解析几何中的定值与定点问题-玩转压轴题(解析版)

合集下载

解析几何中的定点,定值问答(含答案解析)

解析几何中的定点,定值问答(含答案解析)

分析几何中的定点和定值问题【教课目的】学会集理选择参数(坐标、斜率等)表示动向图形中的几何对象,研究、证明其不变性质 ( 定点、定值等 ),领会“设而不求” 、“整体代换”在简化运算中的作用.【教课难、要点】解题思路的优化.【教课方法】议论式【教课过程】一、基础练习1 、过直线x 4 上动点 P 作圆O:x2y2 4 的切线PA、PB,则两切点所在直线AB 恒过必定点.此定点的坐标为.【答案】(1,0)yPB4xA【分析】设动点坐标为P(4,t),则以OP直径的圆C方程为:x(x 4)y( y t ) 0 ,故 AB 是两圆的公共弦,其方程为4x ty 4 .注:部分优异学生可由x0 x y0 y r 2公式直接得出.4x40令0得定点 (1,0) .y2 、已知 PQ 是过椭圆 C : 2 x2y21中心的任一弦, A 是椭圆 C 上异于P、Q的随意一点.若AP、AQ分别有斜率 k1、 k2,则 k1k2=______________.【答案】 -2【分析】设P( x, y), A( x0 , y0 ) ,则Q(x,y) y0y y0y y02y 2k1 k2x x0x 2x2,x0x02x2y 21又由 A 、 P 均在椭圆上,故有:00,2x2y21y02y2两式相减得 2( x02x 2 )( y02y2 ) 0, k1k2222x0x3 、椭圆x 2y 21,过右焦点F作不垂直于 x 轴的直线交椭圆于A、 B 两点,3627AB 的垂直均分线交x 轴于N e=1,则 NF : AB 等于_______.42【答案】1 4【分析】设直线 AB 斜率为 k ,则直线方程为y k x 3 ,与椭圆方程联立消去y 整理可得34k 2x224k2 x36k 2 1080 ,则 x1 x224k22, x1x236k 2108 34k34k2,所以 y1y218k, 34k2则 AB 中点为12k 2,9k. 34k24k23所以 AB 中垂线方程为 y9k21x12k22,34k k 3 4k令则 x3k 2即N 3k22 ,0y 0 ,34k2,34k,所以 NF33k 29(1k 2 ) 34k234k 2.AB1 k2x 1 236 1 k 2NF 1x 24x 1 x 24k 2,所以.3 AB44、已知椭圆 x 2y 2 1(a b 0) , A, F 是其左极点和左焦点,P是圆 x 2y 2b 2a 2b 2上的动点,若PA = 常数,则此椭圆的离心率是PF【答案】 e = 5 12【分析】PA常数,所以当点 P 分别在(± b ,0 )时比值相等,因为 PF即a b = a+b,整理得: b 2 ac ,b c b+c又因为 b 2 a 2 c 2 ,所以 a 2c 2ac同除以 a 2 可得 e 2 + e -1=0 ,解得离心率 e =5 1 .2二、典例议论例1、如图,在平面直角坐标系xOy 中,椭圆 C :x 2y 2 1的左极点为 A ,过原点 O 的直线(与42坐标轴不重合)与椭圆C 交于 P ,Q 两点,直线 PA ,QA 分别与 y 轴交于 M , N 两点.试问以 MN 为直径的圆能否经过定点(与直线 PQ 的斜率没关)?请证明你的结论.yMAPOQNx剖析一:设 PQ 的方程为 ykx ,设点 P x 0 , y 0 ( x 0 0 ),则点 Q x 0 , y 0 .联立方程组ykx,消去 y 得 x 24 2.22y 241x2k所以 x 02,则 y 02k.1 2k21 2 k2所以直线 AP 的方程为 ykx 2 .进而 M 0,2k1 1 2k 21 2k 21同理可得点 N0, 2k.112k 2所以以 MN 为直径的圆的方程为x 2( y12k 2k 2)( y 2k ) 01 11 2k 2整理得: x 2y 2 ( 2k2k ) y 2 011 2k 211 2k2 x 2 y 2 2 02, 0)由,可得定点 F (y剖析二 :设 P ( x 0, y 0 ),则 Q (﹣ x 0 ,﹣ y 0),代入椭圆方程可得 x 0 2 2 y 02 4 .由直线 PA 方程为:yy 0 ( x 2) ,可得 M 0,2y 02 y 0 x 0x 0,同原因直线 QA 方程可得 N 0,,可得以22x 02MN 为直径的圆为 x 2y2y 02y 2y 0 2 0 ,x 0x 0整理得: x 2y 22y 02 y 0 y 4 y 2 0x 0 2x 0 2 x 0 2 4242,代入整理即可得x 2y 24x 0 y 0 y 2 0因为 x 02y 0x 0 24此圆过定点 F (2, 0) .剖析三 :易证: k AP k AQb 2 1 a 2,2故可设直线AP 斜率为 k ,则直线 AQ 斜率为1 .2k直线 AP 方程为 y k( x2) ,进而得 M (0, 2k ) ,以1 1代 k 得 N 0,2kk故知以 MN 为直径的圆的方程为 x 2( y 2k)( y1 ) 0k整理得: x2y22 (12k ) y 0kx 2 y 22 02, 0) .由,可得定点 F (y剖析四、设 M (0, m), N (0, n) ,则 以 MN 为直径的圆的方程为x 2 ( y m)( yn) 0即 x 2y 2(m n) y mn再由k AP k AQ k AM k AN = b 21得 mn - 2 ,下略a22.例 2 、已知离心率为 e 的椭圆C :x2y2恰过两点,,a2b21(a b 0)(1 e) 和 20 .(1)求椭圆 C 的方程;(2) 已知AB、MN为椭圆C上的两动弦,此中M 、N 对于原点O对称,AB过点 E(1, 0) ,且 AB、MN 斜率互为相反数.试问:直线AM、BN的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea23B Ne (1)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(2)设 AB 方程为y k( x1) , A( x1 , y1) , B( x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 )k AM kBNy1kx3y2kx3k( x1 1) kx3k ( x21) kx3x1x3x2x3x1x3x2x3则整理得: k AM k BN k ( x1x3 1)(x2x3 ) (x2x3 1)(x1 x3 )( x1x3 )( x2x3 )k AM kBNk 2x1x22x32( x1x2 )①( x1x3 )( x2x3 )由y k( x1)消元整理得: (4 k 21)x28k2 x 4k 240 ,x2 4 y24.所以 x1 x28k 21 , x1 x24k4k24k224②1y kx又由消元整理得:x2 4 y2 4(4 k 2 1)x2 4 ,所以 x3241③4k 2将②、③代入①式得: k AM kBN0.例 2( 变式 ) 、已知离心率为 e 的椭圆Cx2y21(a b 0),,. :a2b2恰过两点 (1 e) 和 20(3)求椭圆 C 的方程;(4)已知 AB、MN 为椭圆C上的两动弦,此中 M、N 对于原点O对称,AB过定点E(m, 0), ( 2 m 2) ,且 AB、MN 斜率互为相反数. 试问:直线 AM 、 BN 的斜率之和能否为定值?证明你的结论.yMAx分析:O Ea2B N e3(3)由题意:1e22a2b21b21所以椭圆 C 的方程为x2y21. 4(4)设 AB 方程为y k( x m) , A(x1, y1 ) , B(x2 , y2 ) ,则 MN 方程为y kx又设 M ( x3,kx3 ) , N ( x3 , kx3 ).kAM kBNy1kx3y2kx3x1x3x2x3k( x1m)kx3k (x2m)kx3 x1x3x2x3则整理得: k AM kBNk ( x1x3m)( x2x3 ) ( x2x3m)( x1x3 )(x1x3 )( x2x3 )kAMkBNk 2x1x22x32m( x1x2 )①( x1x3 )( x2x3 )y k( x m)消元整理得: (4 k21)x28k 2mx4k 2 m240 ,由4 y24x2所以 x1x28k2m, x1 x24k 2m24②4k214k21又由y kx消元整理得:x2 4 y24(4 k 21)x2 4 ,所以 x3241③4k 2将②、③代入①式得:kAMkBN0.三、课外作业1 、已知椭圆x2y2A、B是其左、右极点,动点M知足MB⊥AB,连接AM交椭圆于点P1 ,,42在 x 轴上有异于点A、B 的定点 Q,以 MP 为直径的圆经过直线BP、MQ 的交点,则点 Q 的坐标为.【答案】(0,0 )【分析】试题剖析:设M (2,t ), 则AM : y t( x 2) ,与椭圆方程联立消y 得(t28) x24t 2 x 4t 232 0,4.28t t 28t162t,所以 k BP 82,即 k BP k OM1,点Q的坐 O所以 x P28, y P22t2tt t 816t 282(0,0 )x2y21上不一样于左点A、右点 B 的随意一点,直PA, PB 的斜率2 、已知 P 是412分 k1 , k2 ,则 k1k2的.1【答案】3【分析】P( x, y) , A(23,0), B(23,0)y, k2yk1x2,x 2 33y y y2 k1k2x2,⋯⋯①x 2 3 x 2 312因 P 在上,所以x2y2 1 ,即 y212x2⋯⋯②1243把②代入①,得k1k2y21 x2123x2y21(a b0) 的离心率e=1, A,B 是的左右点,P 上不一样于3 、已知b2a22AB 的点,直PA,PB 的斜角分,, cos() =.cos()【答案】 7【分析】.试题剖析:因为A,B 是椭圆的左右极点,P 为椭圆上不一样于 AB 的动点,kPAkPBb 2 Q e1 c 1 a2 b 21 b23 kPA b 2 3 a 22 a 2a 24 a 24,k PB,a 24cos( ) cos cos sin sin 1 tan tan 1 34 7cos() cos cossinsin1 tantan1 344 、以下图,已知椭圆x 2 y 21,在椭圆 C 上任取不一样两点A ,B ,点 A 对于 x 轴的对称C :4点为 A ' ,当 A , B 变化时,假如直线 AB 经过 x 轴上的定点 T (1 , 0) ,则直线 A 'B 经过 x 轴上的定点为 ________.【答案】 (4 , 0)AB 的方程为 x = my + 1 ,由 x 2 y 2 1得 (my + 1) 2 + 4 y 2 =4 ,即 (m 2 + 4) y 2+ 【分析】设直线 4x my 12 my -3 = 0.记 A (x 1, y 1 ), B (x 2, y 2),则 A ′(x 1 ,- y 1),且 y 1+ y 2=- 2m, y 1 y 2=-3 ,m 24m 2 4当 m ≠0 时,经过点 A ′(x 1,- y 1 ),B( x 2, y 2 )的直线方程为yy 1 = x x 1.令 y = 0 ,得 x =y 2y 1 x 2x 1x 2 x 1 y 1 + x 1my 2 my 1 y 1 + my 1 + 1 = my 1 y 2-my 12+my 1 y 2+ my 12+ 1 =2my 1 y 2 + 1 =y 2y 1 =y 1y 2+ y 1y 2+ y 1y 2.-2m3m24+ 1 = 4 ,所以y= 0 时,x=4.2mm24当 m =0时,直线AB的方程为 x=1,此时A′,B重合,经过A′,B的直线有无数条,自然能够有一条经过点 (4 ,0) 的直线.当直线 AB 为 x 轴时,直线A′B就是直线 AB ,即x轴,这条直线也经过点 (4 , 0) .综上所述,当点A,B 变化时,直线A′B 经过 x 轴上的定点(4,0).x2y21的右焦点 F2的直线交椭圆于于M ,N 两点,令F2 M m, F2 N n ,则5、过椭圆34mn____ .m n【答案】34【分析】x2y 21,得 M 试题剖析:不失一般性,不如取MN垂直 x 轴的状况,此时 MN :x=1, 联立43x1(1,3),N (1,-3),∴m=n= 3 ,∴ mn3 222m n46 、已知椭圆C的中心在座标原点,焦点在 x 轴上,左极点为A,左焦点为F12,0,点B 2,2在椭圆 C 上,直线y kx k0与椭圆 C 交于E F两点,直线AE AF分别与y轴交于点M,,,N .(Ⅰ)求椭圆 C 的方程;(Ⅱ)以 MN 为直径的圆能否经过定点?若经过,求出定点的坐标;若不经过,请说明原因.x2y21(a b 0) ,分析:(Ⅰ)解法一:设椭圆 C 的方程为b2a2因为椭圆的左焦点为 F12,0 ,所以a2b2 4 .设椭圆的右焦点为F2 2,0,已知点 B2,2在椭圆 C 上,由椭圆的定义知 BF1BF22a ,所以 2a3224 2 .所以 a22,进而 b2.所以椭圆 C 的方程为x2y 2 1 .84解法二:设椭圆C 的方程为x2y 2a2b21(a b0) ,因为椭圆的左焦点为F12,0 ,所以a2b2 4 .①因为点 B 2,2421.②在椭圆 C 上,所以b2a2由①②解得, a2 2 ,b 2.所以椭圆 C 的方程为x2y 21 .84(Ⅱ)解法一:因为椭圆 C 的左极点为 A ,则点 A 的坐标为22,0.因为直线 y kx ( k0) 与椭圆x2y21交于两点E,F,84设点 E x, y(不如设 x00 ),则点 F x0 ,y0.00y kx,28联立方程组x2y2消去 y 得x2.84112k所以 x022,则 y022k.12k122 k2所以直线 AE 的方程为ykx22.112k 2因为直线 AE , AF 分别与 y 轴交于点M,N,令 x22k22k0 得 y12k2,即点 M 0,1.112k2同理可得点22kN 0,.1 1 2k222k22k2 2 12k 2.所以 MN12k 2112k2k1设 MN 的中点为P,则点P的坐标为P 0,2k.22 22 12k 2则以 MN 为直径的圆的方程为x2yk ,k即 x2y 22 2 y 4 .k令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法二:因为椭圆 C 的左端点为 A ,则点 A 的坐标为22,0 .因为直线 y kx (k0) 与椭圆x2y21交于两点 E,F,84设点 E( x0 , y0 ) ,则点 F (x0 ,y0 ) .所以直线 AE 的方程为yy0x22.x022因为直线 AE 与 y 轴交于点M,令 x2 2 y0,即点 M2 2 y0.0 得 y220,x0x022同理可得点 N 0,2 2 y0.x0222 2 y0 2 2 y016 y0.所以 MN2 2 x0x028x0 2 2因为点 E(x0 , y0 ) 在椭圆C上,所以x02y021 .84.所以 MN 8.y0设 MN 的中点为P,则点P的坐标为P2x0.0,y02则以 MN 为直径的圆的方程为x2y 2x016.y02y0即 x2y2 +2 2x0 y4 .y0令 y0 ,得 x2 4 ,即x2或 x 2 .故以 MN 为直径的圆经过两定点P12,0, P22,0.解法三:因为椭圆 C 的左极点为 A ,则点 A 的坐标为 2 2,0.因为直线 y kx ( k 0) 与椭圆x2y21交于两点E,F,84设点 E2 2 cos,2sin( 0),则点 F2 2 cos ,2sin .所以直线 AE 的方程为y2sin x22.22 cos 2 2因为直线 AE 与 y 轴交于点M,令 x 0 得 y2sin,即点 M0,2sin.cos1cos1同理可得点 N0, 2sin.cos1所以 MN2sin2sin41cos1.cos sin设 MN 的中点为P,则点P的坐标为P 0,2cos.sin2则以 MN 为直径的圆的方程为x2y2cos4,sin sin2.即 x 2y 24cosy 4 .sin令 y0 ,得 x 24 ,即 x 2或 x 2 .故以 MN 为直径的圆经过两定点P 1 2,0 ,P 2 2,0 .、已知椭圆x 2y 2(a, b)的离心率为 3 A (1 ,3在椭圆 C 上.7C: a2b 2=1>0>0,点2 )2(I) 求椭圆 C 的方程;(Ⅱ )设动直线 l 与椭圆 C 有且仅有一个公共点,判断能否存在以原点O 为圆心的圆,满足此圆与 l 订交于两点 P 1, P 2 (两点均不在座标轴上) ,且使得直线 OP 1 , OP 2 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明原因.(Ⅰ)解:由题意,得c 3 , a 2 b 2 c 2 ,又因为点 A(1, 3 )在椭圆 C 上,a22所以13 1 , 解得a2 , b 1, c3 ,a 24b 2所以椭圆 C 的方程为x 2y 21.4(Ⅱ) 结论:存在切合条件的圆,且此圆的方程为x 2y 25 .证明以下:假定存在切合条件的圆,并设此圆的方程为 x 2y 2 r 2 (r0) .当直线 l 的斜率存在时,设l的方程为ykx m .y kxm,222由方程组x 2得 (4k1) x8kmx 4m40 ,y21,4因为直线 l 与椭圆 C 有且仅有一个公共点,所以 1 (8km) 24(4k21)(4m24) 0 ,即 m 24k 2 1 ..y kx m,得 (k 222kmxm 2r 20 ,由方程组y 2r 2 ,1)xx 2则2(2km)24(k21)(m2r 2 ) 0 .设 P 1 (x 1, y 1 ) , P 2 (x 2 , y 2 ) ,则x 1x 2 2km , y2xb ,k 2 1设直线 OP 1 , OP 2 的斜率分别为 k 1 , k 2 ,y y2 (kxm)(kx 2m) k 2 x x2km( xx ) m 2k 1k 211112x 1x 2x 1 x 2x 1 x 2所以k 2 m 2 r 2 km k 2km m 2 m 2 2 2k 21 2 1r k2 r 22 r 2mmk 2 1,k 1 k 2(4 r 2 )k 2124k 214k 2(1r 2) .将m代入上式,得要使得k 1k2为定值,则4 r 21241 r2 ,即 r 5 ,考证切合题意 .所以当圆的方程为x 2 y 25 时,圆与 l 的交点 P 1, P 2 知足 k 1k 2 为定值 1 .4 当直线 l 的斜率不存在时,由题意知 l的方程为 x2 ,此时,圆 x 2 y 25 与 l 的交点 P 1 , P 2 也知足 k 1k 21 .4y 2 2228、已知椭圆 C 1 :x1( a b0) 的离心率为,且过定点 M (1 , ). a 222 2b(1) 求椭圆 C 的方程;(2) 已知直线 l : y kx1(k R) 与椭圆 C 交于 A 、 B 两点,试问在 y 轴上能否存在定点P ,使得3以弦 AB 为直径的圆恒过 P 点?若存在,求出 P 点的坐标,若不存在,说明原因.ec25a2a 222a 22(1) 解:由已知 b cb251 112a 224b∴椭圆 C 的方程为2 y24x21 55y kx 1322(2) 解:由得:9(2k4) x12kx 43 02y24x215 5设 A(x1, y1), B(x2, y 2),则 x1、 x2是方程①的两根∴x1x212k,x1 x2439(2k24)9(2k24)uuur,uuur,设 P(0, p ),则PA ( x1,p)y1p) PB ( x2y2uuur uuurp 21PA PB x1 x2y1 y2p( y1y2 )x1 x2(kx1)( kx2(18p 245)k236 p23 24 p39uuur uuur uuur 9(2k24) uuur若 PA PB ,则 PA PB即 (18 p245)k 236 p224 p39 0对随意 k∈R恒建立18p 245 0∴24 p39036 p2此方程组无解,∴不存在定点知足条件.①1) pk ( x1 x2 ) 2 p p233。

解析几何中定值与定点问题

解析几何中定值与定点问题

7“解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要 解决的问题,证明要解决的问题与参数无关•在这类试题中选择消元的方向是非常关键的. ⑵解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再 视具体情况进行研究. 【实例探究】 题型1:定值问题:例1:已知椭圆C 的中心在原点,焦点在 x 轴上,它的一个顶点恰好是抛物线 : 的2后焦点,离心率等于 :(I)求椭圆 c 的标准方程;(H)过椭圆 C 的右焦点作直线I 交椭圆C 于A B 两点,交y 轴于M 点,若MA- \AF,MB 二划朋',求证孙+心为定值.(II )方法一:设A 、B 、M 点的坐标分别为 偽 Ji)/(曲 jjMQyJ 易知F 点的坐标为(2, 0).MA :. (x Lr ^L -y 0) = ^(2-Xi-yj2JL y 心= ---------- ,v T -- -------- .\ + \ [ +召2J去分母整理得1'' - J将A 点坐标代入到椭圆方程中,得5:则由题意知b = 1.同理鉱二4辭]得:才+10& +5-5^ =Q :.心站是方程?+1X+5-5允二啲两个根, ,”召 +血-10.方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2, 0).显然直线I存在的斜率,设直线I的斜率为k,则直线I的方程是y-k(x-2). 将直线I的方程代入到椭圆C的方程中,消去y并整理得(l+5t3)x a-20jk3x+20t a-5=0+20疋20^ —5v MA = \AFMB =诵細点坐标代入得石=/一X] 2_召又♦“ 两勺2(x1+ x a)-2x1x2“:石 +爲=—+—二----------------------- ----- =■ =-10.2-兀1 2-巧4_ 2(如+ xj+斤工2例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a2-b2=c2 =1设椭圆方程为x2/(b2+1)+y2/b2=1将(1,3/2)代入整理得4bM-9b2-9=0解得b2=3 (另一值舍)所以椭圆方程为x2/4+y2/3=1(2)设AE斜率为k则AE 方程为y-(3/2)=k(x-1)①x2/4+y2/3=1 ②①,②联立得出两个解一个是A(1,3/2 )另一个是E(x1,y1)①代入②消去y 得(1/4+k2/3)x2-(2k2/3-k)x+k2/3-k-1/4=0根据韦达定理x1 •= (k2/3-k-1/4 )/ (1/4+k2/3[③将③的结果代入①式得y1= (-k2/2-k/2+3/8 )/(1/4+k2 /3)设AF 斜率为-k,F (x2,y2) 则AF 方程为y- (3/2 ) =-k (x-1 [④x2/4+y2/3=1 ②5不存在,请说明理由.••• MA.(x 1-m,y 1),MB -g-my),5 3k 2,^(x ^m)(x 2 -m) y 1y 13k 2 1 k2x1 1 x2 13k 5 11k 2 X 1X 2 kF X 1 X 2m2k 2 3:!②④联立同样解得x2= ( k2/3+k-1/4 ) / (1/4+k2/3) y2= (-k2/2+k/2+3/8 ) / (1/4+k2/3)EF 斜率为(y2-y1 ) /(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。

微专题25解析几何中的定点与定值问题(解析)

微专题25解析几何中的定点与定值问题(解析)

微专题25 解析几何中的定点与定值问题考题导航题组一 通过设点坐标强化坐标运算、整体运算、消元思想 1.33解析:根据椭圆的对称性可知,A 、B 两点关于原点对称,所以设点A(x 1,y 1),B(-x 1,-y 1),P(x ,y).所以k PA ·k PB =y 2-y 21x 2-x 21,因为x 2a 2+y 2b 2=x 21a 2+y 21b 2,所以k PA ·k PB =-b 2a 2=-23,解得a =3c ,所以e =33. 2. 解析:(1) 设点A(x 1,y 1),B(x 2,y 2),M(x ,y), 则x 212+y 21=1①,x 222+y 22=1②. 因为OM →=cos θOA →+sin θOB →,故⎩⎪⎨⎪⎧x =x 1cos θ+x 2sin θ,y =y 1cos θ+y 2sin θ. 又因为点M 在椭圆上,故 (x 1cos θ+x 2sin θ)22+(y 1cos θ+y 2sin θ)2=1,整理得⎝⎛⎭⎫x 212+y 21cos 2θ+⎝⎛⎭⎫x 222+y 22sin 2θ+2(x 1x 22+y 1y 2)cos θsin θ=1. 将①②代入上式,得⎝⎛⎭⎫x 1x 22+y 1y 2cos θsin θ=0, 因为cos θsin θ≠0,所以x 1x 22+y 1y 2=0,所以k OA ·k OB =y 1y 2x 1x 2=-12为定值.(2) 由(1)得(y 1y 2)2=⎝⎛⎭⎫-x 1x 222=x 212·x 222=(1-y 21)·(1-y 22)=1-(y 21+y 22)+y 21y 22,故y 21+y 22=1.又⎝⎛⎭⎫x 212+y 21+⎝⎛⎭⎫x 222+y 22=2,故x 21+x 22=2,所以OA 2+OB 2=x 21+y 21+x 22+y 22=3.1. 解析:设点P(x 0,y 0),点M(x 1,y 1),点N(-x 1,y 1), 则直线MP 的方程为y -y 0y 1-y 0=x -x 0x 1-x 0,令x =0得y S =-x 0(y 1-y 0)x 1-x 0+y 0=x 1y 0-x 0y 1x 1-x 0,同理可得y R =x 1y 0+x 0y 1x 1+x 0,故y R ·y S =x 21y 20-x 20y 21x 21-x 20.又点M 与点P 在椭圆上, 故y 21=1-x 214,y 20=1-x 204,代入上式,得y R ·y S =x 21⎝⎛⎭⎫1-x 204-x 20⎝⎛⎭⎫1-x 214x 21-x 2=x 21-x 2x 21-x 20=1,所以OR →·OS →=y R ·y S =1为定值.题组二 定点问题的常见处理方法:特值法再证明或直接法1. 解析:①若直线AB 的斜率存在,设直线AB 的方程为y =kx +m ,点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2).联立⎩⎪⎨⎪⎧x 28+y 24=1,y =kx +m ,消去y ,得(1+2k 2)x 2+4kmx +2m 2-8=0, 则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2.由题意知k 1+k 2=y 1-2x 1+y 2-2x 2=8,所以kx 1+m -2x 1+kx 2+m -2x 2=8,即2k +(m -2)x 1+x 2x 1x 2=8,所以k -mk m +2=4,整理得m =k2-2.故直线AB 的方程为y =kx +12k -2,即y =k ⎝⎛⎭⎫x +12-2. 所以直线AB 过定点⎝⎛⎭⎫-12,-2; ②若直线AB 的斜率不存在,设直线AB 的方程为x =x 0,点A(x 0,y 0),B(x 0,-y 0). 则由题知y 0-2x 0+-y 0-2x 0=8,解得x 0=-12.此时直线AB 的方程为x =-12,显然直线AB 过点⎝⎛⎭⎫-12,-2, 综上可知,直线AB 过定点⎝⎛⎭⎫-12,-2.1. ⎝⎛⎭⎫-289,0 解析:由题意得⎩⎪⎨⎪⎧x 216+y 24=1,y =k 1(x +4),解得x M =4-16k 211+4k 21,同理可得x N =4-16k 221+4k 22=4k 21-64k 21+16,所以y M =8k 11+4k 21,y N =-16k 116+k 21,取k 1=1,则点M(-125,85),N(-6017,-1617),直线MN 的方程为y -85=94⎝⎛⎭⎫x +125,令y =0,解得x =-289,所以直线MN 经过x 轴上的定点⎝⎛⎭⎫-289,0. 【总结】一般情况:在平面直角坐标系xOy 中,过椭圆x 2a 2+y 2b 2=1(a>b>0)上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为k 1,k 2,当k 1·k 2为非零常数时,直线MN 经过x 轴上的定点.题组三 通过设斜方法研究定点定值综合问题,揭示问题的本质1. 解析:假设存在符合条件的点M(m ,0),设点P(x 1,y 1),点Q(x 2,y 2),则MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),MP →·MQ →=(x 1-m)·(x 2-m)+y 1y 2=x 1x 2-m(x 1+x 2)+m 2+y 1y 2. ①当直线l 的斜率存在时,设直线l 的方程为y =k·(x -1).联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +(2k 2-2)=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,y 1y 2=k 2(x1-1)(x 2-1)=k 2[x1x 2-(x 1+x 2)+1]=-k 22k 2+1, 所以MP →·MQ →=2k 2-22k 2+1-m·4k 22k 2+1+m 2-k 22k 2+1=(2m 2-4m +1)k 2+(m 2-2)2k 2+1.因为对于任意的k 值,MP →·MQ →为定值, 所以2m 2-4m +1=2(m 2-2),得m =54,所以点M ⎝⎛⎭⎫54,0,MP →·MQ →=-716; ②当直线l 的斜率不存在时,则直线l :x =1, x 1+x 2=2,x 1x 2=1,y 1y 2=-12.由m =54得MP →·MQ →=-716.综上,符合条件的点M 存在,其坐标为⎝⎛⎭⎫54,0﹒1. ⎝⎛⎭⎫12,12 12 解析:由题意得⎩⎪⎨⎪⎧2x +y -3=0,y =x ,解得⎩⎪⎨⎪⎧x =1,y =1,即点M 的坐标为(1,1).设点N(a ,b),点Q(x 1,y 1),且x 21+y 21=1,则QN 2QM 2=(x 1-a )2+(y 1-b )2(x 1-1)2+(y 1-1)2=λ(λ>0),整理得2(a -λ)x 1+2(b -λ)y 1-(a 2+b 2+1-3λ)=0,对任意的点Q 都成立,可得⎩⎪⎨⎪⎧a -λ=0,b -λ=0,a 2+b 2+1=3λ,解得 ⎩⎪⎨⎪⎧λ=12,a =12,b =12或⎩⎪⎨⎪⎧λ=1,a =1,b =1(舍去),即点N ⎝⎛⎭⎫12,12,此时λ=12. 冲刺强化训练(25)1. (2,0)和(0,2) 解析:由题意得-2t(x +y -2)+x 2+y 2-4=0过定点,即对于任意t 等式恒成立,得⎩⎪⎨⎪⎧x +y -2=0,x 2+y 2-4=0,解得⎩⎪⎨⎪⎧x =0,y =2或⎩⎪⎨⎪⎧x =2,y =0,所以圆C 过定点(2,0)和(0,2).2. a 2b 2a 2+b 2解析:设M(x 0,y 0)是双曲线上任意一点,由双曲线的两渐近线方程为bx+ay =0和bx -ay =0,可得d 1=|bx 0+ay 0|a 2+b 2,d 2=|bx 0-ay 0|a 2+b 2,所以d 1d 2=|b 2x 20-a 2y 20|a 2+b 2.又点M满足b 2x 20-a 2y 20=a 2b 2,所以d 1d 2=a 2b 2a 2+b 2,故点M 到两条渐近线的距离之积为定值a 2b 2a 2+b2.3. 20 解析:设圆心O 到AC 、BD 的距离分别为d 1、d 2,则AC 2+BD 2=4(4-d 21)+4(4-d 22)=32-4(d 21+d 22)=32-4OM 2=20.4. (1,0) 解析:设点P(4,y 0),则直线AB 的方程为4x +yy 0=4,故直线AB 过定点(1,0).5. -13 解析:由题意知,在该椭圆中a =23,b =2,所以点A(-23,0),B(23,0),设点P(x 0,y 0)(y 0≠0),且x 2012+y 204=1,又k 1=y 0x 0+23,k 2=y 0x 0-23,所以k 1·k 2=y 20x 20-12=4⎝⎛⎭⎫1-x 212x 20-12=-13.6. (3,0) 解析:设点A(m ,n),点P(x ,y),由PA =2PO ,得(x -m)2+(y -n)2=4(x 2+y 2),化简得3x 2+3y 2+2mx +2ny -m 2-n 2=0,又因为x 2+y 2+2x -3=0,所以(2m -6)x +2ny +9-m 2-n 2=0,因为对任意的x ,y 恒成立,所以m =3,n =0,所以点A(3,0).7. 7 解析:因为A ,B 是椭圆的左右顶点,P 为椭圆上不同于AB 的动点,所以k PA ·k PB =-b 2a 2.因为e =12,所以c a =12,所以a 2-b 2a 2=14,所以b 2a 2=34,所以k PA ·k PB =-b 2a2=-34.cos (α+β)cos (α-β)=cos αcos β-sin αsin βcos αcos β+sin αsin β=1-tan αtan β1+tan αtan β=1+341-34=7. 8. (4,0) 解析:设直线AB 的方程为x =my +1,由⎩⎪⎨⎪⎧x 24+y 2=1,x =my +1得(my +1)2+4y 2=4,即(m 2+4)y 2+2my -3=0.设A(x 1,y 1),B(x 2,y 2),则A′(x 1,-y 1),且y 1+y 2=-2mm 2+4,y 1y 2=-3m 2+4,当m ≠0时,经过点A′(x 1,-y 1),B(x 2,y 2)的直线方程为y +y 1y 2+y 1=x -x 1x 2-x 1.令y =0,得x =x 2-x 1y 2+y 1y 1+x 1=my 2-my 1y 2+y 1y 1+my 1+1=2my 1y 2y 2+y 1+1=2m·-3m 2+4-2mm 2+4+1=4,所以y=0时,x =4.当m =0时,直线AB 的方程为x =1,此时A′,B 重合,经过A′,B 的直线有无数条,当然可以有一条经过点(4,0)的直线.当直线AB 为x 轴时,直线A′B 就是直线AB ,即x 轴,这条直线也经过点(4,0).综上所述,当点A ,B 变化时,直线A′B 经过x 轴上的定点(4,0).9. 解析:设点P(x 0,y 0),则圆P 的方程为(x -x 0)2+(y -y 0)2=x 20+y 20, 即x 2+y 2-2x 0x -2y 0y =0.①又圆F 的方程为(x -3)2+y 2=5.②由①-②得直线QT 的方程为(x 0-3)x +y 0y -1=0, 所以FH =|3(x 0-3)-1|(x 0-3)2+y 20=|3x 0-4|x 20+y 20-23x 0+3.因为点P(x 0,y 0)在椭圆上, 所以x 204+y 20=1,即y 20=1-x 204,所以FH =|3x 0-4|x 20+⎝⎛⎭⎫1-x 204-23x 0+3= |3x 0-4|3x 204-23x 0+4=|3x 0-4|⎝⎛⎭⎫32x 0-22=2,故点F 到直线QT 的距离FH 为定值2.10. 解析:当直线l 的斜率为0时,令y =-1,则x =±4,此时以AB 为直径的圆的方程为x 2+(y +1)2=16;当直线l 的斜率不存在时,以AB 为直径的圆的方程为x 2+y 2=9, 联立⎩⎪⎨⎪⎧x 2+(y +1)2=16,x 2+y 2=9,解得⎩⎪⎨⎪⎧x =0,y =3,即两圆过点T(0,3). 猜想以AB 为直径的圆恒过定点T(0,3).对一般情况证明如下:设过点M(0,-1)的直线l 的方程为y =kx -1与椭圆C 交于点A(x 1,y 1),点B(x 2,y 2),联立⎩⎪⎨⎪⎧y =kx -1,x 2+2y 2=18,消去y 并整理得(1+2k 2)x 2-4kx -16=0,所以x 1+x 2=4k 1+2k 2,x 1x 2=-161+2k 2. 因为TA →·TB →=(x 1,y 1-3)·(x 2,y 2-3)=x 1x 2+y 1y 2-3(y 1+y 2)+9=x 1x 2+(kx 1-1)·(kx 2-1)-3(kx 1-1+kx 2-1)+9=(k 2+1)x 1x 2-4k(x 1+x 2)+16=-16(k 2+1)1+2k 2-16k 21+2k 2+16=-16(1+2k 2)1+2k 2+16=0,所以TA ⊥TB ,所以存在以AB 为直径的圆恒过定点T ,且定点T 的坐标为(0,3). 11. 解析:(1) 设点P(x 0,y 0),则点Q(-x 0,-y 0),点A(-2,0),所以直线AP 的方程为y =y 0x 0+2(x +2),所以点M ⎝⎛⎭⎫0,2y 0x 0+2,所以AM →=⎝⎛⎭⎫2,2y 0x 0+2.同理可得N ⎝⎛⎭⎫0,2y 0x 0-2,AN →=⎝⎛⎭⎫2,2y 0x 0-2,所以AM →·AN →=4+4y 20x 20-4.又点P 在椭圆C 上,故x 204+y 203=1,即x 20-4=-43y 20, 所以AM →·AN →=4+4y 20x 20-4=1(定值).(2) 设点P(x 1,y 1),点Q(x 2,y 2). 设直线AP 的方程为y =k 1(x +2), 联立⎩⎪⎨⎪⎧y =k 1(x +2),x 24+y 23=1,消去y 并整理得(3+4k 21)x 2+16k 21x +16k 21-12=0, 所以-2+x 1=-16k 213+4k 21,x 1=6-8k 213+4k 21,y 1=12k 13+4k 21, 所以点P ⎝ ⎛⎭⎪⎫6-8k 213+4k 21,12k 13+4k 21. 因为k 1·k 2=-1,所以点Q ⎝ ⎛⎭⎪⎫6k 21-83k 21+4,-12k 13k 21+4.当k 21=1时,6-8k 213+4k 21=-27=6k 21-83k 21+4,点P 和点Q 的横坐标相同,直线PQ 的方程为x =-27,由此可见,如果直线PQ 经过定点R , 则点R 的横坐标一定为-27;当k 21≠1时,k PQ =12k 13+4k 21--12k 13k 21+46-8k 213+4k 21-6k 21-83k 21+4=7k 14(1-k 21), 直线PQ 的方程为y -12k 13+4k 21=7k 14(1-k 21)(x -6-8k 213+4k 21), 令x =-27,得y =7k 14(1-k 21)⎝ ⎛⎭⎪⎫-27-6-8k 213+4k 21+12k 13+4k 21=0, 所以直线PQ 过定点R ⎝⎛⎭⎫-27,0.。

难点2.10 解析几何中的定值、定点和定线问题 (解析版)

难点2.10 解析几何中的定值、定点和定线问题  (解析版)

解析几何中的定值、定点、定线问题仍是高考考试的重点与难点,该类问题知识综合性强,方法灵活,对运算能力和推理能力要求较高,因而成为了高中数学学习的重点和难点.主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定值、定点、定线问题,试题难度较大.定点、定值、定线问题都是探求"变中有不变的量".因此要用全面的、联系的、发展的观点看待并处理此类问题.从整体上把握问题给出的综合信息,并注意挖掘问题中各个量之间的相互关系,恰当适时地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法. 在解答这类问题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查学生逻辑思维能力、知识迁移能力和运算求证能力的一道亮丽的风景线,真正体现了考试大纲中“重知识,更重能力”的指导思想.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用.1解析几何中的定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式出现,特珠化方法往往比较奏效.例1【百校联盟2018届一月联考】已知点()0,2F ,过点()0,2P -且与y 轴垂直的直线为1l , 2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M .(1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m-=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.思路分析:(1)根据抛物线的定义可得点M 的轨迹,根据待定系数法可得轨迹方程.(2)设直线AB 的方程为y kx b =+,与抛物线方程联立消元后可得AB 中点()24,4Q k k b +的坐标为.同样设出切线方程y kx t =+,与抛物线方程联立消元后可得切点C 的坐标为()24,2k k ,故得CQ ⊥ x 轴.于是点评:圆锥曲线中求定值问题常见的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)由题意得到目标函数,直接通过推理、计算,并在计算推理的过程中消去变量,从而得到目标函数的取值与变量无关,从而证得定值.定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现. 定值问题的主要处理方法是函数方法,首先,选择适当的量为变量,然后把证明为定值的量表示为上述变量的函数(可能含多元),最后把得到的函数解析式化简,消去变量得到定值.消去变量的过程中,经常要用到点在曲线上进行坐标代换消元.有时先从特殊情形入手,求出定值,再对一般情形进行证明,这样可使问题的方向更加明确.另外关注图形的几何性质可简化计算.学*科网2解析几何中的定点问题定点问题是动直线(或曲线)恒过某一定点的问题,一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.定点问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点问题的证明.难度较大.定点问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.解析几何中的“定点”问题一般是在一些动态事物(如动点、动直线、动弦、动角、动轨迹等)中,寻求某一个不变量——定点,由于这种问题涉及面广、综合性强.例2【河南省中原名校2018届第五次联考】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,上顶点为G ,直线FG 与直线30x y -=垂直,椭圆E 经过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆E 的标准方程;(2)过点F 作椭圆E 的两条互相垂直的弦,AB CD .若弦,AB CD 的中点分别为,M N ,证明:直线MN 恒过定点.思路分析:(1)根据直线FG 与直线30x y -=垂直可得3b c =,从而得到2243a b =,再由点31,2P ⎛⎫ ⎪⎝⎭在椭圆上可求得22,a b ,即可得椭圆的方程.(2)当直线AB CD ,的斜率都存在时,设AB 的方程为()10x my m =+≠,与椭圆方程联立消元后根据根据系数的关系可得点M 的坐标,同理可得点N 坐标,从而可得直线MN 的方程,通过此方程可得直线过定点4,07⎛⎫ ⎪⎝⎭.然后再验证当直线AB CD 或的斜率不存在时也过该定点.点评:本题考查椭圆的标准方程、椭圆的几何性质、直线与椭圆的位置关系、基本不等式,属难题;解决圆锥曲线定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 定点定值问题的实质为等式恒成立,方法为待定系数法.定点问题,关键在于寻找题中的已知量、未知量间的平行、垂直关系或是方程、不等式,然后将已知量、未知量代入上述关系,通过整理、变形转化为过定点的直线系、曲线系的问题来解决.定值问题,关键在于选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理等方法导出所求定值关系式需要的表达式,并将其代入定值关系式,化简整理求出结果. 圆锥曲线中的定点问题是高考中的常考题型,常常把直线、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是数形结合思想、分类讨论思想的考查.求解的方法有以下两种:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点符合题意.学*科网3解析几何中的定线问题 定线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.例3在平面直角坐标系xOy 中,过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.思路分析:(Ⅰ)设出过点()2,0C 的直线方程,与抛物线方程联立消去未知数x ,由根与系数关系可得128y y =-为定值;(Ⅱ)先设存在直线l :a x =满足条件,求出以AC 为直径的圆的圆心坐标和半径,利用勾股定理求出弦长表达式222124(1)84r d a x a a -=--+-,由表达式可知,当1a =时,弦长为定值.点评:本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、直线与圆的位置关系,属难题;解决圆锥曲线定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 学*科网综上所述:解决圆锥曲线问题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.解析几何中的定值问题是指某些几何量、线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 证明直线过定点的解题步骤可以归纳为:一选、二求、三定点.具体操作程序如下:一选:选择参变量.需要证明过定点的直线往往会随某一个量的变化而变化,可选择这个量为参变量(当动直线牵涉的量比较多时,也可以选择多个参变量). 二求:求出动直线的方程.求出只含上述参变量的动直线方程,并由其他辅助条件减少参变量的个数,最终使动直线的方程的系数中只含有一个参变量. 三定点:求出定点的坐标.不妨设动直线的方程中含有变量,把直线方程写成的形式,然后解关于的方程组得到定点的坐标. 解这类问题时,需要有较强的代数运算能力和图形识别能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整性.。

高考数学专题06 解析几何中的定点、定值问题(第五篇)(解析版)

高考数学专题06 解析几何中的定点、定值问题(第五篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品第五篇解析几何专题06 解析几何中的定点、定值问题【典例1】【四川省内江市2019届高三第三次模拟】已知椭圆C :22221(0)x y a b a b +=>>,直线0x y +=与圆222x y b +=相切. (1)求椭圆C 的方程;(2)设5(,0)4P ,过点(1,0)的直线l 交椭圆C 于A ,B 两点,证明:PA PB ⋅u u u v u u u v为定值. 【思路引导】(1)根据题意布列关于a ,b 的方程组,即可得到椭圆C 的方程;(2)设l 的方程:1x my =+.联立方程可得()222210m y my ++-=,利用韦达定理表示PA PB ⋅u u u v u u u v,即可得到结果. 【详解】解:(1)∵椭圆C 的离心率为2,∴a =,∵直线0x y +=与圆222x y b +=相切,∴1b ==,∴a ==∴椭圆C 的方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,当直线l 与x 轴不重合时,设l 的方程:1x my =+.由22112x my x y =+⎧⎪⎨+=⎪⎩得()222210m y my ++-=,1221222212m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩, ∴12242x x m +=+,2122312m x x m -=++,112255,,44PA PB x y x y ⎛⎫⎛⎫⋅=-⋅- ⎪ ⎪⎝⎭⎝⎭u u u v u u u v ()121212525416x x x x y y =-+++223641721616m m --=+=-+. 当直线l 与x轴重合时,55,0,044PA PB ⎫⎛⎫⋅=⋅⎪⎪⎭⎝⎭u u u v u u u v 25721616=-=-. ∴故PA PB ⋅u u u v u u u v为定值716-. 【典例2】【北京市人大附中2019届高三高考信息卷】已知椭圆()222210x y C a b a b+=>>:离心率等于12,()23P ,、()Q 2,3-是椭圆上的两点.(1)求椭圆C 的方程;(2),A B 是椭圆上位于直线PQ 两侧的动点.当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由. 【思路引导】(1)由题意列式关于a ,b ,c 的方程组,求解可得a ,b 的值,则椭圆C 的方程可求;(2)设直线P A 的斜率为k ,则PB 的斜率为﹣k ,P A 的直线方程为y ﹣3=k (x ﹣2)将直线的方程代入椭圆的方程,消去y 得到关于x 的一元二次方程,再结合根系数的关系利用弦长公式即可求得x 1+2,同理PB 的直线方程为y ﹣3=﹣k (x ﹣2),可得x 2+2,从而得出AB 的斜率为定值. 【详解】解:(1)由题意可得2222212491c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a =4,b =,c =2.∴椭圆C 的方程为2211612x y +=;(2)设A (x 1,y 1),B (x 2,y 2),当∠APQ =∠BPQ ,则P A 、PB 的斜率之和为0,设直线P A 的斜率为k , 则PB 的斜率为﹣k ,直线P A 的直线方程为y ﹣3=k (x ﹣2),联立()222311612y k x x y ⎧=-+⎪⎨+=⎪⎩,得(3+4k 2)x 2+8k (3﹣2k )x +4(3﹣2k )2﹣48=0.∴()12823234k k x k-+=+.同理直线PB 的直线方程为y ﹣3=﹣k (x ﹣2), 可得()()22282382323434k k k k x kk---++==++.∴2122161234k x x k-+=+,1224834k x x k --=+, ()()()12121212121223234AB k x k x k x x ky y k x x x x x x -++--+--===---2221612413448234k k k k k k -⋅-+==-+,∴AB 的斜率为定值12.【典例3】【陕西省咸阳市2020届高三模拟检测】已知点Q 是圆22(y 36:M x ++=上的动点,点N ,若线段QN 的垂直平分线MQ 于点P .(I)求动点P 的轨迹E 的方程(II)若A 是轨迹E 的左顶点,过点D (-3,8)的直线l 与轨迹E 交于B ,C 两点,求证:直线AB 、AC 的斜率之和为定值. 【思路引导】(Ⅰ)线段QN 的垂直平分线交MQ 于点P ,所以PN PQ =,则PM PN PM PQ +=+为定值,所以P 的轨迹是以M N 、为焦点的椭圆,结合题中数据求出椭圆方程即可;(Ⅱ)设出直线方程,联立椭圆方程得到韦达定理,写出AB AC k k +化简可得定值. 【详解】解:(Ⅰ)由题可知,线段QN 的垂直平分线交MQ 于点P ,所以PN PQ =,则6PM PN PM PQ +=+=> 所以P 的轨迹是以M N 、为焦点的椭圆,设该椭圆方程为22221(0)x y a b a b+=>>,则26,a c ==24b =,可得动点P 的轨迹E 的方程为22194x y +=.(Ⅱ)由(Ⅰ)可得,过点D 的直线l 斜率存在且不为0, 故可设l 的方程为()0y kx m k =+≠,()()1122,,,B x y C x y ,由22194y kx m x y =+⎧⎪⎨+=⎪⎩得()22249189360k x kmx m +++-=,()()()()2222218449936144940km k m k m ∆=-+-=-+>2121222189364949km m x x x x k k-+=-=++ 而()()()()()()()()()()2211221121212123333333333AB ACy x y x kx m x kx m x y y k k x x x x x x +++++++++=+==++++++ ()()()1212121223639kx x k m x x mx x x x ++++=+++()22222293618236494993618394949m km k k m m k k m km k k -⎛⎫⨯++-+ ⎪++⎝⎭=-⎛⎫+⨯-+ ⎪++⎝⎭()833m k =-由于直线l 过点()3,8D -,所以38k m -+=, 所以13AB AC k k +=(即为定值)【典例4】【河北省保定市2019届高三4月第一次模拟】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2与抛物线y 2=4x 的焦点重合,且其离心率为12。

解析几何压轴大题突破策略——“破题式”三式

解析几何压轴大题突破策略——“破题式”三式

解析几何压轴大题突破策略——“破题式”三式第一式——定点、定值问题一.定点问题[例1]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标.[解](1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2).由(y =kx +m ,x 24+y 2=1,)消去y 可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0.∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km 4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为(0,-35).[解题技法]圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.[过关训练]1.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求k ·k 1的值;(2)当k 变化时,试问直线MN 是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.解:(1)设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0),直线l 与直线l 1的交点为(0,1),∴l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0,由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,①由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得(y =x 0+1,y 0=x +1,)∴k ·k 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1.(2)由(y =kx +1,x 24+y 2=1)得(4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),∴x M =-8k4k 2+1,y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2.k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k 4+k 2=8-8k 48k (3k 2-3)=-k 2+13k ,直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k (x --8k 4k 2+1),即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.∴当k 变化时,直线MN 过定点(0,-53).二.定值问题[例2](2019·沈阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2的面积最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM ―→·ON ―→=m 时,点O 到直线MN 的距离为定值,求这个定值.[解](1)当点P 位于短轴的端点时,△PF 1F 2的面积最大,即12×2c ×b =3,则有(c 2=a 2-b 2,bc =3,c a =12,)解得(a =2,b =3,)所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立(3x 2+4y 2=12,y =kx +n ,)消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n 2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n 2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0.当MN ⊥x 轴时,由m =0得k OM =±1,联立(3x 2+4y 2=12,y =±x ,)消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上可知,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.[解题技法]圆锥曲线中定值问题的特点及两大解法(1)特点:待证几何量不受动点或动线的影响而有固定的值.(2)两大解法:①从特殊入手,求出定值,再证明这个值与变量无关;②引起变量法:其解题流程为[过关训练]2.(2019·昆明调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,P (2,55)是椭圆C 上的点.(1)求椭圆C 的方程;(2)O 为坐标原点,A ,B 是椭圆C 上不关于坐标轴对称的两点,设OD ―→=OA ―→+OB ―→,证明:直线AB 的斜率与OD 的斜率的乘积为定值.解:(1)由题意知2c =4,即c =2,则椭圆C 的方程为x 2a 2+y 2a 2-4=1,因为点P (2,55)在椭圆C 上,所以4a 2+15(a 2-4)=1,解得a 2=5或a 2=165(舍去),所以椭圆C 的方程为x 25+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),x 1≠x 2且x 1+x 2≠0,由OA ―→+OB ―→=OD ―→,得D (x 1+x 2,y 1+y 2),所以直线AB 的斜率k AB =y 1-y 2x 1-x 2,直线OD 的斜率k OD =y 1+y 2x 1+x 2,由(x 215+y 21=1,x 225+y 22=1,)得15(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0,即y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=-15,所以k AB ·k OD =-15.故直线AB 的斜率与OD 的斜率的乘积为定值-15.第二式——最值、范围问题一.最值问题[例1](2018·南昌模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过焦点F 的直线交C 于A (x 1,y 1),B (x 2,y 2)两点,y 1y 2=-4.(1)求抛物线C 的方程;(2)如图,点B 在准线l 上的正投影为E ,D 是C 上一点,且AD ⊥EF ,求△ABD 面积的最小值及此时直线AD 的方程.[解](1)依题意知F (p 2,0),当直线AB 的斜率不存在时,y 1y 2=-p 2=-4,解得p =2.当直线AB 的斜率存在时,设l AB :y =k (x -p 2)(k ≠0),由(y =k (x -p 2),y 2=2px ,)消去x 并整理,得y 2-2p k y -p 2=0,则y 1y 2=-p 2,由y 1y 2=-4,得p 2=4,解得p =2.综上所述,抛物线C 的方程为y 2=4x .(2)设D (x 0,y 0),B (t 24,t ),则E (-1,t ),又由y 1y 2=-4,可得A (4t 2,-4t ).因为k EF =-t 2,AD ⊥EF ,所以k AD =2t,则直线l AD 的方程为y +4t =2t (x -4t 2),化简得2x -ty -4-8t2=0.由(2x -ty -4-8t 2=0,y 2=4x ,)消去x 并整理,得y 2-2ty -8-16t 2=0,Δ=(-2t )2-4(-8-16t 2)=4t 2+64t2+32>0恒成立,所以y 1+y 0=2t ,y 1y 0=-8-16t2.于是|AD |=1+t 24|y 1-y 0|=1+t 24(y 1+y 0)2-4y 1y 0=4+t 2t 2+16t2+8,设点B 到直线AD 的距离为d ,则d =(t 22-t 2-4-8t 2)4+t 2=(t 2+16t 2+8)24+t 2.所以S △ABD =12|AD |·d =14(t 2+16t 2+8)3≥16,当且仅当t 4=16,即t =±2时取等号,即△ABD 面积的最小值为16.当t =2时,直线AD 的方程为x -y -3=0;当t =-2时,直线AD 的方程为x +y -3=0.[解题技法]圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.[过关训练]1.(2018·安康质检)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1和F 2,由M (-a ,b ),N (a ,b ),F 2和F 1这4个点构成了一个高为3,面积为33的等腰梯形.(1)求椭圆的方程;(2)过点F 1的直线和椭圆交于A ,B 两点,求△F 2AB 面积的最大值.解:(1)由已知条件,得b =3,且2a +2c 2×3=33,∴a +c =3.又a 2-c 2=3,∴a =2,c =1,∴椭圆的方程为x 24+y 23=1.(2)显然,直线的斜率不能为0,设直线的方程为x =my -1,A (x 1,y 1),B (x 2,y 2).联立方程,得(x 24+y 23=1,x =my -1,)消去x 得,(3m 2+4)y 2-6my -9=0.∵直线过椭圆内的点,∴无论m 为何值,直线和椭圆总相交.∴y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.∴=12|F 1F 2||y 1-y 2|=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=12m 2+1(3m 2+4)2=4m 2+1(m 2+1+13)2=41m 2+1+23+19(m 2+1),令t =m 2+1≥1,设f (t )=t +19t,易知t ∈(0,13)时,函数f (t )单调递减,t ∈(13,+∞)时,函数f (t )单调递增,∴当t=m 2+1=1,即m =0时,f (t )取得最小值,f (t )min =109,此时,取得最大值3.二.范围问题[例2](2019·合肥模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且以原点为圆心,椭圆的焦距为直径的圆与直线x sin θ+y cos θ-1=0相切(θ为常数).(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右焦点分别为F 1,F 2,过F 2作直线l 与椭圆交于M ,N 两点,求F 1M ―→·F 1N―→的取值范围.[解](1)由题意,得(c a =22,1sin 2θ+cos 2θ=c ,a 2=b 2+c 2)解得(c =1,a 2=2,b 2=1,)故椭圆C 的标准方程为x 22+y 2=1.(2)由(1)得F 1(-1,0),F 2(1,0).①若直线l 的斜率不存在,则直线l ⊥x 轴,直线l 的方程为x =1,不妨记M (1,22),N (1,-22),∴F 1M ―→=(2,22),F 1N ―→=(2,-22),故F 1M ―→·F 1N ―→=72.②若直线l 的斜率存在,设直线l 的方程为y =k (x -1),由(y =k (x -1),x 22+y 2=1)消去y 得,(1+2k 2)x 2-4k 2x +2k 2-2=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.①F 1M ―→=(x 1+1,y 1),F 1N ―→=(x 2+1,y 2),则F 1M ―→·F 1N ―→=(x 1+1)(x 2+1)+y 1y 2=(x 1+1)(x 2+1)+k (x 1-1)·k (x 2-1)=(1+k 2)x 1x 2+(1-k 2)(x 1+x 2)+1+k 2,结合①可得F 1M ―→·F 1N ―→=2(k 4-1)2k 2+1+4k 2-4k 42k 2+1+1+k 2=7k 2-12k 2+1=72-922k 2+1,由k 2≥0可得F 1M ―→·F 1N ―→∈(-1,72).综上可知,F 1M ―→·F 1N ―→的取值范围是(-1,72).[解题技法]解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[过关训练]2.(2019·惠州调研)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM ∶S △PBN =λ,求实数λ的取值范围.解:(1)因为BF 1⊥x 轴,所以点B (-c ,-b 2a ),所以(a =2,b 2a (a +c )=12,a 2=b 2+c 2)解得(a =2,b =3,c =1,)所以椭圆C 的标准方程是x 24+y 23=1.(2)因为S △PAM S △PBN =12|PA |·|PM |·sin ∠APM 12|PB |·|PN |·sin ∠BPN =2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2),所以PM ―→=-λ2PN ―→.由(1)可知P (0,-1),设直线MN 的方程为y =kx -1(k >12),M (x 1,y 1),N (x 2,y 2),联立方程,得(y =kx -1,x 24+y 23=1,)化简得,(4k 2+3)x 2-8kx -8=0.得(x 1+x 2=8k 4k 2+3,x 1·x 2=-84k 2+3.)(*)又PM ―→=(x 1,y 1+1),PN ―→=(x 2,y 2+1),有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,(2-λ)2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k2+4∈(1,4),则1<(2-λ)2λ<4且λ>2,解得4<λ<4+2 3.综上所述,实数λ的取值范围为(4,4+23).第三式——证明、探索性问题一.证明问题[例1](2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB .[解](1)由已知得F (1,0),直线l 的方程为x =1.则点A 的坐标为(1,22)或(1,-22).又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2,即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k (x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k 2k 2+1=0.从而k MA +k MB =0,故MA ,MB 的倾斜角互补.所以∠OMA =∠OMB .综上,∠OMA =∠OMB 成立.[解题技法]圆锥曲线中证明问题,常见位置关系方面的,如证明相切、垂直、过定点等;数量关系方面的,如存在定值、恒成立等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法证明,但有时也会用到反证法.[过关训练]1.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ―→+FA ―→+FB ―→=0.证明:|FA ―→|,|FP ―→|,|FB ―→|成等差数列,并求该数列的公差.证明:(1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .①由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P (1,-32),|FP ―→|=32,于是|FA ―→|=(x 1-1)2+y 21=(x 1-1)2+3(1-x 214)=2-x 12.同理|FB ―→|=2-x 22.所以|FA ―→|+|FB ―→|=4-12(x 1+x 2)=3.故2|FP ―→|=|FA ―→|+|FB ―→|,即|FA ―→|,|FP ―→|,|FB ―→|成等差数列.设该数列的公差为d ,则2|d |=||FB ―→|-|FA ―→||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.二.探索性问题[例2](2019·合肥质检)如图,在平面直角坐标系中,点F (-1,0),过直线l :x =-2右侧的动点P 作PA ⊥l 于点A ,∠APF 的平分线交x 轴于点B ,|PA |=2|BF |.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线q 交曲线C 于M ,N ,试问:x 轴正半轴上是否存在点E ,直线EM ,EN 分别交直线l 于R ,S 两点,使∠RFS 为直角?若存在,求出点E 的坐标,若不存在,请说明理由.[解](1)设P (x ,y ),由平面几何知识得|PF ||PA |=22,即(x +1)2+y 2|x +2|=22,化简得x 22+y 2=1,所以动点P 的轨迹C 的方程为x 22+y 2=1(x ≠2).(2)假设满足条件的点E (n,0)(n >0)存在,设直线q 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),R (-2,y 3),S (-2,y 4).联立(x 2+2y 2=2,x =my -1,)消去x ,得(m 2+2)y 2-2my -1=0,y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2,x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1=-m 2m 2+2-2m 2m 2+2+1=2-2m 2m 2+2,x 1+x 2=m (y 1+y 2)-2=2m 2m 2+2-2=-4m 2+2,由条件知y 1x 1-n =y 3-2-n ,y 3=-(2+n )y 1x 1-n,同理y 4=-(2+n )y 2x 2-n ,k RF =y 3-2+1=-y 3,k SF =-y 4.因为∠RFS 为直角,所以y 3y 4=-1,所以(2+n )2y 1y 2=-[x 1x 2-n (x 1+x 2)+n 2],(2+n )21m 2+2=2-2m 2m 2+2+4n m 2+2+n 2,所以(n 2-2)(m 2+1)=0,n =2,故满足条件的点E 存在,其坐标为(2,0).[解题技法]存在性问题的求解方法(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解存在性问题常用的方法.[过关训练]2.(2019·福州四校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2,短轴的一个端点为P,△PF1F2内切圆的半径为b3,设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3.(1)求椭圆C的标准方程;(2)在x轴上是否存在一点T,使得当l变化时,总有TS与TR所在直线关于x轴对称?若存在,请求出点T的坐标;若不存在,请说明理由.解:(1)由内切圆的性质,得12×2c×b=12×(2a+2c)×b3,得ca=12.将x=c代入x2a2+y2b2=1,得y=±b2a,所以2b2a=3.又a2=b2+c2,所以a=2,b=3,故椭圆C的标准方程为x24+y23=1.(2)当直线l垂直于x轴时,显然x轴上任意一点T都满足TS与TR所在直线关于x轴对称.当直线l不垂直于x轴时,假设存在T(t,0)满足条件,设l的方程为y=k(x-1),R(x1,y1),S(x2,y2).联立(y=k(x-1),3x2+4y2-12=0,)得(3+4k2)x2-8k2x+4k2-12=0,由根与系数的关系得(x1+x2=8k23+4k2,x1x2=4k2-123+4k2,)①其中Δ>0恒成立,由TS与TR所在直线关于x轴对称,得k TS+k TR=0(显然TS,TR的斜率存在),即y1x1-t+y2x2-t=0.②因为R,S两点在直线y=k(x-1)上,所以y1=k(x1-1),y2=k(x2-1),代入②得k(x1-1)(x2-t)+k(x2-1)(x1-t)(x1-t)(x2-t)=k[2x1x2-(t+1)(x1+x2)+2t](x1-t)(x2-t)=0,即2x1x2-(t+1)(x1+x2)+2t=0,③将①代入③得8k2-24-(t+1)8k2+2t(3+4k2)3+4k2=6t-243+4k2=0,④则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.【牛刀小试】1.(2018·郑州一检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与直线ax +2by -3ab =0相切.(1)求椭圆C 的离心率;(2)如图,过F 1作直线l 与椭圆分别交于P ,Q 两点,若△P Q F 2的周长为42,求F 2P ―→·F 2Q ―→的最大值.解:(1)由题意知|-3ab |a 2+4b 2=c ,即3a 2b 2=c 2(a 2+4b 2)=(a 2-b 2)(a 2+4b 2).化简得a 2=2b 2,所以e =1-b 2a 2=22.(2)因为△P Q F 2的周长为42,所以4a =42,得a =2,由(1)知b 2=1,所以椭圆C 的方程为x 22+y 2=1,且焦点F 1(-1,0),F 2(1,0),①若直线l 的斜率不存在,则直线l ⊥x 轴,直线方程为x =-1,P (-1,22),Q (-1,-22),F 2P ―→=(-2,22),F 2Q ―→=(-2,-22),故F 2P ―→·F 2Q―→=72.②若直线l 的斜率存在,设直线l 的方程为y =k (x +1),由(y =k (x +1),x 2+2y 2=2,)消去y 并整理得(2k 2+1)x 2+4k 2x +2k 2-2=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1,F 2P ―→·F 2Q ―→=(x 1-1,y 1)·(x 2-1,y 2)=(x 1-1)(x 2-1)+y 1y 2=(k 2+1)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=(k 2+1)2k 2-22k 2+1+(k 2-1)(-4k 22k 2+1)+k 2+1=7k 2-12k 2+1=72-92(2k 2+1),由k 2>0可得F 2P ―→·F 2Q ―→∈(-1,72).综上所述,F 2P ―→·F 2Q ―→∈(-1,72),所以F 2P ―→·F 2Q ―→的最大值是72.2.(2019·沈阳教学质量监测)设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→=2NM ―→.(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.解:(1)设P (x ,y ),易知N (x,0),NP ―→=(0,y ),又NM ―→=12NP ―→=(0,y 2),∴M (x ,y 2),又点M 在椭圆上,∴x 29+(y 2)24=1,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:当直线l 1与x 轴重合时,|AB |=6,|CD |=163,∴1|AB |+1|CD |=1748.当直线l 1与x 轴垂直时,|AB |=163,|CD |=6,∴1|AB |+1|CD |=1748.当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k (x -1)(k ≠0),则直线l 2的方程为y =-1k(x -1),设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),联立直线l 1与曲线E 的方程,得(y =k (x -1),x 29+y 28=1,)得(8+9k 2)x 2-18k 2x +9k 2-72=0,可得(Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)>0,x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,)∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=48(1+k 2)8+9k 2,同理可得x 3+x 4=188k 2+9,x 1x 2=9-72k 28k 2+9.则|CD |=1+1k 2·(x 3+x 4)2-4x 3x 4=48(1+k 2)9+8k 2.∴1|AB |+1|CD |=8+9k 248(k 2+1)+9+8k 248(k 2+1)=1748.综上可得1|AB |+1|CD |为定值.3.(2019·惠州调研)已知点C 为圆(x +1)2+y =8的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点A (1,0)和AP 上的点M ,满足M Q ―→·AP ―→=0,AP ―→=2AM ―→.(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆x 2+y 2=1相切,与(1)中所求点Q 的轨迹交于不同的两点F ,H ,O 是坐标原点,且34≤OF ―→·OH ―→≤45时,求k 的取值范围.解:(1)由题意知M Q 是线段AP 的垂直平分线,所以|CP |=|Q C |+|Q P |=|Q C |+|Q A |=22>|CA |=2,所以点Q 的轨迹是以点C ,A 为焦点,焦距为2,长轴长为22的椭圆,所以a =2,c =1,b =a 2-c 2=1,故点Q 的轨迹方程是x 22+y 2=1.(2)设直线l :y =kx +t ,F (x 1,y 1),H (x 2,y 2),直线l 与圆x 2+y 2=1相切⇒|t |k 2+1=1⇒t 2=k 2+1.联立(x 22+y 2=1,y =kx +t)⇒(1+2k 2)x 2+4ktx +2t 2-2=0,Δ=16k 2t 2-4(1+2k 2)(2t 2-2)=8(2k 2-t 2+1)=8k 2>0⇒k ≠0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以OF ―→·OH ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kt (x 1+x 2)+t 2=(1+k 2)(2t 2-2)1+2k 2+kt -4kt 1+2k 2+t 2=(1+k 2)2k 21+2k 2-4k 2(k 2+1)1+2k 2+k 2+1=1+k 21+2k 2,所以34≤1+k 21+2k 2≤45⇒13≤k 2≤12⇒33≤|k |≤22,所以-22≤k ≤-33或33≤k ≤22.故k 的取值范围是(-22,-33)∪(33,22).4.已知抛物线C :y 2=4x ,过其焦点F 作两条相互垂直且不平行于坐标轴的直线,它们分别交抛物线C 于点P 1,P 2和点P 3,P 4,线段P 1P 2,P 3P 4的中点分别为M 1,M 2.(1)求线段P 1P 2的中点M 1的轨迹方程.(2)求△FM 1M 2面积的最小值.(3)过M 1,M 2的直线l 是否恒过定点?若是,求出定点坐标;若不是,请说明理由.解:(1)由题设条件得焦点F (1,0),设直线P 1P 2的方程为y =k (x -1),k ≠0.联立(y =k (x -1),y 2=4x ,)得k 2x 2-2(2+k 2)x +k 2=0,则Δ=[-2(2+k 2)]2-4k 2·k 2=16(1+k 2)>0.设P 1(x 1,y 1),P 2(x 2,y 2),设M 1(xM 1,yM 1),(3)当k ≠±1时,由(2)知直线l 的斜率为k ′=k 1-k 2,∴直线l 的方程为y +2k =k 1-k 2(x -2k 2-1),即yk 2+(x -3)k -y =0,(*)当x =3,y =0时,方程(*)对任意k (k ≠±1)均成立,即直线l 过定点(3,0).当k =±1时,直线l 的方程为x =3,也过定点(3,0).综上可知,直线l 恒过定点(3,0).————————————————————————————————————《初、高中数学教研微信系列群》简介:目前有8个群(7个高中群、1个初中群),共3000多大学教授、教师、中学优秀、特、高级教师,省、市、区县教研员、教辅公司数学编辑、报刊杂志初、高中数学编辑等汇聚而成,是一个围绕初、高中数学教学研究展开教研活动的微信群.宗旨:脚踏实地、不口号、不花哨、接地气的初、高中数学教研!特别说明:1.本系列群只探讨初、高中数学教学研究、数学试题研究等相关话题;2.由于本群是集“研究—写作—发表(出版)”于一体的“桥梁”,涉及业务合作,特强调真诚交流,入群后立即群名片:教师格式:省+市+真实姓名,如:四川成都张三编辑格式:公司或者刊物(简写)+真实姓名欢迎各位老师邀请你身边热爱初、高中数学教研(不喜欢研究的谢绝)的教师好友(学生谢绝)加入,大家共同研究,共同提高!群主二维码:见右图————————————————————————————————————。

高考解析几何定点、定值问题例题以及答案详解

高考解析几何定点、定值问题例题以及答案详解

解析几何定点、定值问题1、已知椭圆C :(22221>>0)y x a b a b +=的离心率为21,以原点为圆点,椭圆的短半轴为半径的圆与直线06=+-y x 相切。

(Ⅰ)求椭圆的标准方程;(Ⅱ)设P (4,0),A,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;2、斜率为1的直线l 过抛物线2:2(0)y px p Ω=>的焦点F ,与抛物线交于两点A ,B 。

(1)若|AB|=8,求抛物线Ω的方程;(2)设P 是抛物线Ω上异于A ,B 的任意一点,直线PA ,PB 分别交抛物线的准线于M ,N 两点,证明M ,N 两点的纵坐标之积为定值(仅与p 有关)。

3、在平面直角坐标系中,点(,)P x y 为动点,已知点A,(B ,直线PA 与PB的斜率之积为12-.(I )求动点P 轨迹E 的方程;(II )过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (Q M 、不重合),求证:直线MQ 过定点.4、如图,曲线C 1是以原点O 为中心,F 1、F 2为焦点的椭圆的一部分,曲线C 2是以原点O为顶点,F 2为焦点的抛物线的一部分,3(2A 是曲线C 1和C 2的交点.(Ⅰ)求曲线C 1和C 2所在的椭圆和抛物线的方程;(Ⅱ)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 中点,H 为BE 中点,问22||||||||BE GF CD HF ⋅⋅是否为定值,若是,求出定值;若不是,请说明理由.5、已知抛物线)0(22>-=p px y 的焦点为F ,过F 的直线交y 轴正半轴于P 点,交抛物线于,A B 两点,其中A 在第二象限。

(1)求证:以线段FA 为直径的圆与y 轴相切; (2)若12FA AP,BF FA λλ==,求21λλ-的值.6、已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)过圆心M 的直线交抛物线C 于P 、Q 两点,求OP OQ ⋅的值。

解析几何中的定点、定值问题

解析几何中的定点、定值问题

解析几何中的定点、定值问题解析几何中的定点、定值问题[考情分析把握方向]解析几何中的定值、定点、定直线问题是近几年高考命题的热点,这类问题也是高考题中的一大难点。

此类问题动中有定,定中有动,并且常与轨迹问题、曲线系问题等问题相结合,深入考查直线与圆、圆锥曲线、直线与圆锥曲线的位置关系等相关知识。

考察数形结合、分类讨论、转化与化归、函数与方程等思想方法。

高考年份填空题解答题附加题2010年第9题点到直线的距离为定值第18题证明直线过定点2011年第18题证明直线垂直 2012年第19题证明定值问题[备考策略提升信心]高考中重点关注以下几方面的问题:1.直线方程、圆的方程、直线与圆及直线与圆锥曲线的位置关系,重点是直线与圆的位置关系;2.圆锥曲线的标准方程和几何性质,特别是椭圆的标准方程及几何性质,同时注意它们的图形特征;3.轨迹问题求解的常用方法;数形结合思想以及函数与方程思想的应用;4.求圆锥曲线的方程的运算的要求有所提高,考查趋于方程的变形运算。

[小题训练激活思维]1.已知椭圆2222:1x y E a b+=(0)a b >>过定点(1,1)P ,圆22:1C x y +=,直线l 与椭圆E 交于,M N 两点,且0OM ON ?=,则直线l 与圆C 的位置关系是。

相切2.若双曲线122=-y x 的右支上一点(,)P a b 到直线y x =的距离为2,则a b +的值是。

123.已知O 为坐标原点,定点(1,0)A ,动点M 是直线:2l x =上的点,过点A 作OM 的垂线与以OM 为直径的圆交于点N ,则线段ON 的长为。

4.已知椭圆2222:1x y E a b +=(0)a b >>的左顶点为A ,右焦点为F ,点M 在右准线l 上运动,记直线FM OM AM ,,的斜率分别为321,,k k k ,若椭圆E 的离心率为21,则=+231k kk5.已知直线032:=++-a y ax l 及点)4,3(P .当点P 到直线l 的距离最大时,直线l 的方程是 .变式1:0)()2(:=-++++b a y b a x b a l 变式2:032)2()3(:22=-++++a a y a x a l[核心问题聚焦突破]已知椭圆2222:1x y C a b+=经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 与椭圆交于,A B 两点,点,,A F B 在直线4x =上的射影依次为点,,D K E 。

解析几何中定值与定点问答

解析几何中定值与定点问答

解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x²/4+y²/3=1 ②①,②联立得出两个解一个是A(1,3/2)另一个是E(x1,y1)①代入②消去y得(1/4+k²/3)x²-(2k²/3-k)x+k²/3-k-1/4=0根据韦达定理x1·1=(k²/3-k-1/4)/(1/4+k²/3)③将③的结果代入①式得y1=(-k²/2-k/2+3/8)/(1/4+k²/3)设AF斜率为-k,F(x2,y2)则AF方程为y-(3/2)=-k(x-1)④x²/4+y²/3=1 ②②④联立同样解得 x2=(k²/3+k-1/4)/(1/4+k²/3) y2=(-k²/2+k/2+3/8)/(1/4+k²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中数学专题-解析几何中的最值与范围问题以及定点、定值问题

高中专题-解析几何中的最值与范围问题解析几何中的定点、定值问题例1设圆C 与两圆2222(4,(4x y x y ++=-+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点)3545,,55M F ⎛⎫ ⎪ ⎪⎝⎭,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.【解】(1)2214x y -=;(2)最大值为2,6525,55P ⎛⎫- ⎪ ⎪⎝⎭例2设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->.(1)设E 是直线2y x =+与椭圆的一个公共点,求使得12EF EF +取最小值时椭圆的方程;(2)已知(0,1)N -,设斜率为(0)k k ≠的直线l 与条件(1)下的椭圆交于不同的两点,A B ,点Q 满足AQ QB = ,且0NQ AB ⋅= ,求直线l 在y 轴上截距的取值范围.【解】(1)最小值2213x y +=;(2)1,22⎛⎫ ⎪⎝⎭例3(1)椭圆224()4x y a +-=与抛物线22x y =有公共点,则a 的取值范围是.(2)椭圆2212516x y +=上的点到圆22(6)1x y +-=上的点的距离的最大值是().A.11B.C.D.9【解】(1)171,8⎡⎤-⎢⎥⎣⎦;(2)A例4在直角坐标系中,O 是原点,,A B 是第一象限内的点,并且A 在直线(tan )y x θ=上,其中42OA ππθ⎛⎫∈= ⎪⎝⎭,,,B 是双曲线22=1x y -上使OAB 面积最小的点,求:当θ在42ππ⎛⎫ ⎪⎝⎭,中取什么值时,OAB 的面积最大,最大值是多少?【解】2arccos 4θ=,最大值为66专题-解析几何中的定点、定值问题例1已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)求直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解】(1)22143x y +=;(2)2,07⎛⎫ ⎪⎝⎭例2已知点(1,1)A 是椭圆22221(0)x y a b a b+=>>上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果AB 最大时,求证:,A B 两点关于原点O 不对称;(3)设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.【解】(1)2626,0,,033⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)证明略;(3)13例3如图1所示,在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于,A B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB 面积的最小值;(2)是否垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.【解】(1)2;(2)2py =例4已知椭圆方程为221169x y +=,过长轴顶点(40)A -,的两条斜率乘积为916-的直线交椭圆于另两点,B C ,问直线BC 是否过定点D ,若存在,求出D 的坐标,若不存在,说明理由.【解】直线12:98()0BC x k k y ++=过原点(0,0)例5如图3所示,设椭圆2221(2)4x y a a +=>的离心率为33,斜率为k 的直线l 过点(01)E ,,且与椭圆相交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE = ,求k 得值;(3)设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率,证明:对任意k ,恒有=-2AC AD k k ⋅【解】(1)22164x y+=;(2)63k=±;(3)证明略。

解析几何中的定值与定点问题-玩转压轴题(解析版)

解析几何中的定值与定点问题-玩转压轴题(解析版)

专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。

(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L­距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。

解析几何中的定点和定值问题

解析几何中的定点和定值问题

解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。

此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。

考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。

一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

例1、已知A 、B 是抛物线y 2=2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,并求出该定点的坐标。

解析: 设A 〔121,2y p y 〕,B 〔222,2y py 〕,则 212tan ,2tan y py p==βα,代入1)tan(=+βα得221214)(2p y y y y p -=+ 〔1〕 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入〔1〕式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点〔-)2,2p p说明:此题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。

例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ① 设()11,P x y ,()22,Q x y,则12x x +=,122414x x k=+ ②且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点. 【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。

解析几何中定值与定点问题

解析几何中定值与定点问题

解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x²/4+y²/3=1 ②①,②联立得出两个解一个是A(1,3/2)另一个是E(x1,y1)①代入②消去y得(1/4+k²/3)x²-(2k²/3-k)x+k²/3-k-1/4=0根据韦达定理 x1·1=(k²/3-k-1/4)/(1/4+k²/3)③将③的结果代入①式得y1=(-k²/2-k/2+3/8)/(1/4+k²/3)设AF斜率为-k,F(x2,y2)则AF方程为y-(3/2)=-k(x-1)④x²/4+y²/3=1 ②②④联立同样解得 x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型——《解析几何中的定值定点问题》题型特点:定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。

解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

这类试题考查的是在运动变化过程中寻找不变量的方法。

典例 1 如图,已知双曲线)0(1:222>=-a y ax C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。

(1)求双曲线C 的方程;(2)过C 上一点),(00y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF恒为定值,并求此定值。

典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。

(1)求动圆圆心的轨迹C 的方程;(2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

典例3 已知直线6:+=x y l ,圆5:22=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。

(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。

典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(-。

(1)求椭圆方程;(2)过点)0,56(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。

解析几何中的定值与定点专题

解析几何中的定值与定点专题

解析几何中的定值与定点问题【例 1】 过抛物线 y 2=2p x (p >0)的焦点作两条相互垂直的弦 AB 和 CD ,则+ 的值为( )A .B .C .2pD .1. 已知 F 是抛物线 y 2=4x 的焦点,过点 F 的直线与抛物线交于不同的两点 A ,D ,与圆(x ﹣1)2+y 2=1交于不同的两点 B ,C (如图),则|AB |•|CD|的值是()A .2B .2C .1D .2 . 如 图 , P 为 椭 圆上 的 一 动 点 , 过 点P 作 椭 圆的两条切线 PA ,PB ,斜率分别为 k 1,k 2.若 k 1•k 2 为定值,则 λ=( )A .B .C .D .3.已知椭圆 的离心率为,三角形 ABC 的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为 D 、E 、F ,且三条边所在直线的斜率分别为 k 1,k 2,k 3(k 1k 2k 3≠0).若直线OD 、OE 、OF 的斜率之和为﹣1(O 为坐标原点),则1= .1 / 28+ = 1 上一动点,过点 P 向圆 C 引两条切线 P A, PB, A, B 为切 , ⎪ B . , ⎪ ⎝ 2 4 ⎭⎝ 4 2 ⎭C .  4 ,0 ⎪⎪D .  0,4 ⎪⎭A . ⎢ ⋅ ⎥B . 0, ⎥C . ⎢ , +∞ ⎪D . 0, ⎥ ⋃ ⎢ , +∞ ⎪【例 2】已知抛物线 C :x 2=4y 的焦点为 F ,A 是抛物线 C 上异于坐标原点的任意一点,过点 A 的直线 l 交 y 轴的正半轴于点 B ,且 A ,B 同在一个以 F 为圆心的圆上,另有直线 l ′∥l ,且l ′与抛物线 C 相切于点 D ,则直线 AD 经过的定点的坐标是()A .(0,1)B .(0,2)C .(1,0)D .(2,0)【举一反三】1.已知抛物线 x 2 = 8 y ,过点 P (b ,4 ) 作该抛物线的切线 P A ,PB ,切点为 A ,B ,若直线 AB 恒过定点,则该定点为( )A . (4,0 )B . (3,2 )C . (0, -4 )D . (4,1)2.已知圆 C : x 2 + y 2 = 1 ,点 P 为直线点,则直线 AB 经过定点.()⎛ 1 1 ⎫ ⎛ 1 1 ⎫ A . x y4 2⎛ 3 ⎫ ⎛ 3 ⎫ ⎝ ⎭ ⎝x 2 y 23.已知椭圆 + = 1 的左顶点为 A ,过 A 作两条弦 AM 、AN 分别交椭圆于 M 、N 两点,直线 AM 、AN16 4的斜率记为 k 1, k 2 ,满足 k 1 ⋅ k 2 = -2 ,则直线 MN 经过的定点为___________.三.强化训练一、选择题1. 直线 l 与抛物线 C : y 2 = 2 x 交于 A, B 两点,O 为坐标原点,若直线 OA, OB 的斜率 k ,k 满足 k k = 1 2 1 2 2 3,则 l 的横截距()A .为定值 -3B .为定值 3C .为定值 -1D .不是定值2.如果直线 ax + by = 7 ( a > 0 , b > 0 )和函数 f ( x ) = 1 + log x ( m > 0 , m ≠ 1)的图象恒过同一个mb定点,且该定点始终落在圆 ( x + b - 1)2 + ( y + a - 1)2 = 25 的内部或圆上,那么 的取值范围是()a⎡ 3 4 ⎤⎛ 3⎤ ⎡ 4⎫ ⎛ 3⎤ ⎡ 4 ⎫ ⎣ 4 3 ⎦⎝4 ⎦⎣ 3⎭⎝4 ⎦ ⎣ 3⎭22 / 282 A . ⎛ 4 8 ⎫, ⎪ B . , ⎪C . (2,0 )D . (9,0 )3.过 x 轴上的点 P (a,0 )的直线与抛物线 y 2 = 8x 交于 A, B 两点,若1 1+ 为定值,则实数 a 的| AP |2 | BP |2值为()A.1B. 2C . 3D . 44. 已知 A 、B 是抛物线 y 2=4x 上异于原点 O 的两点,则“ • =0”是“直线AB 恒过定点(4,0)”的()A .充分非必要条件B .充要条件C .必要非充分条件D .非充分非必要条件5. 设 F (-c,0), F (c,0) 是双曲线 C : 1 2 x2 y 2 -a b 2= 1(a > 0,b > 0) 的左右焦点,点 P 是 C 右支上异于顶点的任意一点,PQ 是 ∠F 1PF 2 的角平分线,过点 F 1作 PQ 的垂线,垂足为 Q ,O 为坐标原点,则 | OQ | 的长为()A .定值 aB .定值 bC .定值 cD .不确定,随 P 点位置变化而变化6. 设点 P (x, y )是圆 C : x 2 + y 2 + 2x - 2 y + 1 = 0 上任意一点,若 -2 x + y + 1 + 2 x - y - a 为定值,则 a 的值可能为( )A . -3B . -4C . -5D . -67. 已知圆 C : x 2 + y 2 = 4 ,点 P 为直线 x + 2 y - 9 = 0 上一动点,过点 P 向圆 C 引两条切线 P A, PB ,A, B 为切点,则直线 AB 经过定点( )⎛ 2 4 ⎫ ⎝ 9 9 ⎭⎝ 9 9 ⎭8. 已知圆 O : x 2+ y 2= 1,直线 l :y = kx +b (k ≠0),l 和圆 O 交于 E ,F 两点,以 Ox 为始边,逆时针旋转4到 OE ,OF 为终边的最小正角分别为 α,β,给出如下 3 个命题:①当 k 为常数,b 为变数时,sin(α+β)是定值;②当 k 为变数,b 为变数时,sin(α+β)是定值;③当 k 为变数,b 为常数时,sin(α+β)是定值.其中正确命题的个数是()A .0B .1C .2D .39. 斜率为 k 的直线 l 过抛物线 y 2 = 2 px( p > 0) 焦点 F ,交抛物线于 A, B 两点,点 P( x , y ) 为 AB 中点,33 / 28A . ky 为定值B . OA ⋅ O B 为定值1 2 = 1与e 、e ,则 1 = 1(a > 0, b > 0) 的离心率分别是 1 e 2e 2 P作 OQ ⊥ AB ,垂足为 Q ,则下列结论中不正确的是( )uuuv uuuvC .点 P 的轨迹为圆的一部分D .点 Q 的轨迹是圆的一部分10. 已知抛物线 C : y 2 = 8 x ,圆 F : ( x - 2)2 + y 2 = 4 ,直线l : y = k ( x - 2)(k ≠ 0) 自上而下顺次与上述两曲线交于 M 1, M 2 , M 3 , M 4 四点,则下列各式结果为定值的是()A . M M ⋅ M M1324B . FM ⋅ FM14C . M M ⋅ M M 1 2 34D . FM ⋅ M M1 1211. 在平面直角坐标系中,两点 P (x , y ), P (x , y111222) 间的“L -距离”定义为‖PP 1 2|=| x - x | + | y - y |. 则1 2 1 2平面内与 x 轴上两个不同的定点 F 1 , F 2 的“L -距离”之和等于定值(大于| F F 2 )的点的轨迹可以是( )A .B .C .D .12. 有如下 3 个命题;①双曲线 x 2 y 2 - a b 2= 1(a > 0, b > 0) 上任意一点 P 到两条渐近线的距离乘积是定值;②双曲线 x 2 y 2 x 2 y 2 - - a 2 b 2 b 2 a 22 e 2 + e 2 2 是定值; 1 2③过抛物线 x 2 = 2 py( p > 0) 的顶点任作两条互相垂直的直线与抛物线的交点分别是 A 、B ,则直线 AB 过定点;其中正确的命题有( )A .3 个B .2 个C .1 个D .0 个13. 抛物线 y 2 = 4 x 上两个不同的点 A , B ,满足 OA ⊥ OB ,则直线 AB 一定过定点,此定点坐标为 __________.14. 已知点 A(-2,0), B(4,0) ,圆 C : ( x + 4) 2 + ( y + b ) 2 = 16, 点 P 是圆 C 上任意一点,若 P A PB为定值,则 b = ________.15. 在平面直角坐标系 xoy 中,A ,B 为 x 轴正半轴上的两个动点,(异于原点 O )为 y 轴上的一个定点.若44 / 28, 18. 在平面直角坐标系中, O 为坐标原点, M 、 N 是双曲线 - = 1 上的两个动点,动点 P 满足19. 椭圆 E : + = 1 的左顶点为 A ,点 B, C 是椭圆 E 上的两个动点,若直线 AB, AC 的斜率乘积以 AB 为直径的圆与圆 x 2+(y -2)2=1 相外切,且∠APB 的大小恒为定值,则线段 OP 的长为_____.16.在平面直角坐标系 xoy 中,椭圆x 2 y 2+ = 1 上一点 A(2, 2) ,点 B 是椭圆上任意一点(异于点 A ) 8 4过点 B 作与直线 OA 平行的直线 l 交椭圆于点 C ,当直线 AB 、AC 斜率都存在时, k AB+ k AC =___________.17. P 为圆 C : (x - 1)2+ y 2 = 5 上任意一点,异于点 A (2,3 )的定点 B 满足PB为常数,则点 B 的坐标为P A______.x 2 y 22 4uuuv uuuuv uuuvOP = 2OM - ON ,直线 OM 与直线 ON 斜率之积为 2,已知平面内存在两定点 F 1 、F 2 ,使得 PF 1 - PF 2为定值,则该定值为________x 2 y 24 3为定值 - 1 4,则动直线 BC 恒过定点的坐标为__________.55 / 28答 案【例 1】 过抛物线 y 2=2px (p >0)的焦点作两条相互垂直的弦 AB 和 CD ,则+ 的值为( )A .B .C .2pD .【答案】D【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果.解:抛物线 y 2=2px (p >0)的焦点坐标为( ),所以设经过焦点直线 AB 的方程为 y =k (x ﹣ ),所以,整理得,设点 A (x 1,y 1),B (x 2,y 2),所以 ,所以 ,同理设经过焦点直线 CD 的方程为 y =﹣(x ﹣ ),所以,整理得 ,所以:|CD |=p +(p +2k 2p ),所以,则则+ = .故选:D .【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1. 已知 F 是抛物线 y 2=4x 的焦点,过点 F 的直线与抛物线交于不同的两点 A ,D ,与圆(x ﹣1)2+y 2=1 交于不同的两点 B ,C (如图),则|AB |•|CD |的值是()66 / 28A .2B .2C .1D .【答案】C【解析】分析:根据题意,设 A (x 1,y 1),D (x 2,y 2),分析抛物线的焦点以及圆心的坐标,由抛物线的定义可得|AB |、|CD |的值,联立直线方程和抛物线方程,应用韦达定理可得所求值.解:设 A (x 1,y 1),D (x 2,y 2),抛物线方程为 y 2=4x 的焦点为 F (1,0),准线方程为 x =﹣1,圆(x ﹣1)2+y 2=1 的圆心为 F (1,0),圆心与焦点重合,半径为 1,又由直线过抛物线的焦点 F ,则|AB |=x 1+1﹣1=x 1,|CD |=x 2+1﹣1=x 2,即有|AB |•|CD |=x 1x 2,设直线方程为 x =my +1,代入抛物线方程 y 2=4x ,可得 y 2﹣4my ﹣4=0, 则 y 1y 2=﹣4,x 1x 2==1,故选:C .2 .如 图 , P 为 椭 圆 上 的 一 动 点 , 过 点 P 作 椭 圆的两条切线 PA ,PB ,斜率分别为 k 1,k 2.若 k 1•k 2 为定值,则 λ=()77 / 28P y kA .B .C .D .【答案】C【解析】分析:取 (a ,0),设切线方程为: = (x ﹣a ),代入椭圆椭圆方程可得:(b 2+a 2k 2)x 2﹣2a 3k 2x +a 4k 2﹣a 2b △2λ=0,令=0,化简可得 k 1•k 2,取 P (0,b ),设切线方程为:y =kx +b ,同理可得:k 1•k 2,根据 k 1•k 2 为定值进而得出 λ. 解:取 P (a ,0),设切线方程为:y =k (x ﹣a ),代入椭圆椭圆方程可得:(b 2+a 2k 2)x 2﹣2a 3k 2x +a 4k 2﹣a 2b 2λ=0,令 =4△a 6k 4﹣4(b 2+a 2k 2)(a 4k 2﹣a 2b 2λ)=0,化为:(a 2﹣a 2λ)k 2=b 2λ,∴k 1•k 2= ,取 P (0,b ),设切线方程为:y =kx +b ,代入椭圆椭圆方程可得:(b 2+a 2k 2)x 2﹣2kba 2x +a 2b 2(1﹣λ)=0,令 =4△k 2b 2a 4﹣4(b 2+a 2k 2)a 2b 2(1﹣λ)=0,化为:λa 2k 2=b 2(1﹣λ),∴k 1•k 2=又 k 1•k 2 为定值,,88 / 28∴= ,解得 λ= .故选:C .3. (2020•公安县高三模拟)已知椭圆的离心率为 ,三角形 ABC 的三个顶点都在椭圆上,设它的三条边 AB 、BC 、AC 的中点分别为 D 、E 、F ,且三条边所在直线的斜率分别为 k 1,k 2,k 3(k 1k 2k 3≠0).若直线 OD 、OE 、OF 的斜率之和为﹣1(O 为坐标原点),则= .【答案】2【解析】分析:求出椭圆方程,设出 A 、B 、C 的坐标,通过平方差法转化求解斜率,然后推出结果即可.解:∵椭圆的离心率为 ,∴,则 ,得 .又三角形 ABC 的三个顶点都在椭圆上,三条边 AB 、BC 、AC 的中点分别为 D 、E 、F ,三条边所在直线的斜率分别为 k 1、k 2,k 3,且 k 1、k 2,k 3 均不为 0.O 为坐标原点,直线 OD 、OE 、OF 的斜率之和为﹣1,设 A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则, ,两式作差得,,则,即 ,同理可得, .99 / 28∴==﹣2×(﹣1)=2.【例2】已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】分析:设A(m,m2),B(0,n),根据A,B同在一个以F为圆心的圆上,可得n=m2+2,再根据直线的斜率公式可得直线与直线和平行,以及导数的几何意义可得a=﹣,求出直线AD的方程,即可求出直线AD经过的定点的坐标.解:设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1=∴n=m2+2∴直线l的斜率k=∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,=m2+1=﹣1010/28∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.1.已知抛物线x2=8y,过点P(b,4)作该抛物线的切线P A,PB,切点为A,B,若直线AB恒过定点,则该定点为()A.(4,0)【答案】C B.(3,2)C.(0,-4)D.(4,1)【解析】设A,B的坐标为(x,y),(x,y 1122)y=x28x,y'=,41111/28x( x - x ), y - y = 2 (x - x ) 4 48 8 4 4 ∴ 4 = x1 ⨯ b - y , 4 =2 ⨯ b - y ,4 44- + = 1 上一动点,过点 P 向圆 C 引两条切线 P A, PB, A, B 为切, ⎪B . , ⎪⎝ 2 4 ⎭ ⎝ 4 2 ⎭C .  ,0 ⎪D .  0, 4 ⎪⎭4 可得以 PC 为直径的圆的方程为 ⎡⎣ x - (2 - m )⎤⎦ 2 + y - m ⎫ m 2 = (2 - m )2 +2 ⎭4可得 ⎛ 1 1 ⎫ , ⎪ 满足上式,即 AB 过定点 , ⎪ ,故选 B.P A ,PB 的方程为 y - y =111 2 2xx 2 x 2x x 由 y 2 = 1 , y 2 = 2 ,可得 y = 1 x - y , y = 2 x - y 1 2 1Q 切线 P A ,PB 都过点 P (b ,)x1 22故可知过 A , B 两点的直线方程为 4 =当 x = 0 时, y = 4∴ 直线 AB 恒过定点 (0, 4),故选 Cb 4x - y ,2. 已知圆 C : x 2+ y 2= 1 ,点 P 为直线点,则直线 AB 经过定点.()x y4 2⎛ 1 1 ⎫ ⎛ 1 1 ⎫ A . ⎛ 3 ⎫ ⎛3 ⎫ ⎪ ⎝⎭ ⎝【答案】B【解析】设 P (4 - 2m , m ),Q P A, PB 是圆 C 的切线,∴ C A ⊥ P A, C B ⊥ PB,∴ AB 是圆 C 与以 PC 为直径的两圆的公共弦,⎛⎝⎪ 2, ①又Q x 2 + y 2 = 1 , ②①-②得 AB : 2 (2 - m )x + my = 1 ,⎛ 1 1 ⎫ ⎝ 4 2 ⎭ ⎝ 4 2 ⎭x 2 y 23. 已知椭圆 + = 1 的左顶点为 A ,过 A 作两条弦 AM 、AN 分别交椭圆于 M 、N 两点,直线 AM 、AN 的斜16 4率记为 k 1 , k 2 ,满足 k 1 ⋅ k 2 = -2 ,则直线 MN 经过的定点为___________.1212 / 28【答案】 T -⎛ 28 ,0 ⎪1 + 4k ⎪ y =k (x +4 )⎩ 1 + 4k k 2 + 16y = 8k, N 1 + 4k 2 16 + k 2k = 1,由对称性可知,直线 MN 经过 x 轴上的定点 T -,0 ⎪ . 取 1 9 2 = 1则得 x + x =, x x =k 2 k 2k⎫⎝ 9 ⎭⎧ x 2 y 2⎪ + = 14 - 16k 2 【解析】由 ⎨16 4⇒ x = 1 , M 2 114 - 16k 2 4k 2 - 64同理 x = .N 2 21-16k1 y = 1 ,M 11⎛ 28 ⎫ ⎝ ⎭【归纳总结】在平面直角坐标系 xOy 中,过椭圆 x 2 y2+a 2b2 = 1(a > b > 0) 上一定点 A 作两条弦 AM 、AN 分别交椭圆于 M 、N 两点,直线 AM 、AN 的斜率记为 k 1, k 2 ,当 k 1 ⋅ k 2 为非零常数时,直线 MN 经过定点.三.强化训练一、选择题1. 直线 l 与抛物线 C : y 2 = 2 x 交于 A, B 两点,O 为坐标原点,若直线 OA, OB 的斜率 k , 满足 k k = 1 2 1 2则 l 的横截距()A .为定值 -3B .为定值 3C .为定值 -1D .不是定值【答案】A⎧ y = kx + b【解析】设直线 l 的方程为 y = kx + b ,由题意得 ⎨,⎩ y2 = 2 x则得 k 2 x 2 + (2kb - 2)x + b 2 = 0 ;设 A ,B 两点的坐标为 A (x , y ), B (x , y ) ,1 12 22kb - 2b 2;1 2 1 21323,13 / 281 g2 = = k 2 ++ k 2 = 2k 2 +== = ,A . ⎢ ⋅ ⎥B . 0, ⎥C . ⎢ , +∞ ⎪D . 0, ⎥ ⋃ ⎢ , +∞ ⎪又由 ⎨⎧a +b = 7, a 2 + b 2 = 25, b = 4 b = 3当取点 (3, 4) 时, b = ,取点 (4,3) 时, = ,⎣ 3⎦ ⎝⎦⎝ ⎦⎣⎭又因为 k k = 1 2 2 3,即 y y x x 1 22 3 ,所以k 2 x x + kb (x + x )+ b 22kb - 2k 2b 22k - 2k 2b2k 2b + 2k - 2k 2b2k 21 212x xb 2bbb 31 2则得 b = 3k ,直线 l 的方程为 y = kx + b = kx + 3k = k (x + 3) ;当 y = 0 时, x = -3 ,所以直线 l 的横截距为定值 -3 .故选 A.2. 如果直线 ax + by = 7 ( a > 0 , b > 0 )和函数 f ( x) = 1 + log m x ( m > 0 , m ≠ 1)的图象恒过同一个定点,且该定点始终落在圆( x + b - 1)2 + ( y + a - 1)2 = 25 的内部或圆上,那么 b a的取值范围是( )⎡ 3 4 ⎤ ⎛ 3 ⎤⎡ 4 ⎫⎛ 3 ⎤ ⎡ 4 ⎫⎣ 4 3 4 4 3⎭【答案】A【解析】【分析】根据指数函数的性质,求得函数 f ( x ) 恒过定点 (1,1) ,求得 a + b = 7 ,又由 (1,1) 始终落在所给圆的内部或圆上,得 a 2 + b 2 ≤ 25 ,联立方程组,得到点 ( a , b ) 在以 (3,4) 和 (4,3) 为端点的线段上运动,利用斜率公式,即可求解.【详解】根据指数函数的性质,可得函数 f ( x) = 1 + log m x,( m > 0, m ≠ 1) ,恒过定点 (1,1) .将点 (1,1) 代入 ax + by = 7 ,可得 a + b = 7 .由于 (1,1) 始终落在所给圆的内部或圆上,所以 a 2 + b 2 25 .⎧a = 3 ⎧a = 4解得 ⎨ 或 ⎨ ,⎩ ⎩ ⎩所以点 ( a , b ) 在以 (3,4) 和 (4,3) 为端点的线段上运动,4 b 3a 3 a 41414 / 28的取值范围是 ⎢ ⎥ AP 2 + m 2 + 1 ⎝ y 2 + 1 ⎫ ⎪ = ⋅ y 2 ⎭ m 2 + 1y 2 y 2 m 2 + 1 ⋅ 64a 2 = 4a 2(m 2 + 1) | AP |2 +所以 b⎡ 3 , 4 ⎤.a ⎣ 4 3 ⎦3. 过 x 轴上的点 P (a,0 )的直线与抛物线 y 2 = 8x 交于 A, B 两点,若 1| AP |2值为()A.1B. 2C . 3D . 4【答案】D【解析】设直线 AB 的方程为 x = my + a ,代入 y 2 = 8x ,得 y 2 - 8my - 8a = 0 ,1+ 为定值,则实数 a 的 | BP |2设 A (x , y ), B (x , y 1 1 2 2 ) ,则 y 1 + y = 8m , y ⋅ y = -8a .2 1 2AP 2 = (x - a )2 + y 2 = (my 111同理, BP 2 = (m 2 + 1)y 2 ,2)2 + y 2 = (m 2 + 1)y 2 ,1 1∴ 11 BP2 = 1 ⎛ 1 12 1 21 ( y + y )2 - 2 y y 1 2 1 2= 1 64m 2 - 2 ⨯ (-8a ) 4m 2 + a 1 ,∵ 1 | BP |2 为定值,是与 m 无关的常数,∴ a = 4 .故选 D .4. 已知 A 、B 是抛物线 y 2=4x 上异于原点 O 的两点,则“ • =0”是“直线AB 恒过定点(4,0)”的()A .充分非必要条件B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线 y 2=4x 上异于原点 O 的两点,设 A (x 1,y 1),B (x 2,y 2),若“• =0”,则设直线 AB 方程为 x =my +b ,将直线 AB 方程代入抛物线方程 y 2=4x ,可得 y 2﹣4my ﹣4b =0,则 y 1+y 2=4m ,y 1y 2=﹣4b ,1515 / 28若• =0,则 • =x 1x 2+y 1y 2=( )+y 1y 2= +y 1y 2=b 2﹣4b =0,解可得:b =4 或 b =0,又由 b ≠0,则 b =4,则直线 AB 的方程为 x =my +4,即 my =x ﹣4,则直线 AB 恒过定点(4,0),“• =0”是“直线 AB 恒过定点(4,0)”的充分条件;反之:若直线 AB 恒过定点(4,0),设直线 AB 的方程为 x =my +4,将直线 AB 方程代入抛物线方程 y 2=4x ,可得 y 2﹣4my ﹣16=0,则有 y 1y 2=﹣16,此时故“••=x 1x 2+y 1y 2=( )+y 1y 2= +y 1y 2=0,=0”是“直线 AB 恒过定点(4,0)”的必要条件;综合可得:“• =0”是“直线 AB 恒过定点(4,0)”的充要条件;故选:B .5. 设 F 1 (-c,0), F 2 (c,0) 是双曲线 C : x 2 y 2 - a 2 b2= 1(a > 0,b > 0) 的左右焦点,点 P 是 C 右支上异于顶点的任意一点,PQ 是 ∠F 1PF 2 的角平分线,过点 F 1作 PQ 的垂线,垂足为 Q ,O 为坐标原点,则 | OQ | 的长为()A .定值 aB .定值 bC .定值 cD .不确定,随 P 点位置变化而变化【答案】A【解析】依题意如图,延长 F 1Q ,交 PF 2 于点 T , ∵ PQ 是∠F 1PF 2 的角分线.TF 1 是 PQ 的垂线, ∴ PQ 是 TF 1 的中垂线,∴|PF 1|=|PT |,∵P 为双曲线 x 2 y 2 - a 2 b 2= 1 上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形 F 1F 2T 中,QO 是中位线, ∴|OQ |=a .故选:A .1616 / 286.设点P(x,y)是圆C:x2+y2+2x-2y+1=0上任意一点,若-2x+y+1+2x-y-a为定值,则a的值可能为()A.-3B.-4C.-5D.-6【答案】D【解析】【分析】若-2x+y+1+2x-y-a为定值,则2x-y-a≥0,由直线2x-y-a=0与圆相切结合图象可得a的范围,从而得出正确选项.【详解】圆C标准方程为(x+1)2+(y-1)2=1,圆心为C(-1,1),半径为r=1,直线l:2x-y-a=0与圆相切时,-2-1-a5=1,a=-3±5,当a=-3+5时,圆C在直线l上方,2x-y-a≤0,当a=-3-5时,圆C在直线l下方,2x-y-a≥0,若-2x+y+1+2x-y-a为定值,则2x-y-a≥0,因此a≤-3-5.只有D满足.故选:D.1717/28A . ⎛ 48 ⎫ , ⎪B . , ⎪C . (2,0 )D . (9,0 ),直线 AB 经过定点 , ⎪ ,选 A.7. 已知圆 C : x 2 + y 2 = 4 ,点 P 为直线 x + 2 y - 9 = 0 上一动点,过点 P 向圆 C 引两条切线 P A, PB ,A, B 为切点,则直线 AB 经过定点( )⎛ 2 4 ⎫ ⎝ 9 9 ⎭⎝ 9 9 ⎭【答案】A【解析】设 A (x , y ), B (x , y ), P (x , y ),1122则 P A : x 1x + y 1 y = 4; PB : x 2 x + y 2 y = 4;即 x 1 x 0 + y 1 y 0 = 4; x 2 x 0 + y 2 y 0 = 4;因此 A 、 B 在直线 x 0 x + y 0 y = 4 上,直线 AB 方程为 x 0 x + y 0 y = 4 ,又 x 0 + 2 y 0 - 9 = 0 ,所以 (9 - 2 y 0 )x + y 0 y = 4 ⇒ y (y - 2x )+ 9x - 4 = 0 08 4 ⎛ 4 8 ⎫ 即 y - 2 x = 0,9 x - 4 = 0 ⇒ y = , x =9 9 ⎝ 9 9 ⎭8. 已知圆 O : x 2+ y 2= 1,直线 l :y = kx +b (k ≠0),l 和圆 O 交于 E ,F 两点,以 Ox 为始边,逆时针旋4转到 OE ,OF 为终边的最小正角分别为 α,β,给出如下 3 个命题:①当 k 为常数,b 为变数时,sin (α+β)是定值;②当 k 为变数,b 为变数时,sin (α+β)是定值;③当 k 为变数,b 为常数时,sin (α+β)是定值.其中正确命题的个数是()1818 / 281 1⎪ y = sin α, ⎪ y = sin β, 22x + y = ⎪ 1 2k + 1 2b -4 , 8k b 2 - ⎪ - 8kb 2x = cos α, x = cos β,⎪ 1 1⎪ y = sin α, ⎪ y = sin β, x = cos α, x = cos β,⎪ x + x =-, 4x (kx + b ) + 4x (kx + b ) = 8kx x + 4b ( x + x ) = ⎝=-, k 2 + 1k 2 + 11 ⎩ ⎩⎪2 1 ⎩ ⎩⎪ 2 ⎩ ⎩ A .0B .1C .2D .3【答案】B【解析】⎧ ⎧ 1 ⎪ 1 2⎪ 2 2 【分析】首先设出 E( x ,y ) , F ( x ,y ) ,进而可得 ⎨ ⎨再将直线和 1 1 2 2 ⎪ 1 2 2圆联立方程组,运用韦达定理即可进行判断.⎧ ⎧ 1 ⎪ 1 2⎪ 2 2 【详解】设点 E( x ,y ) , F ( x ,y ) ,由三角函数的定义得 ⎨ ⎨ 1 1 2 2⎪ 1 2 2⎧ y = kx + b ,⎪将直线 EF 的方程与的方程联立 ⎨ 1⎪ 4得 (k 2+ 1)x 2+ 2kb x + b 2- 1= 0 ,4⎧2kb 2 ⎪由韦达定理得 ⎨ 1⎪ ⎪ x 1x 2 = k 2+ 1所以 sin(α + β ) = sin α cos β + cos α sin β = 4 x y + 4 x y =2 11 2⎛ 1 ⎫ 4 ⎭ 2k2 1 1 2 1 2 1 2因此,当 k 是常数时, sin(α + β ) 是常数,故选 B (特值法可秒杀)9. 斜率为 k 的直线 l 过抛物线 y 2 = 2 px( p > 0) 焦点 F ,交抛物线于 A, B 两点,点 P( x 0 , y 0 ) 为 AB 中点,作 OQ ⊥ AB ,垂足为 Q ,则下列结论中不正确的是( )uuuv uuuvA . ky 0 为定值B . OA ⋅ OB 为定值C .点 P 的轨迹为圆的一部分D .点 Q 的轨迹是圆的一部分1919 / 28整理得 y 1 - y 2 = ,∴ k = ,∴ ky = 2 p . 为定值,所以 A 正确. y + y y ⎪⎩ y 2 = 2 px 4k 2 x 2 - 4 p (k 2+ 2) x + p 2k 2 = 0 ,则 x + x = , x x = k 4 2 2 2 4 3 4【答案】C【解析】设抛物线 y 2 = 2 px( p > 0) 上 A, B 两点坐标分别为 A (x , y ), B (x , y1122) ,则y 2 = 2 px , y 1122 = 2 px , 两式做差得, ( y + y )( y - y ) = 2 p ( x - x ) ,2 1 2 1 2 1 2x - x 122 p 2 p1 2 0⎧p p p ⎪ y = k ( x - )因为焦点 F ( ,0) ,所以直线 AB 方程为 y = k ( x - ) .由 ⎨ 2 得2 21 2 2 1 2 2p (k 2 + 2) p 2,p p p p 2y y = k 2 ( x - )( x - ) = k 2[ x x - ( x + x ) + ] = - p 2 . 1 2 1 2 1 2 1 2uuuv uuuv∴ O A ⋅ O B = x x + y y = - p 2为定值.故 B 正确.1 2 1 2Q OQ ⊥ AB,∴点 Q 的轨迹是以 OF 为直径的圆的一部分,故 D 正确.本题选择 C 选项.10. 已知抛物线 C : y 2 = 8 x ,圆 F : ( x - 2)2 + y 2 = 4 ,直线 l : y = k ( x - 2)(k ≠ 0) 自上而下顺次与上述两曲线交于 M 1, M 2 , M 3 , M 4 四点,则下列各式结果为定值的是()A . M M ⋅ M M1324B . FM ⋅ FM14C . M M ⋅ M M1 2 34D . FM ⋅ M M1 12【答案】C【解析】2020 / 28⎧1由 ⎨ y = k (x - 2) ⎩ y 2 = 8x 消去 y 整理得 k 2 x 2 - (4k 2 + 8) x + 4k 2 = 0(k ≠ 0) ,设 M 1 ( x 1 , y 1 ), M 4 ( x 2 , y 2 ) ,则 x 1 + x 2 = 4k 2+ 8 k 2, x x = 4 . 1 2过点 M 1 , M 4 分别作直线 l ' : x = -2 的垂线,垂足分别为 A, B ,则 M F = x + 2, M F = x + 2 .11 4 2对于 A , M M ⋅ M M 1324= ( M F +2)( M F + 2) = ( x + 4)( x + 4)1 4 1 2= x x + 4( x + x ) + 16 ,不为定值,故 A 不正确.1 2 12对于 B , FM ⋅ FM 14= ( x + 2)( x + 2) = x x + 2( x + x ) + 4 ,不为定值,故 B 不正确.1 2 1 2 1 2对于 C , M M ⋅ M M 1234= ( M F -2)( M F - 2) = x x = 4 ,为定值,故 C 正确.1 4 1 2对于 D , FM ⋅ M M 112= M F ⋅( M F - 2) = ( x + 2) x ,不为定值,故 D 不正确.选 C .1 1 1 1点睛:抛物线定义的两种应用:(1)当已知曲线是抛物线时,抛物线上的点 M 满足定义,它到准线的距离为 d ,则|MF |=d ,有关距离、最值、弦长等是考查的重点;(2)利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.11. 在平面直角坐标系中,两点 P (x , y ), P (x , y111222) 间的“L -距离”定义为‖PP 1 2|=| x - x | + | y - y |.1 2 1 2则平面内与 x 轴上两个不同的定点 F 1 , F 2 的“L -距离”之和等于定值(大于 | F F 2 )的点的轨迹可以是( )2121 / 28当 -c ≤ x < c, y < 0 时,方程化为 y = c - ;= 1与e 、e ,则 1 = 1(a > 0, b > 0) 的离心率分别是 1 e 2e 2A .B .C .D .【答案】A【解析】试题分析:设 F 1 (-c,0), F 2 (c,0) ,再设动点 M ( x, y) ,动点到定点 F 1 , F 2 的“L 距离”之和等于m (m > 2c > 0) ,由题意可得: x + c + y + x - c + y = m ,即 x + c + x - c + 2 y = m ,当 x < -c, y ≥ 0 时,方程化为 2 x - 2 y + m = 0 ;当 x < -c, y < 0 时,方程化为 2 x + 2 y + m = 0 ;当 -c ≤ x < c, y ≥ 0 时,方程化为 y = m 2- c ;m2当 x ≥ c, y ≥ 0 时,方程化为 2 x + 2 y - m = 0 ;当 x ≥ c, y < 0 时,方程化为 2 x - 2 y - m = 0 ;结合题目中给出四个选项可知,选项 A 中的图象符合要求,故选 A .12. 有如下 3 个命题;①双曲线 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 上任意一点 P 到两条渐近线的距离乘积是定值;②双曲线 x 2 y 2 x 2 y 2 - - a 2 b 2 b 2 a 22 e 2 + e 2 2 是定值; 1 2③过抛物线 x 2 = 2 py( p > 0) 的顶点任作两条互相垂直的直线与抛物线的交点分别是 A 、B ,则直线 AB 过定点;其中正确的命题有( )A .3 个B .2 个C .1 个D .0 个【答案】A【解析】【分析】求得双曲线的渐近线方程,设出 P (m ,n ),运用点到直线的距离公式,化简可得定值,即可判断2222 / 28=a 2 2 2 即有 e 12= ,e 22= ,可得 1 2 p (t - s ) 2 p 2 p 2 pk AB = = ,可得直线 AB 的方程为 y ﹣ = (x ﹣s ),即为 y= x+2p ,t + ss 2 t 2①;运用双曲线的离心率公式和基本量的关系,化简可得定值,可判断②;可设 A (s ,),B (t , ), 2 p 2 p求得直线 AB 的斜率和 st=﹣4p 2,运用点斜式方程可得直线 AB 的方程,化简可得定点,即可判断③.【详解】①双曲线 x 2 y 2 - a 2 b 2= 1 (a >0,b >0)上任意一点 P ,设为(m ,n ),bbm + an bm - an b 2m 2 - a 2n 2 两条渐近线方程为 y=± x ,可得两个距离的乘积为 • = ,a a 2 +b 2 a 2 + b 2 a 2 + b 2由 b 2m 2﹣a 2n 2 2b 2,可得两个距离乘积是定值 a 2b 2 a 2 + b 2;②双曲线 x 2 y 2 x 2 y 2 - =1 与 - a b b a 2= 1 (a >0,b >0)的离心率分别是 e 1,e 2,a 2 +b 2 a 2 + b 2 e 2 + e 2 2 为定值 1;a 2b 2e 2e 2 1 2③过抛物线 x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是 A ,B ,s 2 t 2 s 2t 2可设 A (s , ),B (t , ),由 OA⊥OB 可得 st+2 p 2 p 4 p 2=0,即有 st=﹣4p 2,t 2 - s 2s 2 t + s t + s 2 p则直线 AB 过定点(0,2p ).三个命题都正确.故选 A .13. 抛物线 y 2 = 4 x 上两个不同的点 A , B ,满足 OA ⊥ OB ,则直线 AB 一定过定点,此定点坐标为 __________.【答案】 (4,0) .【解析】分析:设出 AB 的方程,A ,B 的坐标,进而把直线与抛物线方程联立消去 x ,根据韦达定理求得 y 1 + y 2 ,y y 的表达式,进而根据 AO⊥BO 推断出 (ty + b )(ty + b )+ y y = 0 ,求得 b ,即可求出结果.1 2 1 2 1 22323 / 28= 8, = b 2 ,解得 b = 0 .P详解:设直线 l 的方程为 x = ty + b 代入抛物线 y 2 = 4 x ,消去 x 得 y 2 - 4ty - 4b = 0 ,设 A (x , y ), B (x , y1 12 2) ,则 y 1+ y = 4t , y y = -4b ,2 1 2uuuv uuuv∴ OA ⋅ O B = (ty + b )(ty + b )+ y y = t 2 y y + bt (y + y )+ b 2 + y y1 21 21 2121 2= -4bt 2 + 4bt 2 + b 2 - 4b= b 2 - 4b=0 ,∴ b = 0 (舍去)或 b = 4 ,故直线 l 过定点 (4,0 ).14. 已知点 A(-2,0), B(4,0) ,圆 C : ( x + 4) 2+ ( y + b ) 2= 16, 点 P 是圆 C 上任意一点,若 则 b = ________.【答案】0P APB为定值,【解析】试题分析:设 P( x , y) , P A ( x + 2)2 + y 2= k ,则PB ( x - 4)2 + y 2= k ,整理得 (1- k 2 ) x 2 + (1- k 2 ) y 2 + (4 + 8k 2 ) x + 4 - 16k 2 = 0 ,又 P 是圆 C 上的任意一点,故 k ≠ 1 ,圆 C 的一般方程为 x 2 + y 2 + 8x + 2by + b 2 = 0 ,因此 2b = 0 ,4 + 8k 2 4 - 16k 21 - k2 1 - k 215. 在平面直角坐标系 xoy 中,A ,B 为 x 轴正半轴上的两个动点,(异于原点 O )为 y 轴上的一个定点.若 以 AB 为直径的圆与圆 x 2+(y -2)2=1 相外切,且∠APB 的大小恒为定值,则线段 OP 的长为_____.【答案】 3【解析】分析:设 O 2(a ,0),圆 O 2 的半径为 r (变量),OP=t (常数),利用差角的正切公式,结合以 AB 为直径的圆与圆 x 2+(y-2)2=1 相外切.且∠APB 的大小恒为定值,即可求出线段 OP 的长.详解:设 O 2(a ,0),圆 O 2 的半径为 r (变量),OP=t (常数),则2424 / 282rt t ta 2 - r 2 t 2 + a 2 - r 2∴ tan ∠APB = 2rt ⎪⎪ 2 ()=2+2(a > b > 0) 的离心率为 2 ,点 A ⎛ c, b ⎫⎪ ,点tan ∠OP A = a - r a + r, tan ∠OPB = ,t t∴ tan ∠APB = a + r a - r -1 +t 2=Q a 2 + 4 = r + 1 , ∴ a 2 = (n r +1)2 -4,2t=t 2 + 2r - 3 t 2 - 3 r+ 2∵∠APB 的大小恒为定值,∴t= 3 ,∴|OP|= 3 .故答案为 316.在平面直角坐标系 xoy 中,椭圆 x 2y 2+ = 1 上一点 A(2, 2) ,点 B 是椭圆上任意一点(异于点 A ),过8 4点 B 作与直线 OA 平行的直线 l 交椭圆于点 C ,当直线 AB 、AC 斜率都存在时, k AB + k AC =___________.【答案】0【解析】取特殊点 B (0, -2),则 BC 的方程为 y + 2 = 2x ,2⎧ 2y + 2 = x 由 ⎨ ⎪ x 2 + y 2 = 4 ⎪⎩ 2得 C 2 2,0所以 kAB+ k2+ = 0 . 2 2 - 2 2【点睛】:在平面直角坐标系 xOy 中,已知椭圆x 2 y 2 + a 2 b 2= 12 2 ⎝ a ⎭B 是椭圆上任意一点(异于点 A ),过点 B 作直线 OA 的平行线 l 交椭圆于点C ,当直线 AB 、AC 斜率都存在时,k AB+ k AC =0.2525 / 28, ⎪⎝ 2 2 ⎭ (x - x )2 + ( y - y )2 = λ 2 ⎡(x - 2)2 + y ( y - 3)2 ⎤ ,② ⎪ 02 3 ⎪ ⎪ 可得 ⎨-2 y 0 = -6λ02,解得 ⎨ y = ,2⎪ x 2 + y 2 + 4 = 17λ 2 ⎪ ⎪ 2 ⎪ λ =∴ B 点坐标为 , ⎪ ,故答案为 , ⎪ .18. 在平面直角坐标系中, O 为坐标原点, M 、 N 是双曲线 - = 1 上的两个动点,动点 P 满足17. P 为圆 C : (x - 1)2+ y 2 = 5 上任意一点,异于点 A (2,3 )的定点 B 满足______.⎛ 3 3 ⎫ 【答案】【解析】PB P A为常数,则点 B 的坐标为设 P (x, y ), B (x , y ),0 0 P A PB= λ,则 (x - 1)2 + y 2 = 5 ,可得 x 2 + y 2 = 4 + 2 x ,①0 0 ⎣ ⎦由①②得 (2 - 2x 0)x - 2 y 0y + x 2 + y 2 + 4 = -2λ 2 x - 6λ 2 y + 17λ 2 ,0 0⎧3 x = ⎧2 - 2 x = -2λ 2 ⎪0 0 ⎩ 0 01 ⎩2⎛ 3 3 ⎫ ⎛ 3 3 ⎫ ⎝ 2 2 ⎭ ⎝ 2 2 ⎭x 2 y 22 4uuuv uuuuv uuuvOP = 2OM - ON ,直线 OM 与直线 ON 斜率之积为 2,已知平面内存在两定点 F 1 、F 2 ,使得 PF 1 - PF 2为定值,则该定值为________【答案】 2 10【解析】设 P (x ,y ),M (x 1,y 1),N (x 2,y 2),uuuv uuuuv uuuv则由 OP = 2OM - ON ,得(x ,y )=2(x 1,y 1)-(x 2,y 2),即 x=2x 1-x 2,y=2y 1-y 2,x 2y 2x 2 y 2 x 2 y 2 ∵点 M ,N 在双曲线 - = 1 上,所以 1 - 1 = 1 , 2 - 2 = 1 ,2 4 2 4 2 42626 / 2819. 椭圆 E : + = 1 的左顶点为 A ,点 B, C 是椭圆 E 上的两个动点,若直线 AB, AC 的斜率乘积设 B (x 1,y 1),C (x 2,y 2),则 x 1+x 2=,x 1x 2= ,又 A (﹣2,0),由题知 k AB •k AC =y y 1n =﹣ ,⎩ (1 + 4k )(4m故 2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2),设 k 0M ,k ON 分别为直线 OM ,ON 的斜率,根据题意可知 k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以 P 在双曲线 2x 2-y 2=20 上;设该双曲线的左,右焦点为 F 1,F 2,由双曲线的定义可推断出 PF - PF为定值,该定值为 2 101 2x 2 y 24 31为定值 - ,则动直线 BC 恒过定点的坐标为__________.4【答案】 (1,0)【解析】当直线 BC 的斜率存在时,设直线 BC 的方程为 y=kx+m ,⎧ x 2 y 2 ⎪ + 由 ⎨ 4 3= 1,消去 y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, ⎪ y = kx + m-8km 4m 2 - 12 3 + 4k 2 3 + 4k 21 2x + 2 x + 2 41 2则(x 1+2)(x 2+2)+4y 1y 2=0,且 x 1,x 2≠﹣2,则 x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=23 + 4k 22- 12)+(2+4km )-8km3 + 4k2+4m2+4=0则 m 2﹣km ﹣2k 2=0,∴(m ﹣2k )(m+k )=0,∴m=2k 或 m=﹣k .2727 / 28当 m=2k 时,直线 BC 的方程为 y=kx+2k=k (x+2).此时直线 BC 过定点(﹣2,0),显然不适合题意.当 m=﹣k 时,直线 BC 的方程为 y=kx ﹣k=k (x ﹣1),此时直线 BC 过定点(1,0).当直线 BC 的斜率不存在时,若直线 BC 过定点(1,0),B 、C 点的坐标分别为(1,3 3),(1,﹣ ),满足 2 2k AB •k AC =﹣ 1 4.综上,直线 BC 过定点(1,0).故答案为:(1,0).点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.2828 / 28。

高中专题-解析几何中的定点、定值问题

高中专题-解析几何中的定点、定值问题

专题-解析几何中的定点、定值问题例1 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)求直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解】(1)22143x y +=;(2)2,07⎛⎫ ⎪⎝⎭例2 已知点(1,1)A 是椭圆22221(0)x y a b a b+=>>上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=. (1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果AB 最大时,求证:,A B 两点关于原点O 不对称;(3)设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.【解】(1),33⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)证明略;(3)13例 3 如图1所示,在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于,A B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB 面积的最小值;(2)是否垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.【解】(1)2;(2)2p y =例 4 已知椭圆方程为221169x y +=,过长轴顶点(40)A -,的两条斜率乘积为916-的直线交椭圆于另两点,B C ,问直线BC 是否过定点D ,若存在,求出D 的坐标,若不存在,说明理由.【解】直线12:98()0BC x k k y ++=过原点(0,0)例5 如图3所示,设椭圆2221(2)4x y a a +=>斜率为k 的直线l 过点(01)E ,,且与椭圆相交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE =,求k 得值;(3)设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率,证明:对任意k ,恒有=-2AC AD k k ⋅【解】(1)22164x y +=;(2)3k =±;(3)证明略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。

(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L­距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。

相关文档
最新文档