人教版七年级数学下册 期末综合复习卷

合集下载

七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.在实数0,-π,和-4中,最小的数是( )A .0B .-πC .D .-42.下列计算中,正确的是( )A 2=±B 1=-C 7=-D .5=3.已知点P (x ,y )在第二象限,且2x =,3y =则点P 的坐标为( )A .(-2,3)B .(2,-3)C .(-3,2)D .(2,3)4.将△ABC 沿AB 方向平移到△EFD 的位置,若∠1=31°,∠2=57°,则∠D 的度数为( )A .91°.B .90°.C .92°.D .105°. 5.若m 为任意实数,点(2m +1,m -2)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,下列能判定AB ∥EF 的条件有( )①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A .1个B .2个C .3个D .4个7.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是( )A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况8.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对七年级学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作出如下两幅不完整的统计图.由图中信息可知,下列结论错误的是( )A .本次调查的样本容量是600B .选“奉献”的有90人C .扇形统计图中“感恩”所对应的扇形圆心角度数为108°D .选“感恩”的人数比选“敬畏”的人数多100人9.某校运动员分组训练,若每组6人,则余3人;若每组7人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .{6y =x −37y =x +5B .{6y =x −37y +5=xC .{6y =x +37y +5=xD .{6y =x +37y =x +510.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A .6环B .7环C .8环D .9环11.已知二元一次方程组{5m +4n =200①4m −5n =8②,如果用加减法消去n ,则下列方法可行的是( ) A .①×4+②×5B .①×5+②×4C .①×5﹣②×4D .①×4﹣②×512.若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A .13a ≥B .1314a <<C .1314a ≤<D .1314a <≤二、填空题(本大题共4小题,每小题2分,共8分)13.比较大小用“>”、“<”或“=”填空)14.如图,直线AB CD ,55B ∠=︒和35D∠=︒,则E ∠的度数是 度15.某校学生会组织七年级和八年级共30名同学参加环保志愿者活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于500个,则七年级学生参加活动的人数至多是名16.经调查,某班学生上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据时,“公交车”对应扇形的圆心角是度.三、解答题(本答题共8小题,共56分)17|118.已知ABC在平面直角坐标系中的位置如图所示.将ABC向右平移6个单位长度,再向下平移6个单位长度得到111.(A B C图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的111A B C;(2)直接写出111A B C各顶点的坐标.19.若方程组342312x yax by+=⎧⎨-=⎩与25210x yax by-=⎧⎨+=⎩有相同的解,求a与b的值.20.解不等式组4(1)713843x xxx+≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.21.某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:.4045A x ≤< .4550B x ≤< .5055C x ≤< .5560D x ≤< .6065E x ≤< .6570F x ≤≤ 并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题(1)补全频数分布直方图,并求出 m 的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?22.如图,已知ACB BDE ∠=∠ 180CAD E ∠+∠=︒.(1)AD 与EF 平行吗?试说明理由.(2)若DA 平分∠BDE ,60ACB BAC ∠=∠=︒ 求证:EF AF ⊥.23.小明家原有15头大牛和5头小牛,每天约用饲料325kg ;三月后,由于经济效益好,小明父亲决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需要多少饲料?若小明父亲估计每头大牛1天约需要饲料15~18kg ,每头小牛1天约需要饲料7~8kg ,你觉得小明父亲的估计准确吗?24.某单位为做好防疫物资调配发放工作,租用A 、B 两种型号的车给全市各个防疫点配送消毒液。

新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案

新人教版七年级数学(下册)期末复习卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列图形中,不是轴对称图形的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:车型运费(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、D5、A6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、20°.3、344、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x <2,整数解为:-1,0,1.2、353、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、略5、(1)40;(2)72;(3)280.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5-- 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个6.下列说法正确的是( )A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是237.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)九、填空题9.已知1x -=8,则x 的值是________________.十、填空题10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.十一、填空题11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.十二、填空题12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.十三、填空题13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.十四、填空题14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.十五、填空题15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.十六、填空题16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.十七、解答题17.(1)计算:34|22|89-+-; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 十八、解答题18.求下列各式中的x 值:(1)(x ﹣1)2=4;(2)(2x +1)3+64=0;(3)x 3﹣3=38. 十九、解答题19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )二十、解答题20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.二十一、解答题21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 二十四、解答题24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.二十五、解答题25.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,故选:B.【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室可移动黑板的左右移动是平移,故本选项正确.故选:D .【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C .【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键. 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意, 故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,点A坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,则2021÷6=336…5,所以,前336次循环运动点A共向右运动336×2=672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,﹣1).故选:C.【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.九、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.十一、填空题11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°十二、填空题12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.十五、填空题15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.十六、填空题16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.十七、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩ , (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩ ; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.十八、解答题18.(1)x =3或x =﹣1;(2)x =﹣2.5;(3)x =1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.十九、解答题19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.【详解】证明:∵AB//CD(已知)∴∠4=∠FAB(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即:∠FAB=∠CAD∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△; (2)∵A (-3,2),A 2(0,-2),∴A 2是由A 向右平移3个单位得到的,向下平移4个单位长度得到的,∴B 2,C 2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a=,∵a>0,∴5a=(2)∵459,∴253<<,∴m=2,n2,∴2m a an-+=)222=))222=+-45=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.二十四、解答题24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ =∠OPN +∠NPQ =∠GOP +∠PQF ,∵∠GOC =∠GOP +∠POQ =135°,∴∠GOP =135°-∠POQ ,∴∠OPQ =135°-∠POQ +∠PQF .如图,当点P 在GF 延长线上时,作PN //a ,连接PQ ,OP ,则PN //a //b ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.二十五、解答题25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.。

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。

人教版七年级数学下册期末测试题及答案解析(共六套)

人教版七年级数学下册期末测试题及答案解析(共六套)

B ′C ′D ′O ′A ′ODC BA(第8题图)人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。

人教版七年级数学下册期末综合复习题含答案图文

人教版七年级数学下册期末综合复习题含答案图文

人教版七年级数学下册期末综合复习题含答案图文一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A . B . C . D . 3.下列各点中,在第四象限的是( )A .3,0B .()2,5-C .()5,2--D .()2,3- 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 6.下列说法正确的是( )A .23π-是分数 B .互为相反数的数的立方根也互为相反数 C .25xy -的系数是15- D .64的平方根是4±7.①如图1,//AB CD ,则180A E C ∠+∠+∠=︒;②如图2,//AB CD ,则–P A C ∠=∠∠;③如图3,//AB CD ,则1E A ∠=∠+∠;④如图4,直线////AB CD EF ,点O 在直线EF 上,则–180∠∠+∠=︒αβγ.以上结论正确的个数是( )A .1个B .2个C .3个D .4个8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.十、填空题10.点A (2,4)关于x 轴对称的点的坐标是_____.十一、填空题11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.十二、填空题12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.十三、填空题13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.十四、填空题14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 十五、填空题15.如果点P (x ,y )的坐标满足x +y =xy ,那么称点P 为“美丽点”,若某个“美丽点”P 到y 轴的距离为2,则点P 的坐标为___.十六、填空题16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.十七、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭十八、解答题18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.十九、解答题19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).二十、解答题20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 二十一、解答题21.已知a 172的整数部分,b 173的小数部分.(1)求a ,b 的值;(2)求()()324a b -++的平方根. 二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理) 二十四、解答题24.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD(1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).二十五、解答题25.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.【详解】 ∵23π-是无理数, ∴A 错误,∵互为相反数的数的立方根也互为相反数,∴B 正确, ∵25xy -的系数是52-, ∴C 错误,∵64的平方根是±8,∴D 错误,故选B .【点睛】本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.7.B【分析】如图1所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠C +∠CEF =180°,则∠A +∠C +∠AEC =360°,故①错误;如图2所示,过点P 作PE //AB ,由平行线的性质即可得到∠A =∠APE =180°,∠C =∠CPE ,再由∠APC =∠APE =∠CPE ,即可得到∠APC =∠A -∠C ,即可判断②;如图3所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠1=∠CEF ,再由∠AEF +∠CEF =∠AEC ,即可判断③ ;由平行线的性质即可得到=180BOE α∠+∠,180COF γ∠+=∠,再由180BOE COF β∠+∠+∠=,即可判断④.【详解】解:①如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠C +∠CEF =180°,∴∠A +∠AEF +∠C +∠CEF =360°,又∵∠AEF +∠CEF =∠AEC ,∴∠A +∠C +∠AEC =360°,故①错误;②如图所示,过点P 作PE //AB ,∵AB //CD ,∴AB //CD //PE ,∴∠A =∠APE =180°,∠C =∠CPE ,又∵∠APC =∠APE =∠CPE ,∴∠APC =∠A -∠C ,故②正确;③如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠1=∠CEF ,又∵∠AEF +∠CEF =∠AEC ,∴180°-∠A +∠1=∠AEC ,故③错误;④∵////AB CD EF ,∴=180BOE α∠+∠,180COF γ∠+=∠,∵180BOE COF β∠+∠+∠=,∴180180180αβγ-∠+∠+-∠=,∴–180αβγ∠∠+∠=,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.十、填空题10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.十一、填空题11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,∵∠ECD 是△BEC 的一外角,∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 十二、填空题12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.十三、填空题13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE . ∴EB1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.十四、填空题14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15.(2,2),(-2,)【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当解析:(2,2),(-2,23)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当x=2时,则y+2=2y,解得:y=2,∴点P的坐标为(2,2),当x=-2时,则y-2=-2y,解得:y=23,∴点P的坐标为(-2,23),综上所述:点P的坐标为(2,2)或(-2,23).故答案为:(2,2)或(-2,23).【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键.十六、填空题16.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2021的坐标.【详解】解:根据题意得4的整数倍的各点如A 4,A 8,A 12等点在第二象限,∵2021÷4=505…1;∴A 2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A 2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.十七、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.十九、解答题19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.二十、解答题20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1)a=2,b=;(2)±3【分析】(1)首先估算出的范围,从而得到和的范围,可得a ,b 值;(2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵,∴,∴,,∴a=2,b解析:(1)a =2,b 4;(2)±3【分析】(123的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵< ∴45<,∴223<,132<<,∴a =2,b 314-;(2)()()324a b -++=())23424++- =9∴()()324a b -++的平方根为±3. 【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD(2)∵B 表示的数为-1,∴∴点E 1;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMN =90°,∠APM =∠PMQ ,∴∠PMQ -∠QMN =90°,∴∠APM -∠QMN =90°;当点M ,N 分别在射线QD ,QF 上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMQ +∠QMN =90°,∠APM +∠PMQ =180°,∴∠APM +90°-∠QMN =180°,∴∠APM -∠QMN =90°;综上,∠APM +∠QMN =90°或∠APM -∠QMN =90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.二十四、解答题24.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.二十五、解答题25.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

人教版七年级数学下册期末测试题及复习资料详解共五套

人教版七年级数学下册期末测试题及复习资料详解共五套

李庄人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .1>0 D .1-m <2 2.下列各式中,正确的是( )16±4 B.±164 C 327- 3 2(4)- 4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在马路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为的方程组是( ) A. B. C. D.6.如图,在△中,∠500,∠800,平分∠,平分∠,则∠的大小是( ) A .1000 B .1100 C .1150 D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△沿方向平移了长度的一半得到的,若△的面积为20 cm 2,则四边形A 11的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案干脆填在答题卷的横线上. 11.49的平方根是,算术平方根是8的立方根是. 12.不等式59≤3(1)的解集是.13.假如点P(a,2)在第二象限,那么点Q(-3)在.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为C 1A 1ABB 1CD了使李庄人乘火车最便利(即间隔 最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠度.16.如图∥,∠100°平分∠,则∠.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种可以辅满地面的是.(将全部答案的序号都填上) 18.若│x 2-25则.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.解不等式组:,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, ∥ , 平分∠,你能确定∠B 及∠C 的数量关系吗?请说明理由。

人教版七年级下册数学期末综合复习卷(附答案)

人教版七年级下册数学期末综合复习卷(附答案)

人教版七年级下册数学期末综合复习卷(附答案)一、选择题1.如图,直线a ,b 被直线c 所截,∠1的同旁内角是( )A .∠2B .∠3C .∠4D .∠52.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,下列各点位于第三象限的是( )A .(0,3)B .(2,1)-C .(1,2)-D .(1,1)-- 4.下列命题是假命题的是( )A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.将一副三角板按如图放置,如果230∠=︒,则有4∠是( )A .15°B .30°C .45°D .60° 6.下列说法正确的是( ) A .0的立方根是0 B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是237.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0)九、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.十、填空题10.已知点P 的坐标是(),1m -,且点P 关于x 轴对称的点Q 的坐标是()3,n -,则m =_____n =_____.十一、填空题11.在△ABC 中,若∠A=60°,点O 是∠ABC 和∠ACB 角平分线的交点,则∠BOC=________.十二、填空题12.如图,己知AB ∥CD .OE 平分∠AOC ,OE ⊥OF ,∠C =50°,则∠AOF 的度数为___.十三、填空题13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.十四、填空题14.若40a b <<,且a ,b 是两个连续的整数,则a+b 的值为_______十五、填空题15.()2260a b ++-=,则(),a b 在第_____象限. 十六、填空题16.如图,在平面直角坐标系中,x AB //EG //轴,BC DE HG AP y ////////轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A -------⋅⋅⋅-⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.十七、解答题17.计算下列各题:(1)327-+2(3)--31-(2)3331632700.1251464---++-. 十八、解答题18.求下列各式中x 的值:(1)()24264x -=;(2)3338x -=. 十九、解答题19.如图//AB DE .试问B 、E ∠、BCE ∠有什么关系?解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB则B ∠=______( )又∵//AB DE ,//CF AB∴____________( )∴E ∠=____________( )∴12B E ∠+∠=∠+∠( )即B E ∠+∠=____________二十、解答题20.已知在平面直角坐标系中有三点A (﹣2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置;(2)求出以A 、B 、C 三点为顶点的三角形的面积;(3)在y 轴上是否存在点P ,使以A 、B 、P 三点为顶点的三角形的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.二十一、解答题21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 13部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.二十二、解答题22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数2 1.414≈3 1.732≈)二十三、解答题23.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数; (3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系二十四、解答题24.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠ ︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.二十五、解答题25.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解: 直线a ,b 被直线c 所截,∠1的同旁内角是∠2,故选:A .【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.2.C【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:根据平移的概念,观察图形可知图案B 通过平移后可以得到解析:C【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选C.【点睛】本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.3.D【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A、(0,3)在y轴上,故本选项不符合题意;B、(−2,1)在第二象限,故本选项不符合题意;C、(1,−2)在第四象限,故本选项不符合题意;D、(-1,-1)在第三象限,故本选项符合题意.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.C【分析】根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.【详解】解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,∠=︒,∵230∴∠1=60°,∴∠1=∠E,∴AC∥DE,∴∠4=∠C=45°.故选:C.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A.0的立方根是0,正确,符合题意;B.0.25的算术平方根是0.5,故B选项错误,不符合题意;C.-1000的立方根是-10,故C选项错误,不符合题意;D.49的算术平方根是23,故D选项错误,不符合题意,故选A.【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.A【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.【详解】半径为1个单位长度的半圆的周长为:,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P 运动到2021秒时的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.九、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a 的范围,进而得出|2a-4|等于原值,代入原式得出|b 十2|+=0.根据非负数的性质可分别求出a 和b 的值,即可求出2a+b 的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a 的范围,进而得出|2a-4|等于原值,代入原式得出|b 十=0.根据非负数的性质可分别求出a 和b 的值,即可求出2a+b 的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键. 十、填空题10.-3 1【分析】平面内关于x 轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.【详解】∵已知点的坐标是,且点关于轴对称的点的坐标是,∴m =−3;n =1,故答案为−3;1解析:-3 1【分析】平面内关于x 轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.【详解】∵已知点P 的坐标是(),1m -,且点P 关于x 轴对称的点Q 的坐标是()3,n -, ∴m =−3;n =1,故答案为−3;1.【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.十一、填空题11.120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=解析:120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=12∠ABC+12∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.【详解】∵∠A=60°,∴∠ABC+∠ACB=120°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=60°,∴∠BOC=180°-∠OBC-∠OCB=120°故答案为120°【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理十二、填空题12.115°【分析】要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】解:∵AB∥CD解析:115°【分析】要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.【详解】解:∵AB∥CD,∠C=50°,∴∠C=∠AOC=50°,∵OE平分∠AOC,∴12AOE COE AOC ===∠∠∠25°, ∵OE ⊥OF ,∴∠EOF =90°,∴∠AOF =∠AOE +∠EOF =115°,故答案为:115°.【点睛】本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG .【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF =∠EFB =19°,图2中根据平行线的性质可得∠GFC =142°,图3中根据角的和差关系可得∠CFE =∠GFC -∠EFG .【详解】解:∵AD //BC ,∴∠DEF =∠EFB =19°,在图2中,∠GFC =180°-∠FGD =180°-2∠EFG =142°,在图3中,∠CFE =∠GFC -∠EFG =123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.十四、填空题14.13分析:先估算出的范围,求出a、b的值,再代入求出即可.详解:∵6<<7,∴a=6,b=7,∴a+b=13.故答案为13.点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】a、b的值,再代入求出即可.详解:∵67,∴a=6,b=7,∴a+b=13.故答案为13.十五、填空题15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEFGHP的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P处,坐标为(1,0).故答案为:(1,0).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.十七、解答题17.(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+=解析:(1)1 (2)11 4 -【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -十八、解答题18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)6x =或2x =-;(2)32x =【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1)()24264x -=, ()2216x -=,24x -=±,24x -=或24-=-x ,∴6x =或2x =-;(2)3338x -=, 3278x , 32x =; 【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 十九、解答题19.∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点C 作//CF AB ,则B ∠=∠1,同理可以得到E ∠=∠2,由此即可求解.【详解】解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB ,则B ∠=∠1(两直线平行,内错角相等),又∵//AB DE ,//CF AB ,∴DE ∥CF (平行于同一条直线的两直线平行),∴E ∠=∠2(两直线平行,内错角相等)∴12B E ∠+∠=∠+∠(等量代换)即B E ∠+∠=∠BCE ,故答案为:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE .【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题20.(1)见解析;(2)S △ABC =5;(3)存在,P 点的坐标为(0,5)或(0,﹣3).【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx 轴,且AB =3﹣(﹣2)=5,点C 到线 解析:(1)见解析;(2)S △ABC =5;(3)存在,P 点的坐标为(0,5)或(0,﹣3).【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB //x 轴,且AB =3﹣(﹣2)=5,点C 到线段AB 的距离3﹣1=2,根据三角形面积公式求解;(3)因为AB =5,要求ABP 的面积为10,只要P 点到AB 的距离为4即可,又P 点在y 轴上,满足题意的P 点有两个.【详解】解:(1)描点如图;(2)依题意,得AB //x 轴,且AB =3﹣(﹣2)=5,∴S △ABC =12×5×2=5;(3)存在;∵AB =5,S △ABP =10,∴P 点到AB 的距离为4,又点P 在y 轴上,∴P 点的坐标为(0,5)或(0,﹣3).【点睛】本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积.二十一、解答题21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵34<,c∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.二十三、解答题23.(1)65°;(2);(3)2n ∠M+∠BED=360°【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒, ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒,BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.二十四、解答题24.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由:过P 作PQ ∥DF ,∵DF ∥CG ,∴PQ ∥CG ,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ -∠EPQ =∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.二十五、解答题25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.。

2023年人教版七年级数学(下册)期末复习卷及答案

2023年人教版七年级数学(下册)期末复习卷及答案

2023年人教版七年级数学(下册)期末复习卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( )A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.估计101+的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是().A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+12x+14x=34 6858.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()A.120° B.130° C.60° D.150°9.已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±5210.如图,////OP QR ST下列各式中正确的是()A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=二、填空题(本大题共6小题,每小题3分,共18分)1.若32m x =+,278m y =-,用x 的代数式表示y ,则y =__________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.已知5x y =-,2xy =,计算334x y xy +-的值为_________.4.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).5.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________ cm .6.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x yx y-=⎧⎨+=⎩(2)25528x yx y-=⎧⎨+=⎩2.若2a+b=12,其中a≥0,b≥0,又P=3a+2b.试确定P的最小值和最大值.3.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线CD上的一个动点。

人教版七年级下册数学期末综合复习试卷(含答案)

人教版七年级下册数学期末综合复习试卷(含答案)

人教版七年级下册数学期末综合复习试卷一.选择题(满分30分,每小题3分)1.下列各数中,﹣,0.131131113……,﹣π,,﹣,无理数的个数有()A.1个B.2个C.3个D.4个2.若x<y,则下列式子错误的是()A.x﹣2<y﹣2 B.2﹣x>2﹣y C.﹣>﹣D.x+3>y+23.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式4.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等6.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m B.m<﹣3 C.﹣3D.m7.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折8.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A. B.C. D.9.如图,下列推理及所证明的理由都正确的是()A.若AB∥DG,则∠BAC=∠DCA,理由是内错角相等,两直线平行B.若AB∥DG,则∠3=∠4,理由是两直线平行,内错角相等C.若AE∥CF,则∠E=∠F,理由是内错角相等,两直线平行D.若AE∥CF,则∠3=∠4,理由是两直线平行,内错角相等10.将正偶数按表1排成5列:第1列第2列第3列第4列第5列第1行 2 4 6 8第2行16 14 12 10第3行18 20 22 24第4行32 30 28 26………………根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二.填空题(每题3分,满分12分)11.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为.12.在PC机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是.13.当身边没有量角器时,可以通过动手操作得到一些特定的角度.如图,已知矩形ABCD,按如下步骤操作可以得到一个特定的角度.(1)以过点A所在的直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于点E.(2)将纸片返回展平后,再一次折叠纸片,以过点E所在的直线为折痕,使点A落在BC上,折痕EF交AD于点F,则∠DFE=度.14.对于实数p,我们规定:用<p>表示不小于p的最小整数,例如:<4>=4,<>=2.现对72进行如下操作:72<>=9<>=3<>=2,即对72只需进行3次操作后变为2,类似地只需进行3次操作后变为2的所有正整数中,最大的是.三.解答题15.(8分)﹣|3﹣π|+.16.(8分)解方程组(1)(2)17.(6分)解不等式组,并把解集在数轴上表示出来.18.(8分)七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.19.(7分)如图,在△ABC中;(1)画△ABC向右平移4个单位,再向下平移3个单位得到的△A′B′C′;(2)写出平移后A′、B′、C′三点的坐标.(3)求三角形ABC的面积.20.(6分)列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?21.(8分)如图,AB⊥BD,CD⊥BD,∠A与∠AEF互补,以下是证明CD∥EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=.()∴∠ABD+∠CDB=180°∴AB∥()又∠A与∠AEF互补()∠A+∠AEF=∴AB∥.()∴CD∥EF()22.(5分)在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.23.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?24.(12分)已知,点A、点B分别在线段MN、PQ上,∠ACB﹣∠MAC=∠CBP,(1)如图1,求证:MN∥PQ.(2)分别过点A和点C作直线AG,CH,使AG∥CH,以点B为顶点的直角∠DBI绕点B 旋转,并且∠DBI的两边分别与直线CH、AG交于点F和点E,如图2,试判断∠CFB+∠AEB 是否为定值?如果是定值,请直接写出结果;如果不是,请简单说明理由.(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=100°,求∠CFB的度数.参考答案一.选择题1. B.2. D.3. D.4. C.5. A.6. C.7. B.8. D.9. D.10. C.二.填空题11.(4,0)或(4,6).12.扇形统计图.13. 112.5.14. 256.三.解答题15.解:原式=10﹣(π﹣3)﹣3=10﹣π+3﹣3=10﹣π.16.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.17.解:,解第一个不等式得x≥﹣1,解第二个不等式得x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:18.解:(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:360°×=36°,(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.19.解:(1)如图所示,△A′B′C′即为所求;(2)由图可知,A′(3,1)、B′(5,﹣2)、C′(0,﹣4);(3)三角形ABC的面积为:5×5﹣3×5﹣2×3﹣2×5=.20.解:设小长方形的长为x米,宽为y米,依题意,得:,解得:,∴210×2x×(x+2y)=75600(元).答:要完成这块绿化工程,预计花费75600元.21.证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=90°.(垂直的定义)∴∠ABD+∠CDB=180°∴AB∥CD(同旁内角互补,两直线平行)又∠A与∠AEF互补(已知)∴∠A+∠AEF=180°(互补的定义)∴AB∥EF(同旁内角互补,两直线平行)∴CD∥EF(平行于同一条直线的两条直线平行);故答案为:90°;垂直的定义;CD;同旁内角互补,两直线平行;已知;180°;EF;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.22.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).23.解:(1)设水果店第一次购进水果x元,第二次购进水果y元,由题意,得.解之,得.故水果店第一次购进水果800元,第二次购进水果1200元.(2)设该水果每千克售价为m元,第一次购进水果800÷4=200千克,第二次购进水果1200÷3=400千克,由题意[200×(1﹣3%)+400×(1﹣4%)]m﹣2000≥3780.解之,得m≥10.故该水果每千克售价为10元.24.解:(1)如图1,过点C作CE∥MN,∴∠1=∠MAC.∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC.∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP.∴CE∥PQ.∴MN∥PQ.(2)∠AEB+∠CFB是定值,∠AEB+∠CFB=270°.过点B作BR∥AG,∵AG∥CH.∴BR∥HF.∴∠AEB+∠EBR=180°,∠RBF+∠CFB=180°.∴∠EBR=180°﹣∠AEB,∠RBF=180°﹣∠CFB.又∵∠EBR+∠RBF=90°,∴180°﹣∠AEB+180°﹣∠CFB=90°,整理得:∠AEB+∠CFB=270°.(3)过点E作ES∥MN,∵MN∥PQ,∴ES∥PQ.∴∠NAE=∠AES,∠QBE=∠BES.∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP.∴∠CAE=∠AES.∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°.∴∠QBE=∠EBC.∴∠EBC=∠BES.∴∠AEB=∠AES+∠BES=∠CAE+∠CBE =(360°﹣∠ACB).∵∠ACB=100°,∴∠AEB=130°.∵∠AEB+∠CFB=270°,∴∠CFB=270°﹣130°=140°.第11 页共11 页。

人教版七7年级下册数学期末综合复习试卷(附答案)

人教版七7年级下册数学期末综合复习试卷(附答案)

人教版七7年级下册数学期末综合复习试卷(附答案)一、选择题1.16的平方根是()A .4B .4±C .2D .2±2.下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )A .B .C .D .3.下列各点中,位于第三象限的是( ) A .()1.5, 3.5- B .()2,4C .()3,2--D .()2.5,3-4.下列命题中是假命题的是( )A .对顶角相等B .在同一平面内,垂直于同一条直线的两条直线平行C .同旁内角互补D .平行于同一条直线的两条直线平行5.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )A .102︒B .156︒C .142︒D .141︒ 6.若24,a =31b =-,则+a b 的值是( )A .1B .-3C .1或-3D .-1或37.如图,将木条a ,b 与c 钉在一起,1110∠=︒,250∠=︒,要使木条a 与b 平行,木条a 顺时针旋转的度数至少是( )A .10︒B .20︒C .30D .40︒8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五次运动到P 5(5,2),第六次运动到P 6(6,0),…,按这样的运动规律,点P 2021的纵坐标是( )A .﹣2B .0C .1D .2九、填空题9.36的平方根是______,81的算术平方根是______.十、填空题10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.十一、填空题11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.十二、填空题12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.十三、填空题13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°十四、填空题14.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.十五、填空题15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.十六、填空题16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点2021A 的坐标为__________.十七、解答题17.(116125-(2)计算: 3223 (3310.0484-(416122十八、解答题18.求下列各式中的x 值: (1)()3101250x ++= (2)()22360x --=十九、解答题19.完成下面的证明:已知:如图, //AB CD , CD 和BE 相交于点O , DE 平分CDF ∠,DE 和BE 相交于点E ,2E ∠=∠.求证:22B ∠=∠. 证明:2E ∠=∠(已知),//BE DF ∴(______________),CDF ∴∠=∠________(两直线平行,同位角相等).又//AB CD (已知),B ∴∠=∠______(________) B CDF ∴∠=∠(等量代换) .DE 平分CDF ∠(已知) ,2CDF ∴∠=∠_______(角平分线的定义).22B ∴∠=∠(_________).二十、解答题20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.二十一、解答题21.阅读理解.∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1,∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2的平方根,提示:(17)2=17.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠=︒.100EOF(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.二十四、解答题24.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.二十五、解答题25.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP∠+∠与BAC∠有何数量关系?直接写出猜想结论,不需说明理由.【参考答案】一、选择题1.D解析:D【分析】16“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答.【详解】=,164∵()224±=,∴4的平方根是2±,故选D.【点睛】16方根和算术平方根.2.B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B.【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想. 3.C 【分析】根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数. 【详解】位于第三象限的点的横坐标和纵坐标都是负数,∴C ()3,2--符合题意,故选C . 【点睛】本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0. 4.C 【分析】利用对顶角相等、平行线的判定与性质进行判断选择即可. 【详解】解:A 、对顶角相等,是真命题,不符合题意;B 、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;C 、同旁内角互补,是假命题,符合题意;D 、平行于同一条直线的两条直线平行,真命题,不符合题意, 故选:C . 【点睛】本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大. 5.D 【分析】过点P 作PQ ∥AB ,过点H 作HG ∥AB ,根据平行线的性质得到∠EPF =∠BEP +∠DFP =78°,结合角平分线的定义得到∠AEH +∠CFH ,同理可得∠EHF =∠AEH +∠CFH . 【详解】解:过点P 作PQ ∥AB ,过点H 作HG ∥AB , //AB CD ,则PQ ∥CD ,HG ∥CD , ∴∠BEP =∠QPE ,∠DFP =∠QPF , ∵∠EPF =∠QPE +∠QPF =78°, ∴∠BEP +∠DFP =78°, ∴∠AEP +∠CFP =360°-78°=282°, ∵EH 平分∠AEP ,HF 平分∠CFP ,∴∠AEH +∠CFH =282°÷2=141°, 同理可得:∠EHF =∠AEH +∠CFH =141°, 故选D .【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论. 6.C 【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 【详解】解:24,a =31,b -2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=. 故选:C . 【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 7.B 【分析】根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a 旋转的度数. 【详解】解:要使木条a 与b 平行, ∴旋转后∠1+∠2=180°, ∵∠2=50°,∴旋转后∠1=180°﹣50°=130°, ∴当∠1需变为130 º,∴木条a 至少旋转:130º﹣110º=20º,故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.D【分析】观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到解析:D【分析】观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,分别得出点P运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,-2,0,2,0;∵2021÷6=336…5,∴经过第2021次运动后,动点P的纵坐标是2,故选:D.【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键.九、填空题9.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.十、填空题10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:()3,2【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A -关于x 轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x 轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y 轴对称的点的坐标纵坐标不变,横 坐标变为相反数;十一、填空题11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.十二、填空题12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED ,∠BEF 与∠DEC 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC =∠FED ,∠BEF 与∠DE C 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =45°,∠B =90°,∴∠BEF =45°,∴∠DEC =12(180°-45°)=67.5°.故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题14.或.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:4※(-2)=;(-1)※1=[(-1)※1]※m=解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-; 11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 十五、填空题15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A (0,0),点B 和点A 在同一坐标轴上,∴点B 在x 轴上或在y 轴上,∵|AB|=5,∴当点B 在x 轴上时,点B 的坐标为(5,0)或(﹣5,0),当点B 在y 轴上时,点B 的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.十六、填空题16.(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.【详解】解:由图可知A4,A8都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0),∴OA4n=4n÷2=2n,∴点A4n的坐标为(2n,0).∵2020÷4=505,∴点A2020的坐标是(1010,0).∴点A2021的坐标是(1010,1).故答案为:(1010,1).【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.十七、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 十八、解答题18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.十九、解答题19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由2E ∠=∠可判定//BE DF ,即得出1CDF ∠=∠,再根据//AB CD 得出1B ∠=∠,等量代换得到B CDF ∠=∠,再根据角平分线的定义等量代换即可得解.【详解】证明:2E ∠=∠(已知),//BE DF ∴(内错角相等,两直线平行),1CDF ∴∠=∠(两直线平行,同位角相等).又//AB CD (已知),1B ∴∠=∠(两直线平行,同位角相等),B CDF ∴∠=∠(等量代换). DE 平分CDF ∠(已知),22CDF ∴∠=∠(角平分线的定义).22B ∴∠=∠(等量代换).故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.二十、解答题20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△; (2)∵A (-3,2),A 2(0,-2),∴A 2是由A 向右平移3个单位得到的,向下平移4个单位长度得到的,∴B 2,C 2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1)a=1,b=﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴解析:(1)a=1,b174;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴161725<∴417<5,∴117﹣3<2,∴a=1,b174;(2)(﹣a)3+(b+4)2=(﹣1)3+17﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:16±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出45是解题关键.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1) ;(2)的值为40°;(3).【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53. 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即可得关于n 的方程,计算可求解n 值.【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD ,∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,,∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒,即360BEO EOF DFO ∠+∠+∠=︒,∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO ,设BEM OEM x CFN OFN y ∠=∠=∠=∠=,,∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD ,∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,,∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠()x KMN HNM y =+∠-∠-=x -y=40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠,∴KFD EHK AEG ∠=∠+∠,∵50EHK NMF ENM ∠=∠-∠=︒,∴50KFD AEG ∠=︒+∠,即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠. ∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ , 1AEO AEG OEG AEG AEG n∠=∠+∠=∠+∠, ∵260BEO DFO ∠+∠=︒,∴100AEO CFO ∠+∠=︒, ∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒,即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=, 解得53n = .经检验,符合题意, 故答案为:53. 【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 二十四、解答题24.(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出解析:(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.二十五、解答题25.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠EAC ,∠ACD=2∠ACE ,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+12∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.。

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)

人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

2023年人教版七年级数学(下册)期末综合能力测试卷及答案

2023年人教版七年级数学(下册)期末综合能力测试卷及答案

2023年人教版七年级数学(下册)期末综合能力测试卷及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .100320072.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣54.如图,若AB ,CD 相交于点O ,∠AOE =90°,则下列结论不正确的是( )A .∠EOC 与∠BOC 互为余角B .∠EOC 与∠AOD 互为余角 C .∠AOE 与∠EOC 互为补角D .∠AOE 与∠EOB 互为补角5.12-的倒数是( )A .B .C .12-D .126.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( ) A .3×10x =2×16(34﹣x) B .3×16x =2×10(34﹣x) C .2×16x =3×10(34﹣x)D .2×10x =3×16(34﹣x)9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩10.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____.5.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =________cm .6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)25234x y y x -=⎧⎨+=⎩ (2)34332(1)11x yx y ⎧+=⎪⎨⎪--=⎩2.化简(1)先化简,再求值:()()22632a a a a ++-,其中1a =(2)化简:已知222A a ab b =-+,22+2B a ab b =+,求()14B A -3.如图,A (4,3)是反比例函数y=kx在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=kx 的图象于点P .(1)求反比例函数y=kx的表达式; (2)求点B 的坐标; (3)求△OAP 的面积.4.如图,已知AB ∥CD ,CN 是∠BCE 的平分线. (1)若CM 平分∠BCD ,求∠MCN 的度数;(2)若CM 在∠BCD 的内部,且CM ⊥CN 于C ,求证:CM 平分∠BCD ; (3)在(2)的条件下,连结BM ,BN ,且BM ⊥BN ,∠MBN 绕着B 点旋转,∠BMC +∠BNC 是否发生变化?若不变,求其值;若变化,求其变化范围.5.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、C5、A6、B7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、203、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、45、146、5三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)692xy=⎧⎪⎨=⎪⎩.2、(1)4a,4;(2)ab3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)800;(2)答案见解析;(3)3500.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。

人教版七年级数学下册期末综合复习试卷(附答案)

人教版七年级数学下册期末综合复习试卷(附答案)

人教版七年级数学下册期末综合复习试卷(附答案)一、选择题1.如图,直线1l 截2l 、3l 分别交于A 、B 两点,则1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,FH 平分∠EFD ,若∠1=110°,则∠2的度数为( )A .45°B .40°C .55°D .35°8.如图所示,已知点A (﹣1,2),将长方形ABOC 沿x 轴正方向连续翻转2021次,点A 依次落在点A 1,A 2,A 3,…,A 2021的位置,则A 2021的坐标是( )A .(3038,1)B .(3032,1)C .(2021,0)D .(2021,1)九、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.十、填空题10.点P 关于y 轴的对称点是(3,﹣2),则P 关于原点的对称点是__.十一、填空题11.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304BCD BFD ∠=∠+︒,则BCD ∠的度数为________.十二、填空题12.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.十三、填空题13.将一张长方形纸条折成如图的形状,已知1110∠=︒,则2∠=___________°.十四、填空题14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 十五、填空题15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.十六、填空题16.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.十七、解答题17.(1)计算:()()23121273-+-⨯--- (2)解方程:123123x x +--= 十八、解答题18.求下列各式中x 的值.(1)4x 2=64;(2)3(x ﹣1)3+24=0.十九、解答题19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A =∠D .求证:∠B =∠C .证明:∵∠1=∠2,(已知)又:∵∠1=∠3,( )∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( )∵∠A =∠D (已知)∴∠D =_____________(等量代换)∴____________∥CD ( )∴∠B =∠C ( )二十、解答题20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.二十一、解答题21.若整数m 的两个平方根为63a -,22a -;b 为89的整数部分.(1)求a 及m 的值;(2)求275m b ++的立方根.二十二、解答题22.如图,在99⨯网格中,每个小正方形的边长均为1,正方形ABCD 的顶点都在网格的格点上.(1)求正方形ABCD 的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.二十三、解答题23.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)二十四、解答题24.如图1,E 点在BC 上,A D ∠=∠.180ACB BED ∠+∠=︒.(1)求证://AB CD(2)如图2,//,AB CD BG 平分ABE ∠,与EDF ∠的平分线交于H 点,若DEB ∠比DHB ∠大60︒,求DEB ∠的度数.(3)保持(2)中所求的DEB ∠的度数不变,如图3,BM 平分,EBK DN ∠平分CDE ∠,作//BP DN ,则PBM ∠的度数是否改变?若不变,请直接写出答案;若改变,请说明理由. 二十五、解答题25.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、选择题1.B解析:B【分析】根据同位角的定义:两条直线a ,b 被第三条直线c 所截(或说a ,b 相交c ),在截线c 的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,∠1的同位角为∠3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可.【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:ab∵25<30<36,∴56,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.D【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.【详解】解:∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°-∠3=180°-110°=70°,∵HF平分∠EFD,∴∠DFH=12∠DFE=12×70°=35°,∵AB∥CD,∴∠2=∠DFH=35°.故选:D.【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.8.B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,解析:B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解.【详解】解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,∵2021÷4=505.....1,∴A2021的纵坐标与A1相同,横坐标=505×6+2=3032,∴A2021(3032,1),故选B.【点睛】本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法.九、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.十、填空题10.【分析】直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是,∴点,则P 关于原点的对称点是.故答案为:.【点睛】本题考解析:()3,2【分析】直接利用关于y 轴对称点的性质得出P 点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是()3,-2,∴点()3,2P --,则P 关于原点的对称点是()3,2.故答案为:()3,2.【点睛】本题考查关于x 轴、y 轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.十一、填空题11.120°【分析】由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.【详解】解:和的角平分线相交于,,,又,,,设,,,在四边形中,,,,解析:120°【分析】由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据3304BCD BFD ∠=∠+︒即可求解. 【详解】解:ABC ∠和CDE ∠的角平分线相交于F ,EDA ADC ∴∠=∠,CBE ABE ∠=∠,又//AB ED ,EDF DAB ∴∠=∠,DEF ABF ∠=∠,设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,BFD EDA ADE x y ∴∠=∠+∠=+,在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,3602()BCD x y ∴∠=︒-+,0433BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,3602()120BCD x y ∴∠=︒-+=︒,故答案为:120︒.【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键.十二、填空题12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC ,∠3=∠ABC=∠1+∠DBC ,又由BD 平分∠ABC 得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC ,∠3=∠ABC=∠1+∠DBC ,又由BD 平分∠ABC 得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD 平分∠ABC ,∴∠DBC=∠1=25°;又∵ED ∥BC ,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.十三、填空题13.55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵ABCD,∴∠1=∠BAD=110°,由折叠可得,∠2=∠BAD=×110°=55°,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵AB//CD,∴∠1=∠BAD=110°,由折叠可得,∠2=12∠BAD=12×110°=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14.7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵∴34<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.十五、填空题15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).十六、填空题16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.十七、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1)19-;(2)x =79【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)()312123-+-⨯- =()181273-+-⨯- =847---=19-;(2)123123x x +--=,去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=79.【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.十八、解答题18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)3+24=0,∴3(x-1)3=-24,∴(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.十九、解答题19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)∥(同位角相等,两直线平行)AE FD∴∠A=∠BFD(两直线平行,同位角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.二十、解答题20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P (a ,b )是△ABC 内部一点,则平移后△A 'B 'C '内的对应点P '的坐标为:(a -4,b -2);(4)△ABC 的面积=11123131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键. 二十一、解答题21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(2b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b ∴<∴910<,∴b =9,∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.(1)面积为29,边长为;(2),,,,图见解析.【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为29;(2)(0,5)A ,(2,0)B ,(7,2)C ,(5,7)D ,图见解析.【分析】(1)面积等于一个77⨯大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可.【详解】解:(1)正方形的面积217425292ABCD S =-⨯⨯⨯=正方形,正方形边长为29S =;(2)建立如图平面直角坐标系,则(0,5)A ,(2,0)B ,(7,2)C ,(5,7)D .【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.二十三、解答题23.(1)∠AEP+∠PFC=∠EPF ;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间解析:(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠, 12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.二十四、解答题24.(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再解析:(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长DE 交AB 于点F ,根据180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,可得ACB CED ∠=∠,所以//AC DF ,可得A DFB ∠=∠,又A D ∠=∠,进而可得结论; (2)如图2,作//EM CD ,//HN CD ,根据//AB CD ,可得//////AB EM HN CD ,根据平行线的性质得角之间的关系,再根据DEB ∠比DHB ∠大60︒,列出等式即可求DEB ∠的度数;(3)如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求PBM ∠的度数.【详解】解:(1)证明:如图1,延长DE 交AB 于点F ,180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,ACB CED ∴∠=∠,//AC DF ∴,A DFB ∴∠=∠,A D ∠=∠,DFB D ∴∠=∠,//AB CD ∴;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠,∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒解得100α∠=︒DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 二十五、解答题25.(1)60,30;(2)∠BAD=2∠CDE ,证明见解析;(3)成立,∠BAD=2∠CDE ,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD =2∠CDE ,证明见解析;(3)成立,∠BAD =2∠CDE ,证明见解析【分析】(1)如图①,将∠BAC =100°,∠DAC =40°代入∠BAD =∠BAC -∠DAC ,求出∠BAD .在△ABC 中利用三角形内角和定理求出∠ABC =∠ACB =40°,根据三角形外角的性质得出∠ADC =∠ABC +∠BAD =100°,在△ADE 中利用三角形内角和定理求出∠ADE =∠AED =70°,那么∠CDE =∠ADC -∠ADE =30°;(2)如图②,在△ABC 和△ADE 中利用三角形内角和定理求出∠ABC =∠ACB =40°,∠ADE =∠AED =1802n ︒-.根据三角形外角的性质得出∠CDE =∠ACB -∠AED =1002n -︒,再由∠BAD =∠DAC -∠BAC 得到∠BAD =n -100°,从而得出结论∠BAD =2∠CDE ;(3)如图③,在△ABC 和△ADE 中利用三角形内角和定理求出∠ABC =∠ACB =40°,∠ADE =∠AED =1802n ︒-.根据三角形外角的性质得出∠CDE =∠ACD -∠AED =1002n ︒+,再由∠BAD =∠BAC +∠DAC 得到∠BAD =100°+n ,从而得出结论∠BAD =2∠CDE .【详解】解:(1)∠BAD =∠BAC -∠DAC =100°-40°=60°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB ,∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+60°=100°.∵∠DAC =40°,∠ADE =∠AED ,∴∠ADE =∠AED =70°,∴∠CDE =∠ADC -∠ADE =100°-70°=30°.故答案为60,30.(2)∠BAD =2∠CDE ,理由如下:如图②,在△ABC 中,∠BAC =100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。

2022-2023学年人教版数学七年级下册 期末综合复习试题

2022-2023学年人教版数学七年级下册 期末综合复习试题

2022-2023学年人教版数学七年级下册期末综合复习专项训练一、解答题1.若5a+1和a﹣19是正数m的两个平方根,求m的值.2.△ABC在直角坐标系中如图所示,请写出点A、B、C的坐标.3.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.4.已知关于x、y的方程组3951x y ax y a+=+⎧⎨-=-⎩的解是一对正数,求a的取值范围.5.近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.(1)在这个问题中,总体、个体、样本各是什么?(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.6.已知:如图,BE//CD,△A=△1. 求证:△C=△E .7.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根.8.如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.9.新冠疫情暴发,某社区需要消毒液3250瓶,医药公司接到通知后马上采购两种专用装箱,将消毒液包装后送往该社区.已知一个大包装箱价格为5元,可装消毒液10瓶;一个小包装箱价格为3元,可装消毒液5瓶.该公司采购的大小包装箱共用了1700元,刚好能装完所需消毒液.求该医药公司采购的大小包装箱各是多少个?10.甲、乙两商场以同样价格出售同样的商品:并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?11.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(△)被抽样调查的学生有 人,并补全条形统计图; (△)每天户外活动时间的中位数是 (小时);(△)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人 ?12.已知:点P 在直线CD 上, 180BAP APD ∠+∠=︒ , 12∠=∠ .求证:AB △CD , E F ∠=∠ .13.大家知道7 是无理数,而无理数是无限不循环小数,因此7 的小数部分我们不可能全部地写出来,于是小明用7 ﹣2来表示7 的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为 4 < 7 < 9,即2<7 <3,故 7 的整数部分是2,将这个数减去其整数部分,差就是小数部7 的整数部分为2,小数部分为( 7 ﹣2). 结合以上材料,回答下列问题:2 a 如果的小数部分为, 18 b 的整数部分为, 21.a b +求的算术平方根14.如图所示,△ABO 中,A ,B 两点的坐标分别为(2,4),(7,2),C ,G ,F ,E分别为过A ,B 两点所作的y 轴、x 轴的垂线与y 轴、x 轴的交点.求△AOB 的面积.15.马虎与粗心两位同学解方程组26312mx y x ny +=⎧⎨-=⎩时,马虎看错了m 解方程组得232x y =⎧⎪⎨=-⎪⎩;粗心看错了n 解方程组得112x y =⎧⎪⎨=⎪⎩; 试求:(1)常数m 、n 的值; (2)原方程组的解.16.对x ,y 定义了一种新运算T ,规定T (x ,y )=2ax byx y++ (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)= 01201a b ⨯+⨯⨯+ ,已知T(1,﹣1)=﹣2,T (4,2)=1. (1)求a ,b 的值;(2)若关于m 的不等式组 ()()254432T m m T m m p -≤⎧⎪⎨->⎪⎩,, 恰好有3个整数解,求p的取值范17.某体院要了解篮球专业学生投篮的命中率,对学生进行定点投篮测试,规定每人投篮20次,测试结束后随机抽查了一部分学生投中的次数,并分为五类,△:投中11次;△投中12次;△:投中13次;△:投中14次;△:投中15次.根据调查结果绘制了下面尚不完整的统计图1、图2:回答下列问题:(1)本次抽查了名学生,图2中的m= .(2)补全条形统计图,并指出中位数在哪一类.(3)求最高的命中率及命中最高的人数所占的百分比.(4)若体院规定篮球专业学生定点投篮命中率不低于65%记作合格,估计该院篮球专业210名学生中约有多少人不合格.18.如图,数轴上有A.B两点,AB=12,原点O是线段AB上的一点,OA=2OB.(1)写出A,B两点所表示的实数;(2)若点C是线段AB上一点,且满足AC=CO+CB,求C点所表示的实数;(3)若动点P、Q分别从A.B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P到达点O时,动点M从点O出发,以每秒3个单位长的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动,求在此过程中,点M行驶的总路程和点M最后位置在数轴上对应的实数.19.如图,在△ABC中,△ABC与△ACB的平分线相交于O.过点O作EF△BC分别交AB、AC于E、F.若△BOC=130°,△ABC:△ACB=3:2,求△AEF和△EFC.20.类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P是斜坐标系xOy中的任意一点,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,如果M、N在x轴、y轴上分别对应的实数是a、b,这时点P的坐标为(a,b).(1)如图2,在斜坐标系xOy中,画出点A(﹣2,3);(2)如图3,在斜坐标系xOy中,已知点B(5,0)、C(0,4),且P(x,y)是线段CB上的任意一点,则y与x之间的等量关系式为;(3)若(2)中的点P在线段CB的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.。

2023年人教版七年级数学(下册)期末综合试题及答案

2023年人教版七年级数学(下册)期末综合试题及答案

2023年人教版七年级数学(下册)期末综合试题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程:(1)321123x x -+-= (2)31322322105x x x +-+-=-2.解不等式2151132x x -+-≤,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?5.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、B6、A7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、如果两个角是等角的补角,那么它们相等.2、90°3、<4、a -b +c56、②.三、解答题(本大题共6小题,共72分)1、(1)17x =-;(2)716x =.2、1x ≥-;解集在数轴上表示见解析;负整数解为-1.3、(1)①7;②12a;(2)略.4、(1)略(2)成立5、(1)补图见解析;(2)27°;(3)1800名6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。

新人教版七年级数学(下册)期末综合试题及答案

新人教版七年级数学(下册)期末综合试题及答案

新人教版七年级数学(下册)期末综合试题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.下列图形具有稳定性的是( )A .B .C .D .5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若不等式组0122x a x x +≥⎧⎨->-⎩①有解;②无解.请分别探讨a 的取值范围.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …(L)①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、A5、C6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、40°3、(3,7)或(3,-3)4、205、2或2.56、48三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、①a>-1②a≤-13、(1)证明见解析(2-14、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、①Q=100﹣6t;② 10L;③25003km.。

人教七年级下册数学期末综合复习试卷附答案

人教七年级下册数学期末综合复习试卷附答案

人教七年级下册数学期末综合复习试卷附答案一、选择题1.如图所示,下列说法正确的是( )A .2∠与1∠是内错角B .2∠与3∠是同位角C .3∠与B 是同旁内角D .A ∠与3∠是内错角2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限4.下列命题中:①若0mn =,则点(,)A m n 在原点处;②点2(2,1)m --一定在第四象限③已知点(,)A m n 与点(,)B m n -,m ,n 均不为0,则直线AB 平行x 轴;④已知点A (2,-3),//AB y 轴,且5AB =,则B 点的坐标为(2,2).以上命题是真命题的有( )A .1个B .2个C .3个D .4个5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒ 6.下列说法正确的是( )A .a 2的正平方根是aB 819=±C .﹣1的n 次方根是1D 321a --7.如图,将△OAB 绕点O 逆时针旋转55°后得到△OCD ,此时//CD OB ,若20AOB ∠=︒,则A ∠的度数是( )A .20°B .25°C .30°D .35°8.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2021次,点P 依次落在点P 1、P 2、P 3……P 2021的位置,由图可知P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1),则P 2021的坐标( )A .(2020,0)B .(2020,1)C .(2021,0)D .(2021,1)九、填空题9.25的算术平方根是 _______ .十、填空题10.若过点()()3,7,5M a N --、的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是_________.十一、填空题11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.十二、填空题12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.十三、填空题13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.十四、填空题14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.十五、填空题15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.十六、填空题16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.十七、解答题17.计算: (1)232643-+--(2)()21418329⎛⎫-+⨯- ⎪⎝⎭十八、解答题18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.十九、解答题19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )二十、解答题20.在平面直角坐标系中,已知O ,A ,B ,C 四点的坐标分别为O (0,0),A (0,3),B (-3,3),C (-3,0).(1)在平面直角坐标系中,描出O ,A ,B ,C 四点;(2)依次连接OA ,AB ,BC ,CO 后,得到图形的形状是___________.二十一、解答题21.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,因212<2212部分.请解答下列问题: 29_______,小数部分是_________;(2)1015a ,b ,求10a b +二十二、解答题22.张华想用一块面积为400cm 2的正方形纸片,沿着边的方向剪出一块面积为300cm 2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.二十四、解答题24.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 二十五、解答题25.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.【参考答案】一、选择题1.C解析:C【分析】根据同位角,同旁内角,内错角的定义可以得到结果.【详解】解:A 、2∠与1∠不是内错角,故错误;B 、2∠与3∠是邻补角,故错误;C 、3∠与B 是同旁内角,故正确;D 、A ∠与3∠是同位角,故错误;故选C .【点睛】本题主要考查了同位角,内错角,同旁内角的概念,比较简单.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B .【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.A【分析】由于点()1,0的纵坐标为0,则可判断点(1,0)在x 轴上.【详解】解:点()1,0的纵坐标为0,故在x 轴上,故选:A .【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.B【分析】利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用0m =或0m ≠可对②进行判断;利用A 、B 点的纵坐标相同可对③进行判断;通过把A 点坐标向上或向下平移5个单位得到B 点坐标可对④进行判断.【详解】解:若0mn =,则0m =或0n =,所以点(,)A m n 坐标轴上,所以①为假命题;210m --<,点2(2,1)m --一定在第四象限,所以②为真命题;已知点(,)A m n 与点(,)B m n -,m ,n 均不为0,则直线AB 平行x 轴,所以③为真命题; 已知点3(2,)A -,//AB y 轴,且5AB =,则B 点的坐标为(2,2)或(2,8)-,所以④为假命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.C【分析】首先证明a ∥b ,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a ∥b ,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C .【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.D【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可.【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 819,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n -,错误;D :∵210a --< ,∴321a --【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键.7.D【分析】由旋转的性质得出∠AOC =55°,∠A =∠C ,根据平行线的性质得出∠BOC =∠C =35°,则可得出答案.【详解】解:∵将△OAB 绕点O 逆时针旋转55°后得到△OCD ,∴∠AOC =55°,∠A =∠C ,∵∠AOB =20°,∴∠BOC =∠AOC −∠AOB =55°−20°=35°,∵CD ∥OB ,∴∠BOC =∠C =35°,∴∠A =35°,故选:D .【点睛】本题考查了旋转的性质,平行线的性质,求出∠BOC 的度数是解题的关键.8.D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解析:D【分析】观察规律可知,每4次翻折为一个循环,若4n 的余数为0,则1n x n =-;若4n 的余数为1,则n x n =;若4n 的余数为2,则n x n =;若4n 的余数为3,则1n x n =-;由此进行判断2021P 是在第505次循环完成后再翻折一次,那么横坐标即为20212021x =.【详解】解:由题意得:P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1)P 5(5,1),P 6(6,0),P 7(6,0),P 8(7,1),……由此可以得出规律:每4次翻折为一个循环,若4n 的余数为0,则1n x n =-,n P (n -1,1);若4n 的余数为1,则n x n =,n P (n ,1);若4n 的余数为2,则n x n =,n P (n ,0);若4n 的余数为3,则1n x n =-,n P (n -1,0);∵2021÷4=505余1,∴横坐标即为20212021x =,2021P (2021,1),故选D.【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.九、填空题9.5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5.考点:算术平方根.解析:5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵52=25, ∴25的算术平方根是5.考点:算术平方根.十、填空题10.【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5) ∴点M 关于y 轴的对解析:()3,5-【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5)∴点M 关于y 轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.十一、填空题11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD=12(∠A+∠ABC)=12∠A+∠ECD,∵∠ECD是△BEC的一外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD-∠EBC=12∠A+∠EBC-∠EBC=12∠A=12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.十二、填空题12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC =∠ADE =50°(两直线平行,同位角相等),∵EF ∥AB ,∴∠ADE +∠DEF =180°(两直线平行,同旁内角互补),∴∠DEF =180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.十三、填空题13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.十五、填空题15.-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标解析:-3或7【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A 点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.十六、填空题16.(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解】解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1),∴AB=3−(−2)=5,BC=2−(−1)=3,∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16.∵2020=126×16+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2).故答案为:(2,2).【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.十七、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=443-+-3=-(2)解:原式()()()214181818329=⨯--⨯-+⨯- =1298-+-=11-.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.十八、解答题18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5 【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x -1的值,进而得出x 的值.【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3=38则x3=3+38故x3=27 8解得:x=32;(3)(x-1)3=64则x-1=4,解得:x=5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.十九、解答题19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.【详解】证明:∵AB//CD(已知)∴∠4=∠FAB(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即:∠FAB=∠CAD∴∠3=∠CAD∴AD//BE(内错角相等,两直线平行)故填:BAF,两直线平行,同位角相等,BAF,等量代换,DAC,DAC,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.二十、解答题20.(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】解析:(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.二十一、解答题21.(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可.【详解】(1)∵5<<6,∴的整数部分是5,小数部分是-5,故解析:(1)5(2)0【分析】(1(2a、b的值,再代入求出即可.【详解】(1)∵56,∴5,故答案为:5;(2)∵34,∴a,∵34,∴b=3,∴a b+.【点睛】二十二、解答题22.不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析.【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,∵50>49,∴7,∴21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN ∥CD ,∴∠FPN =∠PFC ,∴∠PFC =∠PEA +∠FPE ,即∠PFC =∠PEA +∠P ;(3)令AB 与PF 交点为O ,连接EF ,如图3.在△GFE 中,∠G =180°-(∠GFE +∠GEF ),∵∠GEF =12∠PEA +∠OEF ,∠GFE =12∠PFC +∠OFE ,∴∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,∵由(2)知∠PFC =∠PEA +∠P ,∴∠PEA =∠PFC -α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α,∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 二十四、解答题24.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.二十五、解答题25.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。

人教版七年级下册数学期末综合复习题附答案

人教版七年级下册数学期末综合复习题附答案

人教版七年级下册数学期末综合复习题附答案一、选择题1.“49的平方根是7±”的表达式正确的是()A .497±=±B .497=C .497=±D .497±= 2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D3.已知点()0,P a 在y 轴的负半轴上,则点(),5A a a --+在( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列六个命题①有理数与数轴上的点一一对应②两条直线被第三条直线所截,内错角相等③平行于同一条直线的两条直线互相平行;④同一平面内,垂直于同一条直线的两条直线互相平行;⑤直线外一点到这条直线的垂线段叫做点到直线的距离⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .2个B .3个C .4个D .5个5.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55° 6.下列说法正确的是( ) A .9的立方根是3 B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是2 7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC 、AC 分别交于点D 、点E ,直尺的另一边过A 点且与三角尺的直角边BC 交于点F ,若∠CAF =42°,则∠CDE 度数为( )A .62°B .48°C .58°D .72°8.如图,长方形BCDE 的各边分别平行于x 轴、y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( )A .()1,1--B .()2,0C .()1,1-D .()1,1-九、填空题9.()29-的算术平方根是____. 十、填空题10.点A (-2,1)关于x 轴对称的点的坐标是____________________.十一、填空题11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.十二、填空题12.如图,直线AB ,CD 相交于点E ,//DF AB .若100AEC ∠=︒,则D ∠等于_____.十三、填空题13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.十四、填空题14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______十五、填空题15.在平面直角坐标系中,已知点P (﹣2,3),PA ∥y 轴,PA=3,则点A 的坐标为__. 十六、填空题16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.十七、解答题17.计算:(1()()2201730.042731--- (2()231664532-十八、解答题18.求下列各式中的x 值:(1)25x 2-64=0(2)x 3-3=38十九、解答题19.完成下面的说理过程:如图,在四边形ABCD 中,E 、F 分别是CD AB 、,延长线上的点,连接EF ,分别交AD ,BC 于点G 、H .已知12∠=∠,A C ∠=∠,对//AD BC 和//AB CD 说明理由.理由:∵12∠=∠(已知),1AGH ∠=∠( ),∴2AGH ∠=∠(等量代换).∴//AD BC ( ).∵ADE C ∠=∠( ).∵A C ∠=∠(已知),∴.ADE A ∠=∠( ).∴//AB CD ( ).二十、解答题20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小.(3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 二十一、解答题21.已知:a 173的整数部分,b 173的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根. 二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?二十三、解答题23.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 二十四、解答题24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.二十五、解答题25.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)【参考答案】一、选择题1.A解析:A【分析】根据平方根的表示方法,即可得到答案.【详解】解:“49的平方根是7±”表示为:497±=±.故选A .【点睛】本题主要考查平方根的表示法,掌握正数a 的平方根表示为a 2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答.【详解】∵点P(0,a)在y轴的负半轴上,a<,∴0a->,∴0a-+>,55∴点M(-a,-a+5)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.4.C【分析】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【详解】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:939A项错误;算术平方根等于它本身的数是1和0,故B项错误;﹣2是4的一个平方根,故C项正确;D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.7.B【分析】先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE.【详解】解:∵DE∥AF,∠CAF=42°,∴∠CED=∠CAF=42°,∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°,∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.8.A【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【详解】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒则两个物体解析:A【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【详解】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒则两个物体每次相遇时间间隔为12142秒,则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0),∵2021=3×673+2,∴第2021次两个物体相遇位置为(-1,-1),故选:A.【点睛】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.九、填空题9.9;【分析】根据算术平方根的定义计算可得.【详解】∵(−9)2=81,∴(−9)2的算术平方根是9,故答案为:9【点睛】本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.解析:9;【分析】根据算术平方根的定义计算可得.【详解】∵(−9)2=81,∴(−9)2的算术平方根是9,故答案为:9【点睛】本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.十、填空题10.(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本解析:(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.十一、填空题11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°十二、填空题12.80°.【分析】先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.【详解】解:∵∠AEC=100°,∴∠BEC=180°-100°=80°.∵DF∥AB,∴∠D=∠BE解析:80°.【分析】先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.【详解】解:∵∠AEC=100°,∴∠BEC=180°-100°=80°.∵DF∥AB,∴∠D=∠BEC=80°.故答案为:80°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.十三、填空题13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.十四、填空题14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.十五、填空题15.(-2,6)或(-2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P(-2,3),PA∥y轴,PA=3,得在P点解析:(-2,6)或(-2,0).【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P(-2,3),PA∥y轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0).【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.十六、填空题16.(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解】解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1),∴AB=3−(−2)=5,BC=2−(−1)=3,∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16.∵2020=126×16+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2).故答案为:(2,2).【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.十七、解答题17.(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(27【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式()()0.23310.2331 1.2=+-+--=-++=(2)原式(445244527=---=---=十八、解答题18.(1)x=±;(2)x=.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=±85;(2)x=32.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.【详解】解:(1)∵25x2-64=0,∴25x2=64,则x2=64 25,∴x=±85;(2)∵x3-3=38,∴x3=278,则x=32.故答案为:(1)x=85±;(2)x=32.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义.十九、解答题19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE=∠C ,再根据内错角相等,两直解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE =∠C ,再根据内错角相等,两直线平行,即可得到AB ∥CD .【详解】证明:∵∠1=∠2(已知)∠1=∠AGH (对顶角相等)∴∠2=∠AGH (等量代换)∴AD ∥BC (同位角相等,两直线平行)∴∠ADE =∠C (两直线平行,同位角相等)∵∠A =∠C (已知)∴∠ADE =∠A∴AB ∥CD (内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.二十、解答题20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.二十一、解答题21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,4b =.(2)±【分析】(1接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE=a,则∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∠DBC=a+45°∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=12又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.二十四、解答题24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.二十五、解答题25.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。

人教版七年级下册数学期末综合复习试卷(含答案)

人教版七年级下册数学期末综合复习试卷(含答案)

人教版七年级下册数学期末综合复习试卷(含答案)一、选择题1.如图,A 点在直线DE 上,在∠BAD ,∠BAE ,∠BAC ,∠CAE ,∠C 中,∠B 的同旁内角有( )A .2个B .3个C .4个D .5个2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()A .B .C .D . 3.在平面直角坐标系中有四个点()2,3A ,()2,3B -,()2,3C --,()2,3D -.其中在第一象限的点是( ).A .AB .BC .CD .D4.在以下三个命题中,正确的命题有( )①a ,b ,c 是三条不同的直线,若a 与b 相交,b 与c 相交,则a 与c 相交②a ,b ,c 是三条不同的直线,若a ∥b ,b ∥c ,则a ∥c③若∠α与∠β互补,∠β与∠γ互补,则∠a 与∠γ互补A .②B .①②C .②③D .①②③ 5.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76° 6.下列各组数中,互为相反数的是( ) A .22 B .2-与12- C .()23-与23- D 38-387.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上平移1个单位至点P 1(1,1),紧接着第2次向左平移2个单位至点P 2(﹣1,1),第3次向上平移1个单位到达P 3(﹣1,2),第4次向右平移3个单位到达P 4(2,2),第5次又向上平移1个单位,第6次向左平移4个单位,…,依此规律平移下去,点P 2021的坐标为( )A .(506,1011)B .(506,﹣506)C .(﹣506,1011)D .(﹣506,506)九、填空题9.若,则()m a b +的值为 十、填空题10.点(3,0)关于y 轴对称的点的坐标是_______十一、填空题11.在△ABC 中,若∠A=60°,点O 是∠ABC 和∠ACB 角平分线的交点,则∠BOC=________.十二、填空题12.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.十三、填空题13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.十四、填空题14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.十五、填空题15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC 的面积相等,则点P 的坐标为________.十六、填空题16.在平面直角坐标系中,对于点(),P x y ,我们把点()1,1M y x -++叫做点P 的和谐点.已知点1A 的和谐点为2A ,点2A 的和谐点为3A ,点3A 的和谐点为4A ,……,这样依次得到点1A ,2A ,3A ,…,n A .若点1A 的坐标为()2,4,则点2021A 的坐标为______. 十七、解答题17.计算:(1)20183(1)128-+(220319()(2018)1252π--+-十八、解答题18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=. 十九、解答题19.如图所示,已知BD ⊥CD 于D ,EF ⊥CD 于F ,∠A =80°,∠ABC =100°.求证:∠1=∠2.证明:∵BD⊥CD,EF⊥CD(已知)∴∠BDC=∠EFC=90°(垂直的定义)∴(同位角相等,两直线平行)∴∠2=∠3∵∠A=80°,∠ABC=100°(已知)∴∠A+∠ABC=180°∴AD//BC∴(两直线平行,内错角相等)∴∠1=∠2.二十、解答题20.已知点A(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.二十一、解答题21.解下列问题:(1)已知235150x y x y --++-=;求223x y +的值.(2)已知22的小数部分为,33a 的整数部分为b ,求122b a +-的值. 二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm二十三、解答题23.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示).二十五、解答题25.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1.B解析:B【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:∠B的同旁内角有∠BAE,∠BAC和∠C,共有3个,故选:B.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A 、是由基本图形旋转得到的,故不选.B 、是轴对称图形,故不选.C 、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A 、是由基本图形旋转得到的,故不选.B 、是轴对称图形,故不选.C 、是由基本图形旋转得到的,故不选.D 、是由基本图形平移得到的,故选此选项.综上,本题选择D .【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断. 3.A【分析】根据各象限内点的坐标特征解答即可.【详解】解:(2,3)A 在第一象限;(2,3)B -在第二象限;(2,3)C --在第三象限;(2,3)D -在第四象限;故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.A【分析】根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.【详解】解:①a ,b ,c 是三条不同的直线,若a 与b 相交,b 与c 相交,则a 与c 不一定相交,如下图所示,故①错误;②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误综上:正确的命题是②.故选A.【点睛】此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.5.B【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.【详解】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A、B、2-与12-不是相反数,此项不符题意;C、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D2,2=--故选:C.【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数.【详解】解:∵//AB CD,∴∠2=∠FHD,∵∠FHD=∠1=39°,∴∠2=39°.故选:B.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.A【分析】通过观察前面几次点的坐标,找到规律,即可求解.【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(解析:A【分析】通过观察前面几次点的坐标,找到规律,即可求解.【详解】解:设第n次平移至点P n,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P 6(﹣2,3),P 7(﹣2,4),P 8(3,4),P 9(3,5),…,∴P 4n (n +1,2n ),P 4n +1(n +1,2n +1),P 4n +2(﹣n ﹣1,2n +1),P 4n +3(﹣n ﹣1,2n +2)(n 为自然数).∵2021=505×4+1,∴P 2021(505+1,505×2+1),即(506,1011).故选:A .【点睛】此题主要考查了探索坐标系中点的规律,理解题意找到点的运动规律是解题的关键.九、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b十、填空题10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.十一、填空题11.120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=解析:120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=12∠ABC+12∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.【详解】∵∠A=60°,∴∠ABC+∠ACB=120°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=60°,∴∠BOC=180°-∠OBC-∠OCB=120°故答案为120°【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理十二、填空题12.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB ∥CD ,∴∠B =180°﹣∠C =180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键. 十三、填空题13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当0x=时,[x]=0,(x)=0,[x)=0,∴[x]+(x)+[x)=0;③当01x<<时,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!十五、填空题15.(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积解析:(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵()2340a b-+-=,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积=12×6×4=12,四边形ABOP的面积=△AOP的面积+△AOB的面积=12×3×(-m)+12×3×4=6-32m,由题意得,6-32m=12,解得,m=-4,∴点P的坐标为(-4,1),故答案为:(-4,1).【点睛】本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.十六、填空题16.【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A2,4解析:()【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A2(−3,3),A3(−2,−2),A4(3,−1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A2021的坐标与A1的坐标相同,为(2,4).2,4.故答案为:()【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键.十七、解答题17.(1);(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)=1+-2=(2)=3-4+解析:(12;(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)2018(1)1-+1-22(2201()(2018)2π--+-=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键.十八、解答题18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.十九、解答题19.BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD ∥EF ,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC +∠A =180°,根据解析:BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD ∥EF ,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC +∠A =180°,根据平行线的判定得出AD ∥BC ,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2.【详解】证明:∵BD ⊥CD ,EF ⊥CD (已知),∴∠BDC =∠EFC =90°(垂直的定义),∴BD ∥EF (同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),∵∠A =80°,∠ABC =100°(已知),∴∠A +∠ABC =180°,∴AD ∥BC (同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∴∠1=∠2(等量代换).故答案为:BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【点睛】本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键.二十、解答题20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A(-2,3),B(4,3),∴AB=4-(-2)=6;(3)∵C(-1,-3),∴C到x轴的距离为3,到直线AB的距离为6;(4)∵AB=6,C到直线AB的距离为6,∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP 与三角形ABC 同底等高,即为所求∴P (0,-3);同理当P 在AB 的上方还有一个到AB 距离是6的点满足要求,即P (0,9); ∴P (0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1);(2).【分析】(1)直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a ,b 的值,进而得出答案.【详解】原式.解析:(1)5;(2)3-.【分析】(1)直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a ,b 的值,进而得出答案.【详解】()12350x y --23500x y ⎧--=⎪∴⎨= 2350150x y x y --=⎧∴⎨+-=⎩105x y =⎧∴⎨=⎩5== ()22223<<2a ∴=5336<<5b ∴=∴原式=3=-.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键. 二十二、解答题22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 二十三、解答题23.(1)见解析;(2),证明见解析.【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.【详解析:(1)见解析;(2)902FME α∠=︒-,证明见解析.【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD,∴PM∥CD(平行于同一条直线的两直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补),∴∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;[探究]如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°,∵AB∥CD,∴PM∥CD,∴∠PFC=∠MPF=120°,∴∠EPF=∠MPF-∠MPE=120°-50°=70°;[应用](1)如图③所示,∵EG是∠PEA的平分线,FG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GFC=12∠PFC=60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】 β = 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB ∥CD ;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM ⊥ON ,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册期末综合复习卷(时间100分钟,满分120分)一、选择题(共10小题,每小题3分,共30分)1. 下列实数中,是无理数的是( )A .1B . 2C .-3D .132.下列调查方式中,最适合的是( )A .要了解一批节能灯的使用寿命,采用全面调查方式B .调查你所在班级的同学的身高,采用抽样调查方式C .环保部门调查长江某段水域的水质情况,采用抽样调查方式D .调查全市中学生每天的就寝时间,采用全面调查方式3.如果a >b ,下列变形错误的是( )A .a +c >b +cB .a -c >b -cC .ac >bcD .2a >2b4.如图,AB ∥CD ,∠A =50°,则∠1的度数是( )A .40°B .50°C .130°D .150°5.代入法解方程组⎩⎪⎨⎪⎧7x -2y =3,①x -2y =-12②有以下步骤:(1)由①,得2y =7x -3③;(2)把③代入①,得7x -7x -3=3;(3)整理,得3=3;(4)∴x 可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是( )A .第(1)步B .第(2)步C .第(3)步D .第(4)步6.与3+24最接近的整数是( )A .9B .8C .7D .67.甲、乙两人练习跑步,如果让乙先跑10 m ,那么甲跑5 s 就追上了乙;如果让乙先跑2 s ,那么甲跑4 s 就追上了乙,求甲、乙两人的速度.若设甲、乙两人的速度分别为x m/s ,y m/s ,则下列方程组正确的是( )A. ⎩⎪⎨⎪⎧5x -5y =10,4(x -y )=2y B.⎩⎪⎨⎪⎧5x =5y +10,4x -2=4yC. ⎩⎪⎨⎪⎧5x +10=5y ,4x -4y =2D.⎩⎪⎨⎪⎧5(x -y )=10,4(x -2y )=2x 8.若线段AB ∥x 轴且AB =5,点A 的坐标为(2,1),则点B 的坐标为( )A .(7,1)B .(1,-3)C .(1,7)或(-3,1)D .(7,1)或(-3,1)9.已知边长为m 的正方形面积为12,则下列关于m 的说法中,错误的是( )①m 是无理数;②m 的值满足m 2-12=0;③m 满足不等式组⎩⎪⎨⎪⎧m -4>0,m -5<0;④m 是12的算术平方根. A .①② B .①③C .③D .①②④10.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆二.填空题(共6小题,每小题4分,共24分)11.已知5x -2的立方根是-3,则x +69的算术平方根是__ __.12.不等式-3x +1>-8的正整数解是__________.13. 已知点P 在第二象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是________.14. 爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的 倍.15. 为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如图.已知从左至右各长方形的高的比为2∶3∶4∶6∶1,第二组的频数为9,则全班上交的作品有 件.16. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 _______ .17. 若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1,x +3y =3 的解满足x +y >0,则m 的取值范围是__ _. 18. 如图,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 025个点的坐标为________.三.解答题(共7小题, 66分)19. (8分))(1) 计算:(-1)2018+|1- 2 |-38 ;(2)解不等式组:⎩⎪⎨⎪⎧3x -2<4x -2,23x <7-12x.20. (8分)在如图的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题:(1)图中格点三角形A′B′C′是由格点三角形ABC 通过怎样的变换得到的?(2)如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),请写出格点三角形DEF 各顶点的坐标,并求出三角形DEF 的面积.21.(8分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22. 10分)如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠GFH+∠BHC =180°.求证∠1=∠2.23.(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5 200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少元钱?24.(10分)如图,平面直角坐标系中,C(0,5),D(a,5)(a>0),A,B在x轴上,∠1=∠D,请写出∠ACB和∠BED数量关系以及证明.25.(12分)今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.该单位应选择哪种方案可使运费最少?最少运费是多少元?(3)3种方案的运费分别为:方案①:2×400+6×360=2 960(元);方案②:3×400+5×360=3 000(元);方案③:4×400+4×360=3 040(元).∴方案①运费最少,最少运费是2 960元.答:该单位应选择安排甲型货车2辆,乙型货车6辆,可使运费最少,最少运费是2 960元.参考答案1-5 BCCCB 6-10 BADCC11. 8 12.1,2 13.(-3,2) 14. 6 15. 48 16. ⎩⎪⎨⎪⎧x +4.5=y x -1=12y 17. m >-2 18. (45,0)19. 解:(1)原式=1+ 2 -1-2= 2 -2(2)⎩⎪⎨⎪⎧3x -2<4x -2,①23x <7-12x ,② ∵解不等式①,得x >0,解不等式②,得x <6,∴不等式组的解集为0<x <620. 解:(1)图中格点三角形A′B′C′是由格点三角形ABC 向右平移7个单位长度得到的(2)三角形DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),三角形DEF 的面积为7×2-12 ×7×1-12 ×3×1-12×4×2=5 21. 解:(1)10÷25%=40(人)(2)足球:40×30%=12,跑步:40-10-12-15=3.补图略(3)1200×1540-1200×30%=90(人) 22. 证明:∵∠BHC =∠FHD ,∠GFH +∠BHC =180°,∴∠GFH +∠FHD =180°.∴FG ∥BD.∴∠1=∠ABD.∵BD 平分∠ABC ,∴∠2=∠ABD.∴∠1=∠2.23. 解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意,得⎩⎪⎨⎪⎧6x +3y =600,50×0.8x +40×0.75y =5 200,解得⎩⎪⎨⎪⎧x =40,y =120. 答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元 (2)80×40+100×120-80×0.8×40-100×0.75×120=3 640(元).答:打折后购买这批粽子比不打折节省了3 640元24. 解:∠ACB +∠BED =180°.理由:∵C(0,5),D(a ,5)(a >0),∴CD ∥x 轴,即CD ∥AB , ∴∠1+∠ACD =180°,∵∠1=∠D ,∴∠D +∠ACD =180°,∴AC ∥DE ,∴∠ACB =∠DEC ,∵∠DEC +∠BED =180°,∴∠ACB +∠BED =180°25.解:(1)方法一:设饮用水有x 件,则蔬菜有(x -80)件, 依题意,得x +(x -80)=320,解这个方程,得x =200,x -80=120.答:饮用水和蔬菜分别有200件、120件.方法二:设饮用水有x 件,蔬菜有y 件,依题意,得⎩⎪⎨⎪⎧x +y =320,x -y =80, 解这个方程组,得⎩⎪⎨⎪⎧x =200,y =120. 答:饮用水和蔬菜分别有200件、120件.(2)设租甲型货车n 辆,则租乙型货车(8-n)辆.依题意,得 ⎩⎪⎨⎪⎧40n +20(8-n )≥200,10n +20(8-n )≥120, 解这个不等式组,得2≤n≤4.∵n 为正整数,∴n =2或3或4,∴安排甲、乙两种型号的货车时有3种方案:①安排甲型货车2辆,乙型货车6辆;②安排甲型货车3辆,乙型货车5辆;③安排甲型货车4辆,乙型货车4辆.。

相关文档
最新文档