平面ADC1,所以A1B∥平面ADC1;(10分)(Ⅲ)解:V C1﹣ADB1=V A﹣C1DB1==.…(14分)22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).【解答】解:(1)因为PA⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC 所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为。
高中数学必修二测试题及答案人教版
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
人教A版新课标高中数学必修二第二章单元测试题(含答案)
高二周末检测题一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2 .垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A .三条交线为异面直线B .三条交线两两平行C .三条交线交于一点D .三条交线两两平行或交于一点4. 在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、 能相交于点P ,那么 ( )A 、点P 必在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面BCD 内 D 、点P 必在平面ABC 外5.若平面α⊥平面β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题是( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1; ②EF ∥AC ; ③EF 与AC 异面; ④EF ∥平面ABCD . 其中一定正确的有( )A .①②B .②③C .②④D .①④8.如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC的中点,则图中直角三角形的个数是( ) A .5 B .8 C .10D .69.如右图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM ( ) A .与AC 、MN 均垂直相交 B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直D .与AC 、MN 均不垂直10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5V11.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 二、填空题13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形ABCD 一定是 .14.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的平面角大小为 .15.如下图所示,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕.Q PC'B'A'C BA使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.高二周末检测题答一、选择题 1-5 BDDAB 6-10 DDBAB 11-12 DC 二、填空题13、菱形 14、90° 15、(1)BD ⊥CD (2)60° 16、①③④ 三、解答题17、证明:(1)∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .18、[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM . (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PEEM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.19[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件. [证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.20.(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=5 5,因此AD和平面ABE所成角的正弦值为5 5.21[分析] (1)转化为证明GF平行于平面ABC内的直线AC;(2)转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;(3)几何体ADEBC是四棱锥C-ABED.[解] (1)证明:连接AE,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED , ∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB , ∴CA 2+CB 2=AB 2, ∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE . (3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22, ∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.。
(完整版)高中数学必修2立体几何考题(附答案)
高中数学必修2立体几何考题13.如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.解析:(1)由于M、N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.(2)由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题,这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M、N分别是A1B1、B1C1的中点,∴MN∥A1C1.又∵A1A∥D1D,而D1D綊C1C,∴A1A綊C1C,∴四边形A1ACC1为平行四边形.∴A1A∥AC,得到MN∥AC,∴A、M、N、C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线.理由如下:假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1.∴BC⊂平面CC1D1,这与在正方体中BC⊥平面CC1D1相矛盾,∴假设不成立,故D1B与CC1是异面直线.14.如下图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,N为BB1的中点,O为面BCC1B1的中心.(1)过O作一直线与AN交于P,与CM交于Q(只写作法,不必证明);(2)求PQ的长(不必证明).解析:(1)由ON∥AD知,AD与ON确定一个平面α.又O、C、M三点确定一个平面β(如下图所示).∵三个平面α,β和ABCD两两相交,有三条交线OP、CM、DA,其中交线DA与交线CM不平行且共面.∴DA与CM必相交,记交点为Q.∴OQ是α与β的交线.连结OQ与AN交于P,与CM交于Q,故OPQ即为所作的直线.(2)解三角形APQ可得PQ=14 3.15.如图,在直三棱柱ABC-A1B1C1中,AB=BC=B1B=a,∠ABC=90°,D、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A 1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为 2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E分别是BB1、MM1的中点,可得DE綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB交于点F,连结AF,由条件易证D是C1F的中点,B是CF的中点,又E是AC1的中点,所以DE∥AF.在△ACF中,由AB=BC=BF知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,所以DE=2 2a.反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M分别是BD1,AA1的中点.(1)求证:MO是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O是BD1的中点,∴O是正方体的中心,∴OA=OA 1,又M为AA1的中点,即OM是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O为BD1的中点知MO⊥BD1,即MO 是异面直线AA 1和BD 1的公垂线. (2)由于AA 1∥BB 1,所以∠B 1BD 1就是异面直线AA 1和BD 1所成的角. 在Rt △BB 1D 1中,设BB 1=1,则BD 1=3,所以cos ∠B 1BD 1=33,故异面直线AA 1与BD 1所成的角的余弦值等于33.(3)由(1)知,所求距离即为线段MO 的长,由于OA =12AC 1=32a ,AM =a 2,且OM ⊥AM ,所以OM =22a .13.如图所示,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E 、F ,且B 1E =C 1F ,求证:EF ∥ABCD .证明:解法一:分别过E 、F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连结MN .∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN .又B 1E =C 1F ,∴EM =FN ,故四边形MNFE 是平行四边形, ∴EF ∥MN ,又MN 在平面ABCD 中, 所以EF ∥平面ABCD .解法二:过E 作EG ∥AB 交BB 1于G ,连结GF ,则B 1E B 1A =B 1GB 1B,∵B 1E =C 1F ,B 1A =C 1B , ∴C 1F C 1B =B 1G B 1B,∴FG ∥B 1C 1∥BC . 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD , 而EF ⊂平面EFG , ∴EF ∥平面ABCD .14.如下图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC .过BD 作与P A 平行的平面,交侧棱PC 于点E ,又作DF ⊥PB ,交PB 于点F .(1)求证:点E 是PC 的中点; (2)求证:PB ⊥平面EFD .证明:(1)连结AC ,交BD 于O ,则O 为AC 的中点,连结EO . ∵P A ∥平面BDE ,平面P AC ∩平面BDE =OE ,∴P A ∥OE . ∴点E 是PC 的中点;(2)∵PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC ,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线, ∴DE ⊥PC ,①又由PD ⊥平面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,CD ⊥BC ,∴BC ⊥平面PDC .而DE ⊂平面PDC .∴BC ⊥DE .②由①和②推得DE ⊥平面PBC .而PB ⊂平面PBC , ∴DE ⊥PB ,又DF ⊥PB 且DE ∩DF =D , 所以PB ⊥平面EFD .15.如图,l 1、l 2是互相垂直的异面直线,MN 是它们的公垂线段.点A 、B 在l 1上,C 在l 2上,AM =MB =MN .(1)求证AC ⊥NB ; (2)若∠ACB =60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l 2⊥MN ,l 2⊥l 1,MN ∩l 1=M ,可得l 2⊥平面ABN .由已知MN ⊥l 1,AM =MB =MN ,可知AN =NB 且AN ⊥NB . 又AN 为AC 在平面ABN 内的射影, ∴AC ⊥NB .(2)∵Rt △CNA ≌Rt △CNB ,∴AC =BC ,又已知∠ACB =60°,因此△ABC 为正三角形. ∵Rt △ANB ≌Rt △CNB ,∴NC =NA =NB ,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH ,∠NBH 为NB 与平面ABC 所成的角.在Rt △NHB 中,cos ∠NBH =HB NB =33AB22AB =63.16.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥平面ACD ; (2)平面EFC ⊥平面BCD .命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E 、F 分别是AB 、BD 的中点,所以EF ∥AD . 又AD ⊂平面ACD ,EF ⊄平面ACD ,∴直线EF ∥平面ACD . (2)在△ABD 中,∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD .∵EF ⊂平面EFC ,CF ⊂平面EFC ,EF 与CF 交于点F ,∴BD ⊥平面EFC . 又∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .13.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,P A ⊥平面ABCD ,且P A =2AB .(1)求证:平面P AC ⊥平面PBD ; (2)求二面角B -PC -D 的余弦值. 解析:(1)证明:∵P A ⊥平面ABCD , ∴P A ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面P AC ,又BD 在平面BPD 内,∴平面P AC ⊥平面BPD . (2)在平面BCP 内作BN ⊥PC ,垂足为N ,连结DN , ∵Rt △PBC ≌Rt △PDC , 由BN ⊥PC 得DN ⊥PC ;∴∠BND 为二面角B -PC -D 的平面角,在△BND 中,BN =DN =56a ,BD =2a ,∴cos ∠BND =56a 2+56a 2-2a 253a 2=-15.14.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E 、B 、F 、D 1四点共面; (2)求证:平面A 1GH ∥平面BED 1F . 证明:(1)连结FG .∵AE =B 1G =1,∴BG =A 1E =2, ∴BG 綊A 1E ,∴A 1G 綊BE . ∵C 1F 綊B 1G ,∴四边形C 1FGB 1是平行四边形. ∴FG 綊C 1B 1綊D 1A 1,∴四边形A 1GFD 1是平行四边形. ∴A 1G 綊D 1F ,∴D 1F 綊EB , 故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =32.又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG , ∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G , FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .15.在三棱锥P -ABC 中,P A ⊥面ABC ,△ABC 为正三角形,D 、E 分别为BC 、AC 的中点,设AB =P A =2.(1)求证:平面PBE ⊥平面P AC ;(2)如何在BC 上找一点F ,使AD ∥平面PEF ,请说明理由; (3)对于(2)中的点F ,求三棱锥B -PEF 的体积. 解析:(1)证明:∵P A ⊥面ABC ,BE ⊂面ABC , ∴P A ⊥BE .∵△ABC 是正三角形,E 为AC 的中点, ∴BE ⊥AC ,又P A 与AC 相交, ∴BE ⊥平面P AC ,∴平面PBE ⊥平面P AC .(2)解:取DC 的中点F ,则点F 即为所求. ∵E ,F 分别是AC ,DC 的中点, ∴EF ∥AD ,又AD ⊄平面PEF ,EF ⊂平面PEF , ∴AD ∥平面PEF .(3)解:V B -PEF =V P -BEF =13S △BEF ·P A =13×12×32×32×2=34.16.(2009·天津,19)如图所示,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为CE 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)求证:平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线BF 与DE 所成的角.设P 为AD 的中点,连结EP ,PC .因为FE 綊AP ,所以F A 綊EP .同理,AB 綊PC .又F A ⊥平面ABCD ,所以EP ⊥平面ABCD .而PC ,AD 都在平面ABCD 内,故EP ⊥PC ,EP ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设F A =a ,则EP =PC =PD =a ,CD =DE =EC =2a .故∠CED =60°.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明:因为DC =DE 且M 为CE 的中点,所以DM ⊥CE .连结MP ,则MP ⊥CE .又MP ∩DM =M ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(3)设Q 为CD 的中点,连结PQ ,EQ .因为CE =DE ,所以EQ ⊥CD .因为PC =PD ,所以PQ ⊥CD ,故∠EQP 为二面角A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ =62a ,PQ =22a .于是在Rt △EPQ 中,cos ∠EQP =PQ EQ =33.所以二面角A -CD -E 的余弦值为33.13.(2009·重庆)如图所示,四棱锥P -ABCD 中,AB ⊥AD ,AD ⊥DC ,P A ⊥底面ABCD ,P A =AD =DC =12AB =1,M 为PC 的中点,N 点在AB 上且AN =13NB .(1)求证:MN ∥平面P AD ;(2)求直线MN 与平面PCB 所成的角.解析:(1)证明:过点M 作ME ∥CD 交PD 于E 点,连结AE .∵AN =13NB ,∴AN =14AB =12DC =EM .又EM ∥DC ∥AB ,∴EM 綊AN , ∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面P AD .(2)解:过N 点作NQ ∥AP 交BP 于点Q ,NF ⊥CB 于点F . 连结QF ,过N 点作NH ⊥QF 于H ,连结MH , 易知QN ⊥面ABCD ,∴QN ⊥BC ,而NF ⊥BC , ∴BC ⊥面QNF ,∵BC ⊥NH ,而NH ⊥QF ,∴NH ⊥平面PBC ,∴∠NMH 为直线MN 与平面PCB 所成的角.通过计算可得MN =AE =22,QN =34,NF =342,∴NH =QN ·NF QF =ON ·NF QN 2+NF 2=64,∴sin ∠NMH =NH MN =32,∴∠NMH =60°,∴直线MN 与平面PCB 所成的角为60°. 14.(2009·广西柳州三模)如图所示,已知直平行六面体ABCD -A 1B 1C 1D 1中,AD ⊥BD ,AD =BD =a ,E 是CC 1的中点,A 1D ⊥BE .(1)求证:A 1D ⊥平面BDE ;(2)求二面角B -DE -C 的大小.解析:(1)证明:在直平行六面体ABCD -A 1B 1C 1D 1中, ∵AA 1⊥平面ABCD ,∴AA 1⊥BD . 又∵BD ⊥AD ,∴BD ⊥平面ADD 1A 1,即BD ⊥A 1D . 又∵A 1D ⊥BE 且BE ∩BD =B , ∴A 1D ⊥平面BDE .(2)解:如图,连B 1C ,则B 1C ⊥BE , 易证Rt △BCE ∽Rt △B 1BC ,∴CE BC =BC B 1B,又∵E 为CC 1中点, ∴BC 2=12BB 21.BB 1=2BC =2a .取CD 中点M ,连结BM ,则BM ⊥平面CC 1D 1C , 作MN ⊥DE 于N ,连NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角B -DE -C 的平面角.在Rt △BDC 中,BM =BD ·BC DC =22a ,Rt △CED 中,易求得MN =1010a ,Rt △BMN 中,tan ∠BNM =BMMN=5,则二面角B -DE -C 的大小为arctan 5.15.如图,已知正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点.(1)求直线B 1C 与DE 所成的角的余弦值; (2)求证:平面EB 1D ⊥平面B 1CD ; (3)求二面角E -B 1C -D 的余弦值.解析:(1)连结A 1D ,则由A 1D ∥B 1C 知,B 1C 与DE 所成的角即为A 1D 与DE 所成的角.连结A 1E ,由正方体ABCD -A 1B 1C 1D 1,可设其棱长为a ,则A 1D =2a ,A 1E =DE =52a ,∴cos ∠A 1DE=A 1D 2+DE 2-A 1E 22·A 1D ·DE =105.∴直线B 1C 与DE 所成角的余弦值是105. (2)证明取B 1C 的中点F ,B 1D 的中点G ,连结BF ,EG ,GF . ∵CD ⊥平面BCC 1B 1,且BF ⊂平面BCC 1B 1,∴DC ⊥BF . 又∵BF ⊥B 1C ,CD ∩B 1C =C , ∴BF ⊥平面B 1CD .又∵GF 綊12CD ,BE 綊12CD ,∴GF 綊BE ,∴四边形BFGE 是平行四边形, ∴BF ∥GE ,∴GE ⊥平面B 1CD . ∵GE ⊂平面EB 1D ,∴平面EB 1D ⊥平面B 1CD . (3)连结EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C . 又∵GE ⊥平面B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角E -B 1C -D 的平面角. 设正方体的棱长为a ,则在△EFG 中,GF =12a ,EF =32a ,∴cos ∠EFG =FG EF =33,∴二面角E -B 1C -D 的余弦值为33.16.(2009·全国Ⅱ,18)如图所示,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1.(1)求证:AB =AC ;(2)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小. 解析:(1)证明:取BC 中点F ,连结EF ,则EF 綊12B 1B ,从而EF 綊DA .连结AF ,则ADEF 为平行四边形,从而AF ∥DE .又DE ⊥平面BCC 1,故AF ⊥平面BCC 1,从而AF ⊥BC ,即AF 为BC 的垂直平分线,所以AB =AC .(2)解:作AG ⊥BD ,垂足为G ,连结CG .由三垂线定理知CG ⊥BD ,故∠AGC 为二面角A -BD -C 的平面角.由题设知,∠AGC =60°.设AC =2,则AG =23.又AB =2,BC =22,故AF = 2.由AB ·AD =AG ·BD 得2AD =23·AD 2+22,解得AD =2,故AD =AF .又AD ⊥AF ,所以四边形ADEF 为正方形.因为BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故BC ⊥平面DEF ,因此平面BCD ⊥平面DEF . 连结AE 、DF ,设AE ∩DF =H ,则EH ⊥DF ,EH ⊥平面BCD .连结CH ,则∠ECH 为B 1C 与平面BCD 所成的角.因ADEF 为正方形,AD =2,故EH =1,又EC =12B 1C =2,所以∠ECH =30°,即B 1C 与平面BCD 所成的角为30°.13.在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别为棱AB 、BC 的中点.(1)求证:平面B 1EF ⊥平面BDD 1B 1; (2)求点D 1到平面B 1EF 的距离d .分析:(1)可先证EF ⊥平面BDD 1B 1.(2)用几何法或等积法求距离时,可由B 1D 1∥BD ,将点进行转移:D 1点到平面B 1EF 的距离是B 点到它的距离的4倍,先求B 点到平面B 1EF 的距离即可.解答:(1)证明:⎭⎪⎬⎪⎫EF ⊥BD EF ⊥B 1B ⇒EF ⊥平面BDD 1B 1⇒平面B 1EF ⊥平面BDD 1B 1.(2)解:解法一:连结EF 交BD 于G 点. ∵B 1D 1=4BG ,且B 1D 1∥BG ,∴D 1点到平面B 1EF 的距离是B 点到它的距离的4倍. 利用等积法可求.由题意可知,EF =12AC =2,B 1G =17.S △B 1EF =12EF ·B 1G =12×2×17=17,S △BEF =12BE ·BF =12×2×2=1.∵VB -B 1EF =VB 1-BEF ,设B 到面B 1EF 的距离为h 1,则13×17×h 1=13×1×4,∴h 1=41717.∴点D 1到平面B 1EF 的距离为h =4h 1=161717.解法二:如图,在正方形BDD 1B 1的边BD 上取一点G ,使BG =14BD ,连结B 1G ,过点D 1作D 1H ⊥B 1G 于H ,则D 1H 即为所求距离.可求得D 1H =161717(直接法).14.如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC =2,M 是棱BC 的中点,N 是CC 1中点.求:(1)二面角B 1-AN -M 的大小; (2)C 1到平面AMN 的距离. 解析:(1)∵∠BAC =90°,AB =AC =2,M 是棱BC 的中点, ∴AM ⊥BC ,BC =2,AM =1. ∴AM ⊥平面BCC 1B 1.∴平面AMN ⊥平面BCC 1B 1.作B 1H ⊥MN 于H ,HR ⊥AN 于R ,连结B 1R , ∴B 1H ⊥平面AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1RH 是二面角B 1-AN -M 的平面角. 由已知得AN =3,MN =2,B 1M =5=B 1N ,则B 1H =322,又Rt △AMN ∽Rt △HRN ,RH AM =HN AN ,∴RH =66.∴B 1R =143,∴cos ∠B 1RH =RH B 1R =714.∴二面角B 1-AN -M 的大小为arccos 714.(2)∵N 是CC 1中点,∴C 1到平面AMN 的距离等于C 到平面AMN 的距离. 设C 到平面AMN 的距离为h , 由V C -AMN =V N -AMC 得13×12·MN ·h =13×12AM ·MC . ∴h =22.15.(2009·北京海淀一模)如图所示,四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为直角梯形,且AB ∥CD ,∠BAD =90°,P A =AD =DC =2,AB =4.(1)求证:BC ⊥PC ;(2)求PB 与平面P AC 所成的角的正弦值; (3)求点A 到平面PBC 的距离.解析:(1)证明:如图,在直角梯形ABCD 中, ∵AB ∥CD ,∠BAD =90°,AD =DC =2, ∴∠ADC =90°,且AC =2 2. 取AB 的中点E ,连结CE ,由题意可知,四边形ABCD 为正方形, ∴AE =CE =2.又∵BE =12AB =2.∴CE =12AB ,∴△ABC 为等腰直角三角形, ∴AC ⊥BC .又∵P A ⊥平面ABCD ,且AC 为PC 在平面ABCD 内的射影, BC ⊂平面ABCD ,由三垂线定理得, BC ⊥PC .(2)由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C , ∴BC ⊥平面P AC .PC 是PB 在平面P AC 内的射影,∴∠CPB 是PB 与平面P AC 所成的角.又CB =22, PB 2=P A 2+AB 2=20,PB =25,∴sin ∠CPB =BC PB =105,即PB 与平面P AC 所成角的正弦值为105.(3)由(2)可知,BC ⊥平面P AC ,BC ⊂平面PBC , ∴平面PBC ⊥平面P AC .过A 点在平面P AC 内作AF ⊥PC 于F , ∴AF ⊥平面PBC ,∴AF 的长即为点A 到平面PBC 的距离.在直角三角形P AC 中, P A =2,AC =22,PC =23,∴AF =263.即点A 到平面PBC 的距离为263.16.(2009·吉林长春一模)如图所示,四棱锥P -ABCD 的底面是正方形,P A ⊥底面ABCD ,P A =2,∠PDA =45°,点E 、F 分别为棱AB 、PD 的中点.(1)求证:AF ∥平面PCE ;(2)求二面角E -PD -C 的大小; (3)求点A 到平面PCE 的距离.解析:(1)证明:如图取PC 的中点G ,连结FG 、EG , ∴FG 为△PCD 的中位线,∴FG =12CD 且FG ∥CD .又∵底面四边形ABCD 是正方形,E 为棱AB 的中点,∴AE =12CD 且AE ∥CD ,∴AE =FG 且AE ∥FG .∴四边形AEGF 是平行四边形, ∴AF ∥EG .又EG ⊂平面PCE ,AF ⊄平面PCE , ∴AF ∥平面PCE .(2)解:∵P A ⊥底面ABCD , ∴P A ⊥AD ,P A ⊥CD . 又AD ⊥CD , P A ∩AD =A , ∴CD ⊥平面P AD . 又∵AF ⊂平面P AD , ∴CD ⊥AF .又P A =2,∠PDA =45°, ∴P A =AD =2.∵F 是PD 的中点,∴AF ⊥PD . 又∵CD ∩PD =D , ∴AF ⊥平面PCD .∵AF ∥EG ,∴EG ⊥平面PCD . 又GF ⊥PD ,连结EF ,则∠GFE 是二面角E -PD -C 的平面角. 在Rt △EGF 中,EG =AF =2,GF =1,∴tan ∠GFE =GEGF= 2.∴二面角E -PD -C 的大小为arctan 2. (3)设A 到平面PCE 的距离为h ,由V A -PCE =V P -ACE ,即13×12PC ·EG ·h =13P A ·12AE ·CB ,得h =63,∴点A 到平面PCE 的距离为63.13.(2009·陕西,18)如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.(1)求证:AB ⊥A 1C ;(2)求二面角A -A 1C -B 的大小.解析:(1)证明:∵三棱柱ABC -A 1B 1C 1为直三棱柱, ∴AB ⊥AA 1,在△ABC 中,AB =1,AC =3,∠ABC =60°,由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC .∴AB ⊥平面ACC 1A 1,又A 1C ⊂平面ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作AD ⊥A 1C 交A 1C 于D 点,连结BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角A -A 1C -B 的平面角.在Rt △AA 1C 中,AD =AA 1·AC A 1C =3×36=62,在Rt △BAD 中,tan ∠ADB =AB AD =63, ∴∠ADB =arctan63,即二面角A -A 1C -B 的大小为arctan 63. 14.如图,三棱柱ABC -A 1B 1C 1的底面是边长为a 的正三角形,侧面ABB 1A 1是菱形且垂直于底面,∠A 1AB =60°,M 是A 1B 1的中点.(1)求证:BM ⊥AC ;(2)求二面角B -B 1C 1-A 1的正切值; (3)求三棱锥M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形, ⎭⎪⎬⎪⎫∵M 是A 1B 1的中点,∴BM ⊥A 1B 又∵平面AA 1B 1B ⊥平面A 1B 1C 1 ⇒BM ⊥平面A 1B 1C 1. ⎭⎪⎬⎪⎫∴BM ⊥A 1C 1又∵AC ∥A 1C 1⇒BM ⊥AC .⎭⎪⎬⎪⎫(2)过M 作ME ⊥B 1C 1且交于点E ,∵BM ⊥平面A 1B 1C 1,⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1中,ME =MB 1·sin60°=34a ,Rt △BMB 1中,MB =MB 1·tan60°=32a , ∴tan ∠BEM =MBME=2,∴所求二面角的正切值是2.(3)VM -A 1CB =12VB 1-A 1CB =12VA -A 1CB =12VA 1-ABC =12×13×34a 2·32a =116a 3.15.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AFAD=λ(0<λ<1).(1)求证:不论λ为何值,总有EF ⊥平面ABC ;(2)若λ=12,求三棱锥A -BEF 的体积.解析:(1)证明:∵AB ⊥平面BCD , ∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°, ∴BC ⊥CD .∵又AB ∩BC =B ,∴CD ⊥平面ABC .又∵在△ACD 中,E 、F 分别是AC 、AD 上的动点,且AE AC =AFAD=λ(0<λ<1),∴不论λ为何值,都有EF ∥CD , ∴EF ⊥平面ABC .(2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2.又∵AB ⊥平面BCD , ∴AB ⊥BC ,AB ⊥BD .又∵在Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°=6, 由(1)知EF ⊥平面ABC , ∴V A -BEF =V F -ABE =13S △ABE ·EF =13×12S △ABC ·EF =16×12×1×6×12=624. 故三棱锥A -BEF 的体积是624.16.在四棱锥P -ABCD 中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是面积为23的菱形,∠ADC 为菱形的锐角.(1)求证:P A ⊥CD ;(2)求二面角P -AB -D 的大小; (3)求棱锥P -ABCD 的侧面积;解析:(1)证明:如图所示,取CD 的中点E ,由PE ⊥CD ,得PE ⊥平面ABCD ,连结AC 、AE .∵AD ·CD ·sin ∠ADC =23, AD =CD =2,∴sin ∠ADC =32,即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥P A (三垂线定理).(2)解:∵AB ∥CD ,∴AB ⊥P A ,AB ⊥AE , ∴∠P AE 为二面角P -AB -D 的平面角. 在Rt △PEA 中,PE =AE ,∴∠P AE =45°. 即二面角P -AB -D 的大小为45°. (3)分别计算各侧面的面积: ∵PD =DA =2,P A =6,∴cos ∠PDA =14,sin ∠PDA =154.S △PCD =3,S △P AB =12AB ·P A =12·2·2·3=6,S △P AD =S △PBC =12PD ·DA ·sin ∠PDA =152.∴S P -ABCD 侧=3+6+15.13.把地球当作半径为R 的球,地球上A 、B 两地都在北纬45°,A 、B 两点的球面距离是π3R ,A 点在东经20°,求B 点的位置. 解析:如图,求B 点的位置即求B 点的经度,设B 点在东经α,∵A 、B 两点的球面距离是π3R .∴∠AOB =π3,因此三角形AOB 是等边三角形,∴AB =R ,又∵∠AO 1B =α-20°(经度差)问题转化为在△AO 1B 中借助AO 1=BO 1=AO cos45°=22R ,求出∠AO 1B =90°,则α=110°,同理:B 点也可在西经70°,即B 点在北纬45°东经110°或西经70°.14.在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为AO 1、BO 2,则AO 1∥BO 2. 若O 1、O 2分别为两截面圆的圆心,则由等腰三角形性质易知OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为R ,∵πO 2B 2=49π, ∴O 2B =7cm ,同理O 1A =20cm. 设OO 1=x cm ,则OO 2=(x +9)cm. 在Rt △OO 1A 中,R 2=x 2+202, 在Rt △OO 2B 中,R 2=(x +9)2+72, ∴x 2+202=72+(x +9)2,解得x =15cm. ∴R =25cm ,∴S 球=2500πcm 2,V 球=43πR 3=625003πcm 3.15.设A 、B 、C 是半径为1的球面上的三点,B 、C 两点间的球面距离为π3,点A 与B 、C 两点间的球面距离均为π2,O 为球心,求:(1)∠AOB 、∠BOC 的大小; (2)球心O 到截面ABC 的距离.解析:(1)如图,因为球O 的半径为1,B 、C 两点间的球面距离为π3,点A 与B 、C 两点间的球面距离均为π2,所以∠BOC =π3,∠AOB =∠AOC =π2, (2)因为BC =1,AC =AB =2,所以由余弦定理得cos ∠BAC =34,sin ∠BAC =74,设截面圆的圆心为O 1,连结AO 1,则截面圆的半径r =AO 1,由正弦定理得r =BC 2sin ∠BAC=277,所以OO 1=OA 2-r 2=217.16.如图四棱锥A -BCDE 中,AD ⊥底面BCDE ,AC ⊥BC ,AE ⊥BE . (1)求证:A 、B 、C 、D 、E 五点共球; (2)若∠CBE =90°,CE =3,AD =1,求B 、D 两点的球面距离. 解析:(1)证明:取AB 的中点P ,连结PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形.故PE =PD =PC =12AB =P A =PB .所以A 、B 、C 、D 、E 五点在同一球面上. (2)解:由题意知四边形BCDE 为矩形, 所以BD =CE =3,在Rt △ADB 中,AB =2,AD =1,∴∠DPB =120°,D 、B 的球面距离为23π.17.(本小题满分10分)如图,四棱锥S —ABCD 的底面是正方形,SA ⊥底面ABCD ,E 是SC 上一点.(1)求证:平面EBD ⊥平面SAC ;(2)假设SA =4,AB =2,求点A 到平面SBD 的距离;解析:(1)∵正方形ABCD ,∴BD ⊥AC ,又∵SA ⊥平面ABCD ,∴SA ⊥BD ,则BD ⊥平面SAC ,又BD ⊂平面BED ,∴平面BED ⊥平面SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO =12AC =122AB =12·2·2=2,SA =4,则SO =SA 2+AO 2=16+2=32,S △BSD =12BD ·SO =12·22·32=6.设A 到面BSD 的距离为h ,则V S -ABD =V A -BSD ,即13S △ABD ·SA =13S △BSD ·h ,解得h =43,即点A 到平面SBD 的距离为43. 18.(本小题满分12分)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C 上且C 1E =3EC .(1)证明A 1C ⊥平面BED ;(2)求二面角A 1-DE -B 的大小. 解析:依题设知AB =2,CE =1,(1)证明:连结AC 交BD 于点F ,则BD ⊥AC . 由三垂线定理知,BD ⊥A 1C .在平面A 1CA 内,连结EF 交A 1C 于点G ,由于AA 1FC =AC CE=22,故Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1互余. 于是A 1C ⊥EF .A 1C 与平面BED 内两条相交直线BD 、EF 都垂直. 所以A 1C ⊥平面BED .(2)作GH ⊥DE ,垂足为H ,连结A 1H . 由三垂线定理知A 1H ⊥DE ,故∠A 1HG 是二面角A 1-DE -B 的平面角. EF =CF 2+CE 2=3,CG =CE ×CF EF =23.EG =CE 2-CG 2=33.EG EF =13,GH =13×EF ×FD DE =215. 又A 1C =AA 21+AC 2=26,A 1G =A 1C -CG =563, tan ∠A 1HG =A 1GHG=5 5.所以二面角A 1-DE -B 的大小为arctan5 5.19.(本小题满分12分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =SB =SC =2CD =2,侧面SBC ⊥底面ABCD .(1)由SA 的中点E 作底面的垂线EH ,试确定垂足H 的位置; (2)求二面角E -BC -A 的大小.解析:(1)作SO ⊥BC 于O ,则SO ⊂平面SBC , 又面SBC ⊥底面ABCD , 面SBC ∩面ABCD =BC , ∴SO ⊥底面ABCD ①又SO ⊂平面SAO ,∴面SAO ⊥底面ABCD , 作EH ⊥AO ,∴EH ⊥底面ABCD ② 即H 为垂足,由①②知,EH ∥SO , 又E 为SA 的中点,∴H 是AO 的中点. (2)过H 作HF ⊥BC 于F ,连结EF , 由(1)知EH ⊥平面ABCD ,∴EH ⊥BC ,又EH ∩HF =H ,∴BC ⊥平面EFH ,∴BC ⊥EF ,∴∠HFE 为面EBC 和底面ABCD 所成二面角的平面角. 在等边三角形SBC 中,∵SO ⊥BC , ∴O 为BC 中点,又BC =2.∴SO =22-12=3,EH =12SO =32,又HF =12AB =1,∴在Rt △EHF 中,tan ∠HFE =EH HF =321=32,∴∠HFE =arctan 32.即二面角E -BC -A 的大小为arctan 32.20.(本小题满分12分)(2010·唐山市高三摸底考试)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =1,AA 1=2,N 是A 1D 的中点,M ∈BB 1,异面直线MN 与A 1A 所成的角为90°.(1)求证:点M 是BB 1的中点;(2)求直线MN 与平面ADD 1A 1所成角的大小;(3)求二面角A -MN -A 1的大小.解析:(1)取AA 1的中点P ,连结PM ,PN .∵N 是A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N , ∴AA 1⊥面PMN .∵PM ⊂面PMN ,∴AA 1⊥PM ,∴PM ∥AB , ∴点M 是BB 1的中点.(2)由(1)知∠PNM 即为MN 与平面ADD 1A 1所成的角.在Rt △PMN 中,易知PM =1,PN =12,∴tan ∠PNM =PMPN=2,∠PNM =arctan2.故MN 与平面ADD 1A 1所成的角为arctan2.(3)∵N 是A 1D 的中点,M 是BB 1的中点,∴A 1N =AN ,A 1M =AM , 又MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作AG ⊥MN 交MN 于G ,连结A 1G ,则∠A 1GA 即为二面角A -MN -A 1的平面角.在△A 1GA 中,AA 1=2,A 1G =GA =305,∴cos ∠A 1GA =A 1G 2+GA 2-AA 212A 1G ·GA =-23,∴∠A 1GA =arccos(-23),故二面角A -MN -A 1的大小为arccos(-23).21.(2009·安徽,18)(本小题满分12分)如图所示,四棱锥F -ABCD 的底面ABCD 是菱形,其对角线AC =2,BD = 2.AE 、CF 都与平面ABCD 垂直,AE =1,CF =2.(1)求二面角B -AF -D 的大小;(2)求四棱锥E -ABCD 与四棱锥F -ABCD 公共部分的体积. 命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接AC 、BD 交于菱形的中心O ,过O 作OG ⊥AF ,G 为垂足,连接BG 、DG .由BD ⊥AC ,BD ⊥CF 得BD ⊥平面ACF ,故BD ⊥AF .于是AF ⊥平面BGD ,所以BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角B -AF -D 的平面角.由FC ⊥AC ,FC =AC =2,得∠F AC =π4,OG =22.由OB ⊥OG ,OB =OD =22,得∠BGD =2∠BGO =π2.(2)解:连接EB 、EC 、ED ,设直线AF 与直线CE 相交于点H ,则四棱锥E -ABCD 与四棱锥F -ABCD 的公共部分为四棱锥H -ABCD .过H 作HP ⊥平面ABCD ,P 为垂足. 因为EA ⊥平面ABCD ,FC ⊥平面ABCD ,所以平面ACEF ⊥平面ABCD ,从而P ∈AC ,HP ⊥AC . 由HP CF +HP AE =AP AC +PC AC =1,得HP =23. 又因为S 菱形ABCD =12AC ·BD =2,故四棱锥H -ABCD 的体积V =13S 菱形ABCD ·HP =229.22.(2009·深圳调考一)(本小题满分12分)如图所示,AB 为圆O 的直径,点E 、F 在圆O 上,AB ∥EF ,矩形ABCD 所在平面和圆O 所在的平面互相垂直.已知AB =2,EF =1.(1)求证:平面DAF ⊥平面CBF ;(2)求直线AB 与平面CBF 所成角的大小;(3)当AD 的长为何值时,二面角D -FE -B 的大小为60°? 解析:(1)证明:∵平面ABCD ⊥平面ABEF ,CB ⊥AB , 平面ABCD ∩平面ABEF =AB , ∴CB ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥CB , 又∵AB 为圆O 的直径,∴AF ⊥BF , ∴AF ⊥平面CBF .∵AF ⊂平面DAF ,∴平面DAF ⊥平面CBF . (2)解:根据(1)的证明,有AF ⊥平面CBF , ∴FB 为AB 在平面CBF 上的射影,因此,∠ABF 为直线AB 与平面CBF 所成的角. ∵AB ∥EF ,∴四边形ABEF 为等腰梯形, 过点F 作FH ⊥AB ,交AB 于H .AB =2,EF =1,则AH =AB -EF 2=12.在Rt △AFB 中,根据射影定理AF 2=AH ·AB ,得AF =1,sin ∠ABF =AF AB =12,∴∠ABF =30°,∴直线AB 与平面CBF 所成角的大小为30°.(3)解:过点A 作AM ⊥EF ,交EF 的延长线于点M ,连结DM . 根据(1)的证明,DA ⊥平面ABEF ,则DM ⊥EF , ∴∠DMA 为二面角D -FE -B 的平面角, ∠DMA =60°.在Rt △AFH 中,∵AH =12,AF =1,∴FH =32. 又∵四边形AMFH 为矩形,∴MA =FH =32. ∵AD =MA ·tan ∠DMA =32·3=32. 因此,当AD 的长为32时,二面角D -FE -B 的大小为60°.。
2.新课程高中数学测试题组(必修2)(教师)
目录:数学2(必修)数学2(必修)第一章:空间几何体[基础训练A组]数学2(必修)第一章:空间几何体[综合训练B组]数学2(必修)第一章:空间几何体[提高训练C组]数学2(必修)第二章:点直线平面[基础训练A组]数学2(必修)第二章:点直线平面[综合训练B组]数学2(必修)第二章:点直线平面[提高训练C组]数学2(必修)第三章:直线和方程[基础训练A组]数学2(必修)第三章:直线和方程[综合训练B组]数学2(必修)第三章:直线和方程[提高训练C组]数学2(必修)第四章:圆和方程 [基础训练A组]数学2(必修)第四章:圆和方程 [综合训练B组]数学2(必修)第四章:圆和方程 [提高训练C组]高中数学必修2知识点一、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
高中数学必修2立体几何部分试卷及答案
高中数学必修2立体几何部分试卷2008-4-21试卷满分100分。
时间70分钟考号 班级 姓名第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为( )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是( )A .2B .25 C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβ C .若,//,m m n n αβ⊥⊂,则αβ⊥ D .若//,m n ααβ=,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( )A .4πa 2πa 2C. 8πa 2πa 28、如右下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=,如图所示。
若将ABC ∆绕BC 旋转一周,则所形成的旋转体的体积是( ) (A)92π (B )72π (C )52π (D )32π(第8题图)9、如左上图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单 位正方体共有( )A .6块B .7块C .8块D .9块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个第Ⅱ卷(非选择题 共60分)二、填空题(每小题4分,共16分)11、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。
高中数学必修2精选习题(含答案)
高中数学必修2精选习题(含答案)一、选择题:(每小题3分,共30分)1.垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 2. 下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3. 若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是 ( )A 、 l ∥αB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有 4. 直线k 10x y -+=,当k 变动时,所有直线都通过定点( ) A (0,0)B (0,1)C (3,1)D (2,1)5.用单位立方块搭一个几何体,使它的主视图和俯视图如右图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与156.如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=1,则梯形ABCD 的面积是( )A .10B .5C .5 2D .1027.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=08.与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09. 已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是 ( )俯视图主视图A .k ≥12B .k ≤-2C .k ≥12 或k ≤-2D .-2≤k ≤1210. 在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条二、填空题:(每小题4分,共16分)11若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值等于________.12.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________13. 正四棱锥S ABCD -S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为_________。
新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)
普通高中课程标准实验教科书——数学第二册[人教版]高中学生学科素质训练新课标高一数学同步期中测试本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.一个棱锥所有的棱长都相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥 2.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ3.已知高与底面的直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积 为 ( )A .π53500B .π5310000C .π5320000 D .π5325004.到空间四点距离相等的平面的个数为 ( )A .4B .7C .4或7D .7或无穷多 5.在阳光下一个大球放在水平面上, 球的影子伸到距球与地面接触点10米处, 同一时刻, 一根长1米一端接触地面且与地面垂直的竹竿的影子长为2米, 则该球的半径等于 ( ) A .10(5-2)米 B .(6-15)米C .(9-45)米D .52米6.已知ABCD 是空间四边形,M 、N 分别是AB 、CD 的中点,且AC =4,BD =6,则 ( )A .1<MN <5B .2<MN <10C .1≤MN ≤5D .2<MN <57.空间一个角的两边分别垂直于另一角的两边,则这两个角 ( )A .相等B .互补C .相等或互补D . 不确定8.已知平面α ⊥平面β ,m 是α 内一条直线,n 是β 内一条直线,且m ⊥n .那么,甲:m ⊥β ;乙:n ⊥α ;丙:m ⊥β 或n ⊥α ;丁:m ⊥β 且n ⊥α .这四个结论中,不正确的三个是( )A .甲、乙、丙B .甲、乙、丁9.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边 形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组10.棱台的两底面积分别为S 上、S 下、平行于底面的戴面把棱台的高自上而下分为两段之比 为m ∶n 则截面面S 0为 ( )A .nm mS nS ++下上B .n m S m S n ++下上C .(nm mS nS ++下上)2D .(nm S m S n ++下上)2第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.半径为a 的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为 .12.α 、β 是两个不同的平面,m 、n 是平面α 及β 之外的两条不同直线,给出四个论断:(1)m ⊥n (2)α ⊥β (3)n ⊥β (4)m ⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题___________.13.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分 别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= _____.14.还原成正方体后,其中两个完全一样的是.(1) 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体ABCD -A 1B 1C 1D 1中被截去一部分,其中EF ∥A 1D 1.剩下的几何体是什么?截取的几何体是什么?若FH ∥EG ,但FH<EG ,截取的几何体是什么?① ②③ ⑤ ⑥ ④④ ⑥ ①⑤ ③②① ⑤ ⑥ ④③ ②④ ② ⑥ ③ ①⑤16.(12分)有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合.①说明组合体是什么样的几何体?②证明你的结论.17.(12分)正四棱台的高,侧棱,对角线长分别为7cm,9cm,11cm,求它的侧面积.18.(12分)三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S-BCED的体积.19.(14分)如图,在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.20.(14分)如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.高一新数学期中测试题参考答案一、DBDDA ADBCD.二、11a3;12.①③④⇒②;13.7∶5;14.②③;三、15.五棱柱,三棱柱,三棱台。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)(3)
一、选择题1.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( )A .2:1B .4:1C .8:1D .8:3 2.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π 3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.在空间四边形ABCD 中,AB BC =,AD DC =,则对角线AC 与BD 所成角的大小是( )A .90︒B .60︒C .45︒D .305.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( )A .18πB .36πC .40πD .72π6.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m 7.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π28.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .79.在长方体1111ABCD A B C D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( )A .3B .3C .33D 310.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④ 11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( )A .169πB .161πC .164πD .265π二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图,在矩形ABCD 中,2AB =,1AD =,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将DAF △沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD 与平面ABCF 所成角为θ,θ的取值范围为__________.15.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;16.已知等腰直角三角形ABC 中,2C π∠=,22CA =,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ABD -的外接球的表面积为____.17.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)18.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.19.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________. 20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ;(2)求二面角P AB C 的大小.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.23.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .24.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,6SA SD ==,22SB =,点E 是棱AD 的中点,点F 是棱SC 上靠近S 的一个三等分点.(1)求证:平面SBE ⊥平面ABCD ;(2)求三棱锥F SEB -的体积.25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为233PB =60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案.【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--. 当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1.故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆,且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.A解析:A【分析】取AC 中点O ,根据条件分析AC 与平面BOD 的位置关系,由此得到异面直线AC 与BD 所成角的大小.【详解】取AC 中点O ,连接,,BO DO BD ,如图所示:因为AB BC =,AD DC =,所以,BO AC DO AC ⊥⊥,且BODO O =,所以AC ⊥平面BOD ,又BD ⊂平面BOD ,所以AC BD ⊥,所以AC 与BD 所成角为90︒,故选:A.【点睛】关键点点睛:解答问题的关键是通过找AC 中点证明线面垂直,从而确定出线线垂直关系,和常规的求解异面直线所成角的方法不同.5.D解析:D【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可.【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==,4AN =,故()224232R =+=2441872S R πππ==⨯=.故选:D.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法. 6.C解析:C【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算.【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V =三棱柱ABC A B C '''-V +四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.7.D解析:D【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE , ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅,1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE , 1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.C解析:C【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A B C D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FG EF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角,因为12AB AA ==,所以14FAG π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FG EGF EG ∠==23236=. 所以二面角11B A B E --3. 故选:C【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键. 10.A解析:A【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示;对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF ,∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确;对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又ACMC C ,所以BD ⊥平面ACM ,所以BD ⊥AM , 同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2;且侧棱AD ⊥底面BCD ,1AD =, 所以112=221=323V ⨯⨯⨯⨯, 故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下: (1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C解析:C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积.【详解】如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长,所以球O 的半径R 满足2222688164R =++=所以球O 的表面积24164S R ππ==.故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,2AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 14.【分析】在矩形中作交于交于在翻折后的几何体中证得平面平面从而平面得是直线与平面所成的角设C 求得的范围后可得范围【详解】在矩形中作交于交于设由图易知∴即∴则在翻折后的几何体中又平面∴平面又平面∴平面平 解析:(0,]6π 【分析】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,在翻折后的几何体中,证得平面ODM ⊥平面ABCF ,从而DM ⊥平面ABCF ,得DFM ∠是直线FD 与平面ABCF 所成的角.设(01)CF x x =<<C ,求得sin θ的范围后可得θ范围.【详解】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,设(01)CF x x =<<,AM t =,由图易知DAM FDA △△, ∴AM AD DA DF =,即112t x =-,∴12t x=-,01x <<,则112t <<. 在翻折后的几何体中,AF OD ⊥,AF OM ⊥,又OD OM O =,,OD OM ⊂平面ODM ,∴AF ⊥平面ODM ,又AF ⊂平面ABCF ,∴平面ODM ⊥平面ABCF ,又平面ABD ⊥平面ABC AB =.平面ODM 平面ABD DM =,∴DM ⊥平面ABCF ,连接MF ,则DFM ∠是直线FD 与平面ABCF 所成的角.DFM θ∠=,而21DM t =-,12DF x t =-=, ∴2422211sin 1()24DM t t t t t DF θ==-=-+=--+, ∵112t <<,∴2114t <<,∴10sin 2θ<≤,即06πθ<≤. 故答案为:(0,]6π.【点睛】方法点睛:本题考查求直线与平面所成的角,求线面角常用方法:(1)定义法:作出直线与平面所成的角并证明,然后在直角三角形中计算可得;(2)向量法:建立空间直角坐标系,由直线的方向向量与平面的法向量夹角的余弦的绝对值等于直线与平面所成角的正弦值计算.15.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 16.12【分析】根据题意可判断出两两垂直即可求出外接球半径得出表面积【详解】等腰直角三角形中为的中点满足两两垂直设外接球的半径为则即三棱锥的外接球的表面积为故答案为:【点睛】本题考查三棱锥外接球问题解题 解析:12π【分析】根据题意可判断出,,DC DA DB 两两垂直,即可求出外接球半径,得出表面积.【详解】等腰直角三角形ABC 中,2C π∠=,22CA CB ==,D 为AB 的中点,2CD AD BD ∴===,,CD AD CD BD ∴⊥⊥, 22AB =,满足222AD BD AB +=,AD BD ∴⊥,,,DC DA DB ∴两两垂直,设外接球的半径为R ,则222222223R =++=,即3R =,∴三棱锥C ABD -的外接球的表面积为2412R ππ=.故答案为:12π.【点睛】本题考查三棱锥外接球问题,解题的关键是得出,,DC DA DB 两两垂直.17.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体 解析:②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角.【详解】①八面体的体积为21822(22)3⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF ,解得63EH =,所以E 到平面ADF 的距离为263; ④因为//ED BF ,所以EC 与BF 所成角为60︒.故答案为:②④.【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段. 18.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则221116562223S lR R R παπ===⨯=,解得30R =,扇形弧长l 为锥底面周长2r π,∴底面的半径5r =,∴圆锥的高为225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状都不可能是三角形解析:15,66⎛⎫ ⎪⎝⎭【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(1)证明见解析;(2)3π. 【分析】(1)取PB 中点F ,连接,EF FC ,证明EFCO 是平行四边形,得线线平行后可证得线面平行;(2)取AB 中点G ,连接,,OG PG OP ,可证PGO ∠(或其补角)是二面角PAB C 的平面角.然后在PGO △中求解.【详解】(1)取PB 中点F ,连接,EF FC , 因为E 是PA 中点,∴//EF AB ,且12EF AB =, 又ABCD 是矩形,//,AB CD AB CD =,O 是CD 中点,∴//,EF OC EF OC =,∴EFCO 是平行四边形,∴//OE CF ,而OE ⊄平面PBC ,CF ⊂平面PBC ,∴//OE 平面PBC .(2)取AB 中点G ,连接,,OG PG OP ,ABCD 是矩形,O 是CD 中点,则OG AB ⊥,又PA PC CD ==,∴PO CD ⊥,而平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PO ⊂平面PCD , ∴PO ⊥平面ABCD ,∵,OG AB ⊂平面ABCD ,∴PO AB ⊥,PO OG ⊥. PO OG O =,,PO OG ⊂平面POG ,∴AB ⊥平面POG ,而PG ⊂平面POG , ∴AB PG ⊥,∴PGO ∠(或其补角)是二面角PAB C 的平面角. 设1AD =,则1OG =,2CD =,3PO =,∴3tan 3PO PGO OG ∠===,[0,]PGO π∠∈,∴3PGO π∠=. ∴二面角P AB C 的大小为3π.【点睛】方法点睛:本题考查证明线面平行,考查求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角,然后通过解三角形得解;(2)空间向量法:建立空间直角坐标系,求出二面角的两个面的法向量,由法向量夹角得二面角.22.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论.【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD ,因为BD ⊂底面ABCD ,所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒,22CD AB AD ==,设1AB =,则1AD =,2CD = 所以2BD =,2BC =,所以在BCD ∆中,222BD BC CD +=, 所以90CBD ∠=︒,所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂=所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC证明如下:取线段11C D 的中点为点E ,连结AE ,如图,所以11//C D CD ,且112C P CD = 因为//AB CD ,12AB CD =, 所以1//C E AB ,且1C E AB =所以四边形1ABC E 是平行四边形.所以1//AE CB .又因为1BC ⊂平面1BDC ,AE ⊂/平面1BDC ,所以//AE 平面1BDC .【点睛】关键点点睛:解决是否存在问题时,可以先寻求特殊位置,再证明,本题中取中点后连结AE ,可利用平行四边形 1//AE CB ,再根据线面平行的判定定理求证即可,属于先猜后证的方法.23.(1)证明见解析;(2)证明见解析.【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =,所以底面ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力.24.(1)证明见解析;(2)159. 【分析】(1)根据等腰三角形三线合一证明SE AD ⊥,BE AD ⊥,即可证明出AD ⊥平面SEB ,所以平面SBE ⊥平面ABCD ;(2)先证明出BC ⊥平面SEB ,利用三角形相似可得F 到平面SBE 的距离1233d BC ==,计算出SEB △的面积,再代入体积计算公式求解.【详解】(1)证明:∵E 是AD 的中点,6SA SD ==∴SE AD ⊥ 因为ABCD 是菱形,60BAD ∠=︒,∴BE AD ⊥, ∵BE SE E =∩∴AD ⊥平面SEB ,∵AD ⊂平面ABCD ,∴平面SBE ⊥平面ABCD .(2)连接BE ,AC 相交于点G ,则由三角形相似得2CG AG =∵//AD BC ,∴BC ⊥平面SEB ,∵点E 是棱AD 的中点,F 是棱SC 上靠近S 的一个三等分点.∴//SA FG ,∴21CF CG BC SF GA AE ===, ∴F 到平面SBE 的距离1233d BC ==,115352SBE S ∆=⨯⨯= ∴三棱锥F SEB -的体积1153F SEB SBE V S d -∆=⨯⨯=.【点睛】方法点睛:关于三棱锥的体积的求解常见的有两种解法,一是利用等体积法,需要证明出线面垂直,再换底换高计算;二是利用空间直角坐标系,计算点到面的距离,然后代入体积计算公式即可.25.(1)证明见解析;(2)45.【分析】(1)利用余弦定理求出PC ,利用勾股定理可证得PC BC ⊥,再由PC AB ⊥结合线面垂直的判定定理可证得PC ⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,推导出直线BF 与平面PAC 所成的角为BFH ∠,求出BH 、FH ,即可求得BFH ∠,即为所求.【详解】(1)在PBC 中,43PB =23BC =60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=, PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,如下图所示:ABC 是边长为3H 为AC 的中点,BH AC ∴⊥且sin 603BH AB ==,PC ⊥平面ABC ,BH ⊂平面ABC ,BH PC ∴⊥,AC PC C ⋂=,BH ∴⊥平面PAC ,所以,BFH ∠就是直线BF 与平面PAC 所成角.HF ⊂平面PAC ,BH FH ∴⊥, F 、H 分别为PA 、AC 的中点,132FH PC ∴==,BH FH ∴=, 所以,BHC △为等腰直角三角形,且BHF ∠为直角,所以,45BFH ∠=.因此,直线BF 与平面PAC 所成角为45.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.26.(1)证明见解析;(2)263. 【分析】(1)证明出AC ⊥平面PBD ,利用面面垂直的判定定理可证得结论成立;。
高中数学必修2测试题附答案
高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。
2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。
3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。
4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。
5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。
6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。
因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。
9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。
人教版高中数学必修2圆与方程章末测验(含两套,附答案)
人教版高中数学必修2圆与方程章末测验(含两套,附答案)第四章 圆与方程章末测验一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线340x y b +-=与圆()()22111x y -+-=相切,则b 的值是( ) A .2-或12B .2或12-C .2或12D .2-或12-2.点A (3,-2,4)关于点(0,1,-3)的对称点的坐标是( ) A .(-3,4,-10) B .(-3,2,-4) C .⎝ ⎛⎭⎪⎫32,-12,12D .(6,-5,11)3.过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 间的距离为( ) A .4B .2C .85 D .1254.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程是( ) A .4x -y -4=0 B .4x +y -4=0 C .4x +y +4=0D .4x -y +4=05.直线l :ax -y +b =0,圆M :x 2+y 2-2ax +2by =0,则l 与M 在同一坐标系中的图形可能是( )6.若圆C 1:(x -a )2+(y -b )2=b 2+1始终平分圆C 2:(x +1)2+(y +1)2=4的周长,则实数a ,b 应满足的关系式是( )A .a 2-2a -2b -3=0 B .a 2+2a +2b +5=0 C .a 2+2b 2+2a +2b +1=0D .3a 2+2b 2+2a +2b +1=07.设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线且|PA |=1,则P 点的轨迹方程是( ) A .(x -1)2+y 2=4 B .(x -1)2+y 2=2 C .y 2=2xD .y 2=-2x8.设直线2x -y -3=0与y 轴的交点为P ,点P 把圆(x +1)2+y 2=25的直径分为两段,则这两段之比为( ) A .73或37B .74或47C .75或57D .76或679.若x 、y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( ) A .5-5B .5- 5C .30-10 5D .无法确定10.过圆x 2+y 2-4x =0外一点(m ,n )作圆的两条切线,当这两条切线相互垂直时,m 、n 满足的关系式是( ) A .(m -2)2+n 2=4 B .(m +2)2+n 2=4 C .(m -2)2+n 2=8D .(m +2)2+n 2=811.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x +y -2=0 C .x -y -2=0D .x -y +2=012.直线y =x +b 与曲线x =1-y 2有且只有一个公共点,则b 的取值范围是( ) A .|b |= 2 B .-1<b <1或b =- 2 C .-1<b ≤1D .-1<b ≤1或b =- 2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.点M (1,2,-3)关于原点的对称点是________.14.两圆x 2+y 2+4y =0,x 2+y 2+2(a -1)x +2y +a 2=0在交点处的切线互相垂直,那么实数a 的值为________.15.已知P (3,0)是圆x 2+y 2-8x -2y +12=0内一点,则过点P 的最短弦所在直线方程是________,过点P 的最长弦所在直线方程是________.16.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.18.(12分)在三棱柱ABO-A′B′O′中,∠AOB=90°,侧棱OO′⊥面OAB,OA=OB=OO′=2.若C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小.19.(12分)已知A(3,5),B(-1,3),C(-3,1)为△ABC的三个顶点,O、M、N分别为边AB、BC、CA的中点,求△OMN的外接圆的方程,并求这个圆的圆心和半径.20.(12分)已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9.(1)求证:无论m为何值,直线l与圆C总相交.(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值.21.(12分)矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程.22.(12分)已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程.(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使得|PM |取得最小值的点P 的坐标.答 案1. C 2. A 3. A 4. A 5. B 6. B 7. B 8. A 9. C 10. C 11. D 12. D 13. (-1,-2,3) 14. -215. x +y -3=0,x -y -3=0 16. (x +2)2+y 2=2 17. ⎝ ⎛⎭⎪⎫x +122+(y +1)2=94.18. E (0,2,1)为线段BB ′的中点.19. x 2+y 2+7x -15y +36=0,⎝ ⎛⎭⎪⎫-72,152,12130.20. (1)见解析;(2)m 为-52时,最小值为27.21. (1)3x +y +2=0;(2)(x -2)2+y 2=8.22. (1)y =(2±6)x 或x +y +1=0或x +y -3=0;(2)⎝ ⎛⎭⎪⎫-310,35.第四章 圆与方程章末测验二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆22240x y x y ++-=的圆心坐标为( ) A .()1,2-B .()1,2-C .()1,2D .()1,2--2.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2-4y =0的位置关系是( ) A .外离B .相交C .外切D .内切3.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .4个B .3个C .2个D .1个4.设直线过点(a,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( ) A .± 2B .±2C .±2 2D .±45.已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( ) A .-3或4B .6或2C .3或-4D .6或-26.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( ) A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =07.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧, 则a 2+b 2=( ) A . 2B .2C .1D .38.若直线y =kx +1与圆x 2+y 2=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或 3B . 3C .-2或 2D . 29.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( ) A .6B .4C .3D .210.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A .53B .213C .253D .4311.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A.2x+y-3=0 B.2x-y-3=0C.4x-y-3=0 D.4x+y-3=012.若圆C:x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:x-y+c=0的距离为22,则c的取值范围是()A.[-22,22] B.(-22,22)C.[-2,2] D.(-2,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知点A(1,2,3),B(2,-1,4),点P在y轴上,且|PA|=|PB|,则点P的坐标是__________________.14.已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y-27=0相交于A、B两点,则线段AB 的中垂线方程为__________________.15.过点A(1,2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=__________________.16.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)求经过两点A(-1,4),B(3,2)且圆心C在y轴上的圆的方程.18.(12分)如图,正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,试求MN的长.19.(12分)已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C;(2)当|PQ|=23时,求直线l的方程.20.(12分)某市气象台测得今年第三号台风中心在其正东300km处,以40km/h的速度向北偏西60°方向移动.据测定,距台风中心250 km的圆形区域内部都将受玻台风影响,请你推算该市受台风影响的持续时间.21.已知点(0,1),(3+22,0),(3-22,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.22.(12分)如下图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.答 案1. B 2. B 3. B 4. B 5. D 6. C 7. B 8. A 9. B 10. B 11. A 12. C 13. (0,-76,0)14. x +y -3=0 15.2216. (x -1)2+y 2=2. 17. x 2+(y -1)2=10. 18.64a . 19. (1)见证明;(2)x =-1或4x -3y +4=0. (1)证明:因为l 与m 垂直,且k m =-13,所以k l =3,故直线l 的方程为y =3(x +1),即3x -y +3=0. 因为圆心坐标为(0,3)满足直线l 方程, 所以当l 与m 垂直时,l 必过圆心C . 20. 见解析.【解析】以该市所在位置A 为原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向建立直角坐标系.开始时台风中心在B (300,0)处,台风中心沿倾斜角为150°方向直线移动,其轨迹方程为y =-33(x -300)(x ≤300).该市受台风影响时,台风中心在圆x 2+y 2=2502内,设直线与圆交于C ,D 两点,则|CA |=|AD |=250,所以台风中心到达C 时,开始受影响该市,中心移至点D 时,影响结束,作AH ⊥CD 于点H ,则|AH |=100313+1=150,|CD |+2|AC |2-|AH |2=400,∴t =4004=10(h).即台风对该市的影响持续时间为10小时.21. (1)(x -3)2+(y -1)2=9;(2)-1. 22. (1)y =3或3x +4y -12=0;(2)[0,125].。
2020秋新人教版高中数学必修二第六章平面向量及其应用考试测试卷(含答案解析)
第六章 平面向量及其应用 测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.在□ABCD 中,若AD ⃗⃗⃗⃗⃗ =(2,8),AB ⃗⃗⃗⃗⃗ =(-3,4),则AC ⃗⃗⃗⃗⃗ = ( ) A.(-1,-12) B.(-1,12) C.(1,-12) D.(1,12)答案:B2.在△ABC 中,若A =π3,BC =3,AB =√6,则C =( )A.π4或3π4B.3π4C.π4D.π6答案:C3.若四边形ABCD 满足AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =0,(AB ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ )·AC ⃗⃗⃗⃗⃗ =0,则该四边形一定是( )A.正方形B.矩形C.菱形D.直角梯形 答案:C4.(2020年新高考全国Ⅰ卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ 的取值范围是 ( )A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)答案:A5.若点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ⃗⃗⃗⃗⃗ 在CD ⃗⃗⃗⃗⃗ 方向上的投影为( )A.3√22B.3√152C.-3√22D.-3√152答案:A6.在△ABC 中,若AB =BC =3,∠ABC =60°,AD 是边BC 上的高,则AD ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ 的值等于 ( )A.-94B.94C.274D.9答案:C7.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果2b =a +c ,B =30°,△ABC 的面积为32,那么b 等于 ( )A.1+√32B.1+√3C.2+√22D.2√3答案:B8.如图,海平面上的甲船位于中心O 的南偏西30°,与O 相距 15 n mile 的C 处.若甲船以35 n mile/h 的速度沿直线CB 去营救位于中心O 正东方向25 n mile 的B 处的乙船,则甲船到达B 处需要的时间为( )A.12 hB.1 hC.32 hD.2 h 答案:B二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若O 是平行四边形ABCD 对角线的交点,则 ( ) A.AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗B.DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ D.OB ⃗⃗⃗⃗⃗ =12(DA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ) 答案:AB10.在△ABC 中,若a =5√2,c =10,A =30°,则B 可能是 ( ) A.135° B.105° C.45° D.15° 答案:BD11.已知向量 e 1=(-1,2),e 2=(2,1),若向量a =λ1e 1+λ2e 2,则使λ1λ2<0成立的a 可能是( )A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)答案:AC12.定义平面向量之间的一种运算“☉”:对任意的a =(m ,n ),b =(p ,q ),令a ☉b =mq -np ,下列说法正确的是 ( )A.若a 与b 共线,则a ☉b =0B.a ☉b =b ☉aC.对任意的λ∈R ,有λa ☉b =λ(a ☉b )D.(a ☉b )2+(a ·b )2=|a |2|b |2 答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.在△ABC 中,若3a 2-2ab +3b 2-3c 2=0,则cos C 的值为13.14.若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |=2√5. 15.(本题第一空2分,第二空3分)已知在△ABC中,AB =AC =4,BC =2,D 为AB 延长线上一点,连接CD ,若BD =2,则△BDC 的面积是√152,cos ∠CDB =√104. 16.太湖中有一个小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,若汽车沿公路行驶1 km 后,测得小岛在南偏西75°的方向上,则小岛到公路的距离是√36km .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)在△ABC 中,a =3,b =2√6,B =2A. (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =2√6,B =2A , 所以在△ABC 中,由正弦定理得3sinA =2√6sin2A,所以2sinAcosA sinA=2√63.故cos A =√63.(2)由(1),知cos A =√63, 所以sin A =√1-cos 2A =√33.因为B =2A ,所以cos B =2cos 2A -1=13.所以sin B =√1-cos 2B =2√23. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =5√39,所以c =asinC sinA=5.18.(12分)如图,在平面直角坐标系中,|OA ⃗⃗⃗⃗⃗ |=2|AB ⃗⃗⃗⃗⃗ |=2,∠OAB =2π3,BC⃗⃗⃗⃗⃗ =(-1,√3). (1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.(1)解:设点B 的坐标为(x B ,y B ),则x B =|OA ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |·cos(π-∠OAB )=52,y B =|AB ⃗⃗⃗⃗⃗ |·sin(π-∠OAB )=√32,所以OC ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =(52,√32)+(-1,√3)=(32,3√32), 所以点B 的坐标为(52,√32),点C 的坐标为(32,3√32). (2)证明:因为OC ⃗⃗⃗⃗⃗ =(32,3√32),AB ⃗⃗⃗⃗⃗ =(12,√32),所以OC ⃗⃗⃗⃗⃗ =3AB ⃗⃗⃗⃗⃗ ,所以OC ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ . 因为BC ⃗⃗⃗⃗⃗ =(-1,√3),所以|BC ⃗⃗⃗⃗⃗ |=2. 因为|OC ⃗⃗⃗⃗⃗ |≠|AB ⃗⃗⃗⃗⃗ |,|OA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2, 所以四边形OABC 为等腰梯形.19.(12分)在四边形ABCD 中,已知AB ⃗⃗⃗⃗⃗ =(6,1),BC ⃗⃗⃗⃗⃗ =(x ,y ),CD ⃗⃗⃗⃗⃗ =(-2,-3),BC ⃗⃗⃗⃗⃗ ∥DA ⃗⃗⃗⃗⃗ .(1)求x 与y 的解析式;(2)若AC ⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,求x ,y 的值以及四边形ABCD 的面积. 解:如图所示.(1)因为AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x +4,y -2), 所以DA ⃗⃗⃗⃗⃗ =-AD ⃗⃗⃗⃗⃗ =(-x -4,2-y ). 因为BC ⃗⃗⃗⃗⃗ ∥DA ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =(x ,y ), 所以x (2-y )-(-x -4)y =0,即x +2y =0. (2)由题意,得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =(x +6,y +1), BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x -2,y -3).因为AC ⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,所以AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0, 即(x +6)(x -2)+(y +1)(y -3)=0.由(1)可知x =-2y ,所以y 2-2y -3=0,所以y =3或y =-1. 当y =3时,x =-6,此时,BC ⃗⃗⃗⃗⃗ =(-6,3),AC ⃗⃗⃗⃗⃗ =(0,4),BD ⃗⃗⃗⃗⃗⃗ =(-8,0), 所以|AC⃗⃗⃗⃗⃗ |=4,|BD ⃗⃗⃗⃗⃗⃗ |=8, 所以S 四边形ABCD =12|AC⃗⃗⃗⃗⃗ ||BD ⃗⃗⃗⃗⃗⃗ |=16. 当y =-1时,x =2,此时,BC ⃗⃗⃗⃗⃗ =(2,-1),AC ⃗⃗⃗⃗⃗ =(8,0),BD ⃗⃗⃗⃗⃗⃗ =(0,-4). 所以|AC⃗⃗⃗⃗⃗ |=8,|BD ⃗⃗⃗⃗⃗⃗ |=4,S 四边形ABCD =16. 综上可知{x =-6,y =3或{x =2,y =-1,S 四边形ABCD =16.20.(12分)如图,某海轮以60 n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40 min 后到达点B ,测得油井P 在南偏东30°,海轮改为沿北偏东60°的航向再行驶80 min 到达点C ,求P ,C 间的距离.解:由题意知AB =40 n mile,∠BAP =120°,∠ABP =30°, 所以∠APB =30°,所以AP =40 n mile,所以BP 2=AB 2+AP 2-2AP ·AB ·cos 120°=402+402-2×40×40×(-12)=402×3,所以BP =40√3 n mile . 因为∠PBC =90°,BC =80 n mile,所以PC 2=BP 2+BC 2=(40√3)2+802=11 200, 所以PC =40√7 n mile,即P ,C 间的距离为40√7 n mile .21.(12分)在边长为1的菱形ABCD 中,A =60°,E 是线段CD 上一点,满足|CE ⃗⃗⃗⃗⃗ |=2|DE ⃗⃗⃗⃗⃗ |,如图所示,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b .(1)用a ,b 表示BE⃗⃗⃗⃗⃗ . (2)在线段BC 上是否存在一点F ,满足AF ⊥BE ?若存在,确定点F 的位置,并求|AF⃗⃗⃗⃗⃗ |;若不存在,请说明理由.解:(1)根据题意,得BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =b ,CE ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ =23BA ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ =-23a ,所以BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE⃗⃗⃗⃗⃗ =b -23a . (2)结论:在线段BC 上存在使得4|BF ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |的一点F ,满足AF ⊥BE ,此时|AF⃗⃗⃗⃗⃗ |=√214. 求解如下:设BF ⃗⃗⃗⃗⃗ =t BC ⃗⃗⃗⃗⃗ =t b ,则FC ⃗⃗⃗⃗⃗ =(1-t )b (0≤t ≤1), 所以AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF⃗⃗⃗⃗⃗ =a +t b . 因为在边长为1的菱形ABCD 中,A =60°, 所以|a |=|b |=1,a ·b =|a ||b |cos 60°=12.因为AF ⊥BE ,所以AF ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(a +t b )·(b -23a )=(1-23t )a ·b -23a 2+tb 2=(1-23t )×12-23+t =0,解得t =14,所以AF⃗⃗⃗⃗⃗ =a +14b , 所以|AF ⃗⃗⃗⃗⃗ |=√AF⃗⃗⃗⃗⃗ 2=√a 2+12a ·b +116b 2=√1+12×12+116=√214. 22.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足 sin A +√3cos A =2. (1)求角A 的大小.(2)现给出三个条件:①a =2;②B =π4;③c =√3b.试从中选出两个可以确定△ABC 的条件,写出你的方案,并以此为依据求△ABC 的面积.(写出一种方案即可)解:(1)依题意,得2sin (A +π3)=2,即sin (A +π3)=1.因为0<A <π,所以π3<A +π3<4π3,所以A +π3=π2,所以A =π6.(2)参考方案:选择①②. 由正弦定理a sinA =bsinB,得b =asinB sinA=2√2.因为A +B +C =π,所以sin C =sin(A +B )=sin A cos B +cos A sin B =√2+√64, 所以S △ABC =12ab sin C =12×2×2√2×√2+√64=√3+1.。
新课标高中数学测试题(必修2)全套含答案(K12教育文档)
新课标高中数学测试题(必修2)全套含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新课标高中数学测试题(必修2)全套含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新课标高中数学测试题(必修2)全套含答案(word版可编辑修改)的全部内容。
(数学2必修)第一章 空间几何体[基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A。
棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A 。
3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.235.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72π C 。
52π D 。
32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和视图15,则这个棱柱的侧面积是( )A .130B .140C .150D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱.2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
高中数学必修2测试试卷
高中数学测试试卷(4)1)0(0=+≠=++y x abc c by ax 与圆|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在 2. a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件3.点M (x 0,y 0)是圆x 2+y 2=a 2 (a>0)内不为圆心的一点,则直线x 0x+y 0y=a 2与该 圆的位置关系是( )A .相切B .相交C .相离D .相切或相交 4.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个5.命题“∀x >0,都有x 2-x ≤0”的否定是 ( ).A .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >06.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27π B .56π C .14π D .64π7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 28.如图8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图8-25,在三棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q ,且满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1B .2∶1C .4∶1D .3∶110.图8-23中多面体是过正四棱柱的底面正方形ABCD 的顶点A 作截面AB 1C 1D 1而截得的,且B 1B=D 1D 。
2019年高中数学 必修2 直线过定点 练习题34题(含答案)
必修2 直线过定点练习题34题(含答案)一、选择题1.直线kx-y+1-3k=0,当k变动时,所有直线都通过定点( )A.(0,0) B.(0,1) C.(3,1) D.(2,1)2.当a取不同实数时,直线(a-1)x-y+2a+1=0恒过一定点,则这个定点是( )A.(2,3) B.(-2,3) C.(1,-0.5) D.(-2,0)3.已知定点P(-2,0)和直线l:(1+3λ)x+(1+2λ)y=2+5λ(λ∈R),则点P到直线l的距离的最大值为( )A.2B.C.D.24.不管m怎样变化,直线(m+2)x-(2m-1)y-(3m-4)=0恒过的定点是( )A. (1,2) B. (-1,-2) C. (2,1) D. (-2,-1)5.已知实数a,b满足a+2b=1,则直线ax+3y+b=0必过定点,这个定点的坐标为( )6.直线mx+2y+m+4=0经过一定点,则,该点坐标是( )A(-1,-2) B.(1,2) C.(2,-1) D.(2,1)7.直线mx-y+2m+1=0经过一定点,则该点的坐标是( )A.(-2,1) B.(2,1) C.(1,-2) D.(1,2)8.方程ax-y+2a+3=0所表示的直线恒过定点( )A.(-2,3) B.(2,3) C.(-2,3)he(2,3) D.(2,-3)9.直线(2k-1)x-(k+3)y-(k-11)=0(k∈R)所经过的定点是( )A.(5,2) B.(2,3) C.(-0.5,3) D.(5,9)10.不论a为何值,直线ax+(2-a)y+1=0恒过定点为( )A.(0,0) B.(0,1) C.(0.5,-0.5) D.(-0.5,-0.5)11.直线kx﹣y+1=3k,当k变动时,所有直线都通过定点( )A.(0,0) B.(0,1) C.(3,1) D.(2,1)12.直线(2m+1)x+(m+1)y-7m-4=0过定点 ( )A.(1,-3) B.(4,3) C.(3,1) D.(2,3)13.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点( )A.(0,4) B.(0,2) C.(-2,4) D.(4,-2)14.当k变化时,直线kx+y-2=3k过定点( )A.(0,2) B.(3,2) C.(-3,2) D.(3,-2)15.若实数a,b满足a+2b=3,则直线2ax-by-12=0必过定点( )A.(-2,8) B.(2,8) C.(-2,-8) D.(2,-8)二、填空题16.过点A(-3,1)的所有直线中,与原点距离最远的直线方程是 .17.直线kx-y+1=k,当k变动时,所有直线都通过定点_________.18.m为任意实数时,直线(m-1)x+(2m-1)y=m-5必过定点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章或节分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
目录:数学2(必修)数学2(必修)第一章:空间几何体[基础训练A组]数学2(必修)第一章:空间几何体[综合训练B组]数学2(必修)第一章:空间几何体[提高训练C组]数学2(必修)第二章:点直线平面[基础训练A组]数学2(必修)第二章:点直线平面[综合训练B组]数学2(必修)第二章:点直线平面[提高训练C组]数学2(必修)第三章:直线和方程[基础训练A组]数学2(必修)第三章:直线和方程[综合训练B组]数学2(必修)第三章:直线和方程[提高训练C组]数学2(必修)第四章:圆和方程 [基础训练A组]数学2(必修)第四章:圆和方程 [综合训练B组]数学2(必修)第四章:圆和方程 [提高训练C组](数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为( )A B . C . D . 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )A B 2 C .2D 35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
(1) 分别计算按这两种方案所建的仓库的体积; (2) 分别计算按这两种方案所建的仓库的表面积; (3) 哪个方案更经济些?2.将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积(数学2必修)第一章 空间几何体 [综合训练B 组]一、选择题1.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+ B .221+ C . 222+ D . 21+ 2.半径为R 的半圆卷成一个圆锥,则它的体积为( )A .324R B .38R C .324R D .38R 3.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cmπC.216cmπD.220cmπ4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B.6 C.5 D.35.棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )C A .1:7 B.2:7 C.7:19 D.5:16 6.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92 B.5 C.6 D.152二、填空题1.圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________。
2.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________。
3.等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个 端点出发,沿表面运动到另一个端点,其最短路程是______________。
5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。
6.若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________。
三、解答题1.有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?2.已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线图(1) 图(2)长.(数学2必修)第一章空间几何体 [提高训练C组]一、选择题1.下图是由哪个平面图形旋转得到的()A B C2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:93.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是()A.23B.76C.45D.564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V和2V,则12:V V=()A. 1:3B. 1:1C. 2:1D. 3:15.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A. 8:27B. 2:3C. 4:9D. 2:96.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:A. 224cmπ,212cmπB. 215cmπ,212cmπC. 224cmπ,236cmπD. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。
2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 .3.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
三、解答题1. (如图)在底半径为2,母线长为4 求圆柱的表面积2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,CD =2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.(数学2必修)第二章 点、直线、平面之间的位置关系[基础训练A 组]一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )AA .0B .1C .2D .32.下面列举的图形一定是平面图形的是( )A .有一个角是直角的四边形B .有两个角是直角的四边形C .有三个角是直角的四边形D .有四个角是直角的四边形 3.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能 4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,DEF 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )A .030B . 090 C . 060 D .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成( )个部分 A .4 B .5 C .7 D .86.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ) A .90 B .60 C .45 D .30二、填空题1. 已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。
2. 直线l 与平面α所成角为030,,,l A m A m αα=⊂∉ ,则m 与l 所成角的取值范围是 _________3.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为1234,,,d d d d ,则1234d d d d +++的值为 。