一种压缩机箱体与底座的导向结构

合集下载

压缩机的组成

压缩机的组成

压缩机的组成一、引言压缩机是工业生产和日常生活中常见的设备,它主要用于将气体压缩成高压气体,以便在不同的工艺过程中使用。

压缩机有着复杂的结构和精确的工作原理,本文将对压缩机的组成进行详细的探讨。

二、压缩机的分类压缩机根据其工作原理和压缩介质的特性可以分为多种类型,主要有活塞式压缩机、螺杆式压缩机、离心式压缩机等。

不同类型的压缩机有着不同的组成结构和工作原理。

2.1 活塞式压缩机活塞式压缩机是一种通过活塞来实现气体的压缩的压缩机。

它由气缸、活塞、连杆、曲轴等组成。

•气缸:气缸是活塞式压缩机中的重要部件,用于封闭气体并产生压缩力。

•活塞:活塞是气缸内活动的零件,通过活塞运动驱动气体进行压缩。

•连杆:连杆将活塞和曲轴连接起来,将活塞运动转化为曲轴的旋转运动。

•曲轴:曲轴是活塞式压缩机的主要动力输出部件,将活塞的线性运动转化为旋转运动。

2.2 螺杆式压缩机螺杆式压缩机是一种通过螺杆来实现气体的压缩的压缩机。

它由主螺杆、从螺杆、定子、转子等组成。

•主螺杆和从螺杆:主螺杆和从螺杆是螺杆式压缩机中的关键部件,通过它们的旋转运动将气体压缩。

•定子:定子是螺杆式压缩机的固定零件,起到封闭和压缩气体的作用。

•转子:转子是定子和螺杆之间形成密封腔的零件,通过转子的运动将气体逐渐压缩。

2.3 离心式压缩机离心式压缩机是一种通过离心力来实现气体的压缩的压缩机。

它由离心轮、导向轮、机壳等组成。

•离心轮:离心轮是离心式压缩机中的关键部件,通过离心力将气体压缩。

•导向轮:导向轮用于引导气体流入离心轮之前的定向。

•机壳:机壳是离心式压缩机的外壳,用于固定和封闭压缩机的内部结构。

三、压缩机的工作原理不同类型的压缩机具有不同的工作原理,但它们的主要目标都是将气体进行压缩。

下面以活塞式压缩机为例,介绍压缩机的工作原理。

1.吸气阶段:当活塞运动到最低点时,气缸内形成负压,吸入外界气体。

2.压缩阶段:当活塞向上移动,气缸内的气体被压缩,压力逐渐升高。

第二章 离心式压缩机及增速器的安装与检修

第二章 离心式压缩机及增速器的安装与检修

第二章离心式压缩机及增速器的安装与检修离心式压缩机是高速机械,它通常用汽轮机或电动机通过增速器来驱动。

离心式压缩机的安装与检修的质量对压缩机正常运转和提高使用效率,延长寿命都是十分重要的。

所以,不论是安装或检修都必须根据各种规范,按照科学的方法来进行。

2.1 增速器的安装与检修离心式压缩机机组的安装,一般以增速器作为整个压缩机组的安装基准,即先安装好增速器,再通过联轴器把压缩机及电动机或汽轮机与它找正。

保证增速器与压缩机及电动机或汽轮机三轴中心线近似地成为一条光滑的弹性曲线,如图4-1所示。

2.1.1增速器的安装增速器的安装包括:安装前的准备工作、基础画中心线、吊装与就位,以基础中心线为基准找正增速器,使增速器中心线与基础的纵、横中心线一致,然后进行初找水平、地脚螺栓二次灌浆、精找水平等步骤。

这些工作与离心泵的安装类似,这里不详叙。

下面仅介绍增速器安装中的一些特殊间题。

1.永久垫铁的准备离心式压缩机安装所需的垫铁,各接触面之间必须接触良好。

为此,安装前必须根据需要将垫铁分为若干组,即两块斜垫、一块平垫为一组,并分别为接触面的刮磨。

刮磨后应用洗衣粉加水泡煮,以便消除接触面上的油性。

2.箱体的试漏增速器箱体试漏时,常用煤油注入增速器箱内,在2h内没有明显的滴漏,就算合格,否则应进行修理。

3.箱体与底座接触面检查增速器的箱体与底座的接触应良好,在松开连接螺栓后,其接触面间的自由间隙不应通过0. 05mm塞尺,如间隙太大则应进行刮研。

箱体与底座相配的导向键两侧总间隙应符合技术文件规定,一般为0. 03-0. 06mmo4.增速器的找水平增速器找水平包括轴向水平(即纵向水平)和横向水平两个方面。

找轴向水平时,最好将水平仪放在高速轴上,因为高速轴加工精度极高,测量比较准确。

有时也将水平仪放在增速器箱体的轴承孔中分面上进行测量,但是精度则低于在高速轴上测量。

在增速器中分面上测量水平时,其轴向水平应以镗孔处为准,横向水平应以箱体水平中分面的四角为基准,如图4-2所示。

压缩机原理

压缩机原理

理论循环P-V 图
外止点
内止点

4-1 吸气过程 1-2 压缩过程 2-3 排气过程
P 3
行程S 2
1 4
V
活塞式压缩机热力学原理
压缩机级的实际循环
•实际循环与理论循环的区别: 1、存在气体膨胀过程(余隙容积的影响) 2、进气过程线低于名义进气过程线(压力损失的影响) 排气过程线高于名义排气过程线 3、压缩、膨胀过程指数变化(热交换的影响) •循环过程 膨胀 进气 压缩 排气
容积流量

p1 T1
qV
:压缩机单位时间排出的气体,折算到进口状态(第一级进气接管处的压
m 3 / min
、温度 )时的容积值;过去称为排气量,输气量;单位:
,
m3 / h
,
m3 / s

标准容积流量
化工行业@1
atm C
qVN
:压缩机单位时间排出的气体折算到标准状态(两种标准状态定义:
压缩终了温度:工作腔内气体完成压缩过程,开始排气时的温度。
压缩机基础知识
概念、术语
(flow rate) 流量
工作容积:容积式压缩机中直接用来压缩气体的腔室。也称工作腔。压缩机的工作腔
一般因为存在余隙容积而没有完全利用。 余隙容积是指排气过程结束后仍残留有高压气体的那部 分空间。
压缩部分
ZTY265压缩机结构—气阀
环状阀、网状阀、蘑菇阀 PEEK气阀 阻力损失小、寿命长
压缩部分
活塞组件
压缩部分
• • • • •
活塞环的切口形式 直切口───制造简单,泄露量大 斜切口───制造简单,泄露量其次 搭切口───制造复杂,泄露量小 补偿活塞环的磨损和保证活塞环工作时的 热膨胀

模具气顶结构

模具气顶结构

模具气顶结构一、模具气顶结构的概述模具气顶结构是模具加工过程中一种常用的结构形式,通过利用气体的压力来推动模具的开闭动作。

它具有结构简单、操作方便、效率高等优点,在各种模具应用中得到广泛使用。

本文将详细介绍模具气顶结构的原理、组成、应用以及未来发展趋势。

二、模具气顶结构的原理模具气顶结构的原理是利用气体的压力来推动模具的运动。

当气体压力加之于活动组件上时,活动组件会受到压力产生的推力,从而实现模具的开闭动作。

模具气顶结构通常由气缸、压缩机、导向装置等组件组成。

三、模具气顶结构的组成模具气顶结构主要由以下几个部分组成:1. 气缸气缸是模具气顶结构的核心组件,它负责产生气体压力,并将压力转化为推动力。

气缸通常由气体进气口、气体排气口、活塞、活塞杆等部件组成。

2. 压缩机压缩机是供给气缸所需气体的设备,它将环境中的气体通过压缩和净化等处理,提供给气缸产生压力。

常用的压缩机类型有往复式压缩机、离心式压缩机等。

3. 导向装置导向装置主要负责引导和稳定模具的开闭运动,确保模具的准确定位。

导向装置通常由导向柱、导向套等部件组成。

4. 其他附件模具气顶结构还需要配备一些附件,如气管、气阀、气密检测装置等。

这些附件的作用是保证气体流通畅通、控制气压以及监测气密性等。

四、模具气顶结构的应用模具气顶结构广泛应用于各种模具加工中,特别是在大型模具、复杂模具以及对模具开闭速度要求较高的领域中。

下面是几个典型的应用场景:1. 塑料注塑模具塑料注塑模具通常采用模具气顶结构来实现模具的开闭动作。

这种结构可以提高注塑成型的效率和精度,满足不同产品对模具开闭速度的要求。

2. 金属压铸模具金属压铸模具在生产过程中需要频繁进行模具的开闭动作,模具气顶结构可以实现快速、稳定的模具开闭,提高生产效率和产品质量。

3. 橡胶压制模具橡胶压制模具对模具的密闭性和稳定性要求较高,模具气顶结构可以满足这些需求,保证橡胶制品的质量和外观。

4. 电子产品模具电子产品模具通常需要精细的模具开闭动作,模具气顶结构可以提供高精度和可靠性,保证产品的装配和外观质量。

氨压缩机说明书

氨压缩机说明书

氨压缩机说明书KLDAWH-C 氨离心式制冷机组使用说明书J1244 SM(机械部份)说明因汽轮机等外配套未提供说明书本说明书仅供参考 2019.9.30中华人民共和国重庆通用工业(集团)有限责任公司 2019 年 1 月使用说明书共 33J1244 SM页第 1 页目录3 3 3 34 45 5 5 5 56 6 9 9 9 9 9 12 12 12 12 12 13 13 14 15 16 16 16 16 16 17 17 17 18 18 18 19 19 191. 制冷机的用途2. 产品的工作条件3. 主要规格及技术参数 3.1 产品的主要规格3.2 产品安装有关技术参数及要求 3.2.1 压缩机组安装有关技术参数 3.2.2 辅机安装有关技术参数及要求4. 产品的主要结构概述 4.1 离心式压缩机组主要结构概述 4.1.1 汽轮机结构 4.1.2 压缩机结构 1) 机壳和静止元件 2) 转子组 3) 可倾瓦径向轴承 4) 推力轴承 5) 进油分配阀 6) 轴端密封 7) 压缩机密封 8) 轴振动轴位移监测系统简介4.1.3 增速箱结构 4.2 联轴器 4.3 辅机 4.3.1 冷凝器 4.3.2 贮氨罐 4.3.3 36 氨分离器 1 氨分离器 4.3.4 中间冷却器一中间冷却器二 4.3.5 抽气回收装置 4.3.6 润滑调节油系统 4.4 旁通回流调节阀及冷却液氨调节阀 4.5 液氨泵5. 机组系统说明 5.1 制冷系统 5.2 气封系统 5.3 润滑调节油系统 5.3.1 润滑油 5.3.2 高位油箱 5.4 汽轮机蒸汽疏水系统 5.5 电控系统6. 吊运和保管 6.1 运输与吊装 6.2 开箱验收及保管使用说明书共 33J1244 SM页第 2 页7. 安装与调整 7.1 基础验收及处理 7.2 机组安装 7.2.1 安装就位前的准备 7.2.2 汽轮机的安装 7.2.3 压缩机的安装 7.2.4 油路及管路安装 7.2.5 容器设备的安装7.2.6 管道安装 8. 使用与操作 8.1 开车重负荷试车前的准备工作 8.2 压缩机组的开车 8.3 压缩机组的自动调节与控制 8.3.1 压缩机的自动调节与控制 8.3.2 氨分离器液位的调节与控制 8.3.3 贮氨罐液位的控制 8.3.4 压缩机干气密封的调节与控制 8.3.5 汽轮机的调节与控制 8.3.6 增速箱的控制 8.3.7 油站的控制 8.4 正常停机过程 8.5 压缩机的紧急停车带负荷停车 8.6 抽气回收运行 9. 机组的维护与保养 10. 机组常见故障原因及其排除办法 11. 制冷机组长期保存的方法 11.1 制冷机组长期保存的方法 11.2 长期保存后正式运行前的准备 11.2.1 长期保存 11.2.2 电气零件的检查 11.2.3 水系统的检查 11.2.4 汽轮机组的检查19 19 20 20 20 20 22 22 22 22 23 24 24 24 25 25 26 26 26 26 26 27 27 28 30 32 32 32 32 32 32 33使用说明书共 33J1244 SM页第 3 页制冷机的用途 KLDAWH-C 氨离心式制冷机是大型甲醇及二甲醚工程氨冷冻站的重要设备也可适用于使用工况与本机设计工况相同或相近的大型冷冻站上该机组为分体式制冷机组产品设计制造检验依据的标准为压缩机 API617-1995 石油化工用离心式压缩机第 6 版汽轮机 API612-1995 石油化工用汽轮机第 4 版增速箱 API613-1995 特殊用途齿轮传动装置第 4 版膜片式联轴器 API671-1995 炼油用特殊用途联轴器第3 版润滑控制油系统 API614-1992 专用的润滑轴密封和控制油系统第 3 版振动轴向位移和轴承温度监测系统 API670-1993 第 3 板压力容器 JB/T4750 钢制压力容器法兰 HG20617 电器仪表 IEC ISA 型号组成及代表意义1K LD A WH - C特殊微机控制渭河化工制冷剂 NH3 离心式低温机组开式 2. 产品的工作条件多蒸发温度 -38 两个蒸发 KLDAWH-C 离心式制冷机适用于在低温 -38 -3 2.1 温度的工况条件下运行 2.2 机组冷却水运行条件为 32 冷却水应清洁不易结垢冷却水侧污垢系数设计值为 3.5 -4 2 10 m k/w 2.3 机组适用于环境温度在–20 45 范围内 3 . 主要规格及技术参数产品的主要规格 3.1 KLDAWH-C 制冷机为分体式组装机组产品主要由压缩机组含汽轮机组压缩机高低压缸增速箱冷凝器贮氨罐中冷器一中冷器二氨分离器分离 36 1 器抽气回收装置高位油箱润滑调节油站共用底座电控系统管道及管道附件组成机组主要技术规格分别见表 3.1使用说明书共 33J1244 SM页第 4 页表 3.1 离心式压缩机主要技术规格型号工作介质工作转速进口压力设进口温度计补气进口压力工补气进口温度况排气压力设计工 -38 制冷量况冷量 -3 制冷量进口流量补气进口流量结构压转子重量缩叶轮最大直径转子第一阶临界转速机转子第二阶临界转速型号功正常值率额定值汽转正常值速额定值轮转速范围进气压力机进气温度蒸汽耗量跳闸转速单位 r/min Kpa.A Kpa.A Kpa.A104Kcal/h 104Kcal/h m3/ min m3/ min kg mm r/min r/min KW KW r/min r/min MPa.G kg/h r/min 368 200 165 237 六级 612 522 4070 14400 6CL-6 2300 2530 11240 11802 75% 105% 3.92 4.08 400 12310 12962 99 43.6 六级 293 375 8018 18680 KLDAWH-C 低压缸 NH3 11240 65 -36 345 -1 1650 15818 345 26 高压缸产品安装有关技术参数及要求 3.2 3.2.1 压缩机组安装有关技术参数 KLDAWH-C 离心式压缩机主要由汽轮机膜片式联轴器压缩机低压缸增速箱压缩机高压缸等组成机组安装以压缩机低压缸主轴两轴颈为基准压缩机组安装有关技术参数如下 1 汽轮机的安装技术参数汽轮机型号为 6CL-6 汽轮机的安装按汽轮机使用说明书规定的有关技术参数 2 膜片联轴器安装技术参数本压缩机组有三套联轴器分别联接汽轮机和压缩机低压缸压缩机低压缸和增速箱增速箱和压缩机高压缸其型号为 HGD6-420-00T4(Z) HGD6-420-00T5(Z) HGD6-170-00T3(Z) 安装技术除按联轴器使用说明书外还应符合下列要求a).联轴器孔与轴颈配合时应人工推紧为基准并应保证轴向推进量符合联轴器图纸的要求 b).联轴器对中允许偏差 1 .径向偏差量为 0.04mm 为 180 千分表读数差 2 . 端面偏差量为 0.02mm 为 180 千分表读数差使用说明书共 33J1244 SM页第 5 页3). 压缩机安装技术参数 a). 压缩机安装时机组中心线应与基础中心线一致其偏差5mm b). 压缩机纵向水平的安装必须保证联轴器对中要求其值见联轴器安装技术参数 c). 压缩机横向水平的偏差 0.10mm/m 其基准为下机壳中分面 d). 压缩机装配径向轴承时应保证轴承壳体上下与轴承座过盈量为 0.03 mm 0.05mm e).推力盘端面跳动量 0.012mm 推力轴承总间隙应在 0.20mm 0.30mm 范围内 4). KLDAWH-C 离心式压缩机组冷态找正示意图 3.2.1-13.2.2.辅机安装有关技术参数及要求 KLDAWH-C 离心式制冷机辅机有汽轮机的表面冷凝器气封冷凝器抽气冷凝器压缩机的中间冷却器一中间冷却器二制冷机的冷凝器贮氨罐氨分离器氨 36 1 分离器抽气回收装置润滑调节油站及高位油箱抽气回收装置润滑调节油站不属于压力容器安装无特殊要求其他辅机为压力容器压力容器有立式容器和卧式容器两种压力容器安装的技术参数见随机制冷机总布置图压力容器安装时必须遵守特种设备安全监察条例及压力容器安全技术监察规程的有关规定在投入使用前须向当地的特种设备安全监督管理部门办理使用登记手续压力容器应定期进行检验外部检查是指对压力容器的在线检查每年至少一次内部检验是指在用压力容器停机时的检验其检验周期为 1 安全状态等级为 1 2 级的每 6 年至少一次 2 安全状态等级为 3 级的每 3 年至少一次安全阀及其它安全附件的检验每年应至少校验一次贮液罐上的压力表也应定期校验校验后应加铅 4. 产品的主要结构概述 4.1. 离心式压缩机组主要结构概述 4.1.1. 汽轮机结构汽轮机结构详见汽轮机使用说明书汽轮机表面冷凝器为卧式壳管式换热器管内为冷却水管外为水蒸汽其作用是将汽轮机出口蒸汽冷凝为水保证汽轮机出口为低压以使汽轮机将高压蒸使用说明书共 33J1244 SM页第 6 页汽热能充分转化为动能 4.1.2. 压缩机结构 KLDAWH-C 离心式压缩机组为双缸三段十二级压缩两次中间冷却一次中间加气压缩机低压缸高低缸均为六级压缩第一至第六级为第一段第七至第十级为第二段第二段由分离器补加气体第十一第十二级为第三段压缩机高低压缸布置在汽轮机的同一端, 1 通过膜片式联轴节联接压缩机高低压缸和增速箱安装在共用底座上汽轮机安装在单独底座上压缩机由汽轮机通过膜片联轴器驱动压缩机高低压缸两轴端轴封为串连式干气密封 KLDAWH-C 离心式压缩机高低压缸的结构见图 4.1.2-1 4.1.2-2 主要零部件目录见表 4.1.2 表 4.1.2 高低压缸主要零部件目录数低压缸 2 2 1 1 1 1 6 6 1 5 1 1 / 量高压缸 2 2 1 / / 2 6 6 1 4 2 1 1 备注序号 1 2 3 4 5 6 7 8 9 10 11 12 13名称径向轴承干气密封转子组出口密封平衡盘密封出口蜗室轮盖密封组隔板组上下机壳轮盘密封进口密封推力轴承部蜗室密封可倾斜五瓦块串联式高低压缸均为六级八块可倾瓦轴承1). 机壳和静止元件压缩机高低压缸机壳为水平剖分铸钢结构轴承箱盖单独设置检修轴承和干气密封时不需拆卸上机壳静止元件包括各级隔板叶轮轮盖密封组叶轮轮盘密封排气蜗室均为水平剖分结构各级隔板排气蜗室分别安装在上下机壳定位基准面上轮盖轮盘密封体则安装在隔板上各级轮盖轮盘密封均以加工来保证其与旋转轴线同心各级隔板由隔板内隔板叶片等部件形成无叶扩压器弯道回流器第一至第五级叶轮出口气流分别进入各自的无叶扩压器弯道回流器到下一级进一步压缩第六级叶轮出口气流进入扩压器至排气蜗室排至中间冷却器一进行冷却冷却后的气体与补气混合进入第七级叶轮经第七至第十级叶轮压缩后排入中间冷却器二进行再冷却冷却后的气体进入第十一级叶轮经第十一至第十二级叶轮压缩后排入冷凝器高低压缸下机壳两端装有导向键槽与底座的导向键配合以防止压缩机产生横向位移压缩机的全部静动载负荷由下机壳的四条支腿承担支腿与支座之间有一调整板改变调整板的厚度或在调整板与共用底座支座之间加薄垫片可以调整压缩机的水平高度压缩机低压缸及高压缸排气端支腿与支座之间用固定螺栓加调整套筒连接安装时应保证固定螺栓压紧面与支腿上平面保持 0.20mm 0.30mm 间隙由调整套筒长度来保证见图 4.1.2-3 压缩机低压缸及高压缸进气端两支腿下支承面上横向各有一定位销作为压缩机的固定点见图4.1.2-4 支腿与支座之间用固定螺栓连接支腿上的顶起螺钉是压缩机安装调整水平时使用的为了方便机壳装拆定位在机壳的中分面上装有导向杆和顶起螺钉为保证上下机壳隔板排气蜗室的定位和密封在上下机壳和隔板排气蜗室中分面上涂了一层 704 液态密封填料以保证中分面的气密性使用说明书共 33J1244 SM页第 7 页2). 转子组压缩机转子组由主轴叶轮推力盘轴套轮盘级间密封片干气密封动环锁紧螺母联轴器安装盘等零部件组成压缩机叶轮为焊接闭式叶轮压缩机低压缸转子组装有六个叶轮一顺排列压缩机高压缸转子组装有六个叶轮第七级至第十级叶轮与第十一级第十二级叶轮背靠背布置以平衡转子轴向推力主轴叶轮及推力盘均用优质高强度合金钢制造并经严格的热处理叶轮制造完毕后经超速试验合格转子组装完毕后经高速动平衡试验符合图样要求使用说明书共 33J1244 SM页第 8 页.使用说明书共 33J1244 SM页第 9 页3). 可倾瓦径向轴承压缩机径向轴承为可倾式五瓦块轴承它是由轴瓦轴承壳上下定位销密封环上下调整垫压紧块等零件组成轴承为水平中分面结构型式下轴承壳安放三个轴瓦上轴承壳安放两个轴瓦润滑油由轴承壳下部进油上部排油轴瓦由钢本体和巴氏合金轴衬组成轴瓦能根据承载能力的变化自动调节油楔满足转子对轴承承载能力的要求轴承有两块瓦块安装有测温传感器来测定轴承温度确保轴承安全稳定运行可倾瓦径向轴承结构见图 4.1.2-5 4). 推力轴承推力轴承为双向式整体结构采用双面金斯伯雷轴承每个推力面上有 8 个活动推力块 16 个可活动山形块安装在轴承架上推力块借助封油圈限制在一定轴向位置每个推力块由钢本体和巴氏合金轴衬组成在转子尾端两个推力盘之间装有一个轴套用以调整推力轴承的轴向间隙在推力轴承两侧有两块调整垫圈改变这两块垫圈的厚度即可调整转子的轴向位置使各级叶轮出口与扩压器流道各梳齿密封槽与齿轴向间隙达到规定的要求推力轴承主推力面有两块瓦块安装有测温传感器来测定轴承温度确保轴承安全稳定运行推力轴承结构见图 4.1.2-6 5). 进油分配阀为了方便压缩机两个径向轴承和一个推力轴承进油量和进油压力的控制机壳侧部各进油口设置了进油分配阀具体结构见图 4.1.2-7 图 4.1.2-8 6). 轴端密封高低压缸轴两端密封均采用干气密封干气密封结构见干气密封使用说明书 7). 压缩机密封低压缸压缩机密封由进口密封叶轮轮盖密封叶轮轮盘级间密封出口密封及平衡盘密封组成使用说明书J1244 SM共 33 页第 10 页高压缸压缩机密封由进口密封叶轮轮盖密封叶轮轮盘级间密封及蜗室密封组成轮盖密封片用1Cr18Ni9Ti 不锈钢片弯折而成长密封片和短密封片间隔嵌成密封齿密封体在叶轮轮盖上轮盘密封体安装在对应的隔板上密封齿为平密封片用1Cr18Ni9Ti 不锈钢片弯折而成嵌在叶轮后主轴上低压缸平衡盘密封用1Cr18Ni9Ti 不锈钢片弯折而成长密封片和短密封片间隔嵌成密封齿密封体在平衡盘上进口密封出口密封及蜗室密封用1Cr18Ni9Ti 不锈钢片弯折而成长密封片和短密封片间隔嵌在主轴上成为密封齿密封体在各自零件的本体上各密封间隙靠加工保证详见表7.1使用说明书J1244 SM共 33 页第 11 页使用说明书J1244 SM共 33 页第 12 页8). 轴振动轴位移监测系统简介KLDAWH-C 离心式压缩机轴振动轴位移运行状态监测采用美国本特利3500系列电涡流振动位移传感器可显示振动位移的峰-峰值3300系列监测仪表的输出接口与计算机系统连接进行振动分析和故障诊断转子轴振动及轴位移的准确测量是压缩机安全运行必不可少的监测手段4.1.3. 增速箱结构增速箱的齿轮副齿形为人字齿增速箱结构详见增速箱使用说明书 4.2. 联轴器KLDAWH-C 离心式压缩机的汽轮机和低压缸低压缸和增速箱增速箱和高压缸之间采用高速金属叠片挠性联轴器进行连接联轴器为专业厂制造由安装盘中间轴调整环膜片组件定位螺栓螺母等零件组成它适用范围广特别适用于高速大功率传动安装使用维护简便补偿轴向和角向位移能力大并能吸振隔振4.3. 辅机辅机包括冷凝器贮氨罐氨分离器氨分离器中间冷却器一中间冷361却器二抽气回收装置汽轮机的表面冷凝器气封冷凝器抽气冷凝器润滑调节油站及高位油箱等各种结构的压力容器其设计制造检验验收均应符合JB/T4750和容规的规定各容器结构单独介绍时不再重复下面分别介绍各部分结构4.3.1. 冷凝器使用说明书J1244 SM共 33 页第 13 页1如4.3-1图所示冷凝器为圆筒卧式壳管式换热器属二类压力容器壳体材质20R 它位于机组高压侧容器设计压力为2.0MPa 换热管采用不锈钢材料管外为氨介质管内为冷却水冷凝器在机组中的功能是将压缩机排出的高温高压NH 3气体凝结为液体容器的大部分空间密排着传热管为避免从压缩机来的过热气体在冷凝器进气口直接冲刷换热管在进气管方向焊有匀气板既起缓冲使用又沿轴向长度起匀气作用冷凝器按压力容器有关规定安装有压力表安全阀及压力传感器等装置保证冷凝器安全可靠地运行使用4.3.2. 贮氨罐贮氨罐为卧式容器它在系统中处于高压侧设计压力为2.0MPa 贮存介质为液态NH 3按压力容器安全技术监察规程属于三类中压贮存器设计制造检验验收均符合GB150-1998的规定贮氨罐上设有充液管出液管压力平衡管压力表安全阀液位计及液位控制器其中压力平衡管与冷凝器相接使贮氨罐压力与冷凝器压力平衡贮氨罐的正常液位应550mm 最低液位为430mm 最高液位为1600mm 贮氨罐的液氨储存量只能满足制冷循环液位波动调节用机组检修所需贮氨罐由用户自备贮氨罐结构如图4.3-2 所示氨分离器氨分离器 361氨分离器氨分离器均为圆筒二类立式压力容器壳体材质20R 在系统361中处于低压侧容器的设计压力为2.0MPa 介质为NH 3按压力容器安全技术监察规程属于二类容器设计制造检验验收均应符合JB/T4750和容规的规定KLDAWH-C 的分离器有两个一个为氨分离器另一个为氨分离器其功能为用户蒸发器排出的361NH 3汽体进入分离器通过在分离器内改变气流方向降低流速和挡液网分离液体将蒸气内液滴分离在容器内能避免因液氨在蒸发器中蒸发不完全而进入压缩机增加耗功甚至损坏叶轮在压缩机排气管与分离器之间设置有旁通调节阀它还可分离热气旁通管路中带来的液体系统在部分负4.3.3.使用说明书J1244 SM共 33 页第 14 页荷状态运行时通过旁通调节阀让一部分压缩机排气进入分离器再回流进压缩机进口通过调节旁通阀的开度大小可以满足系统负荷变化的要求氨分离器上设有进出液管进出气管安全阀液位计及排污口氨分离器安装有液位变送器并进入中控室由中控室自动控制液氨泵和电磁阀保证分离器的液位在正常范围内氨36分离器氨分离器的正常液位均为200mm 最高液位为900mm 分离器结构见图4.3-3 1中间冷却器4.3.4. 中间冷却器一二中间冷却器一中间冷却器二均为卧式壳管式换热器属二类压力容器壳体材质20R 换热管采用不锈钢材料管内为冷却水管外为氨汽管内的水吸收管外氨汽的热量将压缩机出口高温氨汽冷却为低温氨汽保证进入下一段压缩机进口的氨气达到机组设计的温度以使压缩机节省能耗中间冷却器上设有进出水管进出气管安全阀排污口放水阀及放气阀中间冷却器结构见图 4.3-4所示使用说明书J1244 SM共 33 页第 15 页4.3.5 抽气回收装置图4.3-5制冷机组系统在充灌制冷工质前系统中有残留空气制冷系统充入制冷工质时空气会侵入制冷机组在正常运行时分离器和吸气部分处于负压状态空气有可能通过相关零部件的结合部漏入机器内残留漏入系统内的空气等不凝性气体积聚在冷凝器内影响了冷凝器的传热使压缩机排气压力升高排气温度升高压缩机耗功增加降低了制冷量故设置抽气回收装置抽气回收装置的作用即在制冷机运行中将漏入机内的空气等不凝性气体排出机外同时将混在其中的氨气体冷凝成液体后与空气等不凝性气体分离并予以回收抽气回收装置由四根直径不同的无缝钢管互相套置一起后焊制而成由内向外数第一层管与第三层管相通第二层管与第四层管相通为了回收混合气中的氨在第一层管与第四层管间加一连接管管上装有节流阀由贮氨罐来液体通过节流后进入第一层管蒸发后经过第三层管的接口出去到分离器不凝气和氨气的混合气体先进入第二层管到第四层管逐步冷却将氨气凝结成液体使氨与不凝气体分离凝结成液体的氨通过在第一层管与第四层管间连接管经过节流后进入第一层管蒸发分离出的不凝气体经第四层排放口排出不凝气体的排放由第四层管内的压力与冷凝器之间的压差控制器控制不凝气体排放口的电磁阀启闭进行不凝气的排放抽气回收装置不能在制冷机停车阶段使用一般在制冷剂充入后制冷机初次运行时抽气回收装置要运行23 小时正常运行时每周运行12 小时具体操作方法参见8.6节使用说明书J1244 SM共 33 页第 16 页4.3.6润滑调节油系统润滑调节油系统负责向压缩机组各轴承及齿轮副提供润滑油并向汽轮机提供轴承润滑油和转速调节用压力油系统由油泵油加热器油冷却器过滤器抽风机油水分离器高位油箱及管路组成油站采用开式结构油泵采用两台离心泵主辅油泵互为备用, 保证系统正常运行油泵的驱动机均为交流电动机驱动, 备事故电源油泵电机防爆等级d CT4油泠却器采用双联的管壳式冷油器油过滤器采用双筒过滤器油加热器采用蒸汽加热系统主要参数如下1). 润滑油 N46汽轮机油 2). 供油量a. 调节油量 100 L/minb. 润滑油量 500 L/min 3). 供油压力a. 调节压力 1.0 Mpa.Gb. 润滑压力 0.5 Mpa.G 4). 油泵功率 452 KW 5). 油箱容积 11.6 m 3 6). 过滤精度 10 m 7). 供油温度 453 8). 进水温度 32 9). 耗水量 45 m 3/h 10). 油加热蒸汽压力 0.34 Mpa.G 11). 油加热蒸汽温度 145 175 12油箱允许最大储油量 10.4 m3 4.4 旁通回流调节阀及冷却液氨调节阀在压缩机排气管与分离器之间设置有旁通回流调节阀机组在部分负荷工况运行时通过旁通回流调节阀让一部分压缩机排出的气体经节流降温降压后进入分离器再回流进压缩机进口通过调节旁通阀的开度大小可以满足系统负荷变化对制冷量的要求为了使压缩机排出的高温高压气体达到压缩机进口的温度压力从贮氨罐内引出一部分液氨流经冷却液氨调节阀与通过旁通回路引来的压缩机排出的高温气体混合并气化使压缩机排出的气体温度降低压缩机排出的高压气体通过调节阀时压力降低从而达到压缩机进口的温度压力4.5 液氨泵在分离器与贮氨罐之间设有液氨泵以调节分离器内液位将其保持在正常范围内当分离器内液位过高时液氨泵启动将液氨排至贮氨罐5. 机组系统说明 5.1. 制冷系统离心式制冷机组系统流程图见图5.1 从用户的蒸发器来两路氨气一路为-3670KPa A 氨气进入(-36) 氨分离器另一路为-1. 350KPa A 氨气进入(-1) 氨分离器在(-36) 氨分离器内将液滴分离后的氨气进入压缩机低压缸经过第一级至第六级叶轮压缩后排入中间冷却器一冷却后的氨气与(-1) 氨分离器出口的氨气混合进入压缩机高压缸经过高压缸第七至十级叶轮压缩后排入中间冷却器使用说明书J1244 SM共 33 页第 17 页冷却后的氨气进入高压缸第十一级叶轮经过高压缸第十一至十二级叶轮压缩后排入冷凝器冷凝为高压液态氨再经过过冷器冷却至38液氨液氨从冷凝器底部的过冷器出来流入贮氨罐贮氨罐内液氨排出经节流装置降温降压后进入用户的蒸发器蒸发后的氨气再进入各分离器完成一个制冷循环当分离器内液位过高时液氨泵将液氨排至贮氨罐机组在部分负荷工况运行进口流量小时通过旁通回流调节阀让一部分压缩机排出的气体节流后进入分离器再回流进压缩机进口从贮氨罐内引出一部分液氨流经冷却液氨调节阀与通过旁通回路引来的压缩机排出的高温气体混合液氨吸收压缩机排出的高温气体的热量气化为汽体通过调节阀的混合汽体温度压力降低进入各分离器5.2. 轴端密封系统压缩机高低压缸两端轴封均采用串连式干气密封其原理结构见干气密封使用说明书及图纸 5.3. 润滑调节油系统润滑调节油系统流程图见图5.2所示润滑调节油系统为开式系统油箱与大气相通油泵从油箱内压力为当地大气压吸油升压经油冷却器降温后进入油过滤器过滤后的油分两路一路经自动压力调节阀后进入汽轮机调速系统具体流程见汽轮机说明书一路经自动压力调节阀后又分两路一路进入高位油箱高位油箱与主供油管相连另一路进入汽轮机压缩机增速箱各轴承及增速箱齿轮副油泵为两台一。

轴流式压缩机结构原理)

轴流式压缩机结构原理)

调节缸
调节缸放大图及驱动环(导向环)
4、转子及动静叶片:轴流压缩机转子是一个 主轴、各级动叶、隔叶块、代叶块及叶片锁紧装 置组成 。
主轴:高合金锻钢锻造而成,材料为 25Cr2Ni4MoV,主轴材料的化学成分需经严格的化 验分析,性能指标通过试块进行检验,粗加工后 进行热运转试验和探伤检验,所有指标合格后, 才能投入精加工。
轴承箱1
轴承箱2
6、油封:轴流缩机的轴承箱内安装有 油封,用于防止轴承箱内润滑油的外漏, 油封上设计有一个挡风板,防止密封处泄 漏的高温气体(特别是排气侧)进入轴承 箱内,造成轴承温度升高,润滑油老化。
7、密封:在压缩机的进气侧和排气侧 分别设有轴端密封,型式为拉别密封,密 封处镶在轴上,密封片的数量是根据计算 确定的,密封间隙的大小可通过调整密封 套圆周上的调整块来实现。
轴流压缩机转子设计中进行了横 向振动及扭曲振动分析计算,转子装 配后做高速动平衡和超速试验,确保 机组运行时安箱由 轴承箱体和轴承箱盖组成,轴承箱体 与下机壳铸为一体,轴承箱内安装有 径向轴承和止推轴承,润滑轴承的润 滑油由轴承箱集油回到油箱,轴承箱 体底部装有导向装置,和底座配合, 使机组对中和沿轴向热胀,轴承箱盖 油使封处设有一个充气孔,必要时可 供油封充气防止润滑油外泄。
• 气源压力:
0.4~0.6MPa (G)
• 顶升油泵
• 型 号:
HIPAGAG
• 供油压力:
65 MPa
• 最大流量:
0.96×4 L/min
• 电机功率:
5.5KW
• 电压等级:
380V
• 止回阀
• 类型:
气动执行机构三偏心蝶阀
• 通径:
DN1600
• 公称压力:

往复式压缩机的原理性能结构介绍及故障原因分析课件

往复式压缩机的原理性能结构介绍及故障原因分析课件

当曲轴旋转时,通过连杆的传动,驱动活塞便 做往复运动,由气缸内壁、气缸盖和活塞顶面 所构成的工作容积则会发生周期性变化。曲轴 旋转一周,活塞往复一次,气缸内相继实现进 气、压缩、排气的过程,即完成一个工作循环。
2023/2/28
3
往复压缩机
1.1 理论工作循环
为了更好地理解活塞压缩机的工作原理,这里重点 介绍理论工作循环。假定压缩机没有余隙容积,没 有吸、排气阻力,没有热量交换,则压缩机工作时, 汽缸内的压力和容积的关系如下图所示。压缩机的 理论工作过程可以简化成下图示的三个热力过程。
8
往复压缩机
1.2 实际工作循环
压缩机工作过程中活塞环、填料、气阀不 可避免存在泄露,每个循环的排气量总小 于实际吸气量。压缩机的进气阻力过大, 会造成压缩机排气量减少。余隙容积过大 会降低排气量,使指示功图面积变小。
2023/2/28
9
往复压缩机
1.2.1 实际过程与理论过程的区别
由于余隙容积的存在,实际工作循环由膨胀、吸气、 压缩、排气四个过程组成,而理论循环无膨胀过程。
2023/2/28
22
往复压缩机
Quantity
2.7 气量调节方式
• 卸荷器调节
Compressor delivery pressure
• 旁通调节
• 余隙腔调节
• 变转速调节 M
2023/2/28
23
3.6.4
往复压缩机
3 结构
压缩机主要由机体、曲轴、连杆、活塞组、 阀门、轴封、油泵、能量调节装置、润滑 油系统、进出口缓冲罐/气液分离器等部件 组成。
胀所占的容积增加,气缸实际吸气量减少。 采用多级压缩,压力比下降,因而容积系 数增加。

迷宫式压缩机

迷宫式压缩机
.
适用范围
20
1. 介质:可压缩各种烃类气体、CnFm、N2、O2、 NH3、CO2、CO、VCM、低温气体等。
2.性能参数范围: 流量:~6000m3/h;压力: ~32MPa; 功率:~1200kW
迷宫压缩机是一种无油润滑而又具有良好密封性能 的压缩机。
节流密封是迷宫压缩机设计的基本原理,属于非接 触式密封。设计上无活塞环、支承环和填料环,使 迷宫压缩机具有极高寿命和可靠性。
(1)管道系统共振; (2)地面共振或建筑物
共振。
处理措施:
(1)控制系统的振动频 率并检查吊支情况,可 加支撑;
(2)测定地面或支座的 自然频率,变更支座。
.
迷宫式压缩机的安装
30
以聚丙烯2D-140MG-1.52/7.03-45.13型氮气压 缩机(4000-K-1102/1103)为例进行说明。
.
迷宫式压缩机的安装
34
2 曲轴 曲轴材料为35CrMo,它
由主轴颈,曲柄销、拐 臂及平衡铁等组成,两 列曲柄互成180°,通 过联轴器与电机相连。 润滑油由机身侧进油口 通过轴瓦进入曲轴上的 油孔,经过连杆体内油 孔流向十字头销并润滑 十字头滑板。
.
迷宫式压缩机的安装
35
3 连杆
连杆是由35CrMo制成,
.
2、级间压力太高或太低
24
可能原因: (1)二级入口阀泄漏; (2)活塞环密封件磨损; (3)冷却器冷却效果不好; (4)压油操作时串压。 处理措施: (1)更换并处理; (2)检查,更换; (3)调节冷却水流量; (4)认真操作 。
.
3、气体流量太小
25
可能原因: (1)活塞环密封件磨损,填料泄漏; (2)吸入阀组装不正确; (3)旁路阀泄漏。 处理措施: (1)有必要时,更换部件; (2)检查阀组件安装情况; (3)开副线控制并处理旁路阀。

压缩机技术

压缩机技术

活塞环的工作原理
活塞环的密封原理是利用多个活塞环所形成的曲折流道,对流经它的泄漏气 体产生多次节流阻塞和旋涡阻滞作用。在有微量泄漏的情况下,形成很大的阻
力降来实现密封的。
活塞环装入气缸后,直径变小,仅在 切口处留下一定的热膨胀间隙,靠环 的弹力使其外圆面与气缸内表面贴合, 产生一定的予压力。 P
气缸中心线成一定角
度,一般机组结构较 为紧凑,气缸直径较
小。
压缩机更小。
往复活塞式压缩机的主要特点:
1、使用压力范围广。 2、效率高。
3、适应性强,排气量范围较广,在小排气量的情况下也能保持较高
的效率,而且排气量受排气压力波动的影响较小。
往复活塞式压缩机的几个缺点::
1、结构较为复杂,易损件较多,检修工作量大; 2、由于受往复惯性力的限制,转速较低,故单位排气量的机器体积和质 量相对较大,基础也较为笨重。 3、一般气缸内需用润滑油进行润滑。 4、排气不连续,造成气流脉动,严重时产生气流脉动共振,造成管网或 机件的损坏。
参数范围或结构特点
排气量〈1 1~10 10~60 〉60(如,PB125、TT 83) 排气压力0.3~1.0 1~10 10~100 〉100 气缸中心线垂直于地面 气缸中心线平行于地面 气缸分布曲轴两侧,两侧活塞运动两两对称 气缸分布曲轴两侧,但两侧活塞运动不对称 气缸中心线互成一定角度(L\V\W) 气体仅经过一次压缩即达到排气压力 气体经过两次压缩达到排气压力 气体经过三次以上压缩达到排气压力 仅活塞一侧的气缸容积进行压缩循环 活塞两侧的气缸容积交替进行同一级次的压缩循环 气缸中各级是由一具有不同直径段的级差活塞形成
3、曲轴
(1)、曲轴又称为主轴,其作用是接受驱动机传来的动力,并通 过连杆、十字头等零部件将曲轴的回转运动转化为活塞组件的往复运动。 由于承受很大的交变载荷和磨损,故对其疲劳强度和耐磨损要求很高。 主轴颈、曲轴与主轴承配合的部分称为主轴颈, 曲柄销、与连杆连接部分为曲柄销, 曲柄、连接曲柄销鱼主轴颈的部分称为曲柄, 平衡块、为平衡曲柄高速运转所产生的惯性力及力矩, 在曲柄下端装有平衡块。 曲轴一般采用空心轴颈,一是可以减轻曲轴质量,提高疲劳强度,二 是作为润滑油的通道,在主轴颈和曲柄销上一般设有油孔。曲轴运转中所 需的润滑油,通常都是从轴承处通过主轴颈油孔加入,并通过曲轴内部的 加工孔道引至曲柄销处。 曲轴

往复式压缩机结构介绍及维护

往复式压缩机结构介绍及维护
No Image
No Image
3.3.2 密封圈的使用 a. A型一般用在刮油环后面的密封 b. B型用在中间填料,填料充氮盒的前后两组。 c. C型用在一般填料中。 d. D型用在不充氮的回气填料盒后面,俗称前置填料,为双向
密封。 e. F型为节流圈,一般用于高压填料的最后一组。 f. A型,B型,C型的I 、II圈之间和D型的I-II、II-III圈之间均
主轴承盖要加工成与轴瓦的配合是 过盈配合。能提供运行(修理)主 轴承盖,为了与机身准确配合这些 盖要最后加工。驱动端的第3个轴承 是止推轴承,它有可更换的青铜制 止推环分别固定在轴承盖的两边。 轴承盖上可以钻孔和攻丝,然后装 上主轴承的温度传感器。
二、活塞式压缩机基本构件-连杆
2.4 压缩机连杆
压缩机连杆在曲轴和十 字头之间建立了机构链接。 沿着连杆长度方向在其内部 钻了一个来复孔,作为到十 字头销瓦的润滑通道。大头 盖是连杆的一个零件,它和 连杆组合在一起镗孔,这样 使得大头盖与连杆成为一对 匹配的组件而不会与其它组 件混淆,甚至对于同一个连 杆,大头盖两端也不能倒换 。拉紧螺栓将大头盖和连杆 锁紧在曲轴上。
3.1.2 中心导向的气阀结构
中心导向的阀片与缓冲片
3.1.3 导向臂导向的气阀结构
导向臂导向的缓冲片及阀片
3.1.4 气阀的组装与装配 1、安装前的准备 a. 安装前应对阀片、阀座、升程限制器、弹簧、螺栓等零件进
行宏观检查,不得有毛刺、划痕、裂纹、翘曲等缺陷。 b. 安装前用涂色法检查阀片和阀座的接触面贴合是否紧密。其
口尺寸应符合图纸规定,并应有足够的弹力,收闭和放开应 恢复原状。 b. 检验活塞环的两端面平直情况,不应有翘曲、扭曲等。检验 方法:把活塞环放在平板上,用塞尺赛测活塞环与平板之间 的缝隙。 c. 将活塞环放在汽缸镜面进行透光检查,并用塞尺测定活塞环 与汽缸镜面透光处的最大间隙值。要求每个活塞环的环周透 光不得超过两处;每处的弧度不得超过25%;透光不允许出 现在开口附近30度范围内。 d. 透光检查的同时,应进行活塞环对口间隙的测定。铸铁活塞 环的对口间隙为汽缸直径的4/1000~6/1000;四氟乙烯塑料 对口间隙为铸铁的9倍。对于间隙过小者,可以用锉将开口 扩大,间隙超差太大者,则不能装入,应更换。 e. 活塞环与活塞装配时,活塞环宽度与槽宽为间隙配合,配合 间隙与环宽尺寸成比例,通常选择0.04~0.10mm。实际测定

布克哈德迷宫压缩机

布克哈德迷宫压缩机

基本结构及各部件作用
.
泄漏气回收管:泄 漏气经回收管最后 回到压缩机入口
基本结构及各部件作用
.
气阀:气阀是压缩机的一个重 要部件,属于易损件。它的质量 及工作的好坏直接影响压缩机的 输气量、功率损耗和运转的可靠 性。 气阀包括吸气阀和排气阀,活塞 每上下往复运动一次,吸、排气 阀各启闭一次,从而控制压缩机 并使其完成吸气、膨胀、压缩、 排气等四个工作过程。
迷宫式压缩机
动能
.
热能
涡流能
迷宫式压缩机
非接触式密封
. 无活塞环、支撑环等易损件
压缩气体不含油无污染
特点
加工制造精度高 活塞运动过程无磨损、运行可靠
整机无泄漏
PE排放气压缩机工艺流程
介质:丁烯、异戊烷、氮气、乙烯
. 过滤器
一级入口 冷却器 一级入口分 离器 二级 压缩 二级出口 分离器 一级入 口缓冲罐 一级 压缩 一级出口 缓冲罐
.
基本结构及各部件作用
.
十字头:十字头是连 接作摇摆运动的连杆 与作往复运动的活塞 杆的构件,具有导向 作用。将回转运动转 化为往复直线运动的 关节。十字头与活塞 杆的连接型式分为螺 纹连接、联接器连接、 法兰连接等。
基本结构及各部件作用
.
十字头与活塞杆的连接型式分为螺纹 连接、联接器连接、法兰连接等。螺纹连 接结构简单,易调节气缸中的止点间隙。 活塞杆头部是一段螺纹,十字头的连接处 本身没有螺纹,是通过两个螺母将活塞杆 锁死,再由螺母上的台阶与十字头之间的 紧配合实现定心的。十字头与滑道的配合 间隙对活塞杆的导向定心有很大的影响, 所以,在十字头安装前,先要测量十字头 与滑道的径向间隙和贴合面积,并做好记 号。
基本结构及各部件作用

布克哈德迷宫压缩机PPT精选文档

布克哈德迷宫压缩机PPT精选文档

法兰连接等。
29
基本结构及各部件作用
十字头与活塞杆的连接型式分为螺纹
连接、联接器连接、法兰连接等。螺纹连
接结构简单,易调节气缸中的止点间隙。
.
活塞杆头部是一段螺纹,十字头的连接处
本身没有螺纹,是通过两个螺母将活塞杆
锁死,再由螺母上的台阶与十字头之间的
紧配合实现定心的。十字头与滑道的配合
间隙对活塞杆的导向定心有很大的影响,
.
3、设备组装质量缺陷
4、设备自身缺陷
5、设备保护措施较差
15
基本结构及各部件作用
11
1 气缸
1
2 迷宫活塞
2 .
10
3 定心轴承
9
4 机体
5 飞轮
8
6 曲轴
3
7
7 连杆
6
8 十字头
4
9 活塞杆
5
10 填料
11 气阀
16
基本结构及各部件作用
.
17
基本结构及各部件作用
机体:包括机身、机座、 曲轴箱等部件。机体一般采用 高.强度灰铸铁(HT20-40)铸成 一个整体,是支承气缸套、曲 轴连杆机构及其它所有零部件 重量并保证各零部件之间具有 正确的相对位置的本体。
35
基本结构及各部件作用
活塞及活 塞杆作用
36
基本结构及各部件作用
填料函:石墨制径向浮动和自定中心的迷宫密封环(无油润滑), 密封环装在不锈钢密封腔内,下端装有漏气收集腔,将泄漏气送 回一级的吸入口。
37
基本结构及各部件作用
. 迷宫式压缩机填 料与活塞杆的密 封结构是非接触 式,活塞及填料 均依靠迷宫进行 密封。
12
现场开箱验货

一种轧机底座导向装置[实用新型专利]

一种轧机底座导向装置[实用新型专利]

专利名称:一种轧机底座导向装置专利类型:实用新型专利
发明人:吴茂涛
申请号:CN201721166052.1
申请日:20170913
公开号:CN207119628U
公开日:
20180320
专利内容由知识产权出版社提供
摘要:本实用新型涉及一种轧机底座导向装置,包括导向底座以及设置在导向底座上的轧机底座,所述导向底座的上端面设置V型滑槽,且导向底座靠上端的两侧壁面上设置连接孔,所述导向底座上端部设置限位挡块,且限位挡块上设置连接通槽,所述轧机底座的前端面设置与导向底座上端面平行的导向固定板,所述导向固定板前端穿过连接通槽,且导向固定板上设置若干排平行布置的位置固定孔,所述限位挡块上端面设置与连接通槽连通的固定插接孔。

本实用新型具有导向性好,可防止跳动偏移,且可方便进行位置定位锁牢,保证不间断生产,确保生产效率。

申请人:吴茂涛
地址:250101 山东省济南市高新区舜华路1969号山东省冶金设计院股份有限公司
国籍:CN
更多信息请下载全文后查看。

轴流式压缩机结构原理

轴流式压缩机结构原理

轴流式压缩机结构原理概述轴流式压缩机是一种能够将气体压缩并向前推进的设备,常用于航空航天、石油化工、电力等领域。

其最大特点是高压比、适用于大气流量的压缩,同时紧凑、轻量,具有较好的动态性能和效率。

本文将着重介绍轴流式压缩机的结构原理,希望能对相关领域专业人员有所帮助。

结构轴流式压缩机由多个叶片沿着一个轴线排列而成,它们共同形成了一个紧密的旋转体结构。

通过旋转的方式将气体不断压缩,达到增加气体密度以及吸入后送出气体的效果。

在轴流式压缩机中,可分为进气段、压缩段和出气段三部分。

每个部分都具有不同的结构特点和功能。

进气段进气段的主要功能是将气体引入轴流式压缩机中,并根据需要给气体增加高压力的动能。

进气段通常由导向叶和进气流道组成,其位置与传递热负载和摩擦力有密切关系。

进气段的结构需要考虑到降低气体漏失、增强气体进口稳定性以及确定气体进口位置。

压缩段压缩段是轴流式压缩机的关键部分,它可以将来自进气段的气体压缩,并增加气体能量。

主要的压缩结构包括驱动叶和工作叶,分别用于传递气体动能和增加气体压力。

作为压缩段的核心,驱动叶的数量和结构参数直接影响轴流式压缩机流量、压比以及效率等性能。

出气段出气段通常由导向叶、出气通道及出气口组成,其形状对气体的压力和速度分布有着重要的影响。

出气段结构的设计需要考虑到减小气体漏失、增强气体出口的平稳性及提高排气效率等因素。

原理轴流式压缩机的工作原理是利用机械能将气体压缩,压缩后的气体动能增加,同时面对本征能量损耗、排气压力以及泄漏等问题时还需要付出一些基本功。

在压缩机内部,叶片在转动时可将气体的动能转化为机械能,从而达到气体的压缩效果。

在叶片和基座间分别配置了定子或主动叶片,良好的设计可以将气体循环压缩,增加气体密度并提高气体相似程度。

轴流式压缩机的结构原理是我们了解其工作原理和性能的基础。

压缩机的结构由进气段、压缩段和出气段组成,关键部件是驱动叶和工作叶,叶片数量和结构参数对性能影响巨大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种压缩机箱体与底座的导向结构
随着工业领域的不断发展,压缩机在各个领域中都扮演着重要的角色。

在压缩机的使用过程中,对其稳定性和安全性要求越来越高,而箱体
与底座的结构设计则十分关键。

为了解决这一问题,我们研发了一种
新型的压缩机箱体与底座的导向结构,该结构不仅能够提高压缩机的
稳定性和安全性,还能够简化安装过程,减少生产成本,提高生产效率。

本文将详细介绍该导向结构的设计原理、结构特点、优势和应用前景
等内容,希望能够引起业内同行的关注和重视。

一、设计原理
1.1 结构设计思路
传统的压缩机箱体与底座结构多采用螺栓连接的方式,虽然能够实现
固定,但存在安装复杂、维护困难等问题。

我们通过对传统结构进行
改进,设计出一种新型的导向结构。

1.2 导向结构设计
我们采用了导向销和导向梁的结构设计,通过将箱体底部的导向销与
底座上的导向槽相配合,实现了箱体的固定,同时导向梁的设置能够有效分散重力,提高整体稳定性。

1.3 导向原理分析
导向销和导向槽的配合能够有效限制箱体的水平移动,而导向梁则可以分散箱体的重力,使得箱体与底座之间形成良好的支撑关系,从而提高了整体的稳定性和安全性。

二、结构特点
2.1 简化安装过程
新型的导向结构采用了导向销和导向槽的设计,使得箱体可以很容易地嵌入到底座的槽中,安装过程更加简便快捷。

2.2 提高稳定性和安全性
通过导向梁的设置,能够有效分散箱体的重力,使得整个结构更加稳定,减少了箱体的倾斜和晃动,提高了使用安全性。

2.3 降低生产成本
新型的导向结构简化了安装过程,减少了螺栓等连接件的使用,减少了生产成本,提高了生产效率。

2.4 便于维护和维修
结构设计合理,箱体与底座之间的连接更加稳固,减少了零部件的磨损,降低了维护和维修成本。

三、优势和应用前景
3.1 优势
新型的导向结构不仅提高了压缩机的稳定性和安全性,同时也简化安装过程,降低了生产成本,提高了生产效率。

在工业领域中具有广泛的应用前景。

3.2 应用前景
新型导向结构可以广泛应用于各种类型的压缩机箱体与底座之间的连接,如空压机、制冷压缩机等,为相关企业带来更好的生产效益。

新型的压缩机箱体与底座的导向结构在工业应用中具有重要的意义。

我们相信,随着相关领域的不断发展,这一结构将会得到更广泛的应用,为压缩机行业的发展带来新的机遇和挑战。

相关文档
最新文档