【精品】2018-2019学年新课标高中数学必修1全册导学案及答案

合集下载

【人教A版】2018版高中数学必修一精品学案全集(含答案)

【人教A版】2018版高中数学必修一精品学案全集(含答案)

§2.3 幂函数2学习目标1.了解幂函数的概念,会求幂函数的解析式(易错点).2.结合幂函数y=x,y=x,1123 y=x,y =,y=x的图象,掌握它们的性质(重点).3.能利用幂函数的单调性比较指数幂的大x小(重点).预习教材P77-P78,完成下面问题:知识点1 幂函数的概念α一般地,函数y=x叫做幂函数,其中x是自变量,α是常数.【预习评价】(正确的打“√”,错误的打“×”) 4-(1)函数y=x是幂函数.( ) 5x-(2)函数y=2是幂函数.( ) 12 (3)函数y=-x是幂函数.( ) 45 -提示(1)√ 函数y=x符合幂函数的定义,所以是幂函数;x-(2)× 幂函数中自变量x是底数,而不是指数,所以y=2不是幂函数; 12α (3)× 幂函数中x的系数必须为1,所以y=-x不是幂函数.知识点2 幂函数的图象和性质 (1)五个幂函数的图象:(2)幂函数的性质:1231-幂函数 y=x y=x y=x y=x 2 y=x (-∞,0)∪定义域 [0,+∞) R R R (0,+∞) *0,+∞) 值域 [0,+∞) {y|y∈R,且y≠0} R R 偶奇奇偶性奇非奇非偶奇 x∈[0,+∞),增增单调性增增 x∈(0,+∞),减x∈(-∞,0],减x∈(-∞,0),减公共点都经过点(1,1) 【预习评价】5 3 (1)设函数f(x)=x,则f(x)是( ) A.奇函数 B.偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数又是偶函数33--(2)3.17与3.71的大小关系为________.解析(1)易知f(x)的定义域为R,又f(-x)=-f(x),故f(x)是奇函数.13-(2)易知f(x)=x=在(0,+∞)上是减函数,又 3.17<3.71,所以f(3.17)>f(3.71),即3.173x33-->3.71. 33--答案(1)A (2)3.17>3.71 题型一幂函数的概念222-【例1】(1)在函数y=x,y=2x,y=(x+1),y=3x中,幂函数的个数为( ) A.0 B.1 C.2 D.3 2m(2)若f(x)=(m-4m-4)x是幂函数,则m=________. 2-解析(1)根据幂函数定义可知,只有y=x是幂函数,所以选B.22(2)因为f(x)是幂函数,所以m-4m-4=1,即m-4m-5=0,解得m=5或m=-1. 答案(1)B (2)5或-1 规律方法判断函数为幂函数的方法α(1)只有形如y=x(其中α为任意实数,x为自变量)的函数才是幂函数,否则就不是幂函数.α(2)判断一个函数是否为幂函数的依据是该函数是否为y=x(α为常数)的形式,函数的解α析式为一个幂的形式,且:①指数为常数,②底数为自变量,③底数系数为1.形如y=(3x),ααy=2x,y=x+5…形式的函数都不是幂函数.反过来,若一个函数为幂函数,则该函数也必具有这一形式. 1 【训练1】若函数f(x)是幂函数,且满足f(4)=3f(2),则f的值等于________. 2ααα解析设f(x)=x,因为f(4)=3f(2),∴4=3×2,解得:α=log3,2232111 ∴f=log3=. 21答案3题型二幂函数的图象及应用 1n【例2】 (1)如图所示,图中的曲线是幂函数y=x在第一象限的图象,已知n取±2,±2四个值,则相应于C,C,C,C的n依次为( ) 1234 1111A.-2,-,,2 B.2,,-,-2 22221111 D.2,C.-,-2,2,,-2,-22221 -2,-分别在幂函数f(x),(2)点(2,2)与点g(x)的图象上,问当x为何值时,分别有: 2①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).nn(1)解析根据幂函数y=x的性质,在第一象限内的图象当n>0时,n越大,y =x递增1速度越快,故C的n=2,C的n=;当n<0时,|n|越大,曲线越陡峭,所以曲线C的n=12321-,曲线C的n =-2,故选B.42答案B 1αβαβ2(2)解设f(x)=x,g(x)=x.∵(2)=2,(-2)=-,∴α=2,β=-1,∴f(x)=x,g(x)21-=x.分别作出它们的图象,如图所示.由图象知:①当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);②当x=1时,f(x)=g(x);③当x∈(0,1)时,f(x)<g(x).规律方法解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于1213 -y=x或y=x或y=x)来判断.m n* 【训练2】如图是函数y=x (m,n∈N,m,n互质)的图象,则( ) mA.m,n是奇数,且<1 nmB.m是偶数,n是奇数,且>1 nmC.m是偶数,n是奇数,且<1 nmD.m 是奇数,n是偶数,且>1 n m n解析由图象可知y=x是偶函数,而m,n是互质的,故m是偶数,n是奇数,又当x m m n ∈(1,+∞)时,y=x的图象在y=x的图象下方,故<1. n答案C 典例迁移题型三利用幂函数的性质比较大小【例3】比较0.30.311--下列各组数中两个数的大小:2123--与. (1)与;(2)53350.3解(1)因为幂函数y=x0.30.3又>,所以>.在(0,+∞)上是单调递增的,212153531-(2)因为幂函数y=x在(-∞,0)上是单调递减的,2323 11---->. 又-<-,所以 353521 0.30.3-【迁移1】(变换条件)若将例1(1)中的两53如何?数换为“与”,则二者的大小关系1 0.30.30.3-解因为=3,而y=x在(0,+∞)上是单调递增的, 32212 0.30.30.30.3-又<3,所以<3.即<.553522 50.3 ”,则二者的大小关系【迁移2】 (变换条件)若将例1(1)中的两数换为“与0.3 5如何?22222 5x0.3 >,又因为函数y解因为y=在(0,+∞)为上减函数,又2155552222222 55550.3 0.3<,所以=x在(0,+∞)上为增函数,且>0.3,所以>0.3,所以>0.3.555规律方法比较幂值大小的三种基本方法【训与;(2)练3】比较下列各组数的大小:23 0.50.533(1)-3.14与-π; 353113 42 (3)与.解(1)∵y=x在[0,+∞)上是增函数且>,24230.5∵y=x是R上的增函3523 0.50.5∴>. 353(2)数,且 3.14<π,3333∴3.14<π,∴-3.14>-π. 3111142x (3)∵y=是R上的减函数,∴<.=x是[0,+∞)上的增函数,2221y4222 .∴>. ∴>2311131314242课堂达标1 4,,则f(2)=( ) 1.已知幂函数y=f(x)的图象经过点 212A.B.4 C. D.2 421111 2αα -4,,解析设幂函数为y=x,∵幂函数的图象经过点∴=4,∴α=-,∴y=x, 22212 2 -∴f(2)=2=,故选C. 2答案C 2.下列函数中,其定义域和值域不同的函数是() 11523233 -A.y=x B.y=x C.y=x D.y=x解析A中定义域值域都是R;B中定义域值域都是(0,+∞);C中定义域值域都是R;D中定义域为R,值域为[0,+∞).答案D 1 a-1,1,,33.设a∈,则使函数y=x的定义域是R,且为奇函数的所有a的值是() 2 A.1,3 B.-1,1 C.-1,3 D.-1,1,3 1-解析当a=-1时,y=x的定义域是{x|x≠0},且为奇函数;当a=1时,函数y=x的11 2 定义域是R且为奇函数;当a=时,函数y=x的定义域是{x|x≥0},且为非奇非偶函数.当23a=3时,函数y=x的定义域是R且为奇函数.故选A.答案A 1 3 4.函数y=x的图象是() 1 3 解析显然代数表达式“-f(x)=f(-x)”,说明函数是奇函数.同时由当0<x<1时,x>x,1 3 当x>1时,x<x. 答案B 5.比较下列各组数的大小:7722π12 8833 -----(1)-8与-;(2)与.9367777711111 88888 -解(1)-8=-,函数y=x在88989771 88 -从而-8<-. (0,+∞)上为增函数,又>,则>.9222222ππ224333333 --------==,=.因为函数y=x在(0,+∞)上为减(2)33666函数,22π2π4 33 ----<. 又>,所以 3666课堂小结α1.幂函数y=x的底数是自变量,指数是常数,而指数函数正好相反,底数是常数,指数是自变量.2.幂函数在第一象限内指数变化规律在第一象限内直线x=1的右侧,图象从上到下,相应的指数由大变小;在直线x=1的左侧,图象从下到上,相应的指数由大变小.3.简单幂函数的性质(1)所有幂函数在(0,+∞)上都有定义,并且当自变量为1时,函数值为1,即f(1)=1. (2)如果α>0,幂函数在[0,+∞)上有意义,且是增函数.(3)如果α<0,幂函数在x =0处无意义,在(0,+∞)上是减函数.§2.1指数函数 2.1.1 指数与指数幂的运算学习目标 1.理解根式的概念及分数指数幂的含义.2.会进行根式与分数指数幂的互化(重点).3.掌握根式的运算性质和有理数指数幂的运算性质(重点).预习教材P49-P53,完成下面问题:知识点1 根式1.n次方根n*(1)定义:一般地,如果x=a,那么x叫做a的n次方根,其中n>1,且n∈N. (2)个数:a>0 x>0 n n是奇数 x 仅有一个值,记为a a<0 x<0n a>0 x有两个值,且互为相反数,记为±a n是偶数a<0 x不存在 2.根式n(1)定义:式子a叫做根式,这里n叫做根指数,a叫做被开方数.a,n为奇数 nnnn*(2)性质:(a)=a,a=(其中n>1且n∈N). |a|,n为偶数 【预习评价】(正确的打“√”,错误的打“×”)()*nn(1)当n∈N时,都有意义.( ) -16(2)任意实数都有两个偶次方根,它们互为相反数.( ) nn (3)a=a.( ) ()nn提示(1)× 当n是偶数时,没有意义;-16(2)× 负数没有偶次方根;nn(3)× 当n为偶数,且a<0时,a=-a. 知识点2 指数幂及其运算性质 1.分数指数幂的意义m分正分数指数幂nnm* 规定:a=a(a>0,m,n∈N,且n>1) 数m11n* -指规定:a==(a>0,m,n∈N,且n>1) 负分数指数幂m n nm aa数0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义幂 2.有理数指数幂的运算性质rsrs+(1)aa=a(a>0,r,s∈Q).rsrs(2)(a)=a(a>0,r,s∈Q).rrr(3)(ab)=ab(a>0,b>0,r∈Q).3.无理数指数幂α一般地,无理数指数幂a(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.【预习评价】11 201 -2的结果为( ) 计算:(π-3)+3× 437A. B.22。

新课标高中数学人教A版必修1全册导学案及答案

新课标高中数学人教A版必修1全册导学案及答案

§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

新课标高中数学人教A版必修1全册导学案及答案(105页).pdf

新课标高中数学人教A版必修1全册导学案及答案(105页).pdf

课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。

过程与方法:通过实例了解,体会元素与集合的属于关系。

情感态度与价值观:培养学生的应用意识。

二、学习重、难点:重点:掌握集合的基本概念。

难点:元素与集合的关系。

三、学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。

四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)五、学习过程:1、阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。

2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。

问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉−,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。

新课标高中数学人教A版必修1全册导学案及答案

新课标高中数学人教A版必修1全册导学案及答案

§集中的含意及其表示之阳早格格创做[自教目标]1.认识并明黑集中的含意,知讲时常使用数集及其记法;2.相识属于关系战集中相等的意思,收端相识有限集、无限集、空集的意思;3.收端掌握集中的二种表示要领—枚举法战形貌法,并能精确天表示一些简朴的集中. [知识重心]1. 集中战元素 (1)A 的元素,A,(2)A 的元素,A,2.集中中元素的个性:决定性;无序性;互同性.3.集中的表示要领:枚举法;形貌法;Venn 图.4.集中的分类:有限集;无限集;空集.5.时常使用数集及其记法:整数[预习自测]例1.下列的钻研对付象是可形成一个集中?如果能,采与适合的办法表示它.(1)小于5的自然数;(2)某班所有下身材的共教; (3; (4)所有大于0的背数;(5)仄里曲角坐标系内,第一、三象限的仄分线上的所有面.分解:推断某些对付象是可形成集中,主假如根据集中的含意,查看是可谦脚集中元素的决定性.例2.,那么此三角形一定是 ( )A.曲角三角形B.钝角三角形C.钝角三角形D.等腰三角形例3.. 分解: 某元素属于集中A,必具备集中A 反过去,只消元素具备集中A 便一定属于集中A.例4..[课内训练]1.下列道法精确的是()(A B )0(CD 个元素2AB C D 3AB C .(1,1) D4B =5B=. [归纳深思]1.原课时的沉面真量是集中的含意及其表示要领,易面是元素与集中间的关系以及集中元素的三个要害个性的精确使用;2.根据元素的个性举止分解,使用集中中元素的三个个性办理问题,喊搞元素分解法.那是办理有关集中问题的一种要害要领;3.决定的对付象才搞形成集中.可依据对付象的个性大概个数的几去表示集中,如个数较少的有限集中可采与枚举法,而其余的普遍采与形貌法. 4.要特天注意数教谈话、标记的典型使用. [坚韧普及]1.已知下列条件:①小于60的部分有理数;②某校下一年级的所有教死;③与2的所有解.其中不不妨表示集中的有--------------------() A .1个 B .2个 C .3个 D .4个2-----------------------------------------()A 3()A B C D4.已知集中A 是() A .0B .-1C .1D .25.圆程组3254x yx y =+⎧⎨+=⎩的解的集中是---------------------------------------()A .(){}1,1-B .(){}1,1-C .()(){},1,1x y -D .{}1,1-6.用枚举法表示不等式组240121x x x +>⎧⎨+≥-⎩的整数解集中为:7.设215022x x ax ⎧⎫∈--=⎨⎬⎩⎭,则集中21902x x x a ⎧⎫--=⎨⎬⎩⎭中所有元素的战为: 8、用枚举法表示下列集中:⑴(){},3,,x y x y x N y N +=∈∈⑵{}3,,y x y x N y N +=∈∈9.已知A ={1,2,x 2-5x +9},B ={3,x 2+ax +a },如果A ={1,2,3},2 ∈B ,供真数a 的值.10.设集中{},3A n n Z n =∈≤,集中{}21,B y y x x A ==-∈,集中,试用枚举法分别写出集中A 、B 、C.子集、齐集、补集[自教目标]1.相识集中之间包罗关系的意思.2.明黑子集、真子集的观念.3.相识齐集的意思,明黑补集的观念. [知识重心]1.子集的观念:如果集中A 中的任性一个元素皆是集中B 中的元素(若a A ∈,则a B ∈),那么称集中A 为集中B 的子集(subset ),记做B A ⊆大概A B ⊇,.B A ⊆还不妨用Venn 图表示.咱们确定:A ∅⊆.即空集是所有集中的子集. 根据子集的定义,简单得到:⑴所有一个集中是它自己的子集,即A A ⊆.⑵子集具备传播性,即若B A ⊆且B C ⊆,则A C ⊆.2.真子集:如果B A ⊆且A B ≠,那时集中A 称为集中B 的真子集(proper subset ).记做:A B⑴确定:空集是所有非空集中的真子集. ⑵如果A B, B C ,那么A C3.二个集中相等:如果B A ⊆与B A ⊆共时创造,那么,A B 中的元素是一般的,即A B =.4.齐集:如果集中S 包罗有咱们所要钻研的各个集中,那时S 不妨瞅A B (){}2,1,C x y y x x A ==-∈做一个齐集(Universal set ),齐集常常记做U.5.补集:设A S ⊆,由S 中不属于A 的所有元素组成的集中称为S 的子集A 的补集(complementary set ), 记做:S A (读做A 正在S 中的补集),即 补集的Venn 图表示: [预习自测]例1.推断以下关系是可精确:⑴{}{}a a ⊆;⑵{}{}1,2,33,2,1=;⑶{}0∅⊆; ⑷{}00∈;⑸{}0∅∈;⑹{}0∅=;例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.例3.已知集中{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且MN =,供q 战d的值(用a 表示).例4.设齐集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,供真数a 的值. 例5.已知{}3A x x =<,{}B x x a =<. ⑴若B A ⊆,供a 的与值范畴; ⑵若A B ⊆,供a 的与值范畴; ⑶若R C A R C B ,供a 的与值范畴. [课内训练]1. 下列关系中精确的个数为()①0∈{0},②Φ{0},③{0,1}⊆{(0,1)},④{(a ,b )}={(b ,a )}A )1(B )2 (C )3(D )42.集中{}8,6,4,2的真子集的个数是()(A )16 (B)15 (C)14 (D) 133.集中{}正方形=A ,{}矩形=B ,{}平行四边形=C ,{}梯形=D ,则底下包罗关系中不精确的是()(A )B A ⊆ (B) C B ⊆ (C) D C ⊆ (D) C A ⊆4.若集中 ,则_____=b .5.已知M={x| 2≤x ≤5}, N={x| a+1≤x ≤2a 1}.(Ⅰ)若M ⊆N ,供真数a 的与值范畴; (Ⅱ)若M ⊇N ,供真数a 的与值范畴. [归纳深思]1.那节课咱们教习了集中之间包罗关系及补集的观念,沉面明黑子集、真子集,补集的观念,注意空集与齐集的相关知识,教会数轴表示数集. 2. 深刻明黑用集中谈话道述的数教命题,并能准确天把它翻译成相关的代数谈话大概几许谈话,抓住集中谈话背笔墨谈话大概图形谈话转移是挨启解题大门的钥匙,办理集中问题时要注意充分使用数轴战韦恩图,收挥数形分离的思维要领的巨大能力. [坚韧普及]1.四个关系式:①∅}0{⊂;②0}0{∈;③}0{∈∅;④}0{=∅.其中表述精确的是[ ] A .①,② B .①,③ C .①,④ D .②,④2.若U={x ∣x 是三角形},P={ x ∣x 是曲角三角形},则=P C U ----------------------[ ]A .{x ∣x 是曲角三角形}B .{x ∣x 是钝角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是钝角三角形大概钝角三角形}3.下列四个命题:①{}0∅=;②空集不子集;③所有一个集中必有二身材集;④空集是所有一个集中的子集.其中精确的有---------------------------------------------------[ ]A.0个 B.1个 C.2个 D.3个4.谦脚关系{}1,2A ⊆{}1,2,3,4,5的集中A的个数是--------------------------[ ] A.5 B.6 C.7 D.8 5.若,x y R ∈,(){},A x y y x ==,(),1y B x y x ⎧⎫==⎨⎬⎩⎭,则,A B 的关系是---[ ] A.A B B.A B C.A =B D.A ⊆B6.设A={}5,x x x N ≤∈,B={x ∣1< x <6,x }N ∈,则=B C A7.U={x ∣},01582R x x x ∈=+-,则U 的所有子集是8.已知集中}5|{<<=x a x A ,x x B |{=≥}2,且谦脚B A ⊆,供真数a 的与值范畴.9.已知集中P={x ∣},062R x x x ∈=-+,S={x ∣},01R x ax ∈=+, 若S ⊆P ,供真数a 的与值集中.10.已知M={x ∣x ,0>R x ∈},N={x ∣x ,a >R x ∈} (1)若M N ⊆,供a 得与值范畴;(2)若M N⊇,供a得与值范畴;(3)若MC R,供a得与值范畴.C R N接集、并集[自教目标]1.明黑接集、并集的观念战意思2.掌握相识区间的观念战表示要领3.掌握有关集中的术语战标记[知识重心]1.接集定义:A∩B={x|x∈A且x∈B}运算本量:(1)A∩B A,A∩B B(2) A∩A=A,A∩φ=φ(3) A∩B= B∩A(4) A B A∩B=A2.并集定义:A∪B={x| x∈A大概x∈B }运算本量:(1) A (A∪B),B (A∪B)(2) A∪A=A,A∪φ=A(3) A∪B= B∪A (4) A B A∪B=B[预习自测]1.设A={x|x>—2},B={x|x<3},供 A∩B战A∪B2.已知齐集U={x|x与不大于30的量数},A、B是U的二身材集,且A∩C U B={5,13,23},C U A∩B={11,19,29},C U A∩C U B={3,7},供A,B.3.设集中A={|a+1|,3,5},集中B={2a+1,a2+2a,a2+2a—1}当A∩B={2,3}时,供A∪B[课内训练]1.设A=(]3,1-,B=[)4,2,供A∩B2.设A=(]1,0,B={0},供A∪B3.正在仄里内,设A、B、O为定面,P为动面,则下列集中表示什么图形(1){P|PA=PB} (2) {P|PO=1}4.设A={(x,y)|y=—4x+b},B={(x,y)|y=5x—3 },供A∩B5.设A={x|x=2k+1,k∈Z},B={x|x=2k—1,k∈Z},C= {x|x=2k,k∈Z},供A∩B,A∪C,A∪B[归纳深思]1.集中的接、并、补运算,不妨借帮数轴,还不妨借帮文氏图,它们皆是数形分离思维的体现2.分类计划是一种要害的数教思维法,精确分类计划思维,掌握分类计划思维要领.[坚韧普及]1.设齐集U={a,b,c,d,e},N={b,d,e}集中M={a,c,d},则C U(M∪N)等于2.设A={ x|x<2},B={x|x>1},供A∩B战A∪B3.已知集中A B,供真数a 的与值范畴4.供谦脚{1,3}∪A={1,3,5}的集中A5.设A={x|x2—x—2=0},A∩B6、设A={(x,y)| 4x+m y =6},B={(x,y)|y=nx—3 }且A∩B={(1,2)},则m= n=7、已知A={2,—1,x2—x+1},B={2y,—4,x+4},C={—1,7}且A ∩B=C,供x,y的值8、设集中2+3px+2=0},B={x|2x2+x+q=0},其中p,q,x∈R,且A∩时,供p的值战A∪B9、某车间有120人,其中乘电车上班的84人,乘汽车上班的32人,二车皆乘的18人,供:⑴只乘电车的人数⑵不乘电车的人数⑶乘车的人数⑷只乘一种车的人数10、设集中A={x|x2+2(a+1)x+a2—1=0},B={x|x2+4x=0}⑴若A∩B=A,供a的值⑵若A∪B=A,供a的值集中复习课[自教目标]1.加深对付集中关系运算的认识2.对付含字母的集中问题有一个收端的相识[知识重心]1.数轴正在解集中题中应用2.若集中中含有参数,需对付参数举止分类计划 [预习自测]1.含有三个真数的集中可表示为⎭⎬⎫⎩⎨⎧1,,a b a ,也可表示为{}0,,2b a a +,供20042003b a +2.已知集中A={}21|>-<x x x 或,集中B={}04|<+p x x ,当B A ⊇时,供真数p 的与值范畴3.已知齐集U={1,3,x x x 2323++},A={1,|2x —1|},若C U A={0},则那样的真数x 是可存留,若存留,供出x 的值,若不存留,证明缘由 [课内训练]1.已知A={x|x<3},B={x|x<a} (1)若B A ,供a 的与值范畴 (2)若A B ,供a 的与值范畴(3)若C R A C R B ,供a 的与值范畴2.若P={y|y=x 2,x ∈R},Q={y| y=x 2+1,x ∈R },则P ∩Q =3.若P={y|y=x 2,x ∈R},Q={(x ,y )| y=x 2,x ∈R },则P ∩Q = 4.谦脚{a ,b} A {a ,b ,c ,d ,e}的集中A 的个数是 [归纳深思]1.由条件给出的集中要明黑它所表示的含意,即元素是什么?2.含参数问题需对付参数举止分类计划,计划时央供既不沉复也不遗漏.[坚韧普及]1.已知集中M={x|x 3—2x 2—x+2=0},则下列各数中不属于M 的一个是()A .—1B .1C .2D .—22.设集中A= {x|—1≤x <2},B={ x|x<a },若A ∩B ≠φ,则a 的与值范畴是()A .a <2B .a >—2C .a >—1D .—1≤a ≤23.集中A 、B 各有12个元素,A ∩B 中有4个元素,则A ∪B 中元素个数为4.数集M={x|N k k x ∈+=,41},N={ x|N k k x ∈-=,412},则它们之间的关系是⊂ ≠⊂≠5.已知集中M={(x,y )|x+y=2 },N={(x,y )|x —y=4},那么集中M ∩N=6.设集中A={x|x 2—px+15=0},B={x|x 2—5x+q=0},若A ∪B={2,3,5},则A=B=7.已知齐集U=R ,A={x|x ≤3},B={ x|0≤x ≤5},供(C U A )∩B8.已知集中A={x|x 2—3x+2=0},B={x|x 2—mx+(m —1)=0},且B A ,供真数m 的值9.已知A={x|x 2+x —6=0},B={x|mx+1=0},且A ∪B=A ,供真数m 的与值范畴10.已知集中A={x|—2<x <—1大概x >0},集中B={ x|a ≤x ≤b},谦脚A ∩B={x|0<x ≤2},A ∪B={x|x >—2},供a 、b 的值§函数的观念与图象(1)[自教目标]1.体验函数是形貌变量之间的依好关系的要害数教模型,明黑函数的观念;2.相识形成函数的果素有定义域、值域与对付应规则; [知识重心]12.函数观念的三果素:定义域、值域与对付应规则. 3.函数的相等. [预习自测]例1(1(2(2(3(4应,单值对付应的关键是元素对付应的存留性战唯一性.例2.下列各图中表示函数的是------------------------------------------[ ]⊂ ≠A B C D例3.正在下列各组函数中,)(x f 与)(x g 表示共一函数的是------------------[ ]A .)(x f =1,)(x g =0xB .x y =与2x y =C .2x y =与2)1(+=x yD .)(x f =∣x ∣,)(x g =2x63-x (x ≥0)例4 已知函数=)(x f 供)1(f 及)]1([f f 5+x (x 0<), [课内训练]1.下列图象中表示函数y=f(x)关系的有--------------------------------( )A.(1)(2)(4)B.(1)(2)C.(2)(3)(4)D.(1)(4)2.下列四组函数中,表示共一函数的是----------------------------------( ) A .24129y x x =-+战32y x =-B .2y x =战y x x = C .y x =战2y x=D .y x =战()2y x =3.下列四个命题(1)f(x)=x x -+-12蓄意思;(2))(x f 表示的是含有x 的代数式(3)函数y=2x(x N ∈)的图象是背去线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是扔物线,其中精确的命题个数是()A .1B .2C .3D .04.已知f(x)=221(1)1(1)x x x x ⎧->⎪⎨-<⎪⎩,则f(33)=;5.已知f 谦脚f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f =[归纳深思]1.原课时的沉面真量是函数的定义与函数暗号()f x 的意思,易面是函数观念的明黑战精确应用;xy xy x yxy OOO O2.推断二个函数是可是共一函数,是函数观念的一个要害应用,要能紧扣函数定义的三果素举止分解,进而精确天做出推断.[坚韧普及]1--------------------[ ]A B C D2.下列各项中表示共一函数的是ABCD3) ] AB.1C.24--------------------------------[ ]ABCD5678910[自教目标]掌握供函数定义域的要领以及步调;[知识重心]1、函数定义域的供法:(1)由函数的剖析式决定函数的定义域;(2)由本量问题决定的函数的定义域;(3). [预习自测]例1.供下列函数的定义域:(1)()1f x x x =+-(2))(x f =xx -1(3)1()21f x x=+(4))(x f =+-x 5x-21分解:如果()f x 是整式,那么函数的定义域是真数集R ;如果()f x 是分式,那么函数的定义域是使分母0≠的真数的集中;如果()f x 是二次根式,那么函数的定义域是使根号内的表黑式≥0的真数的集中.★注意定义域的表示不妨是集中大概区间.例2.周少为l 的铁丝直成下部为矩形,上部为半圆形的框架(如图),若矩形底边少为2x ,供此框架围成的里积y 与x 的函数关系式,并指出其定义域例3.若函数=y )(x f 的定义域为[]1,1- (1)供函数(1)f x +的定义域; (2)供函数=y )41()41(-++x f x f 的定义域.[课内训练]1.函数()1f x x x=-的定义域是―――――――――――――――――()A.(),0-∞B.()0,+∞C.[0,)+∞D.R 2.函数f(x)的定义域是[12,1],则y=f(3-x)的定义域是―――――――――()A [0,1]B [2,52] C [0,52] D (),3-∞3.函数()f x =()011x x -+-的定义域是:4.函数)5lg()(-=x x f 的定义域是5.函数()()1log 143++--=x x xx f 的定义域是 [归纳深思]1.函数定义域是指受节造条件下的自变量的与值;2.供函数的定义域时常是归纳为解不等式战不等式组; [坚韧普及]1.函数y =21x -+12-x 的定义域是----------------------------[ ] A .[1-,1] B .(),1[]1,+∞-∞- C .[0,1] D .{1,1-}2.已知)(x f 的定义域为[2,2-],则)21(x f -的定义域为------------[ ] A .[2,2-] B .[]23,21- C .[]3,1- D .[,2-]233------------------------------------[ ]A45.6.7.供下列函数的定义域328.9.用少为30cm的铁丝围成矩形,试将矩形里积S.10黑式.§函数的观念与图象(3)[自教目标]掌握供函数值域的基原供法;[知识重心]函数值域的供法函数的值域是由函数的定义域与对付应规则决定的,果此,央供函数的值域,普遍要从函数的定义域与对付应规则进脚分解,时常使用的要领有:(1)瞅察法;(2)图象法;(3)配要领;(4)换元法.[预习自测]例1.供下列函数的值域:(1(2(3(4(5(6分解:供函数的值域,一种时常使用的要领便是将函数的剖析式做适合的变形,通过瞅察大概利用死知的基原函数(如一次函数、二次函数等)的值域,进而逐步推出所供函数的值域(瞅察法);大概者也不妨利用换元法举止转移供值域.例2.畴[1A2.函数y=2x2-4x-3,0≤x≤3的值域为 ( )∞)3 ( )A45.供函数[归纳深思]供函数的值域是教习中的一个易面,要领机动百般,初教时只消掌握几种时常使用的要领,如瞅察法、图象法、配要领、换元法等,正在以去的教习中还会有一些新的要领(比圆使用函数的单调性、配要领、分段计划法、不等式法等等),不妨逐步天深进战普及.[坚韧普及---------------------------------------[ ]1.A2.下列函数中,值域是的是A3.--------[ ]:.5.:.6.:.7.供下列函数的值域23(1(4568.§函数的观念与图象(4)[自教目标]1.会使用描面法做出一些简朴函数的图象,从“形”的角度进一步加深对付函数观念的明黑;2.通过对付函数图象的描画战钻研,培植数形分离的意识,普及使用数形分离的思维要领办理数教问题的本领. [知识重心]1.函数图象的观念每一个值时,便得到一系列那样的面.所有那些面组成的集中(面2.函数图象的画法画函数的图象,时常使用描面法,其基原步调是:⑴列表;⑵描面;⑶连线.正在画图历程中,一定要注意函数的定义域战值域. 3.会做图,会读(用)图 [预习自测]例1.画出下列函数的图象,并供值域:,2];;例2y =3x 2-6x |图象的接面个数为() (A )4个(B )3个(C )2个(D )1个例3.下图中的A. B. C. D 四个图象中,用哪三个分别形貌下列三件事最符合,并请您为剩下的一个图象写出一件事. 离启家的距离(m) 离启家的距离(m) 时间(min )时间(min )A B离启家的距离(m) 离启家的距离(m) 时间(min )时间(min )C D(1) 尔离启家不暂,创造自己把做业原记正在家里了,停下去念了一会仍旧返回家与了做业原再上教;(2) 尔骑着车一路匀速止驶,不过正在途中逢到一次接通阻碍,延误了一些时间;(3) 尔出收后,心情沉快,缓缓前进,厥后为了赶时间加快了速度. [课堂训练]1.下列四个图像中,是函数图像的是( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3) D 、(3)、(4)2.曲线x a =()a R ∈战函数21y x =+的图象的接面个数 ( )A 至多一个B 起码有一个C 有且仅有一个D 有一个大概二个以上3.函数y=|x+1|+1的图象是 ( )4.某企业近几年的年产值如图,则年删少率最下的是( )(年删少率=年删少值/年产值)A )97年B )98年C )99年D )00年5.做出函数223(1y x x x =--≤-大概2x >)的图象;[归纳深思] 根据函数的剖析式画函数的图象,基原要领是描面法,但是值得指出的是:一要注意函数的定义域,二要注意对付函数剖析式的个性加以分解,充分利用已知函数的图象普及做图的速度战准确性; 函数的图象是表示函数的一种要领,通过函数的图象不妨曲瞅天表示x 与y 的对付应关系以及二个变量变更历程中的变更趋势,以去咱们会时常天使用函数剖析式与函数图象二者的有机分离去钻研函数xOyxxxyyyOOO(1)(2)(3)(4)0099989796(年)2004006008001000(万元)的本量. [坚韧普及]1.某教死离家去书院,由于怕早退,所以一启初便跑步,等跑乏了再走做余下的路,正在 下图中纵轴表示离书院距离,横轴表示出收后的时间,则下图中较切合教死走法的是( ) d d d dO t O t O t O t A B C D 2.某工厂八年去产品C (即前t 年年产量之战)与时间t(年)的函数如下图,下列四种道法:(1)前三年中,产量删少的速度越去越快; (2)前三年中,产量删少的速度越去越缓; (3)第三年后,年产量脆持稳定; (4)第三年后,年产量逐步删少. 其中道法精确的是()A .(2)与(3)B .(2)与(4)C .(1)与(3)D .(1)与(4)3.下列各图象中,哪一个不可能是函数)(x f y =的图象()xA .B .xxC .D .4.函数)0(≠+=kb b kx y 的图象短亨过第一象限,则b k ,谦脚-----------[ ] A .k 0,0><b B .0,0<<b k C .0,0<>b k D .0,0>>b k5.函数c bx ax y ++=2与b ax y +=()0≠ab 的图象只大概是---------[ ]A .B .C .D .6.函数1+=x y 的图象是----------------------------------------[ ]A .B .C .D . 7.函数1(13-=x y ≤x ≤2)的图象是xy0 0xxxxxx x xyyyyy yyy8.一次函数的图象通过面(2,0)战(-2,1),则此函数的剖析式为9.10.(1(2[自教目标]1.相识表示函数有三种基原要领:图象法、列表法、剖析法;明黑函数关系的三种表示要领具备内正在的通联,正在一定的条件下是不妨互相转移的.2.相识供函数剖析式的一些基原要领,会供一些简朴函数的剖析式.3.相识简朴的分段函数的个性以及应用.[知识重心]1.表示函数的要领,时常使用的有:剖析法,列表法战图象法.正在表示函数的基原要领中,列表法便是间接列表表示函数,图象法便是间接做图表示函数,而剖析法是通过函数剖析式表示函数.2.供函数的剖析式,普遍有三种情况⑴根据本量问题修坐函数的关系式;⑵已知函数的典型供函数的剖析式;⑶使用换元法供函数的剖析式;3.分段函数正在定义域内分歧部分上,有分歧的剖析表黑式的函数常常喊搞分段函数;注意:①分段函数是一个函数,而不是几个函数;;值范畴的并集[例题分解]例1.买买某种饮料x听,所需钱数为y元.若每听2元,试分别用剖成的函数,并指出该析法、列表法、图象法将y表示例2.(1)已知f(x)是一次函数,且f(f(x))=4x-1,供f(x)的表黑式;(2)已知,供f(x)的表黑式;例3︱的图象 变题③供函数f(x)=︱x+1︱+︱x-2︱的值域变题④做出函数f(x)=︱x+1︱+︱x-2︱的图象,是可存得通太过类计划,将剖析式化为不含有千万于值的式子.做出f(x)的图象例4(1)供f(-3)、f[f(-3)] ; (2)若供a 的值.[课堂训练]1.用少为30cm 的铁丝围成矩形,试将矩形里积S一边少x (cm )的函数,并画出函数的图象.2.若f(f(x))=2x -1,其中f(x)为一次函数,供f(x)的剖析式.3.已知f(x-3)f(x+3) 的表黑式.4.如图,根据的图象,写出y=f(x)的剖析式. [归纳深思]1. 函数关系的表示要领主要有三种: 剖析法,列表法战图象法.那三种表示要领各有劣缺面,千万不克不迭误认为惟有剖析式表示出去的对付应关系才是函数;2. 函数的剖析式是函数的一种时常使用的表示要领,央供二个变量间的函数关系,一是央供出它们之间的对付应规则,二是央供出函数的定义域;3. 无论使用哪种要领表示函数,皆不克不迭忽略函数的定义域;对付于分段函数,还必须注意正在分歧的定义范畴内,函数有分歧的对付应关系,必须先分段钻研,再合并写出函数的表黑式. [坚韧普及]1.函数f(x)=︱x+3︱的图象是------------------------------------------------------------( )2--------------------------------------------------( )A.32x + B.3x + C.32x + D.23x +3.已知一次函数的图象过面()1,0以及()0,1,则此一次函数的剖析式为------()A .1y x =-+B .1y x =+C .1y x =-D .1y x =--4.已知函数()()()221122(2)x x y f x x x x x +≤-⎧⎪==-<<⎨⎪>⎩,且()3f a =,则真数a 的值为---()A .1B .1.5C .3-D .35.若函数()2,(),(1)1,f x x mx n f n m f =-+==-则()5f -= 6.某航空公司确定,乘机所携戴止李的沉量(kg )与其运费(元)由如图的一次函数图象决定,那么搭客免费可携戴止李的最大沉量为7.画出函数2x0,f(x)=x0,x x ≥⎧⎨<⎩的图象,并供f(32+)+f(32-的值. 8.画出下列函数的图象(1) y=x -︱1-x ︱ (2) 21,02,0x x y x x ⎧+≤=⎨->⎩9.供函数y=1-︱1-x ︱的图象与x 轴所围成的启关图形的里积.。

2018-2019数学新学案同步必修一人教A版全国通用版讲义:第3章 滚动训练五 Word版含答案

2018-2019数学新学案同步必修一人教A版全国通用版讲义:第3章 滚动训练五 Word版含答案

滚动训练(五)一、选择题1.设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B 等于( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)考点 交集的概念及运算题点 无限集合的交集运算答案 D解析 由4-x 2≥0,解得-2≤x ≤2,则函数y =4-x 2的定义域为[-2,2], 由对数函数的定义域可知,1-x >0,解得x <1,则函数y =ln(1-x )的定义域为(-∞,1),则A ∩B =[-2,1),故选D.2.已知3x =10,则这样的x ( )A .存在且只有一个B .存在且不只一个C .存在且x <2D .根本不存在考点 指数函数的性质题点 指数函数的性质答案 A解析 y =3x 是R 上的增函数,且值域为(0,+∞).∵10∈(0,+∞),∴有且只有一个x 与之对应.3.函数y =2x +1x -3的值域为( ) A.⎝⎛⎭⎫-∞,43∪⎝⎛⎭⎫43,+∞ B .(-∞,2)∪(2,+∞)C .RD.⎝⎛⎭⎫-∞,23∪⎝⎛⎭⎫43,+∞ 考点 函数的值域题点 求分式函数的值域答案 B解析 y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2. 4.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为( )考点 对数函数的图象题点 含绝对值的对数函数的图象答案 A解析 由题意知,当x =0时,y =f (1)=0,排除C ,D ;当x =1时,y =f (2)<0,排除B ,故选A.5.函数y =1+1x的零点是( ) A .(-1,0)B .-1C .1D .0 考点 函数零点的概念题点 求函数的零点答案 B解析 由1+1x =0,得1x=-1,∴x =-1. 6.将进货单价为80元的商品400个,按90元一个售出时能全部卖出.已知这种商品每个涨价1元,其销售数就减少20个.为了获得最大利润,售价应定为每个( )A .5元B .90元C .95元D .96元考点 建立函数模型解决实际问题题点 建立函数模型解决实际问题答案 C。

2018-2019数学新学案同步必修一人教B版全国通用版讲义:第1章 集合章末复习 Word版含答案

2018-2019数学新学案同步必修一人教B版全国通用版讲义:第1章 集合章末复习 Word版含答案

章末复习学习目标 1.深化对集合基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.集合元素的三个特性:确定性,互异性,无序性.2.元素与集合有且只有两种关系:∈,∉.3.集合表示方法有列举法,描述法,Venn图法,常用数集字母代号.4.集合间的关系与集合的运算符号定义Venn图子集A⊆B x∈A⇒x∈B真子集A B A⊆B且存在x0∈B但x0∉A并集A∪B{x|x∈A或x∈B}交集A∩B{x|x∈A且x∈B}补集∁U A(A⊆U){x|x∈U且x∉A}5.常用结论(1)∅⊆A.(2)A∪∅=A;A∪A=A;A∪B=A⇔A⊇B.(3)A∩∅=∅;A∩A=A;A∩B=A⇔A⊆B.(4)A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.x,|x|,则x<0.(√)1.若A={}2.任何集合至少有两个子集.( × )3.若{}x |ax 2+x +1=0有且只有一个元素,则必有Δ=12-4a =0.( × )4.设A ,B 为全集的子集,则A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .( √ )类型一 集合的概念及表示法例1 下列表示同一集合的是( )A .M ={(2,1),(3,2)},N ={(1,2)}B .M ={2,1},N ={1,2}C .M ={y |y =x 2+1,x ∈R },N ={y |y =x 2+1,x ∈N }D .M ={(x ,y )|y =x 2-1,x ∈R },N ={y |y =x 2-1,x ∈R }答案 B解析 A 选项中M ,N 两集合的元素个数不同,故不可能相同;B 选项中M ,N 均为含有1,2两个元素的集合,由集合中元素的无序性可得M =N ;C 选项中M ,N 均为数集,显然有N M ;D 选项中M 为点集,即抛物线y =x 2-1上所有点的集合,而N 为数集,即抛物线y =x 2-1的值域,故选B.反思与感悟 要解决集合的概念问题,必须先弄清集合中元素的性质,明确是数集,还是点集等.跟踪训练1 设集合A ={(x ,y )|x -y =0},B ={(x ,y )|2x -3y +4=0},则A ∩B =________. 答案 {(4,4)}解析 由⎩⎪⎨⎪⎧ x -y =0,2x -3y +4=0,得⎩⎪⎨⎪⎧ x =4,y =4.∴A ∩B ={(4,4)}. 类型二 集合间的基本关系例2 若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,求由a 的可能取值组成的集合.解 由题意得,P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;。

新课标高中数学人教A版必修1全册导学案及答案

新课标高中数学人教A版必修1全册导学案及答案

§集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素 (1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈;(2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性. 例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A. 例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有着名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

2018-2019数学新学案同步必修一浙江专用版讲义:第三章 函数的应用章末复习 Word版含答案

2018-2019数学新学案同步必修一浙江专用版讲义:第三章 函数的应用章末复习 Word版含答案

章末复习学习目标 1.体会函数与方程之间的联系.2.了解指数函数、幂函数、对数函数的增长差异.3.巩固建立函数模型的过程和方法,了解函数模型的广泛应用.1.知识网络2.要点归纳(1)函数的零点与方程的根的关系:①方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.②确定函数零点的个数有两个基本方法:借助函数单调性和零点存在性定理研究图象与x轴的交点个数;通过移项,变形转化成两个函数图象的交点个数进行判断.(2)在同样是增函数的前提下,当自变量变得充分大之后,指数函数、对数函数、幂函数三者中增长最快的是指数函数,增长最慢的是对数函数.(3)函数模型①给定函数模型与拟合函数模型中求函数解析式主要使用待定系数法.②建立确定性的函数模型的基本步骤是审题,设量,表示条件,整理化简,标明定义域.③所有的函数模型问题都应注意变量的实际意义对定义域的影响.1.函数y=f(x)-g(x)的零点即方程f(x)g(x)=1的根.(×) 2.存在x0,当x>x0时,有2x>x3.(√)3.建立的函数模型必须真实地反映原型的特征和关系.(√)类型一 函数的零点与方程的根的关系例1 已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是____________.考点 函数的零点与方程根的关系题点 函数的零点与方程根的关系答案 x 1<x 2<x 3解析 令x +2x =0,得2x =-x ;令x +ln x =0,得ln x =-x ;在同一平面直角坐标系内画出y =2x ,y =ln x ,y =-x 的图象,由图可知x 1<0<x 2<1.令h (x )=x -x -1=0,则(x )2-x -1=0,所以x =1+52,即x 3=⎝ ⎛⎭⎪⎫1+522>1. 所以x 1<x 2<x 3.反思与感悟 (1)函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(2)确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.跟踪训练1 若函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2)考点 函数零点存在性定理题点 函数零点有关的参数取值范围答案 C解析 显然f (x )在(0,+∞)上是增函数,由条件可知f (1)·f (2)<0,即(2-2-a )(4-1-a )<0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精品】2018-2019学年新课标高中数学必修1全册导学案及答案§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数;(2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形 例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB },,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= .[归纳反思]1.列举法:把集合中的元素一一列举出来,写在花括号“{ }”内表示集合的方法.当集合中的元素 较少 时,用列举法表示方便..例:x 2-3x +2=0的解集可表示为{1,2}.有些集合元素的个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如何用列举法表示从1到100的所有整数组成的集合及自然数集N. 答 分别表示为{1,2,3,…,100},{1,2,3,4,…,n ,…}.小结 用列举法表示集合时,应把集合中的元素一一列举出来,并且写在大括号内,元素和元素之间要用“,”隔开.花括号“{ }”表示“所有”、“整体”的含义,如实数集R 可以写为{实数},但如果写成{实数集}、{全体实数}、{R}都是不确切的.1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.2.描述法:一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以用它的特征性质p(x)描述 {x∈I|p(x)} .3.列举法常用于集合中的元素较少时的集合表示,描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。

这是解决有关集合问题的一种重要方法;3.确定的对象才能构成集合.可依据对象的特点或个数的多少来表示集合,如个数较少的有限集合可采用列举法,而其它的一般采用描述法.4.要特别注意数学语言、符号的规范使用.[巩固提高]1.已知下列条件:①小于60的全体有理数;②某校高一年级的所有学生;③与2相差很小的数;④方程2x=4的所有解。

其中不可以表示集合的有--------------------()A.1个B.2个C.3个D.4个2.下列关系中表述正确的是-----------------------------------------()A.{}200x∈=B.(){}00,0∈C.0∈∅ D.0N∈3.下列表述中正确的是----------------------------------------------()A.{}0=∅B.{}{}1,22,1=C.{}∅=∅D.0N∉4.已知集合A={}23,21,1a a a---,若3-是集合A的一个元素,则a的取值是()A.0 B.-1 C.1 D.25.方程组3254x yx y=+⎧⎨+=⎩的解的集合是---------------------------------------()A.(){}1,1-B.(){}1,1-C.()(){},1,1x y-D.{}1,1-6.用列举法表示不等式组240121xx x+>⎧⎨+≥-⎩的整数解集合为:7.设21522x x ax⎧⎫∈--=⎨⎬⎩⎭,则集合2192x x x a⎧⎫--=⎨⎬⎩⎭中所有元素的和为:8、用列举法表示下列集合:⑴(){},3,,x y x y x N y N+=∈∈⑵{}3,,y x y x N y N+=∈∈9.已知A={1,2,x2-5x+9},B={3,x2+ax+a},如果A={1,2,3},2 ∈B,求实数a的值.10.设集合{},3A n n Z n=∈≤,集合{}21,B y y x x A==-∈,集合,试用列举法分别写出集合A、B、C.(){}2,1,C x y y x x A==-∈1.1.2子集、全集、补集[自学目标]1.了解集合之间包含关系的意义.2.理解子集、真子集的概念.3.了解全集的意义,理解补集的概念. [知识要点]1.子集的概念:如果集合A 中的任意一个元素都是集合B 中的元素B ),那么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇,.BA ⊆还可以用Venn 图表示. 我们规定:A ∅⊆.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即A A ⊆.⑵子集具有传递性,即若B A ⊆且B C ⊆,则A C ⊆.2.真子集:如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ). 记作:A B⑴规定:空集是任何非空集合的真子集. ⑵如果A B, B C ,那么A C3.两个集合相等:如果B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =. 4.全集:如果集合S 包含有我们所要研究的各个集合,这时S 可以看作一个全集(Universal set ),全集通常记作U.5.补集:设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集 (complementary set ), 记作:S A ð(读作A 在S 中的补集),即{,}.S A x x S x A =∈∉且ð补集的Venn 图表示:[预习自测]例1.判断以下关系是否正确: ⑴{}{}a a ⊆;⑵{}{}1,2,33,2,1=;⑶{}0∅⊆;⑷{}00∈;⑸{}0∅∈;⑹{}0∅=;例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.例3.已知集合{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且M N =,求q 和d 的值(用a 表示).例4.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值.例5.已知{}3A x x =<,{}B x x a =<. ⑴若B A ⊆,求a 的取值范围; ⑵若A B ⊆,求a 的取值范围; ⑶若RC A R C B ,求a 的取值范围.[课内练习]1. 下列关系中正确的个数为( ) ①0∈{0},②Φ{0},③{0,1}⊆{(0,1)},④{(a ,b )}={(b ,a )}A )1 (B )2 (C )3 (D )42.集合{}8,6,4,2的真子集的个数是( )(A )16 (B)15 (C)14 (D) 133.集合{}正方形=A ,{}矩形=B ,{}平行四边形=C ,{}梯形=D ,则下面包含关系中不正确的是( )(A )B A ⊆ (B) C B ⊆ (C) D C ⊆ (D) C A ⊆ 4.若集合 ,则_____=b .5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. (Ⅰ)若M ⊆N ,求实数a 的取值范围; (Ⅱ)若M ⊇N ,求实数a 的取值范围.[归纳反思]1. 这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴表示数集. 2. 深刻理解用集合语言叙述的数学命题,并能准确地把它翻译成相关的代数语言或几何语言,抓住集合语言向文字语言或图形语言转化是打开解题大门的钥匙,解决集合问题时要注意充分运用数轴和韦恩图,发挥数形结合的思想方法的巨大威力。

[巩固提高]1.四个关系式:①∅}0{⊂;②0}0{∈;③}0{∈∅;④}0{=∅.其中表述正确的是[ ] A .①,②B .①,③C . ①,④D . ②,④2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则=P CU----------------------[ ]A .{x ∣x 是直角三角形}B .{x ∣x 是锐角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是锐角三角形或钝角三角形}3.下列四个命题:①{}0∅=;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有---------------------------------------------------[ ] A.0个 B.1个 C.2个 D.3个4.满足关系{}1,2A ⊆ {}1,2,3,4,5的集合A的个数是--------------------------[ ] A.5 B.6 C.7 D.85.若,x y R ∈,(){},A x y y x ==,(),1y B x y x ⎧⎫==⎨⎬⎩⎭,则,A B 的关系是---[ ]A.A B B.AB C.A =B D.A ⊆B6.设A={}5,x x x N ≤∈,B={x ∣1< x <6,x }N ∈,则=B CA7.U={x ∣},01582R x x x ∈=+-,则U 的所有子集是8.已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围.9.已知集合P={x ∣},062R x x x ∈=-+,S={x ∣},01R x ax ∈=+, 若S ⊆P ,求实数a 的取值集合.10.已知M={x ∣x ,0>R x ∈},N={x ∣x ,a >R x ∈}(1)若M N ⊆,求a 得取值范围; (2)若M N ⊇,求a 得取值范围; (3)若M CRN CR,求a 得取值范围.1.1.3交集、并集[自学目标]1.理解交集、并集的概念和意义2.掌握了解区间的概念和表示方法3.掌握有关集合的术语和符号[知识要点]1.交集定义:A∩B={x|x∈A且x∈B}运算性质:(1)A∩B⊆A,A∩B⊆B(2) A∩A=A,A∩φ=φ(3) A∩B= B∩A(4) A⊆ B ⇔ A∩B=A2.并集定义:A∪B={x| x∈A或x∈B }运算性质:(1) A ⊆(A∪B),B ⊆(A∪B) (2) A∪A=A,A∪φ=A(3) A∪B= B∪A (4) A⊆ B ⇔ A∪B=B[预习自测]1.设A={x|x>—2},B={x|x<3},求 A∩B和A∪B2.已知全集U={x|x取不大于30的质数},A、B是U的两个子集,且A∩C U B= {5,13,23},C U A∩B={11,19,29},C U A∩C U B={3,7},求A,B.3.设集合A={|a+1|,3,5},集合B={2a+1,a2+2a,a2+2a—1}当A∩B={2,3}时,求A∪B [课内练习] 1.设A=(]3,1-,B=[)4,2,求A∩B2.设A=(]1,0,B={0},求A∪B3.在平面内,设A、B、O为定点,P为动点,则下列集合表示什么图形(1){P|PA=PB} (2) {P|PO=1}4.设A={(x,y)|y=—4x+b},B={(x,y)|y=5x—3 },求A∩B5.设A={x|x=2k+1,k∈Z},B={x|x=2k—1,k∈Z},C= {x|x=2k,k∈Z},求A∩B,A∪C,A∪B[归纳反思]1.集合的交、并、补运算,可以借助数轴,还可以借助文氏图,它们都是数形结合思想的体现2.分类讨论是一种重要的数学思想法,明确分类讨论思想,掌握分类讨论思想方法。

相关文档
最新文档