人教版高中数学必修1_全册导学案

合集下载

人教版高一数学必修一导学案(全册)

人教版高一数学必修一导学案(全册)

最新人教版高一数学必修一导学案(全册)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§1.1 集合的含义及其表示(1)【教学目标】1.初步理解集合的概念,知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈. 3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.【考纲要求】1.知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合的含义:构成一个集合.(1)集合中的元素及其表示: .(2)集合中的元素的特性: .(3)元素与集合的关系:(i)如果a是集合A的元素,就记作__________读作“___________________”;(ii)如果a不是集合A的元素,就记作______或______读作“_______________”.【思考】构成集合的元素是不是只能是数或点?【答】2.常用数集及其记法:一般地,自然数集记作____________,正整数集记作__________或___________,整数集记作________,有理数记作_______,实数集记作________.3.集合的分类:按它的元素个数多少来分:(1)________________________叫做有限集;(2)___________________ _____叫做无限集;(3)______________ _叫做空集,记为_____________4.集合的表示方法:(1)______ __________________叫做列举法;(2)________________ ________叫做描述法.(3)______ _________叫做文氏图【例题讲解】例1、下列每组对象能否构成一个集合?(1)高一年级所有高个子的学生;(2)平面上到原点的距离等于2的点的全体;- 2 -- 3 -(3)所有正三角形的全体; (4)方程22x =的实数解;(5)不等式12x +≥的所有实数解.例2、用适当的方法表示下列集合①由所有大于10且小于20的整数组成的集合记作A ; ②直线y x =上点的集合记作B ; ③不等式453x -<的解组成的集合记作C ;④方程组20x y x y +=⎧⎨-=⎩的解组成的集合记作D ;⑤第一象限的点组成的集合记作E ;⑥坐标轴上的点的集合记作F .例3、已知集合{}2|210,A x ax x x R =-+=∈,若A 中至多只有一个元素,求实数a 的取值范围.【课堂检测】1.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是____________2.已知2a ∈A ,a 2-a ∈A ,若A 含2个元素,则下列说法中正确的是 ①a 取全体实数; ②a 取除去0以外的所有实数;③a 取除去3以外的所有实数;④a 取除去0和3以外的所有实数3.已知集合{0,1,2}A x =+,则满足条件的实数x 组成的集合B =- 4 -【教学反思】§1.1 集合的含义及其表示(2)【教学目标】1.进一步加深对集合的概念理解;2.认真理解集合中元素的特性;3. 熟练掌握集合的表示方法,逐渐培养使用数学符号的规范性.【考纲要求】3.知道常用数集的概念及其记法.4.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合()(){}3,2,1,0=A ,则集合A 中的元素有 个.2.若集合{}|0,x ax x R =∈为无限集,则a = .3. 已知x 2∈{1,0,x },则实数x 的值 .4. 集合12|,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A = . 【例题讲解】例1、 观察下面三个集合,它们表示的意义是否相同?(1){}2|1A x y x ==+(2){}2|1B y y x ==+(3){}2(,)|1C x y y x ==+- 5 -例2、含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,求20112011a b +.例3、已知集合{}222,(1),33A a a a a =++++,若1A ∈,求a 的值.【课堂检测】1. 用适当符号填空:(1){}2|,1_____A x x x A ==- (2){}2|60,3____B x x x B =+-=(){}C R x x x C ___52,,22|3∈≤=2.设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -= . 3.将下列集合用列举法表示出来:(){};6|1N m N m m A ∈-∈=且 ()⎭⎬⎫⎩⎨⎧∈∈-=N x N x x B ,99|2- 6 -【教学反思】§1.2 子集·全集·补集(1)【教学目标】1.理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.【考纲要求】1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.【课前导学】1.子集的概念及记法:如果集合A 的任意一个元素都是集合B 的元素( ),则称 集合 A 为集合B 的子集,记为_________或_________读作“_________”或“______________”用符号语言可表示为:________________ ,如右图所示:________________.2.子集的性质:① A A ② ____A ∅ ③ ,A B B C ⊆⊆,则___A C【思考】:A B ⊆与B A ⊆能否同时成立?【答】3.真子集的概念及记法:如果A B⊆,并且A B≠,这时集合A称为集合B的真子集,记为_________或_________读作“____________________”或“__________________”4.真子集的性质:①∅是任何的真子集符号表示为___________________②真子集具备传递性符号表示为___________________【例题讲解】例1、下列说法正确的是_________(1)若集合A是集合B的子集,则A中的元素都属于B;(2)若集合A不是集合B的子集,则A中的元素都不属于B;(3)若集合A是集合B的子集,则B中一定有不属于A的元素;(4)空集没有子集.例2.以下六个关系,其中正确的是_________(1){}∅≠(6)∅⊆(4)0∉∅(5){0}∅⊆∅;(2){}∅∈∅(3){0}∅=∅{}例3.(1)写出集合{a,b}的所有子集,并指出子集的个数;(2)写出集合{a,b,c}的所有子集,并指出子集的个数.- 7 -- 8 -【思考】含有n 个不同元素的集合有 个子集,有 个真子集,有 个非空真子集.例4.集合{|1}A x x =>,集合{|}B x x a =>.(1) 若A B ⊆,求a 的取值范围;(2)若A B ≠⊂,求a 的取值范围.【课堂检测】1.下列关系一定成立的是________(){}13|10x x ≠⊂≤ ()2{1,2}{2,1}⊆ ()(){}(){}3|,2,13=+∈y x y x 2.集合{},0)2)(1(|=--=x x x x A 则集合A 的非空子集有 个.3.若{}{}{},,16|,,23|,,13|Z n n c c C Z n n b b B Z n n a a A ∈+==∈-==∈+==则集合A,B,C 的包含关系为 .【教学反思】§1.2 子集·全集·补集(2)【教学目标】1.理解全集、补集概念,会进行简单集合的运算;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.- 9 -【考纲要求】1. 理解全集、补集概念,会进行简单集合的运算;2. 通过概念教学,提高学生逻辑思维能力.【课前导学】1.全集的概念:如果集合U 包含我们所要研究的各个集合,这时U 可以看做一个全集.全集通常记作_____2.补集的概念:设____________,由U 中不属于A 的所有元素组成的集合称为U 的子集A 的补集, 记为_____读作“__________________________”即:U C A =_______________________U C A 可用右图阴影部分来表示:_______________________3.补集的性质:① U C ∅=__________________② U C U =__________________③ ()U U C C A =______________【例题讲解】例1已知全集2{2,3,23},{|21|,2},{5}U U a a A a C A =+-=-=,求实数a 的值.例2设,{|16},{|22}U R A x x B x a x a ==-≤≤=+≤≤,若U B C A ⊆,求实数a 的取值范围.- 10 - 例3若方程20x x a ++=至少有一个非负实数根,求a 的取值范围.【课堂检测】1.全集{}{}1,2,3,4,5,1,5,,U U A B C A ≠==⊂则集合B 有 个. 2.全集{},321,23|,-=>==a x x A R U 则下面正确的有()1U a C A ≠⊂ ()2U a C A ∈ (){}3a A ∈ (){}4U a C A ≠⊂ 3.(1)已知全集{},3|-≥=x x U 集合{},1|>=x x A 则U C A = .(2)设全集{},|31,,U Z A x x k k Z ===±∈则U C A 为 .【教学反思】§1.3 交集·并集(1)【教学目标】1.理解交集和并集的概念,会求两个集合的交集和并集;2.提高学生的逻辑思维能力,培养学生数形结合的能力;3.渗透由具体到抽象的过程;【考纲要求】交集和并集的概念、符号之间的区别与联系.【课前导学】1.交集: 叫做A 与B 的交集.记作 ,即: .2.并集: 叫做A 与B 的并集,记作 ,即: .3.设集合{}{},,3|,,2|N n n x x B N n n x x A ∈==∈==则________=⋂B A4.设{}{}{},3,3,1,13,2,12=⋂-=--=P M P m m M 则m 的值为 . 【例题讲解】例1.设{1,0,1},{0,1,2,3},A B =-=求A B 及A B .例2.设22{|20},{|6(2)50},A x x px q B x x p x q =-+==++++=若1{}2A B =,求A B .例3. 设集合{24},{}A x x B x x a =-≤≤=<.(1)若A B B =,求a 的取值范围;(2)若A B =∅,求a 的取值范围.【课堂检测】1.设集合{}{}{},4,3,2,3,2,1,2,1===C B A 则()__________.A B C = 2.若集合{}{}|23,|23,S x x x T x x =≤≥=≤≤或则_________S T =.3.设集合{}21,|0 2.5,|,32U R A x x B x x x ⎧⎫==<<=≥≤-⎨⎬⎩⎭或则()()U U C A C B = . 4.已知{}{},1,1,3,3,1,122+--=-+-=a a a B a a A 则{}2,______A B a =-=则.【教学反思】§1.3 交集·并集(2)【教学目标】、(1)掌握集合交集及并集有关性质;运用性质解决一些简单问题;(2)掌握集合的有关术语和符号;使学生树立创新意识.【考纲要求】集合的交、并运算及正确地表示一些简单集合.【课前导学】1.有关性质:A A = A ∅= AB B AA A = A ∅= AB B A2.区间:设,,,a b R a b ∈<且规定[,]a b = ,(,)a b = ,[,)a b = ,(,]a b = ,(,)a +∞= ,(,]b -∞= ,(,)-∞+∞= .3. {1,2,3,4,5,6},{2,3,5},{1,4},())(),U U U U A B C A B C A C B ===求与(并探求(),U C A B ,U U C A C B 三者之间的关系.4.求满足{1,2}P Q =的集合,P Q 共有多少组?【例题讲解】例1设{}{}{},7,1,4,4,2,1,1,22-=+-=+--=C x y B x x A 且C B A = ,求y x ,的值及B A .例2设22{|1|,3,5},{21,2,21},A a B a a a a a =+=+++-若{2,3}A B =,求A B .例3设222{|40},{|2(1)10}.A x x x B x x a x a =+==+++-=(1)若A B B =,求a 的值;(2)若A B B =,求a 的值.例4设全集3{(,)|,},{(,)|1},{(,)|1}2y U x y x R y R M x y P x y y x x -=∈∈===≠+-,求().U C M P【课堂检测】1.设集合{},,3|Z x x x I ∈<={},2,1=A {},2,1,2--=B 则()U A C B 等于 .2.若{}{},,非正整数非负整数==B A 则=B A , =B A .3.设R U =,{},,50|<≤=x x A {},1|≥=x x B 则()()=B C A C U U .4.已知集合C B A ,,满足C B B A =,则C A ____.【教学反思】§2.1.1 函数的概念与图像(1)【教学目标】1.通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;2.了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 .【考纲要求】了解构成函数的三要素;【课前导学】1.函数的定义:设A ,B 是两个 数集,如果按照某种确定的 ,使对于集合A中的 一个数x ,在集合B 中 和它对应,那么这样的对应叫做从A 到 B 的一个函数,记为 ,其中x 叫 ,x 的取值范围叫做函数 的 ,与x 的值相对应的y 的值叫 ,y 的取值范围叫做函数的 ;2.在对应法则R y R x b x y y x f ∈∈+=→,,,:中,若52→,则→-2 ;3.下列图象中不能..作为函数()y f x =的图象的是:y y【例题讲解】例1(1)N x x x ∈→,; (2)R x x x ∈+→,11; (3),y x →其中+∈∈-=N y N x x y ,,1;(4)y x →,其中{}{}3,2,1,0,1,1,0,1,21-∈-∈-=y x x y以上4个对应中,为函数的有 .变式:下列各组函数中,为同一函数的是 ;(1)()3-=x x f 与()962+-=x x x g (2)()1-=x x f 与12)(2+-=t t t g(3)24)(2+-=x x x f 与2)(-=x x g (4)2)(x x f π=与圆面积y 是半径x 的函数例2 求下列函数的定义域:(1)x x f -=11)( (2)22y x =+*变式:若)(x f y =的定义域为[]4,1,)2(+x f 的定义域为 ;例3已知函数223y x x =--+,求1(0),(1),(),()(1)2f f f f n f n --.变式1:函数223,(32)y x x x =--+-≤≤的值域是 函数223y x x =--+,{}2,1,0,1,2--∈x 的值域是 .变式2:若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数2x y =,值域为{}4,1的“同族函数”共有 个;【课堂检测】1. 对于集合{|06}A x x =≤≤,{|03}B y y =≤≤,有下列从A 到B 的三个对应:①12x y x →= ;②13x y x →=;③x y x →=;其中是从A 到B 的函数的对应的序号为 ;2. 函数3()|1|2f x x =+-的定义域为 ____________3. 若2()(1)1,{1,0,1,2,3}f x x x =-+∈-,则((0))f f = ;【教学反思】§2.1.1 函数的概念与图像(2)【教学目标】通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 .【考纲要求】了解构成函数的三要素;【课前导学】1.求下列函数的定义域:(1)22-⋅+=x x y (2)322--=x x y2.函数)(x f y =的定义域为[]4,1-,则函数)2(x f y =的定义域为 ;3.求下列函数的值域:(1))20(1≤<-=x x y (2)2y x=(3))30(322≤≤+-=x x x y【例题讲解】例1.求下列函数的定义域:(1)()01x yx x +=- (2)1y x =+例2.求下列函数的值域:(1)32y x =- (2)[)246,1,5y x x x =-+∈(3)2845y x x =-+ (4)y x =例3(1)已知函数y =R ,求实数m 的取值范围;(2)设[]1,(1)A b b =>,函数21()(1)12f x x =-+,当x A ∈,()f x 的值域也是A ,求b 的值.【课堂检测】1.函数y =的定义域为 ,111y x=+的定义域为 .2.函数211y x =+的值域为 .3.函数y x =的值域为 .【教学反思】§2.1.1 函数的概念与图像(3)【教学目标】1.理解函数图象的意义;2.能正确画出一些常见函数的图象;3.会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;4.从“形”的角度加深对函数的理解. 【课前导学】1.函数的图象:将函数()f x 自变量的一个值0x 作为 坐标,相应的函数值作为 坐标,就得到坐标平面上的一个点00(,())x f x ,当自变量 ,所有这些点组成的图形就是函数()y f x =的图象.2.函数()y f x =的图象与其定义域、值域的对应关系:函数()y f x =的图象在x 轴上的射影构成的集合对应着函数的 ,在y 轴上的射影构成的集合对应着函数的 .3. 函数()f x x =与2()x g x x =的图象相同吗?并画出函数2()x g x x=的图像.4.画出下列函数的图象:(1)()1f x x =+; (2)2()(1)1,[1,3)f x x x =-+∈;(3)5y x =,{1,2,3,4}x ∈; (4)()f x =【例题讲解】例1. 画出函数2()1f x x =+的图象,并根据图象回答下列问题:(1)比较(2),(1),(3)f f f -的大小;(2)若120x x <<(或120x x <<,或12||||x x <)比较1()f x 与2()f x 的大小;(3)分别写出函数2()1f x x =+((1,2]x ∈-), 2()1f x x =+((1,2]x ∈)的值域.例2. 已知函数()f x =⎪⎩⎪⎨⎧>≤≤-<+)1(,)1(-1,)1(322x x x x x ,x(1)画出函数图象; (2)求(((2)))f f f -的值(3)求当()7f x =-时,求x 的值;例3作出下列函数的图像;(1) 234y x x =+- (2) 221y x x =--【课堂检测】1.函数()f x 的定义域为[]2,3-,则()y f x =的图像与直线2x =的交点个数为 .2. 函数)(x f y =的图象如图所示,填空: (1)=)0(f ______;(2)=)1(f ______;(3)=)2(f _________;(4)若1121<<<-x x ,则)()(21x f x f 与的大小关系是_______________. 3.画出函数()xf x x x=+的图像.【教学反思】§2.1.2函数的表示方法(1)【教学目标】1.掌握函数的三种表示方法(图象法、列表法、解析法),理解同一个函数可以用不同的方法来表示;2.了解分段函数,会作其图,并简单地应用; 3.会用待定系数法、换元法求函数的解析式. 【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.【课前导学】1.一次函数一般形式为 .2.二次函数的形式:(1)一般式:;(2)交点式:;(3)顶点式: .3.已知()31f g x=,=+,则[()]=-,()23f x xg x xg f x= .[()]4.已知函数()f x.=+-=,求()f x是二次函数,且满足(0)1,(1)()2f f x f x x【例题讲解】例1.下表所示为x与y间的函数关系:那么它的解析式为 .例2. 函数()f x在闭区间[1,2]-上的图象如下图所示,则求此函数的解析式.1例3. (1)已知一次函数)(x f 满足[]34)(+=x x f f ,求)(x f .(2)已知2(1)2f x x x +=-,求()f x .【课堂检测】1.已知21,0()21,0x x f x x x ⎧+≥=⎨+<⎩,(2)f -= ;2(1)f a += .2.已知1)f x =+()f x = .3.若二次函数2223y x mx m =-+-+的图像对称轴为20x +=,则m = ,顶点坐标为 .【教学反思】§2.1.2函数的表示方法(2)【教学目标】掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数;会用待定系数法、换元法求函数的饿解析式;通过实际问题体会数学知识的广泛应用性,培养抽象概括能力和解决问题的能力.【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.【课前导学】1.函数()01)(2≠+=x x xx f ,则)1(x f 是 ; 2.已知1)1(+=+x x f ,那么)(x f 的解析式为 ;3.一个面积为2100m 的等腰梯形,上底长为xm ,下底长为上底长的3倍,则高y 与x 的解析式为 ;4.某种笔记本每本5元,买x ({}4,3,2,1∈x )个笔记本的钱数记为y (元),则以x 为自变量的函数y 的解析式为 ;【例题讲解】例 1. 动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过B 、C 、D 再回到A ,设x 表示点P 的行程,y 表示线段PA 的长,求y 关于x 的函数解析式.变式:如图所示,梯形ABCD 中,CD AB //,5==BC AD ,,10=AB 4=CD ,动 点P 自B 点出发沿DA CD BC →→路线运动,最后到达A 点,设点P 的运动路程为x ,ABP ∆的面积为y ,试求)(x f y =的解析式并作出图像.例2已知函数满足1()2()f x f ax x +=,(1)求(1),(2)f f 的值; (2)求()f x 的解析式.【课堂检测】1.周长为定值l的矩形,它的面积S是此矩形的长为x的函数,则该函数的解析式为;2.若函数()f x满足关系式1()2()3f x f xx+=,则(2)f= ;【教学反思】§2.1.3函数的单调性(1)【教学目标】1. 会运用函数图象判断函数是递增还是递减;2. 理解函数的单调性,能判别或证明一些简单函数的单调性;3. 注意必须在函数的定义域内或其子集内讨论函数的单调性.【考纲要求】通过已学过的函数特别是二次函数,理解函数的单调性,学会运用函数图象理解和研究函数的性质【课前导学】1.下列函数中,在区间()2,0上为增函数的是 ;(1)xy 1= (2)12-=x y (3)x y -=1 (4)2)12(-=x y 2.若b x k x f ++=)12()(在()+∞∞-,上是减函数,则k 的取值范围是 ;3.函数122-+=x x y 的单调递增区间为 ;4.画出函数12+=x y 的图象,并写出单调区间.【例题讲解】例1:画出下列函数图象,并写出单调区间.(1)22y x =-+; (2)1y x=;(3)21, 0()22, 0x x f x x x ⎧+≤=⎨-+>⎩.例2.求证函数1()1f x x=-在()0,+∞上是减函数.思考:在(),0-∞是 函数,在定义域内是减函数吗?例3.求证函数3()f x x x =+在(),-∞+∞上是增函数.【课堂检测】1.函数1062+-=x x y 在单调增区间是 ;2.函数11-=xy 的单调递减区间为 ; 3.函数⎩⎨⎧<≥=)0()0(2x xx x y 的单调递增区间为 ,单调递减区间为 ; 4.求证:函数x x x f +-=2)(在⎪⎭⎫ ⎝⎛∞-21,上是单调增函数.【教学反思】§2.1.3函数的单调性(2)【教学目标】1.理解函数的单调性、最大(小)值极其几何意义;2.会用配方法、函数的单调性求函数的最值;3.培养识图能力与数形语言转换的能力.【课前导学】1.函数12+-=x y 在[]2,1-上的最大值与最小值分别是 ;2.函数x x y +-=2在[]0,3-上的最大值与最小值分别是 ;3.函数12+-=xy 在[]3,1上最大值与最小值分别是 ; 4.设函数)0()(≠=a xa x f ,若)(x f 在()0,∞-上是减函数,则a 的取值范围为 .【例题讲解】例1. (1)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,在(,2]-∞-上是减函数,则实数m 的值为 ;(2)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范围为 ;(3)若函数2()45f x x mx m =-+-的单调递增区间为[2,)-+∞,则实数m 的值为 .例2.已知函数)(x f y =的定义域是],[b a ,a c b <<.当],[c a x ∈时,)(x f 是单调增函数;当],[b c x ∈时,)(x f 是单调减函数,试证明)(x f 在c x =时取得最大值.例3.(1)求函数1()f x x x=+的单调区间; (2)求函数221()x x f x x -+=,1,44x ⎡⎤∈⎢⎥⎣⎦的值域.【课堂检测】1. 函数1)1()(--=x a x f 在()+∞∞-,上是减函数实数a 的取值范围是 .2. 函数2()4(0)f x x mx m =-+>在(,0]-∞上的最小值是 .3. 函数()f x =的最小值是 ,最大值是 .【教学反思】§2.1.3 函数的奇偶性(1)【教学目标】3.了解函数奇偶性的含义;4.掌握判断函数奇偶性的方法,能证明一些简单函数的奇偶性;5.初步学会运用函数图象理解和研究函数的性质。

人教版高中数学必修1全册导学案及答案

人教版高中数学必修1全册导学案及答案

初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几 例) 五、学习过程: 1、阅读教材 P2 页 8 个例子 问题 1:总结出集合与元素的概念: 问题 2:集合中元素的三个特征: 问题 3:集合相等: 问题 4:课本 P3 的思考题,并再列举一些集合例子和不能构成集合的例子。
通过使用集合的语言感受集合语言在描述客观现实和数学问题中的意义学会用数学的思维方式去认识世界解决问题养成事实求是扎实严谨的科学态度
课题:1.1.1 集合的含义与表示(1)
一、三维目标: 知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的 三个特征。 过程与方法:通过实例了解,体会元素与集合的属于关系。 情感态度与价值观:培养学生的应用意识。 二、学习重、难点: 重点:掌握集合的基本概念。 难点:元素与集合的关系。 三、学法指导:认真阅读教材 P1-P3,对照学习目标,完成导学案,适当总结。 四、知识链接: 军训前学校通知:8 月 13 日 8 点,高一年级在操场集合进行军训动员;试问这个通知的对象是 全体的高一学生还是个别学生?
问题 7.集合 {x | x >3 } 与集合 {t | t >3 } 是否表示同一个集合?
六、达标检测: A1.教材 12 页 A 组 3,4 题
B2.方程组
x y 2 的解集用列举法表示为________;用描述法表示为 x y 5
。 A (2)—7 A

B3. {( x, y ) | x y 6, x N , y N } 用列举法表示为 B4.已知 A {x | x 3k 1, k Z }, 用 或 符号填空: (1)5
2、集合与元素的字母表示: 集合通常用大写的拉丁字母 A,B,C…表示,集合的元素用小写的拉丁 字母 a,b,c,…表示。 问题 5:元素与集合之间的关系? A 例 1:设 A 表示“1----20 以内的所有质数”组成的集合,则 3、4 与 A 的关系? 关 系 属 于 不属于

人教版高中数学必修1:11 集合 必修一导学案

人教版高中数学必修1:11 集合 必修一导学案

1 / 9第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示(1课时)【学习目标】1. 学习重点:了解集合、元素与集合的关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2. 学习难点:列举法、描述法.3. 学习意义:了解集合在现代数学中的基础作用,初步体会集合思想在数学中的应用.【预习导学】(一)新课导入:我们在初中接触了一些集合,请你尝试用合适的方法表示下列集合:1. 自然数的集合 ;2. 不等式73x -<的解的集合 ;3. 圆 .(二)自主预习(预习教材P2―P5)完成该下列问题,不明白的做记号.1.集合的含义与特性阅读下列几个例子,理解其含义,能否构成集合?(1)1到20以内的所有素数 ;(2)身材较高的人 ;(3)方程2320x x +-=所有的实数根 ;(4)广美附中高一所有的学生 ;一般地,我们把研究对象统称为 ;把一些元素组成的总体叫 ;集合具有三大特性: 、 、 ,这是判断语句是否确定一个集合的依据;构成两个集合的元素是一样的,我们称之为两个集合 .2.元素与集合的关系(1). 集合通常用大写字母,,,A B C 表示,元素通常用 表示,如果a 是集合A 的元2 / 9素,就说a 属于集合A ,记作: ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作: .(2). 数的集合称之为 ;常用的数集的记法:自然数集(非负整数集)记作 ;正整数集记作 ;整数集记作 ;有理数集记作 ;实数集记作 ;3.集合的表示如何表示一个集合?上面我们表示数集可以采用自然语言描述一个集合,除此以外,还能用什么方法表示集合?(1). 列举法把集合的元素一一列举出来,并用花括号“{}”括起来,这种表示集合的方法叫做 . 请用列举法表示方程2x x =的实数解 ;问题探究:你能不能用列举法表示不等式73x -<的解集?为什么?(2). 描述法如果集合中的元素无法列举,用集合所含元素的共同特征表示集合的方法称为 , 一般形式为 ,其中x 代表元素,P 是确定条件. 用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈; {|0}x x >. 请用描述法表示不等式73x -<的解集 ;【例题精析】题型一: 集合的性质理解例1.下列语句是否能构成一个集合?如果是请指出集合的元素,不是说明理由.(1)全体实数组成的集合 ;(2)我国的小河流 ;(3)大于3小于11的偶数 ;(4)平方值等于1-的全体实数 .例2. 用符号∈或∉填空:0 N 0 R 3.7 +N 3.7 Z 3- Q题型二 集合的表示方法例3. 试分别用列举法和描述法表示下列集合:3 / 9方程220x -=的所有实数根组成的集合; ; .【变式训练】用合适的表示方法表示下列集合:1. 不等式50x -<中所有正整数: ;2. 一次函数3y x =+与26y x =-+的图象的交点组成的集合 .方法总结:1. 列举法的特点是 .2. 描述法的特点是 .【堂上练习】1. 下列说法正确的是A .高一年级中的高个子组成一个集合B .所有小正数组成一个集合C .{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .13611,0.5,,,2244能组成一个集合 2. 给出下列关系:① 12R =;② 2Q ;③3N +-∉;④3.Q -其中正确的个数为A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 试选择适当的集合表示方法表示下列集合(1)由方程290x -=的所有实数根组成的集合 .(2)不等式453x -<的解集 .【课堂小结】1.表示集合的主要的方法有 .2. 注意∈与⊆区别 .3. 集合具有三个性质是: .1.1.2 集合间的基本关系(1课时)【学习目标】4 / 91. 学习重点:理解集合之间包含于、相等的含义,能识集合的子集;了解空集的含义;2. 学习难点:子集、真子集、集合相等、空集之间的含义;3. 学习意义:通过学习集合之间的关系,为后章集合运算打下良好的基础.【预习导学】(一)新课导入回顾:用合适的方法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合 .(2)由大于10小于20的所有实数组成的集合 .(二)自主预习:(预习教材P6-P7)完成该下列问题,不明白的做记号.实数之间有大小关系,两个集合之间有没有关系呢?如:集合{}1,23A =,,{}1,2,3,4,5B =,我们发现,集合A 中任何一个元素都是集合B 中的元素,我们就说集合A 与集合B 有包含关系.1.子集:如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集,记作: ,读作: ,或 .在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为:图1-1 2. 集合相等:若A B B A ⊆⊆且,记作 .如:集合{}{}1,2=(1)(2)0x R x x ∈--=3.真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集,记作: .4.空集:不含有任何元素的集合称为空集,记作: .并规定:空集是任何集合的 ,是任何非空集合的 . 如:{}210x R x ∈+== . 问题探究:你能用合适的方法表示子集、真子集、集合相等,空集之间的关系吗?【例题精析】题型:两集合之间的关系理解B A5 / 9例1.已知集合}{}{12,01A x x B x x =-<<=<<,则A. B A > B . B A ⊆ C. AB D. B A 例2. 用适当的符号填空.(1)a {,,}a b c (2)∅ {}230x R x ∈+= (3){0} 2{|0}x x x -=. 例3.写出集合{}1,2A =的所有子集:(1)不含元素的子集有 .(2)含1个元素的子集有 .(3)含2个元素的子集有 .(4)其中真子集有 个;非空真子集有 个. 【变式训练】写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.方法总结:两个集合之间的关系主要有 .【堂上练习】1. 集合}{Z x x x A ∈<≤=且30的真子集的个数为A . 5B . 6C . 7D . 82. 满足M a ⊆}{的集合},,,{d c b a M 共有A . 6个B . 7个C . 8个D . 15个3. 设集合}{{ax x x B x x A -==-=2,01}02=-,若B A ⊆,求a 的值. 【课后作业】(一)基础题1. 下列结论正确的是A. ∅∈AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈2. 比较下面例子,用合适的符号表示两个集合之间的关系:(1){|(1)(2)0}E x x x x =--= {0,1,2}F = .6 / 9(2){|(1)(2)0}E x x x x =--= {}1,2F = .(3){}3E x x =>- {}2F x x => .3. 设{}2A x x =<,{}1B x x =<,则B A .4. 集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是 A . 1-≤a B . 1≤a C . 1-≥a D . 1≥a(二)能力提升1. 设{}2A x x =<,{}B x x a =<,B A ⊆,则a 的范围是 .2. 设{}2A x x =<,{}B x x a =<,B A ⊂≠,则a 的范围是 .3. 若集合{}{}2=1,1A x x B x ax ===,且满足B A ⊆,求实数a 的取值范围.1.1.3 集合的基本运算(2课时)【学习目标】1. 学习重点:(1)会求两个简单集合的并集与交集、补集.(2)能使用韦恩(Venn )图表达集合的关系及运算.2. 学习难点:两个简单集合的交集、并集、补集.3. 学习意义:理解集合的运算,类比数的运算,深刻理解集合思想.【预习导学】(一)新课导入:用适当的符号填空:0 {0}; ∅ {x |210,x x R +=∈}; {}3x x >- {}2x x >. (二)自主预习:(预习教材P8-P11)完成该下列问题,不明白的做记号.1. 并集、交集、补集(1). 由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集,记作: ,读作:A 并B ,用描述法表示是: .并集的Venn 图如下表示.图1-2 (2). 由属于集合A 属于集合B 的元素所组成的集合,叫作A 、B 的交集,B A7 / 9记作 ,读“A 交B ”, 用描述法表示是: ;交集的 Venn 图如下表示.图1-3 (3). 如果一个集合含有我们所研究问题中所涉及的 元素,那么就称这个集合为全集,通常记作 .(4). 设集合A ⊆U ,由U 中所有 A 的元素组成的集合,称这个集合为 ,记作: ,读作:“A 在U 中补集”; 用描述法表示是 .补集的Venn 图表示如右:图1-42. 两个集合的交、并、补的性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;问题探究1:若A ∩B=A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.问题探究2:若A B= A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.【例题精析】题型一:理解集合的交集、并集、补集运算例1. 设集合{}123456U =,,,,,,{}1,23A =,,{}34,5,6B =,.用Venn 图表示,A B 如下: 则A B = ; A B = ; 【变式训练】设集合{}12x x =-<<,集合{}13B x x =<<,在数轴上表示AB ,A B . 则A B = ; A B = ; R A = .方法总结:一般地说,集合之间的运算,除了可以用韦恩图表示外,若是数集,还可以采用数轴的方法直观表示,体现了数形结合的解题方法.题型二:集合思想的应用例2. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点 . (2)12L L =∅ . (3)1212L L L L == .A B A U U A 1, 2 3456BA8 / 9 【变式训练】 设全集{}U x x =是三角形,{}A x x =是锐角三角形,{}B x x =是钝角三角形,求A B ,()U A B ,()()U U A B .方法总结:数学有很多的知识可以用集合的思想去理解,集合思想是数学的基本概念之一.【课堂练习】1. 已知集合P M ,满足M P M = ,则一定有A . P M =B . P M ⊇C . M P M =D . P M ⊆2. 集合(){},0P x y x y =+=,(){},2Q x y x y =-= ,AB 3. 设集合{}{}=04,7A x x B x a x ≤<=<≤. (1)若AB φ=,求a 的取值范围; (2)若A B B =,求a 的取值范围.【课堂小结】1.用自己的语言总结:两个集合的交集,就是 ;并集是 ;补集是2. 我们在解题时,常采用图示法解题,一般的图示法有 .特别要注意分类讨论的方法解题.【课后作业】(一)基础题1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤ 2. 设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U M =A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U3. 若集合{}=0,1,2,3A ,{}=1,2,4B ,则集合A B =A .{}01234,,,,B .{}1234,,,C .{}12,D .{}04. 设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则ST =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-9 / 9 5. 设{|18}A x x =-<<,{|45}B x x x =><-或,在数轴上求A ∩B 、A ∪B .(二)能力提升1. 某校秋季运动会中,若集合A ={参加比赛的运动员},集合B ={参加比赛的男运动员},集合C ={参加比赛的女运动员},则下列关系正确的是A. A B ⊆B. B C ⊆C. B C = AD. A ∩B = C2. 集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为A .4 B.3 C.2 D. 13. 设{|}A x x a =>,{|03}B x x =<<,若AB =∅,求实数a 的取值范围是 .4. 已知集合}023|{2=+-=x ax x A .(1) 若A 中至多有一个元素,则a 的取值范围是 .(2) 若A 中至少有一个元素,则a 的取值范围是 .。

人教A版高中数学必修一全册导学案指数函数(1)

人教A版高中数学必修一全册导学案指数函数(1)

2.2.2指数函数(1)【自学目标】1. 掌握指数函数的概念、图象和性质;2. 能借助于计算机画指数函数的图象;3. 能由指数函数图象归纳出指数函数的性质。

【知识描述】1.指数函数的定义。

【预习自测】例1.下列函数中是指数函数的是 。

⑴2x y =; ⑵x 3y =;⑶x 4y -=; ⑷x )4(y -=; ⑸x x y =; ⑹x e y =; ⑺1x 3y -=; ⑻x )1a 2(y -=(21a >,1a ≠)例2.已知指数函数)x (f y =的图象经过点(1,π),求下列各个函数值:⑴)0(f ; ⑵)1(f ; ⑶)(f π。

例3.比较大小:⑴5.27.1和37.1; ⑵1.08.0-与2.025.1; ⑶3.07.1与1.39.0。

例4.作出下列函数的图象,并说明它们之间的关系:⑴x 3y =; ⑵1x 3y -=; ⑶1x 3y +=。

【课堂练习】1.在下列六个函数中: ①x a y 2=;②2+=x a y ;③3+=x a y ;④x a y =;⑤x a y )(-=;⑥x ay )1(=。

若0a >,且1a ≠,则其中是指数函数的有( )A .0个B .1个C .2个D .3个 2.函数323+=-x y 恒过定点 。

3.函数x ay )1(=和)1,0(≠>=a a a y x 的图象关于 对称。

4.已知函数x a y =(0a >,1a ≠)在[0,1]上的最大和最小值之和是3,求实数a 的值。

5.设4323)5.0(2--≤x x ,求x 的取值范围。

【归纳反思】1.要根据指数函数的图象特征来熟记和研究指数函数的性质,并根据需要,对底数a 分两种情况加以讨论,体会其中的数形结合和分类讨论思想;2.注意图象的的平移变换的方法和规律,并能正确地运用这一方法和规律解有关函数图象的问题,加深对指数函数的图象和性质的认识和理解。

【巩固提高】1.若集合}R x ,2y |y {A x ∈==,}R x ,x y |y {B 2∈==,则 ( ) A .A B B .B A ⊆ C .B A D .B A = 2.已知1b ,1a 0-<<<,则函数b a y x +=的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.图中曲线4321,,,C C C C 分别是指数函数x x x x d y c y b y a y ====,,,的图象,则d c b a ,,,与1的大小关系是( ) A .d c b a <<<<1 B .c d b a <<<<1 C .d c a b <<<<1 D .c d a b <<<<14.已知0a >,且1a ≠,1a a 3a M ++=,1a a 2a N ++=,则( )A .N M >B .N M =C .N M <D .M 、N 大小关系不确定 5.函数xy -=)41(的值域是 ;6.若指数函数x a y )1(2-=在R 上是减函数,则a 的取值范围是 。

新课标高中数学必修一全册导学案及答案

新课标高中数学必修一全册导学案及答案
运算性质:(1)A∩BA,A∩BB
(2) A∩A=A,A∩φ=φ
(3) A∩B= B∩A
(4) ABA∩B=A
2.并集定义:A∪B={x| x∈A或x∈B }
运算性质:(1) A(A∪B),B(A∪B)(2) A∪A=A,A∪φ=A
(3) A∪B= B∪A (4) ABA∪B=B
[预习自测]
1.设A={x|x>—2},B={x|x<3},求A∩B和A∪B
1.1.2子集、全集、补集
[自学目标]
1.了解集合之间包含关系的意义.
2.理解子集、真子集概念.
3.了解全集的意义,理解补集概念.
[知识要点]
1.子集的概念:如果集合A中的任意一个元素都是集合B中的元素(若 ,则 ),那么称集合A为集合B的子集(subset),记作 或 ,.
还可以用Venn图表示.
求A∩B,A∪C,A∪B
[归纳反思]
1.集合的交、并、补运算,可以借助数轴,还可以借助文氏图,它们都是数形结合思想的体现
2.分类讨论是一种重要的数学思想法,明确分类讨论思想,掌握分类讨论思想方法。
[巩固提高]
1.设全集U={a,b,c,d,e},N={b,d,e}集合M={a,c,d},则CU(M∪N)
(Ⅱ)若M N,求实数a的取值范围.
[归纳反思]
1.这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴表示数集.
2.深刻理解用集合语言叙述的数学命题,并能准确地把它翻译成相关的代数语言或几何语言,抓住集合语言向文字语言或图形语言转化是打开解题大门钥匙,解决集合问题时要注意充分运用数轴和韦恩图,发挥数形结合的思想方法巨大威力。
4.全集:如果集合S包含有我们所要研究的各个集合,这时S可以看作一个全集(Universal set),全集通常记作U.

[人教A版]高中数学必修一(全册)导学案及答案汇总

[人教A版]高中数学必修一(全册)导学案及答案汇总

§1.1.1 集合的含义与表示(1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.23讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体. 集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学※ 探索新知探究1:考察几组对象:① 1~20以内所有的质数;② 到定点的距离等于定长的所有点;③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +;⑤ 东升高中高一级全体学生;⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂2008年8月生产的所有童车;⑧ 2008年8月,广东所有出生婴儿.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征. 确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合.试试2:分析下列对象,能否构成集合,并指出元素:①不等式30x->的解;②3的倍数;③方程2210-+=的解;x x④a,b,c,x,y,z;⑤最小的整数;⑥周长为10 cm的三角形;⑦中国古代四大发明;⑧全班每个学生的年龄;⑨地球上的四大洋;⑩地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:a∈A;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:a∉A.试试3:设B表示“5以内的自然数”组成的集合,则5 B,0.5 B,0 B,-1 B.探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N;正整数集:所有正整数的集合,记作N*或N+;整数集:全体整数的集合,记作Z;有理数集:全体有理数的集合,记作Q;实数集:全体实数的集合,记作R.试试4:填∈或∉:0 N,0 R,3.7 N,3.7 Z,. 探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与{a}不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※典型例题例1 用列举法表示下列集合:① 15以内质数的集合;② 方程2(1)0x x -=的所有实数根组成的集合;③ 一次函数y x =与21y x =-的图象的交点组成的集合.变式:用列举法表示“一次函数y x =的图象与二次函数2y x =的图象的交点”组成的集合.三、总结提升※ 学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※ 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .所有小正数组成一个集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .1361,0.5,,,224 2. 给出下列关系:① 12R =;② Q ;③3N +-∉;④.Q 其中正确的个数为( ).A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为( ).A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230-=的所有实数根”组成的集合用列举法表示为____________.x x1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100-=的所有实数根组成的集合.x x2. 设x∈R,集合2=-.A x x x{3,,2}(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45复习1:一般地,指定的某些对象的全体称为.其中的每个对象叫作.集合中的元素具备、、特征.集合与元素的关系有、.复习2:集合2=++的元素是,若1∈A,则x= .A x x{21}复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※ 学习探究思考:① 你能用自然语言描述集合{2,4,6,8}吗?② 你能用列举法表示不等式13x -<的解集吗?探究:比较如下表示法① {方程210x -=的根};② {1,1}-;③ 2{|10}x R x ∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件.试试:方程230x -=的所有实数根组成的集合,用描述法表示为 . ※ 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x +=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈,{|0}x x >.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x =-与2{|1}y y x =-不同.② 只要不引起误解,集合的代表元素也可省略,例如{|1}x x >,{|3,}x x k k Z =∈.③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※ 动手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合{|33,}A x x x Z =-<<∈,集合2{(,)|1,}B x y y x x A ==+∈. 试用列举法分别表示集合A 、B .三、总结提升※ 学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※ 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x 是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x =+与集合2{|1}y y x =+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn 图.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{|16}A x N x =∈≤<,则下列正确的是( ).A. 6A ∈B. 0A ∈C. 3A ∉D. 3.5A ∉2. 下列说法正确的是( ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-3. 一次函数3y x =-与2y x =-的图象的交点组成的集合是( ).A. {1,2}-B. {1,2}x y ==-C. {(2,1)}-D. 3{(,)|}2y x x y y x =-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x =∈≤<为.5.集合A ={x |x =2n 且n ∈N }, 2{|650}B x x x =-+=,用∈或∉填空:4 A ,4 B ,5 A ,5 B .1. (1)设集合{(,)|6,,}A x y x y x N y N =+=∈∈ ,试用列举法表示集合A .(2)设A ={x |x =2n ,n ∈N ,且n <10},B ={3的倍数},求属于A 且属于B 的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .§1.1.2 集合间的基本关系1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义.67复习1:集合的表示方法有 、 、. 请用适当的方法表示下列集合.(1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且;{}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A .当集合A 不包含于集合B 时,记作A B .② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为V enn 图. 用Venn 图表示两个集合间的“包含”关系为:()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ;(2)∅ 2{|30}x x +=,∅ R ;(3)N {0,1},Q N ;(4){0} 2{|0}x x x -=.反思:思考下列问题.(1)符号“a A ∈”与“{}a A ⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?① 若,,a b b a a b ≥≥=且则;② 若,,a b b c a c ≥≥≥且则.B A※ 典型例题例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何?变式:若集合{|}A x x a =>,{|250}B x x =-≥,且满足A B ⊆,求实数a 的取值范围.※ 动手试试练1. 已知集合2{|320}A x x x =-+=,B ={1,2},{|8,}C x x x N =<∈,用适当符号填空:A B ,A C ,{2} C ,2 C .练 2. 已知集合{|5}A x a x =<<,{|2}B x x =≥,且满足A B ⊆,则实数a 的取值范围为 .三、总结提升※ 学习小结1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※ 知识拓展 n 个元素,那么它的子集有2n 个,真子集有21n -个.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列结论正确的是( ). A. ∅A B. {0}∅∈ C. {1,2}Z ⊆ D. {0}{0,1}∈2. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( ). A. 1a < B. 1a ≤ C. 1a > D. 1a ≥3. 若2{1,2}{|0}x x bx c =++=,则( ). A. 3,2b c =-= B. 3,2b c ==- C. 2,3b c =-= D. 2,3b c ==-4. 满足},,,{},{d c b a A b a ⊂⊆的集合A 有 个.5. 设集合{},{},{}A B C ===四边形平行四边形矩形,{}D =正方形,则它们之间的关系是 ,并用Venn 图表示.课后作业1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A 表示合格产品的集合,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A ⊆⊆⊆⊆ 试用Venn 图表示这三个集合的关系.2. 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件.§1.1.3 集合的基本运算(1)学习目标1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.89 复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x |x 2+1=0,x ∈R }; {0} {x |x <3且x >5};{x |x >-3} {x |x >2}; {x |x >6} {x |x <-2或x >5}.复习2:已知A ={1,2,3}, S ={1,2,3,4,5},则A S , {x |x ∈S 且x ∉A }= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学 ※ 学习探究探究:设集合{4,5,6,8}A =,{3,5,7,8}B =.(1)试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.① 一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即: {|,}.A B x x A x B =∈∈且Venn 图如右表示.② 类比说出并集的定义.由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set ),记作:A B ,读作:A 并B ,用描述法表示是:{|,}A B x x A x B =∈∈或.Venn 图如右表示.试试:(1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ; (3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = . (4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = . A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ; (2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B = .反思:例2及变式的结论说明了什么几何意义?※ 动手试试练1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .A练 2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C 的含义.三、总结提升 ※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(), A B C A B A C =()()(), A B C A B C =()(), A B C A B C =()(), A A B A A A B A ==(),(). 你能结合V enn 图,分析出上述集合运算的性质吗?学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于( ).A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1} D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .课后作业1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点; (2)12L L =∅; (3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .§1.1.3 集合的基本运算(2)1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.1011 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ; A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学 ※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且. 补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则R A = ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集? (2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练 1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升 ※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ). A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.214复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言? A B = ; A B = ; U C A = .复习2:交、并、补有如下性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A = ;()U A C A = ; ()U U C C A = . 你还能写出一些吗?二、新课导学 ※ 典型例题例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点; (2)由以上结果,你能得出什么结论吗?例2已知全集{1,2,3,4,5}U =,若A B U =,A B ≠∅,(){1,2}U A C B =,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法. 例 3 若{}{}22430,10A x x xB x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试练1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。

(人教版)高中数学必修一(全册)精品导学案汇总

(人教版)高中数学必修一(全册)精品导学案汇总

(人教版)高中数学必修一(全册)精品导学案汇总第一章§1.1.1 任意角【学习目标】1.理解任意角的概念,学会在平面内建立适当的坐标系讨论任意角.2.能在0º到360º范围内,找出一个与已知角终边相同的角,并判定其为第几象限角.3.能写出与任一已知角终边相同的角的集合.【学习重点】任意角的概念,终边相同的角的表示.【知识链接】问题1:在初中我们是如何定义一个角的?角的范围是什么?问题2:(1)手表慢了5分钟,如何校准,校准后,分针转了几度?(2)手表快了10分钟,如何校准,校准后,分针转了几度?【基础知识】一、任意角的概念1.任意角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边. 说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30,390,330-都是第一象限角;300,60-是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,270等等.说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线. 二、终边相同的角的集合由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同. 从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈,即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 说明:终边相同的角不一定相等,相等的角终边一定相同.三、等分角若α是第三象限角,那么2α是第几象限角?你能用作图表示吗?规律是什么?【例题讲解】例1 在0与360范围内,找出与/12950-终边相同的角,并判断它们是第几象限角?例2 写出终边在y 轴上的角的集合.例3 写出终边在直线x y =上的角的集合S ,并把S 中适合不等式0720360-<≤β的元素β写出来.例4如图所示,试分别表示出终边落在阴影区域内的角.说明:区间角是指终边落在坐标系的某个区域的角,其写法可分三步:(1)先按逆时针的方向找到区域的起始和终止边界;(2)按由小到大分别标出起始、终止边界对应的0°到360°范围内的角α,β,写出最简区间{x |α<x <β};(3)再加上起始、终止边界对应角α,β出现的k 倍的周期,即得区间角的集合. 【达标检测】1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。

人教A版高中数学必修一全册导学案集合的基本运算(1)

人教A版高中数学必修一全册导学案集合的基本运算(1)

§1.1.3 集合的基本运算(2)1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.1011 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ; A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学 ※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且.补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则R A ð= ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集?(2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练 1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升 ※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ). A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =ð( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A。

高中数学必修1全册导学案及答案(145页)

高中数学必修1全册导学案及答案(145页)

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

人教A版高中数学必修一全册导学案奇偶性

人教A版高中数学必修一全册导学案奇偶性

§1.3.2 奇偶性1. 理解函数的奇偶性及其几何意义;2. 学会判断函数的奇偶性;3. 学会运用函数图象理解和研究函数的性质.3336复习1:指出下列函数的单调区间及单调性.(1)2()1f x x =-; (2)1()f x x=复习2:对于f (x )=x 、f (x )=x 2、f (x )=x 3、f (x )=x 4,分别比较f (x )与f (-x ).二、新课导学※ 学习探究探究任务:奇函数、偶函数的概念思考:在同一坐标系分别作出两组函数的图象:(1)()f x x =、1()f x x=、3()f x x =; (2)2()f x x =、()||f x x =.观察各组图象有什么共同特征?函数解析式在函数值方面有什么特征?新知:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).试试:仿照偶函数的定义给出奇函数(odd function )的定义.反思:① 奇偶性的定义与单调性定义有什么区别?② 奇函数、偶函数的定义域关于 对称,图象关于 对称.试试:已知函数21()f x x=在y 轴左边的图象如图所示,画出它右边的图象.※ 典型例题例1 判别下列函数的奇偶性:(1)()f x = (2)()f x =(3)42()35f x x x =-+; (4)31()f x x=.小结:判别方法,先看定义域是否关于原点对称,再计算()f x -,并与()f x 进行比较.试试:判别下列函数的奇偶性:(1)f (x )=|x +1|+|x -1|; (2)f (x )=x +1x; (3)f (x )=21x x+; (4)f (x )=x 2, x ∈[-2,3].例2 已知f (x )是奇函数,且在(0,+∞)上是减函数,判断f (x )的(-∞,0)上的单调性,并给出证明.变式:已知f (x )是偶函数,且在[a ,b ]上是减函数,试判断f (x )在[-b ,-a ]上的单调性,并给出证明.小结:设→转化→单调应用→奇偶应用→结论.※ 动手试试练习:若3()5f x ax bx =++,且(7)17f -=,求(7)f .三、总结提升※ 学习小结1. 奇函数、偶函数的定义及图象特征;2. 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质.3. 判断函数奇偶性的方法:图象法、定义法.※ 知识拓展定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 对于定义域是R 的任意奇函数()f x 有( ).A.()()0f x f x--=B.()()0f x f x+-=C.()()0f x f x-=D.(0)0f≠2. 已知()f x是定义(,)-∞+∞上的奇函数,且()f x在[)0,+∞上是减函数. 下列关系式中正确的是()A. (5)(5)f f>- B.(4)(3)f f>C. (2)(2)f f-> D.(8)(8)f f-=3. 下列说法错误的是().A.1()f x xx=+是奇函数B. ()|2|f x x=-是偶函数C. ()0,[6,6]f x x=∈-既是奇函数,又是偶函数D.32()1x xf xx-=-既不是奇函数,又不是偶函数4. 函数()|2||2|f x x x=-++的奇偶性是.5. 已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是函数,且最值为.1. 已知()f x是奇函数,()g x是偶函数,且1()()1f xg xx-=+,求()f x、()g x.2. 设()f x在R上是奇函数,当x>0时,()(1)f x x x=-,试问:当x<0时,()f x的表达式是什么?。

新课标高中数学人教A版必修1全册导学案及答案

新课标高中数学人教A版必修1全册导学案及答案

§集合的含义及其暗示之蔡仲巾千创作[自学目标]1.认识并理解集合的含义,知道经常使用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种暗示方法—列举法和描述法,并能正确地暗示一些简单的集合.[知识要点] 1. 集合和元素 (1)A 的元素,A,(2)A 的元素,A,2.集合中元素的特性:确定性;无序性;互异性.3.集合的暗示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.经常使用数集及其记法:整数集记作[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采取适当的方式暗示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例 2.,那么此三角形 一定是 ( )A. D.例3.. 分析: 反过来,只要元素具有集合A A.例4.. [课内练习]1.下列说法正确的是()(A B )0(C D 素2ABC31,1)D45B=.[1.本课时的重点内容是集合的含义及其暗示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

这是解决有关集合问题的一种重要方法;3.确定的对象才干构成集合.可依据对象的特点或个数的多少来暗示集合,如个数较少的有限集合可采取列举法,而其它的一般采取描述法.4.要特别注意数学语言、符号的规范使用.[巩固提高]1.已知下列条件:①小于与2的所有解。

其中不成以暗示集合的有--------------------()A.1个B.2个C.3个D.4个2.下列关系中表述正确的是-----------------------------------------A3.下列表述中正确的是----------------------------------------------A B DA4.已知集合()A.0 C.1 D.25---------------------------------------()A B D6789},如果A={1,2,3},2 ∈B10.集合,试用列举法分别写出集合A 、B 、C.子集、全集、补集[自学目标]1.了解集合之间包含关系的意义.2.理解子集、真子集的概念.3.了解全集的意义,理解补集的概念. [知识要点]1.子集的概念:如果集合A 中的任意一个元素都是集合B 中的元素(若a A ∈,则a B ∈),那么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇,. B A ⊆还可以用Venn 图暗示.我们规定:A ∅⊆.即空集是任何集合的子集. 根据子集的定义,容易得到:⑴任何一个集合是它自己的子集,即A A ⊆.⑵子集具有传递性,即若B A ⊆且B C ⊆,则A C ⊆.2.真子集:如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ). 记作:A B⑴规定:空集是任何非空集合的真子集. ⑵如果A B, B C ,那么A C3.两个集合相等:如果B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =.4.全集:如果集合S 包含有我们所要研究的各个集合,这时S 可以看作一个全集(Universal set ),全集通常记作U.5.补集:设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集(complementary set ), 记作:S A (读作A 在S 中的补集),即 补集的Venn 图暗示: [预习自测]例1.判断以下关系是否正确:⑴{}{}a a ⊆;⑵{}{}1,2,33,2,1=;⑶{}0∅⊆; ⑷{}00∈;⑸{}0∅∈;⑹{}0∅=;例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.例 3.已知集合{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且M N =,求q 和d 的值(用a 暗示).例4.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值. 例5.已知{}3A x x =<,{}B x x a =<. ⑴若B A ⊆,求a 的取值范围; ⑵若A B ⊆,求a 的取值范围; ⑶若R C A R C B ,求a 的取值范围. [课内练习]A B (){}2,1,C x y y xx A==-∈1. 下列关系中正确的个数为()①0∈{0},②Φ{0},③{0,1}⊆{(0,1)},④{(a ,b )}={(b ,a )}A )1(B )2 (C )3(D )42.集合{}8,6,4,2的真子集的个数是()(A )16 (B)15 (C)14 (D) 133.集合{}正方形=A ,{}矩形=B ,{}平行四边形=C ,{}梯形=D ,则下面包含关系中不正确的是()(A )B A ⊆ (B) C B ⊆ (C) D C ⊆ (D)C A ⊆4.若集合 ,则_____=b .5.已知M={x| 2≤x ≤5}, N={x| a+1≤x ≤2a 1}. (Ⅰ)若M ⊆N ,求实数a 的取值范围; (Ⅱ)若M ⊇N ,求实数a 的取值范围. [归纳反思]1. 这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴暗示数集.2. 深刻理解用集合语言叙述的数学命题,并能准确地把它翻译成相关的代数语言或几何语言,抓住集合语言向文字语言或图形语言转化是打开解题大门的钥匙,解决集合问题时要注意充分运用数轴和韦恩图,发挥数形结合的思想方法的巨大威力。

新课标高中数学必修1全册导学案和答案

新课标高中数学必修1全册导学案和答案

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形 例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合(B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

由 a>b>0,有 ab>0⇒aab>abb⇒1b>1a,故 B 为假命题;
a<b<0⇒-a>-b>0⇒-1b>-1a>0,
a<b<0⇒-a>-b>0
⇒ab>ba,故 C 为假命题;
a>b⇒b-a<0,
a1>1b⇒a1-b1>0⇒ba-ba>0⇒ab<0.
∵a>b,∴a>0,b<0,故 D 为真命题. 解析
答案
2
PART TWO
核心素养形成
题型一 作差法比较大小
例 1 比较下列各组中两个代数式的大小:
(1)x2+3 与 3x;
(2)设 x,y,z∈R,比较 5x2+y2+z2 与 2xy+4x+2z-2 的大小.
[解] (1)∵(x2+3)-3x=x2-3x+3=x-322+34≥34>0,∴x2+3>3x. (2)∵5x2+y2+z2-(2xy+4x+2z-2)=4x2-4x+1+x2-2xy+y2+z2-
第二章 一元二次函数、方程 和不等式
2.1 等式性质与不等式性质
(教师独具内容) 课程标准:1.梳理等式的性质,理解不等式的概念,掌握不等式的性质, 能运用不等式的性质比较大小.2.能运用不等式的性质证明不等式和解决实 际问题. 教学重点:1.不等式的性质.2.不等式性质的应用. 教学难点:用不等式的性质证明不等式. 核心素养:1.借助不等式性质的判断与证明,培养逻辑推理素养.2.通过 大小比较及利用不等式求范围,提升数学运算素养.
∴0<a-b<6,
故 2a+3b 的取值范围为-18<2a+3b<-5,a-b 的取值范围为 0<a-

(word完整版)新课标高中数学必修一全册导学案及答案,推荐文档

(word完整版)新课标高中数学必修一全册导学案及答案,推荐文档

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形 例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b=,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合(B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x xD .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

人教A版高中数学必修一全册导学案集合的基本运算

人教A版高中数学必修一全册导学案集合的基本运算

§1.1.3 集合的基本运算(1)1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.89 复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x |x 2+1=0,x ∈R };{0} {x |x <3且x >5};{x |x >-3} {x |x >2};{x |x >6} {x |x <-2或x >5}.复习2:已知A ={1,2,3}, S ={1,2,3,4,5},则A S , {x |x ∈S 且x ∉A }= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学※ 学习探究探究:设集合{4,5,6,8}A =,{3,5,7,8}B =.(1)试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.① 一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即:{|,}.A B x x A x B =∈∈且Venn 图如右表示.② 类比说出并集的定义.由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set ),记作:A B ,读作:A 并B ,用描述法表示是:{|,}A B x x A x B =∈∈或.Venn 图如右表示.试试:(1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ;(3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = .(4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = .A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ;(2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B =.A反思:例2及变式的结论说明了什么几何意义?※ 动手试试练1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .练2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C 的含义.三、总结提升※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(),A B C A B A C =()()(),A B C A B C =()(),A B C A B C =()(),A AB A A A B A ==(),().你能结合V enn 图,分析出上述集合运算的性质吗?※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么AB 等于( ).A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤ 2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ).A. x =3, y =-1B. (3,-1)C.{3,-1}D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点; (2)12L L =∅; (3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1集合的含义使用说明:“自主学习”10分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。

“巩固练习”10分钟,组长负责,组内点评。

“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。

能力展示5分钟,教师作出总结性点评。

通过本节学习应达到如下目标:(1)初步理解集合的含义,知道常用数集及其记法.,初步了解“∈”关系的意义.。

.(2)通过实例,初步体会元素与集合的”属于”关系,从观察分析集合的元素入手,正确地理解集合.(3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(4)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事求是、扎实严谨的科学态度.学习重点:集合概念的形成。

学习难点:理解集合的元素的确定性和互异性.学习过程(一)自主学习阅读课本,完成下列问题:1、例(3)到例(8)和例(1)(2)是否具有相同的特点,它们能否构成集合,如果能,他们的元素是什么?结合现实生活,请你举出一些有关集合的例子。

2、一般地,我们把研究对象称为.,把一些元素组成的总体叫做。

3、集合的元素必须是不能确定的对象不能构成集合。

4、集合的元素一定是的,相同的几个对象归于同一个集合时只能算作一个元素。

5、集合通常用大写的拉丁字母表示,如。

元素通常用小写的拉丁字母表示,如。

6、如果a是集合A 的元素,就说a属于A ,记作,读作””。

如果a不是集合A的元素,就说a不属于A ,记作,读作””。

7、非负整数集(或自然数集),正整数集,整数集,有理数集,有理数集,实数集。

(二)合作探讨1、下列元素全体是否构成集合,并说明理由(1)世界上最高的山(2)世界上的高山。

(3) 2的近似值(4)爱好唱歌的人(5)本届奥运会我国取得优秀成绩的运动员。

(6)本届奥运会我国参加的所有运动项目。

2、结合具体例子,请你说明你对集合中元素具有的互异性和确定性的理解。

3、如果用A 表示高一(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么a, b 与集合A 有什么关系?由此可见元素与集合间有什么关系?4、请你指出下列集合中的元素。

(1)小于10的所有自然数组成的集合; (2)方程x 2=x 的所有实数根组成的集合; (3)由1~20以内的所有素数组成的集合; (4)方程x 2-2=0的所有实数根组成的集合; (5)由大于10小于20的所有整数组成的集合。

(三)巩固练习1、用“∈”或“∉”符号填空:(1)372 .Q (2 )32 N ; (3 ) π Q (4 )2 R ; ( 5) (6 ) (5)2N2、集合A :比3的倍数小1的所有的数(1)5 A, (2 )7 A , (3 )-10 A.(四)个人收获与问题知识: 方法:我的问题:(五)预习内容预习集合的表示法。

1.1.1集合表示法使用说明:“自主学习”15分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。

“巩固练习”5分钟,组长负责,组内点评。

“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。

能力展示5分钟,教师作出总结性点评。

通过本节学习应达到如下目标:1.掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题2.发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界.3.通过合作学习培养合作精神.学习重点:集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合学习难点:难点是集合特征性质的概念,以及运用特征性质描述法表示集合学习过程(一)自主学习阅读课本,完成下列问题1.集合的表示方法(1)列举法:把一一列举出来,写在内,用逗号隔开。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内,具体方法在大括号内先写上表示这个集合元素的.及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的。

{ x I | p(x)}其中:1)x是集合中元素的代表形式,2)I是x的范围,3)p(x)是集合中元素的共同特征,4)竖线不可省略。

思考?1、{ x | x=3}与{ y | y=3}是否是同一集合?2、{y | y=x2}与{(x,y)| y=x2 }是否是同一集合?(二)合作探讨1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有素数组成的集合;(4)方程x2-2=0的所有实数根组成的集合;(5)由大于10小于20的所有整数组成的集合。

2、试用描述法表示下列集合:1) 方程x2-2=0的所有实数根组成的集合;2) 所有的奇数;所有偶数;比3的倍数多一的整数3)不等式x-10>0的解集4)一次函数y=2x+1图象上的所有的点。

思考?请你结合具体例子,试比较用自然语言、列举法、描述法表示集合时,各自的特点和适用对象。

自己举几个集合的例子,并分别用自然语言,列举法和描述法表示出来。

(三)巩固练习1、已知A={x ∣x=3k-1,k ∈Z},用“∈”或“∉”符号填空:(1 ) 5 A, (2 ) 7 A , (3 ) -10 A. 2、试选择适当的方法表示下列集合:1) 由小于8的所有素数组成的集合 2) 一次函数y=x+3与y=-2x+6的图象的交点组成的集合; 3) 不等式4x-5<3的解集 4) 二次函数y= x 2-4的函数值组成的集合; 5) 反比例函数y=x2的自变量的值组成的集合;3、已知-3∈{m-1,3m, m 2+1},求m 的值.(四)个人收获与问题知识: 方法:我的问题:(五)拓展能力:设集合B={x ∈N ∣x+26∈N}1) 试判断元素1,元素2与集合B 的关系; 2) 用列举法表示集合B 。

1.2.1集合间的关系使用说明:“自主学习”15分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。

“巩固练习”5分钟,组长负责,组内点评。

“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。

“能力展示”5分钟,教师作出总结性点评。

通过本节学习应达到如下目标:(1)运用类比的方法,对照实数的相等与不等的关系,探究集合之间的包含与相等关系 (2)能识别给定集合的子集.(3)能利用Venn 图表达集合间的关系;探索直观图示(Venn 图)对理解抽象概念的作用(4)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力。

:(5)了解集合的包含,感受集合语言在描述客观现实和数学问题中的意义。

学习重点:子集的概念学习难点:元素与子集、属于与包含之间的区别 学习过程(一)自主学习(1)一般的,对于两个集合A 、B ,如果集合A 中的每一个元素都是集合B 中的元素那么集合A 叫做集合B 的 ,记作 或 . 当集合A 不包含于集合B 时,记作A B,用Venn 图表示两个集合间的“包含”关系 (2) 集合与集合之间的 “相等”关系, 若 ,则B A =B A =中的元素是一样的(3) 真子集的概念: 。

(4) 任何一集合都是它自身的 .(5) 空集的概念: 。

记作 空集是任何集合的 ,是任何非空集合的 。

思考?包含关系{a }⊆A 与属于关系a A ∈有什么区别?试结合实例作出解释。

(二)合作探究例1.观察实例,写出下列集合间的关系。

(1) A={1,3},B={1,3,5,7} (2) A={高一全体女生},B={高一全体学生} (3) A={x ︱x 是矩形},B={x ︱x 是平行四边形} (4) A=N,B=Q(5) A={x ︱x >3},B={x ︱x >5},C={x ︱x >7} (6) A={x ︱(x +2)(x +1)=0},B={-1,-2}例2 写出集合{a , b }的所有子集,并指出哪些是它的真子集?A⊇,,则求实数b的范围?例3 已知集合A={x︱x > b }, B={x︱x > 3},若B(三)巩固练习1.用适当的符号填空:(1)a {a,b,c} (2)0 {x︱x2=0} (3)¢{x∈R︱x2+1=0},(4){0,1} N (5) {0} {x︱x2=x} (6){2,1} {x︱x2-3x+2=0}(7)已知集合A={x︱2x-3< 3x},B={x︱x≥2},则有:-4 B -3 A {2} B B A(8) 已知集合A={ x︱x2-1=0},则有:1 A,{-1} A ,¢ A ,{-1,1} A(9) {x︱x是菱形} {x︱x是平行四边形} ;{x︱x是等腰三角形} {x︱x是等边三角形} 2.写出集合{a ,b , c}的所有子集,并指出哪些是它的真子集?(四)个人收获与问题:知识:方法:我的问题:(五)拓展能力A⊇,则求实数x?1.已知集合A={-1,2x-1,3},B={3, x2}若BB⊆,,则求实数a的范围?2已知集合A={x︱2-x<0}, B={x︱a x =1},若A1.3.1集合的运算使用说明:“自主学习”15分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。

“巩固练习”5分钟,组长负责,组内点评。

“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。

能力展示5分钟,教师作出总结性点评。

通过本节学习应达到如下目标:(1)理解两个集合的交集、并集、补集的含义.(2)会求两个集合的交集、并集、补集. (3)能使用Venn 图表达集合间的运算.(4)通过复习集合与集合间的关系,对照数或式的算术运算和代数运算,探究集合之间的运算. (5)使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力(6)通过直观图的运用培养学生的探索精神. 学习重点:集合的交、并、补运算 学习难点:补集的运算.学习过程 自主学习:1、试用Venn 图表示集合A ,B 可能的关系。

2、并集: 叫做A,B 的并集,记作 (读作"A 并B "). 即A ⋃B= , 用Venn 图表达如图(1)交集: 叫做A,B 的交集. 3、全集: 那么称这个给定的集合为全集(1)4、补集: ,叫做A 在U 中的补集,记作 用Venn 图表达如图(3(2)(二) 合作探讨 1、求下列集合A 与B 的交集、并集(1) A={4,5,6,8} B={3,5,7,8} (3) (2) A={ x |-1<x<2} B={ x |1<x<3}记作 (读作"A 交B "),即A ∩B=用Venn 图表达如图(2)2、新华中学开运动会,设A={ x|x是新华中学高一年级参加百米赛跑的同学}B={ x| x是新华中学高一年级参加跳高比赛的同学},求A∩B.3、设平面内直线L1上点的集合为L1,直线L2上点的集合为L2,试用集合的运算表示L1, L2的位置关系.4、设U={x|x是小于9的正整数}, A={1,2,3}, B={3,4,5,6},求C U A, C U B, A∩U,U∩(A⋃B)5、设全集U={x|x是三角形}, A={x|x是锐角三角形}, B={x|x是钝角三角形}, 求A∩B, C U (A⋃B)(三)巩固练习1、设A={3,5,6,8}, B={4,5,7,8},求A∩B, A⋃B2、设A={x|x2-4x-5=0}, B={x|x2=1},求A∩B, A⋃B3、已知A={x|x是等腰三角形}, B={x|x是直角三角形}, 求A∩B, A⋃B.4. 已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求A∩CU B,( CUA)∩(CUB)5、设集合A={x|2≤x<4}, B={x|3x-7≥8-2x}, 求A∩B, A⋃B6、设S={x|x是平行四边形或梯形}, A={x|x是平行四边形}, B={x|x是菱形},C={x|x是矩形}, 求C∩B, CA B ,CSA .(四)个人收获与问题知识:方法:我的问题:(五)拓展能力1.设集合A={x|(x-3)(x-a)=0},B={x|(x-4)(x-1)=0}, 求A∩B, A⋃B2. 已知全集U= A⋃B={x∈N|0≤x≤10}, A∩(C U B)={1,3,5,7},试求集合B.1.2.1函数的概念使用说明:“自主学习”15分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。

相关文档
最新文档