2019届高考理科理数学第一轮知识点总复习测试题58

合集下载

2019届高考理科数学第一轮总复习课件1.ppt

2019届高考理科数学第一轮总复习课件1.ppt

2x 1
2x 1
2x 1
1
x
1 2
x
2
1
1, 2
2
• 因为 x 1所,以 x 1 0,
21 2
1
• 所以 x 1 2 2(1 x)? 2 2,
2 x1
2 1x
2
2
8
·高中总复习(第1轮)·理科数学 ·全国版
1
x
1 2
2, x1
• 当且仅x 当1 2
2
2
• 即 y 2 时1等,号成立.
·高中总复习(第1轮)·理科数学 ·全国版
第二章 函数 第 3讲
函数的值域 (第二课时)
1
·高中总复习(第1轮)·理科数学 ·全国版
• 专题四:用不等式法求函数的值域

1. 求y 下2列x2 函 x数1的 x值域12:;

(1)
2x 1

(2)
y 1 sinx . 2 cosx
2
·高中总复习(第1轮)·理科数学 ·全国版
20
·高中总复习(第1轮)·理科数学 ·全国版
• (原创)关于x的不等式 2]上有解,
• 求a的取值范围.
x 1 a x 在区间[1,
21
·高中总复习(第1轮)·理科数学 ·全国版

构造函数 f (x) x 1 ,x [1,2],
•则
x 1 (1 x)(1 x)
• 当x∈f '([x)1,12]x2 时 ,f ′x(x2 )<0,

• 因为 • 所以 • 所以
(1) y 2x2 x 1 x(2x 1) 1 x 1
2x 1 1 2x 1
2x 1
x

2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)

2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)

绝密★启用前六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。

粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。

如果无误,请将条形码粘贴在答题卡的对应位置。

万一粘贴不理想,也不要撕下来重贴。

只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。

2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。

如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。

写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。

3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。

若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。

不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。

4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。

如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。

5 不要把文具带出考场考试结束,停止答题,把试卷整理好。

然后将答题卡放在最上面,接着是试卷、草稿纸。

不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。

请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。

6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。

14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。

听力部分考试结束时,将会有“听力部分到此结束”的提示。

听力部分结束后,考生可以开始做其他部分试题。

2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

四川省成都市第七中学2019届高三第一次诊断性检测数学(理)试题(解析版)

四川省成都市第七中学2019届高三第一次诊断性检测数学(理)试题(解析版)

2019年四川省成都七中高考数学一诊试卷(理科)一、选择题(本大题共12小题,共60.0分)1.若随机变量~,且,则A. B. C. D.【答案】A【解析】解:随机变量~,且,.故选:A.由已知结合正态分布曲线的对称性即可求解.本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.2.函数的图象大致是A. B. C. D.【答案】D【解析】解:函数的定义域为R,,故排除A,C;,当时,,可知在上为减函数,排除B.故选:D.由函数的定义域及排除A,C,再由导数研究单调性排除B,则答案可求.本题考查函数的图象及图象变换,训练了利用导数研究函数的单调性,是中档题.3.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图其中四边形是为体现直观性而作的辅助线当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为A. B. C. D.【答案】B【解析】解:根据几何体的直观图:由于直观图“牟合方盖”的正视图和侧视图完全相同时,该几何体的俯视图为有对角线的正方形.故选:B.直接利用直观图“牟合方盖”的正视图和侧视图完全相同,从而得出俯视图形.本题考查的知识要点:直观图和三视图之间的转换,主要考查学生的空间想象能力和转化能力,属于基础题型.4.设i是虚数单位,复数z满足,则z的虚部为A. 1B.C.D. 2【答案】C【解析】解:由,得,即.的虚部为.故选:C.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.执行如图的算法程序,若输出的结果为120,则横线处应填入A.B.C.D.【答案】C【解析】解:模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,执行循环体,,由题意,此时,不满足条件,退出循环,输出S的值为120.可得横线处应填入的条件为.故选:C.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出变量S的值,要确定进入循环的条件,可模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到题目要求的结果.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.设实数x,y满足,则的最大值是A. B. C. 1 D.【答案】D【解析】解:画出满足条件的平面区域,如图示:而的几何意义表示过平面区域内的点与点的连线的斜率,由,解得:,,故选:D.画出约束条件的可行域,利用目标函数的几何意义,求解即可.本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.7.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:,推不出,推不出,“”是“”的既不充分也不必要条件.故选:D.首先转化,然后根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.函数的图象的一条对称轴方程是A. B. C. D.【答案】B【解析】解:.由,得,,当时,,即函数的对称轴为,故选:B.利用两角和差的余弦公式结合辅助角公式进行化简,结合三角函数的对称性进行求解即可.本题主要考查三角函数的对称性,利用辅助角公式将函数进行化简是解决本题的关键.9.将多项式分解因式得,m为常数,若,则A. B. C. 1 D. 2【答案】D【解析】解:由,,可得:,解得,即为:,时,,故选:D.由两,通过,求出m,然后利用二项式定理求解即可.本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.10.已知正三棱锥的高为6,侧面与底面成的二面角,则其内切球与四个面都相切的表面积为A. B. C. D.【答案】B【解析】解:过顶点V做平面ABC是正三棱锥,为中心,过O做,垂足为D,连接VD,则为侧面与底面成的二面角,侧面与底面成的二面角,,,,,,.,为内切球的半径.,内切球的表面积.故选:B.过顶点V做平面ABC,过O做,垂足为D,连接VD,则为侧面与底面成的二面角,从而,分别求出OD、AB、VD的长,由此利用等体积法求解.本题考查棱锥的外接球球半径的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.11.设a,b,c分别是的内角A,B,C的对边,已知,设D是BC边的中点,且的面积为,则等于A. 2B. 4C.D.【答案】A【解析】解:,,,,,,,,故选:A.先根据正余弦定理求出,,再将,化为,后用数量积可得.本题考查了平面向量数量积的性质及其运算,属基础题.12.如果不是等差数列,但若,使得,那么称为“局部等差”数列已知数列的项数为4,记事件A:集合2,3,4,,事件B:为“局部等差”数列,则条件概率A. B. C. D.【答案】C【解析】解:由已知数列{x n}的项数为4,记事件A:集合{x1,x2,x3,x4}{1,2,3,4,5},则事件A的基本事件为:,,,,,共5个,在满足事件A的条件下,事件B:{x n}为“局部等差”数列有,共1个,即条件概率P(B|A)=,故选:C.由即时定义可得:事件A的基本事件为:,,,,,共5个,在满足事件A的条件下,事件B:{x n}为“局部等差”数列有,共1个,由条件概率可得:P(B|A)=,得解.本题考查了对即时定义的理解及条件概率,属中档题.二、填空题(本大题共4小题,共20.0分)13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为______.【答案】12【解析】解:高中部女教师有6人,占,则高中部人数为x,则,得人,即抽取高中人数15人,则抽取初中人数为人,则男教师有人故答案为:12根据高中女教师的人数和比例,先求出抽取高中人数,然后在求出抽取初中人数即可得到结论.本题主要考查分层抽样的应用,根据人数比例以及男女老少人数比例建立方程关系是解决本题的关键.14.设抛物线C:的焦点为F,准线为l,点M在C上,点N在l上,且,若,则的值为______.【答案】3【解析】解:根据题意画出图形,如图所示;抛物线,焦点,准线为;设,,则,解得,;,,又,,解得.故答案为:3.根据题意画出图形,结合图形求出抛物线的焦点F和准线方程,设出点M、N的坐标,根据和求出的值.本题考查了抛物线的方程与应用问题,也考查了平面向量的坐标运算问题,是中档题.15.设,,c为自然对数的底数,若,则的最小值是______.【答案】【解析】解:,,则,即,由基本不等式得,则,当且仅当,即当时,等号成立,因此,的最小值为.故答案为:.利用定积分计算出,经过配凑得出,将代数式与代数式相乘,利用基本不等式可得出的最小值.本题考查定积分的计算,同时也考查了利用基本不等式求最值,解决本题的关键在于对代数式进行合理配凑,考查计算能力,属于中等题.16.若函数有三个不同的零点,则实数a的取值范围是______.【答案】【解析】解:由题意函数可知:函数图象的左半部分为单调递增指数函数的部分,有一个零点,函数图象的右半部分为开口向上的3次函数的一部分,必须有两个零点,,,如上图,要满足题意:,,可得,解得.综合可得,故答案为:.由题意可得需使指数函数部分与x轴有一个交点,3次函数的图象由最小值并且小于0,x大于0的部分,只有两个交点.本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.三、解答题(本大题共7小题,共82.0分)17.正项等比数列中,已知,.Ⅰ求的前n项和;Ⅱ对于Ⅰ中的,设,且,求数列的通项公式.【答案】解:Ⅰ正项等比数列的公比设为q,已知,,可得,,解得,,即;Ⅱ,且,可得.【解析】Ⅰ正项等比数列的公比设为q,运用等比数列的通项公式,解方程可得首项和公比,即可得到所求求和;Ⅱ由,结合数列的分组求和和等比数列的求和公式,计算可得所求和.本题考查等比数列的通项公式和求和公式的运用,考查数列的恒等式和求和方法:分组求和,考查方程思想和运算能力,属于基础题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q镇~年梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:Ⅰ“梅实初黄暮雨深”假设每年的梅雨天气相互独立,求Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率;Ⅱ“江南梅雨无限愁”在Q镇承包了20亩土地种植杨梅的老李也在犯愁,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量亩与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为元,请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?需说明理由【答案】解:Ⅰ频率分布直方图中第四组的频率为,则江南Q镇在梅雨季节时降雨量超过350mm的概率为,所以Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率为或;Ⅱ根据题意,总利润为元,其中,700,600,400;所以随机变量万元的分布列如下图所示;则总利润万元的数学期望为万元,因为,所以老李来年应该种植乙品种杨梅,可使总利润的期望更大.【解析】Ⅰ由频率分布直方图计算对应的频率,利用频率估计概率,求出对应的概率值;Ⅱ根据题意计算随机变量的分布列和数学期望,比较得出结论和建议.本题考查了频率分布直方图和离散型随机变量的分布列应用问题,是中档题.19.已知椭圆的离心率为,且经过点.Ⅰ求椭圆的标准方程;Ⅱ设O为椭圆的中心,点,过点A的动直线l交椭圆于另一点B,直线l上的点C满足.,求直线BD与OC的交点P的轨迹方程.【答案】解:Ⅰ椭圆的离心率,且,,,椭圆的标准方程为,Ⅱ设直线l的方程为当t存在时,由题意,代入,并整理可得,解得,于是,即,设,,解得,于是,,,,,,直线BD与OC的交点P的轨迹是以OD为直径的圆除去O,D两点,轨迹方程为,即,【解析】Ⅰ根据椭圆的离心率和,即可求出椭圆的方程,Ⅱ设直线l的方程为当t存在时,由题意,代入,并整理可得,求出点B的坐标,根据向量的运算求出点C的坐标,再根据向量的运算证明,即可求出点P的轨迹方程本题考查直线与椭圆的位置关系的综合应用,椭圆的方程的求法,考查转化思想以及计算能力,函数与方程的思想的应用.20.如图,在多面体ABCDE中,AC和BD交于一点,除EC以外的其余各棱长均为2.Ⅰ作平面CDE与平面ABE的交线l并写出作法及理由;Ⅱ求证:平面平面ACE;Ⅲ若多面体ABCDE的体积为2,求直线DE与平面BCE所成角的正弦值.【答案】解:Ⅰ过点E作或的平行线,即为所求直线l.理由如下:和BD交于一点,,B,C,D四点共面,又四边形ABCD边长均相等,四边形ABCD为菱形,从而,又平面CDE,且平面CDE,平面CDE,平面ABE,且平面平面,.证明:Ⅱ取AE的中点O,连结OB,OD,,,,,,平面OBD,平面OBD,,又四边形ABCD是菱形,,又,平面ACE,又平面BDE,平面平面ACE.解:Ⅲ由多面体ABCDE的体积为2,得,,设三棱锥的高为h,则,解得,,平面ABE,以O为原点,OB为x轴,OE为y轴,OD为z轴,建立如图所示的空间直角坐标系,则,0,,0,,1,,1,,1,,1,,设平面BCE的法向量y,,则,取,得,设直线DE与平面BCE所成角为,则.直线DE与平面BCE所成角的正弦值为.【解析】Ⅰ过点E作或的平行线,即为所求直线由AC和BD交于一点,得A,B,C,D四点共面,推导出四边形ABCD为菱形,从而,进而平面CDE,由此推导出.Ⅱ取AE的中点O,连结OB,OD,推导出,,从而平面OBD,进而,由四边形ABCD是菱形,得,从而平面ACE,由此能证明平面平面ACE.Ⅲ由,得,求出三棱锥的高为,得平面ABE,以O为原点,OB为x轴,OE为y轴,OD为z轴,建立如图所示的空间直角坐标系,利用向量法能求出直线DE与平面BCE 所成角的正弦值.本题考查两平面的交线的求法,考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.已知函数,其中a为常数.Ⅰ若曲线在处的切线在两坐标轴上的截距相等,求a之值;Ⅱ若对,都有,求a的取值范围.【答案】解:Ⅰ函数的导数为,由题意可得,,可得切线方程为,即有,解得;Ⅱ若对,,在递减,当时,,在递减,,由恒成立,可得,与矛盾;当时,,在递增,可得即,由恒成立,可得且,可得;当时,,,且在递减,可得存在,,在递增,在递减,故,由恒成立,可得,,可得,又的最大值为,由,,可得,设,,,可得在递增,即有,即,不等式恒成立,综上可得a的范围是.【解析】Ⅰ求得的导数,可得切线的斜率和切点,由题意可得a的方程,解方程可得a;Ⅱ若对,,在递减,讨论,,,结合函数的单调性和不等式恒成立思想,以及函数零点存在定理,构造函数法,即可得到所求范围.本题考查导数的运用:求切线方程和单调性、极值和最值,考查函数零点存在定理和分类讨论思想方法,以及各种函数法,考查化简整理的运算能力,属于难题.22.在平面直角坐标系xOy中曲线C的参数方程为其中t为参数在以O为极点、x轴的非负半轴为极轴的极坐标系两种坐标系的单位长度相同中,直线l的极坐标方程为.Ⅰ求曲线C的极坐标方程;Ⅱ求直线l与曲线C的公共点P的极坐标.【答案】解:Ⅰ平面直角坐标系xOy中曲线C的参数方程为其中t为参数,曲线C的直角坐标方程为,,将,代入,得曲线C的直角坐标方程为,,将,代入,得,曲线C的极坐标方程为Ⅱ将l与C的极坐标方程联立,消去,得,,,,方程的解为,即,代入,得,直线l与曲线C的公共点P的极坐标为【解析】Ⅰ由曲线C的参数方程求出曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.Ⅱ将l与C的极坐标方程联立,得,从而,进而方程的解为,由此能求出直线l与曲线C的公共点P的极坐标.本题考查曲线的极坐标方程的求法,考查直线与曲线的公共点的极坐标的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,且a,b,.Ⅰ若,求的最小值;Ⅱ若,求证:.【答案】解:Ⅰ由柯西不等式可得,当且仅当时取等号,即;,即的最小值为.证明:Ⅱ,,故结论成立【解析】Ⅰ根据柯西不等式即可求出最小值,Ⅱ根据绝对值三角不等式即可证明.本题考查了柯西不等式和绝对值三角形不等式,考查了转化和化归的思想,属于中档题.。

2019届高考理科数学一轮复习专题演练:专题2.3基本初等函数(含解析)

2019届高考理科数学一轮复习专题演练:专题2.3基本初等函数(含解析)

专题2.3基本初等函数【三年咼考】4 2 11. 【2019高考新课标3理数】已知a =2空,b=45, c=25',则( )(A) b ::: a :::c ( B) a ::: b ::: c (C) b :::c ... a(D) c ... a::: b【答案】A4 2 2 1 2 2【解析】因为a= 23=4345= b,c = 253= 53• 43= a,所以b :.a ::: c,故选A.5 b a2. 【2019 高考浙江理数】已知a>b>1.若log a b+log b a=—, a =b ,贝U a= , b=.2 --- ----------【答案】4 2【强忻】设log/三匕则r Al,因为F —==斗n r = 2 n 口■扩,因此扌三扩=> 卩=户=>2&=罗nb三2卫=4.3. [2019高考上海理数】已知点(3,9)在函数f(x)=1,a x的图像上,贝Uf (x)的反函数f」(x) = _________ .【答案】log2(x -1)【解析】将点(3,9)带入函数f x = 1 • a x的解析式得a = 2,所以f x =1 2x,用y表示x 得x = log2(y -1),所以f x = log2(x -1).4. [2019高考天津理数】已知函数f (x) = x (4^3)x 3a,^ 0,( a>0,且a z 1)在R[log a(x+1) + 1,x^0上单调递减,且关于x的方程I f(x)戶2 -x恰好有两个不相等的实数解,则a的取值范围是( )2 23 1 2 3 1 2 3(A) (0, ] (B) [―,—] ( C) [―,]_{ —} (D)[―,)【」{—}3 34 3 3 4 3 3 4【答案】C的实数解,可皿闰-S 扫弓又a = -B 寸』抛物线p = F+(4o —3找+%与直线 41 j 3=2-工相切,也符合题童…I 实数立的去范围是[-f -]U{-},故选C3 3 45.【2019高考上海理数】已知 a ・R ,函数f(x) =log 2(〕 a).x(1)当a = 5时,解不等式f (x) • 0 ;(2)若关于x 的方程f (x) - log?" -4)x • 2a - 5] =0的解集中恰好有一个元素,求a 的取 值范围;1(3)设a ■ 0,若对任意t [^,1],函数f (x)在区间[t,t 1]上的最大值与最小值的差不超过1,求a 的取值范围. 【解析】(1)由log 2 1 50,得1 5 1,解得x l x丿 x\(2) 1 a 二 a -4 x 2a -5, a —4 x 2a — 5 x -1 =0,当 a = 4 时,x = -1,经检x1验,满足题意.当a = 3时,x^ x 2 - -1,经检验,满足题意.当a = 3且a = 4时,x^a — 4x^ -1,x 广x 2. x 1是原方程的解当且仅当丄• a • 0 ,即a 2 ; x 2是原方程的解当且仅1当一,a ・0,即a 1 •于是满足题意的a ・1,2 1.综上,a 的取值范围为1,2 1U :3,4?.x2【解析】宙/■&)在丘上递减可知由方程|/(x)|=2 3 4-工恰好有两个不相等,所以f x 在0, •::上单调递减•函数 f x 在区间lt,t 1 1上的最大值与最小值分别为 f t ,f t -f t 1 二呃 J a-log2 丄a <1 即at2 a 1 t-1-0, It +1 丿对任意-1,1 成立.因为a 0,所以函数y=a「am在区间1,1上单调递增,1 3 1 3 12 2t 时,y有最小值—a ,由一a 0,得a .故a的取值范围为,■::.2 4 2 4 23 IL36. 【2019高考四川,理8】设a,b都是不等于1的正数,则“ 3a. 3b. 3 ”是“log a 3 :::log b 3 ”的()(A)充要条件(B)充分不必要条件(C必要不充分条件(D)既不充分也不必要条件【答案】B【解析】若3">3*>3,则Q—从而有1昭/<嗨异,故为充耸条件一若106,3<lo gi3不一定有比如4 =丄上二务从而3J>3*>3不成立”故选B37. 【2019高考北京,理7】如图,函数f x的图象为折线ACB,则不等式f x > log2 x 1的解集是()A. 〈x|—1:::x w 0? B .〈x|—1 w x w 1? C.〈x|—1:::x < 1 D .〈x | —1 ::: x < 2【答案】C【解析】如图所示,把函数y二log2x的图象向左平移一个单位得到y二log 2(x 1)的图象x - 1时两图象相交,不等式的解为-1 :::x < 1,用集合表示解集选C8. 【2019高考天津,理7】已知定义在R上的函数f x =2x^ -1 (m为实数)为偶函数,记 a = f (log °.53),b = f (log ? 5 ),c = f (2m ),则 a,b,c 的大小关系为()(A ) a ::: b ::: c (B ) a ::: c ::: b (C ) c ::: a ::: b (D ) c ::: b ::: a 【答案】C【解析】因为函数f x i ;=2x R _1为偶函数,所以m = o ,即f x i ; = 2x -1,所以b = f log ? 5 二 2log 25 一1 = 4,c 二 f 2m 二 f (0) = 2。

2019届高三一轮复习第一阶段测评考试数学(理)试题(PDF版)答案1

2019届高三一轮复习第一阶段测评考试数学(理)试题(PDF版)答案1

象关 于 坐 标 原 点 对 称, 排除 D ; 又 当 x>0时, ᶄ= y - 4 l n 2 , 则函数在( , 上单调递减, 排除 0 0 +ɕ) x -x 2 < ( ) - 2 2 , 故选 A B和 C . 利用函数的奇偶性、 单调性等性质, 结合排除法求解 . 全能解析】 本题考查函数的构造、 导数的应用 . 由 1 0 . C 【 1 ( ) 可得[ ( ) ] ( ) , 即 y x l n x >0 f x l n x f x +f ᶄ ᶄ>0 = x ( ) , 上单调递增, 当 x 时, ( ) f x l n x在( 0 +ɕ) =1 f 1 > 1 , 显然有 f ( ) ; 当 x 时, 不妨设 x 0 x +f >0 > ≠1 x 1 1 1 1 ( ) , , 则 x f x l n x >f l n =-f l n x 1 > , x x x x 1 , 同 理, 也有 也有 f ( )+ f >0 0< x<1时, x x 1 , 故选 C ( ) > 0 . f x +f x 【 超级链接 · 拓展】 函数的常见构造: ( ) ( ) x f x +k f x > 0 ᶄ k ( ) 化为[ ( ) ·x , ] ( )- k ( ) x >0 f x ᶄ>0 x f ᶄ x f x >0 ( ) f x , ( ) ( ) 化为[ ( ) · ( ) 化为 > 0 f ᶄ x +k f x > 0 f x x > 0 k ᶄ x ( ) f x k x , ] ( ) ( ) 化为 ᶄ > 0 f ᶄ > 0 . e x -k f x > 0 k x ᶄ e 全能解析】 本题考查函数的周期性、 求函数值 . 令 1 1 . C 【 , 由f ( ) ·f ( ) 得 f ( ) ·f ( ) 2 x =t 2 x 2 x +4 =-1 t t +4 = , 即f ( ) ·f ( ) , 所以 f ( ) ( ) , - 1 t + 4 t + 8 =- 1 t =f t +8 所以 f ( ) 的周期为 8 , 所以 f ( )+f ( )= x 20 1 6 20 1 7 ( ) ( ) , 又 f ( ) , 且 f ( ) ( ) f 0 +f 1 =- 1 -1 =1 1 +f -1 = a , ( )=a , 所以 a-1 , 所以 a=0 , 故 a 2 f 0 + = -1 2 选C . 【 超级链接 · 拓展】 利用周期函数的定义有: 若f ( ) x = ( ) , 则周期 T=| ; 若 f ( ) ( ) , 则 f x +a a | x =-f x +a 周期 T= ; 若 f ( ) ·f ( ) ( 为常数) , 则 2 | a | x x +a =b b 周期 T= 结合函数性质有: ( ) 的图 2 | a | . =f x ①若 y 象有两条对称轴 x , ( ) , 则y ( ) 是 =a x =b a =f x ≠b 周期函数, 且一个周期为 T= ; ( ) 2 | a -b | =f x ②若 y 的图象有两个对称中心 A ( , ) , ( , ) ( ) , 则 a 0 B b 0 a ≠b ( ) 是周期函数, 且一个周期为 T= ; y =f x 2 | a -b | ③如 果函数 y ( ) 的图象有一个对称中心 A ( , ) 和一 =f x a 0 条对称轴 x ( ) , 则函数 y ( ) 是周期函 =b a =f x ≠b 数, 且一个周期为 T= 4 | a -b | . 全能解析】 本题考查函数的图象、 导数与最值关 1 2 . D 【 x ( ) ( 系. ) ( ) , 则当 0 时, 函 x =x e f ᶄ - 2 x >0 <x <l n 2 数f ( ) 单调递减; 当x 时, 函数 f ( ) 单调递增, x >l n 2 x 2 ( ) ) , 于是由题意, 得 故f ( ) l n 2 =a-( l n 2 -1 x m i n =f 2 2 ( )> , 得 a ( ), 故选 D 0 > l n 2 - 1 a - l n 2 - 1 . 【 超级链接·反三】 求解函数的零点通常考虑: ( ) 转 1 化为方程的根, 通过解方程求解; ( ) 构造新函数结 2 合函数的单调性, 结合零点存在性定理求解, 注意利 用导数判断函数的单调性; ( ) 转化为两个函数, 直 3 观观察两个函数图象的交点情况进行求解 .

2019年高考(理科)数学总复习综合试题(一)含答案及解析

2019年高考(理科)数学总复习综合试题(一)含答案及解析

绝密 ★ 启用前2019年高考(理科)数学总复习综合试题(一)总分:150分,时间:120分钟注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12个小题,每小题5分,共60分. 1.在复平面内,复数z =cos 3+isin 3(i 为虚数单位),则|z |为( ) A .1 B .2 C .3D .42.|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .⎝⎛⎭⎫12,+∞D .⎝⎛⎭⎫0,12 3.已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,则该双曲线的渐近线方程为( )A .x -2y =0B .2x -y =0C .2x ±y =0D .x ±2y =04.执行如图所示的程序框图,若输入的n 的值为5,则输出的S 的值为( )此卷只装订不密封级 姓名 准考证号 考场号 座位号A.17 B.36C.52 D.725.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了() A.60里B.48里C.36里D.24里6.函数f(x)=(cos x)·ln |x|的大致图象是()7.如图,半径为5 cm的圆形纸板内有一个相同圆心的半径为1 cm的小圆,现将半径为1 cm 的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )A .12B .2125C .14D .348.如图,正四面体A -BCD 中,E 、F 分别是棱BC 和AD 的中点,则直线AE 和CF 所成的角的余弦值为( )A .13B .23C .14D .349.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1x +y ≤3y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A .14B .12C .1D .210.在△ABC 中,BC =6,AB =2,1+tan A tan B =2ABAC ,则AC =( )A .6-1B .1+ 6C .3-1D .1+ 311.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D . 2x -y +5=012.设函数f (x )满足xf ′(x )+f (x )=ln x x ,f (e)=1e,则函数f (x )( )A .在(0,e)上单调递增,在(e ,+∞)上单调递减B .在(0,+∞)上单调递增C .在(0,e)上单调递减,在(e ,+∞)上单调递增D .在(0,+∞)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.在二项式⎝ ⎛⎭⎪⎪⎫3x -123x 6的展开式中,第四项的系数为________. 14.设S n 是数列{a n }的前n 项和,2S n +1=S n +S n +2(n ∈N *),若a 3=3,则a 100=______. 15.已知向量|a |=2,b 与(b -a )的夹角为30°,则|b |最大值为________.16.设点M ,N 是抛物线y =ax 2(a >0)上任意两点,点G (0,-1)满足GN →·GM →>0,则a 的取值范围是_________.三、解答题:17.(12分)已知数列{a n }的前n 项和为S n ,且⎩⎨⎧⎭⎬⎫S n n +1是首项和公差均为12的等差数列.(1)求数列{a n }的通项公式;(2)若b n =a 2n +1+a 2n +2a n +1·a n +2,求数列{b n }的前n 项和T n .18.(12分)2017年省内事业单位面向社会公开招聘工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于90分的才有资格参加面试,90分以下(不含90分)则被淘汰.现有2 000名竞聘者参加笔试,参加笔试的成绩按区间[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其频率分布直方图如下图所示(频率分布直方图有污损),但是知道参加面试的人数为500,且笔试成绩在[50,110)的人数为1 440.(1)根据频率分布直方图,估算竞聘者参加笔试的平均成绩;(2)若在面试过程中每人最多有5次选题答题的机会,累计答题或答错3题即终止答题.答对3题者方可参加复赛.已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响.若他连续三次答题中答对一次的概率为964,求面试者甲答题个数X的分布列和数学期望.19.(12分)如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线P A与CD所成角等于60°.(1)求证:平面PCD⊥平面PBD;(2)求直线CD和平面P AD所成角的正弦值;(3)在棱P A上是否存在一点E,使得平面P AB与平面BDE所成锐二面角的正切值为5?若存在,指出点E的位置,若不存在,请说明理由.20.(12分)如图,已知椭圆x2a2+y2b2=1(a>b>0)的左右顶点分别是A(-2,0),B(2,0),离心率为22.设点P (a ,t )(t ≠0),连接P A 交椭圆于点C ,坐标原点是O .(1)证明:OP ⊥BC ;(2)若三角形ABC 的面积不大于四边形OBPC 的面积,求|t |的最小值.21.(12分)已知函数f (x )=2x -(x +1)ln x ,g (x )=x ln x -a x 2-1. (1)求证:对∀x ∈(1,+∞),f (x )<2;(2)若方程g (x )=0有两个根,设两根分别为x 1、x 2,求证:ln x 1+ln x 22>1+2x 1x 2.以下两题请任选一题: [选修4-4:坐标系与参数方程]22.(10分)已知直线l 的参数方程为⎩⎨⎧x =mty =3t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=4,直线l 过曲线C的左焦点F .(1)直线l 与曲线C 交于A ,B 两点,求|AB |; (2)设曲线C 的内接矩形的周长为c ,求c 的最大值.[选修4-5:不等式证明选讲]23.(10分)已知函数f (x )=9sin 2x +4cos 2x ,x ∈⎝⎛⎭⎫0,π2,且f (x )≥t 恒成立. (1)求实数t 的最大值;(2)当t 取最大时,求不等式⎪⎪⎪⎪x +t5+|2x -1|≤6的解集.2019年高考(理科)数学总复习综合试题(一)答案及解析一、选择题:本大题共12个小题,每小题5分,共60分. 1.在复平面内,复数z =cos 3+isin 3(i 为虚数单位),则|z |为( ) A .1 B .2 C .3D .4解析:|z |=cos 23+sin 23=1.故选A . 答案:A2.|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .⎝⎛⎭⎫12,+∞ D .⎝⎛⎭⎫0,12 解析:由不等式|x |(1-2x )>0可得 x ≠0,且1-2x >0,求得x <12,且x ≠0,故选A .答案:A3.已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,则该双曲线的渐近线方程为( )A .x -2y =0B .2x -y =0C .2x ±y =0D .x ±2y =0解析:双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,可得c a =3,即a 2+b 2a 2=3,可得b a =2.则该双曲线的渐近线方程为x ±2y =0.故选D . 答案:D4.执行如图所示的程序框图,若输入的n 的值为5,则输出的S 的值为( )A . 17B .36C .52D .72解析:根据程序框图可知k =1,S =0,进入循环体后,循环次数、S 的值、k 的值的变化情况为:所以输出的S 的值为72.故选D .5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了( )A .60里B .48里C .36里D .24里解析:记每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得:a 1=192,∴a 4=192×123=24,a 5=192×124=12,此人第4天和第5天共走了24+12=36里.故选C .答案:C6.函数f (x )=(cos x )·ln |x |的大致图象是( )解析:函数f (x )=(cos x )·ln |x |是偶函数,排除C ,D . 当x =π6时,f ⎝⎛⎭⎫π6=32·ln π6<0.排除A ,故选B . 答案:B7.如图,半径为5 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆,现将半径为1 cm 的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )A .12B .2125C .14D .34解析:记“硬币落下后与小圆无公共点”为事件A ,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π,无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2 cm ,以纸板的圆心为圆心,作一个半径2 cm 的圆,硬币的圆心在此圆外面,则硬币与半径为1 cm 的小圆无公共交点.所以有公共点的概率为416,无公共点的概率为P (A )=1-416=34,故选D .答案:D8.如图,正四面体A -BCD 中,E 、F 分别是棱BC 和AD 的中点,则直线AE 和CF 所成的角的余弦值为( )A .13B .23C .14D .34解析:连接BF 、EF ,∵正四面体A -BCD 中,E 、F 分别是棱BC 和AD 的中点,∴BF ⊥AD ,CF ⊥AD ,又BF ∩CF =F ,∴AD ⊥面BCF ,∴AE 在平面BCF 上的射影为EF ,设异面直线AE 和CF 所成的角为θ,正四面体棱长为1,则AE =CF =32,EF =22.∵cos θ=cos ∠AEF ·cos ∠EFC ,∴cos θ=2232×2232=23.故直线AE 和CF 所成的角的余弦值为23.故选B .答案:B9.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1x +y ≤3y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A .14B .12C .1D .2解析:先根据约束条件画出可行域,如图示:z =2x +y ,将最小值转化为y 轴上的截距的最小值,当直线z =2x +y 经过点B 时,z 最小,由⎩⎪⎨⎪⎧ x =12x +y =1得:⎩⎪⎨⎪⎧x =1y =-1,代入直线y =a (x -3)得,a =12, 故选B .答案:B10.在△ABC 中,BC =6,AB =2,1+tan A tan B =2ABAC ,则AC =( )A .6-1B .1+ 6C .3-1D .1+ 3解析:∵1+tan A tan B =2AB AC ,∴sin (A +B )sin B cos A =2c b ,∴sin C sin B cos A =2c b ,∴1cos A =2,即cos A =12,A ∈(0,π),解得A =π3. 由余弦定理可得:(6)2=22+b 2-4b cos π3,∴b 2-2b -2=0,解得b =1+ 3.故选D . 答案:D11.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D . 2x -y +5=0解析:设Q (x ,y ),则P (-2-x,4-y ),代入2x -y +3=0得2x -y +5=0. 答案:D12.设函数f (x )满足xf ′(x )+f (x )=ln x x ,f (e)=1e,则函数f (x )( ) A .在(0,e)上单调递增,在(e ,+∞)上单调递减 B .在(0,+∞)上单调递增C .在(0,e)上单调递减,在(e ,+∞)上单调递增D .在(0,+∞)上单调递减解析:∵[xf (x )]′=xf ′(x )+f (x ),∴[xf (x )]′=ln x x =⎝⎛⎭⎫ln 2x 2+c ′,∴xf (x )=12ln 2x +c ,∴f (x )=ln 2x 2x +c x,∵f (e)=1e ,∴1e =12e +c e ,即c =12,∴f ′(x )=2ln x -ln 2x 2x 2-12x 2=-ln 2x -2ln x +12x 2=-(ln x -1)22x 2<0,∴f (x )在(0,+∞)为减函数.故选D . 答案:D二、填空题:本大题共4小题,每小题5分,共20分.13.在二项式⎝ ⎛⎭⎪⎪⎫3x -123x 6的展开式中,第四项的系数为________. 解析:由已知二项式得到展开式的第四项为: T 4=C 36(3x )3⎝ ⎛⎭⎪⎫-123x 3=-52. 答案:-5214.设S n 是数列{a n }的前n 项和,2S n +1=S n +S n +2(n ∈N *),若a 3=3,则a 100=______. 解析:∵S n 是数列{a n }的前n 项和,2S n +1=S n +S n +2(n ∈N *), ∴数列{S n }是等差数列,设公差为d ,可得S n -S n -1=d . ∴a 3=S 3-S 2=d =3,则a 100=S 100-S 99=d =3.故答案为3. 答案:315.已知向量|a |=2,b 与(b -a )的夹角为30°,则|b |最大值为________. 解析:以|a |,|b |为邻边做平行四边形ABCD ,设AB →=a ,AD →=b , 则BD →=b -a ,由题意∠ADB =30°,设∠ABD =θ,∵|a |=2,∴在△ABD 中,由正弦定理可得,AB sin 30°=AD sin θ,∴AD =4sin θ≤4.即|b |的最大值为4.故答案为4. 答案:416.设点M ,N 是抛物线y =ax 2(a >0)上任意两点,点G (0,-1)满足GN →·GM →>0,则a 的取值范围是_________.解析:过G 点作抛物线的两条切线,设切线方程为y =kx -1, 切点坐标为A (x 0,y 0),B (-x 0,y 0),则由导数的几何意义可知⎩⎪⎨⎪⎧y 0=ax 20y 0=kx 0-12ax 0=k ,解得k =±2a .∵GN →·GM →>0恒成立,∴∠AOB <90°, 即∠AGO <45°,∴|k |>tan45°=1,即2a >1, 解得a >14.故答案为⎝⎛⎭⎫14,+∞.答案:⎝⎛⎭⎫14,+∞ 三、解答题:17.(12分)已知数列{a n }的前n 项和为S n ,且⎩⎨⎧⎭⎬⎫S n n +1是首项和公差均为12的等差数列.(1)求数列{a n }的通项公式;(2)若b n =a 2n +1+a 2n +2a n +1·a n +2,求数列{b n }的前n 项和T n .解:(1)∵⎩⎨⎧⎭⎬⎫S n n +1是首项和公差均为12的等差数列,∴S n n +1=12+12(n -1)=n2,∴S n =n (n +1)2.∴n =1时,a 1=S 1=1;n ≥2时,a n =S n -S n -1=n (n +1)2-n (n -1)2=n .n =1时也成立.∴a n =n .(2)b n =a 2n +1+a 2n +2a n +1·a n +2=(n +1)2+(n +2)2(n +1)(n +2)=n +1n +2+n +2n +1=2+1n +1-1n +2,∴数列{b n }的前n 项和T n =2n +⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=2n +12-1n +2.18.(12分)2017年省内事业单位面向社会公开招聘工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于90分的才有资格参加面试,90分以下(不含90分)则被淘汰.现有2 000名竞聘者参加笔试,参加笔试的成绩按区间[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其频率分布直方图如下图所示(频率分布直方图有污损),但是知道参加面试的人数为500,且笔试成绩在[50,110)的人数为1 440.(1)根据频率分布直方图,估算竞聘者参加笔试的平均成绩;(2)若在面试过程中每人最多有5次选题答题的机会,累计答题或答错3题即终止答题.答对3题者方可参加复赛.已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响.若他连续三次答题中答对一次的概率为964,求面试者甲答题个数X 的分布列和数学期望.解:(1)设竞聘者成绩在区间[30,50),[90,110),[110,130)的人数分别为x ,y ,z , 则(0.017 0+0.014 0)×20×2 000+x =2 000-500,解得x =260, (0.017 0+0.014 0)×20×2 000+y =1 440,解得y =200, 0.003 2×20×2 000+200+z =500,解得z =172, 竞聘者参加笔试的平均成绩为:12 000×(260×40+200×100+172×120)+(0.014×60+0.017×80+0.003 2×140)×20=78.48(分).(2)设面试者甲每道题答对的概率为p ,则C 13p (1-p )2=964,解得p =34, 面试者甲答题个数X 的可能取值为3,4,5, 则P (X =3)=⎝⎛⎭⎫343+⎝⎛⎭⎫143=716,P (X =4)=C 13⎝⎛⎭⎫14⎝⎛⎭⎫343+C 13⎝⎛⎭⎫34⎝⎛⎭⎫142⎝⎛⎭⎫14=45128, P (X =5)=1-P (X =3)-P (X =4)=1-716-45128=27128,∴X 的分布列为:E (X )=716×3+45128×4+27128×5=483128.19.(12分)如图,在四棱锥P -ABCD 中,已知PB ⊥底面ABCD ,BC ⊥AB ,AD ∥BC ,AB =AD =2,CD ⊥PD ,异面直线P A 与CD 所成角等于60°.(1)求证:平面PCD ⊥平面PBD ;(2)求直线CD 和平面P AD 所成角的正弦值;(3)在棱P A 上是否存在一点E ,使得平面P AB 与平面BDE 所成锐二面角的正切值为5?若存在,指出点E 的位置,若不存在,请说明理由.(1)证明:∵PB ⊥底面ABCD ,∴PB ⊥CD , 又∵CD ⊥PD ,PD ∩PB =P ,PD ,PB ⊂平面PBD , ∴CD ⊥平面PBD ,∵CD ⊂平面PCD , ∴平面PCD ⊥平面PBD .(2)解:如图,以B 为原点,BA 、BC 、BP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,由(1)知△BCD 是等腰直角三角形,∴BC =4,设BP =b (b >0),则B (0,0,0),A (2,0,0),C (0,4,0),D (2,2,0),P (0,0,b ), 则P A →=(2,0,-b ),CD →=(2,-2,0), ∵异面直线P A 、CD 所成角为60°,∴cos 60°=|P A →·CD →||P A →||CD →|=44+b 2·22=12,解得b =2, ∵AD →=(0,2,0),P A →=(2,0,-2),设平面P AD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AD →=2y =0n ·P A →=2x -2z =0,取x =1,得n =(1,0,1),设直线CD 和平面P AD 所成角为θ,则sin θ=|cos 〈CD →,n 〉|=|CD →·n ||CD →||n |=22×8=12,∴直线CD 和平面P AD 所成角的正弦值为12.(3)假设棱P A 上存在一点E ,使得平面P AB 与平面BDE 所成锐二面角的正切值为5, 设PE →=λP A →(0<λ<1),且E (x ,y ,z ),则(x ,y ,z -2)=λ(2,0,-2), ∴E (2λ,0,2-2λ),设平面DEB 的一个法向量为m =(a ,b ,c ), BE →=(2λ,0,2-2λ),BD →=(2,2,0),则⎩⎪⎨⎪⎧m ·BE →=2λa +(2-2λ)c =0m ·BD →=2a +2b =0,取a =λ-1,得m =(λ-1,1-λ,λ),平面P AB 的法向量p =(0,1,0),∵平面P AB 与平面BDE 所成锐二面角的正切值为5, ∴平面P AB 与平面BDE 所成锐二面角的余弦值为66, ∴|cos 〈m ,p 〉|=|m ·p ||m ||p |=1-λ2(1-λ)2+λ2=66, 解得λ=23或λ=2(舍),∴在棱P A 上存在一点E ,使得平面P AB 与平面BDE 所成锐二面角的正切值为5,E 为棱P A 上靠近A 的三等分点.20.(12分)如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别是A (-2,0),B (2,0),离心率为22.设点P (a ,t )(t ≠0),连接P A 交椭圆于点C ,坐标原点是O .(1)证明:OP ⊥BC ;(2)若三角形ABC 的面积不大于四边形OBPC 的面积,求|t |的最小值. (1)证明:由题意可知:a =2,e =ca =1-b 2a 2=22,则b =1, ∴椭圆的标准方程:x 22+y 2=1,设直线P A 的方程 y =t22(x +2),则⎩⎨⎧x 22+y 2=1y =t22(x +2),整理得:(4+t 2)x 2+22t 2x +2t 2-8=0, 解得:x 1=-2,x 2=42-2t 24+t 2,则C 点坐标⎝ ⎛⎭⎪⎫42-2t24+t2,4t 4+t 2, 故直线BC 的斜率k BC =-2t ,直线OP 的斜率k OP =t 2, ∴k BC ·k OP =-1, ∴OP ⊥BC ;(2)解:由(1)可知:四边形OBPC 的面积 S 1=12×|OP |×|BC |=2|t ||t 2+2|t 2+4,则三角形ABC 的面积S 2=12×22×4|t |4+t 2=42|t |4+t 2,由42|t |4+t 2≤2|t ||t 2+2|t 2+4,整理得:t 2+2≥4, 则|t |≥2,∴|t |min =2,|t |的最小值2.21.(12分)已知函数f (x )=2x -(x +1)ln x ,g (x )=x ln x -a x 2-1. (1)求证:对∀x ∈(1,+∞),f (x )<2;(2)若方程g (x )=0有两个根,设两根分别为x 1、x 2,求证:ln x 1+ln x 22>1+2x 1x 2.证明:(1)∵f (x )=2x -(x +1)ln x , ∴f ′(x )=1-ln x -1x ,令h (x )=1-ln x -1x,∴h ′(x )=-1x +1x 2=1-xx 2<0,在(1,+∞)恒成立,∴h (x )在(1,+∞)单调递减, ∴h (x )<h (1)=1-ln 1-1=0,∴f (x )在(1,+∞)单调递减,∴f (x )<f (1)=2, ∴对∀x ∈(1,+∞),f (x )<2(2)由g (x )=x ln x -ax 2-1=0,得ln x -1x =ax ,于是有ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),①,两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),②, 由②可得lnx 2x 1x 2-x 1+1x 1x 2=a ,③,将③代入①可得,ln x 1x 2-x 1+x 2x 1x 2=⎝ ⎛⎭⎪⎪⎫ln x 2x 1x 2-x 1+1x 1x 2(x 1+x 2), 即ln x 1x 2-2×x 1+x 2x 1x 2=x 1+x 2x 2-x 1·ln x 2x 1,不妨设0<x 1<x 2,t =x 2x 1>1,则x 1+x 2x 2-x 1·ln x 2x 1=t +1t -1 ln t ,由(1)可得t +1t -1ln t >2,∴ln x 1x 2-2×x 1+x 2x 1x 2>2,∵ln x 1x 2-2×x 1+x 2x 1x 2<4x 1x 2x 2x 1=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x 1x 2-4x 1x 2>2,∴ln x 1x 2-2x 1x 2>1, 即ln x 1+ln x 22>1+2x 1x 2. 以下两题请任选一题:[选修4-4:坐标系与参数方程]22.(10分)已知直线l 的参数方程为⎩⎨⎧x =mty =3t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=4,直线l 过曲线C 的左焦点F .(1)直线l 与曲线C 交于A ,B 两点,求|AB |; (2)设曲线C 的内接矩形的周长为c ,求c 的最大值.解:(1)曲线C :x 24+y 2=1,∴F (-3,0),曲线C 与直线联立得13t 2-23t -1=0,方程两根为t 1,t 2,则AB =2|t 1-t 2|=1613. (2)设矩形的第一象限的顶点为(2cos θ,sin θ)⎝⎛⎭⎫0<θ<π2,所以c =4(2cos θ+sin θ)=45sin(θ+φ), 所以当sin(θ+φ)=1时,c 最大值为45. [选修4-5:不等式证明选讲]23.(10分)已知函数f (x )=9sin 2x +4cos 2x ,x ∈⎝⎛⎭⎫0,π2,且f (x )≥t 恒成立. (1)求实数t 的最大值;(2)当t 取最大时,求不等式⎪⎪⎪⎪x +t5+|2x -1|≤6的解集. 解:(1)因为f (x )=9sin 2x +4cos 2x ,x ∈⎝⎛⎭⎫0,π2,且f (x )≥t 恒成立, 所以只需t ≤f (x )min ,又因为f (x )=9sin 2x +4cos 2x =⎝⎛⎭⎫9sin 2x +4cos 2x (sin 2x +cos 2x )=13+9cos 2x sin 2x +4sin 2xcos 2x≥13+29×4=25,所以t ≤25,即t 的最大值为25.(2)t 的最大值为25时原式变为|x +5|+|2x -1|≤6, 当x ≥12时,可得3x +4≤6,解得12≤x ≤23;当x ≤-5时,可得-3x -4≤6,无解;当-5≤x ≤12时,可得-x +6≤6,可得0≤x ≤12;综上可得,原不等式的解集是⎩⎨⎧⎭⎬⎫x |0≤x ≤23.。

2019届高三理科数学一轮复习《充分条件和必要条件》专题测试

2019届高三理科数学一轮复习《充分条件和必要条件》专题测试

2019届高三理科数学一轮复习《充分条件和必要条件》一、选择题(本大题共12小题)1.若两个集合A、B是非空集合,则“AA=⋃”的()BBA=⋂”是“AA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.设,则“”是“”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件3.在中,角所对边分别为,若是钝角三角形,则p是q的()条件A. 充分非必要B. 必要非充分C. 充要条件D. 既不充分也不必要4.设{ a n}是等比数列,则“a1<a2<a3是“数列{ a n}是递增数列”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要5.若实数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.“”是“函数有零点”的()条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要7.若集合A={1,}、B={3,4}, 则“m= 2 ”是“A∩ B={4}”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.在中,角对应的边分别为.若则“”是" ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件10.若a、b、c是常数,则“a>0且b2-4 ac<0”是“对任意x∈R,有ax2+ bx+ c>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 必要条件11.“x>5”的一个必要而不充分条件是()A. B. C. D.12.“是函数在区间内单调递增”的()A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件二、填空题(本大题共4小题)13.有下列四个命题:①命题“若则互为倒数”的逆命题;②命题“面积相等的三角形全等”的否定;③命题“若则有实根”的否命题;④命题“直线和直线垂直的充要条件是”,其中是真命题的序号是_____________14.“函数在上是单调递增函数”是“函数在上是单调递增函数”的条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”);15.若<<是不等式m-1<x<m+1成立的一个充分非必要条件,则实数m的取值范围是______ .16.“”是“”的___________条件. (选填“充要”、“充分不必要”、“必要不充分”“既不充分也不必要”)三、解答题(本大题共6小题)17.命题p:实数满足,其中;命题q:实数满足或,且是的必要不充分条件,求的取值范围.18.已知集合 .(1)能否相等?若能,求出实数的值;若不能,试说明理由;(2)若命题,命题,且是充分不必要条件,求实数的取值范围 .19.已知命题:,命题:.(1)若,求实数的值;(2)若是的充分条件,求实数的取值范围.20.集合A==-+,,,B={x| x+m2≥1}.若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.21.已知p:,q:,若是的必要不充分条件,求实数m的取值范围。

2019年全国Ⅰ卷高考理科数学试题及答案详细解析

2019年全国Ⅰ卷高考理科数学试题及答案详细解析
(一)必考题:共60分。
17. 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
解:(1)
即:
由正弦定理可得:
(2) ,由正弦定理得:
又 ,
整理可得:
解得: 或
因为 所以 ,故 .
(2)法二: ,由正弦定理得:
又 ,
整理可得: ,即


考点:正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.
解:
由 知 是 的中点, ,又 是 的中点,所以 为中位线且 ,所以 ,因此 ,又根据两渐近线对称, ,所以 , .
考点: ,双曲线及其渐近线的对称性.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
A. B.
C. D.
解:由 ,得 是奇函数,其图象关于原点对称.又 .故选D.
考点:本题考查函数的性质与图象,利用函数奇偶性和特殊点即可解决这类问题.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
2019年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 ,则 =
A. B. C. D.
解: , .故选C.
考点:一元二次不等式解法,集合的交集.

2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)

2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a ⋅= ( )A.10B.20C.40D.22log 5+ 【答案】B 【解析】 试题分析:因为10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:因为112124912()6()722a a S a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D. 31 【答案】D【解析】因为)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a nS +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B【解析】依题意,83S S =可知d a d a 2883311+=+,即d a 51-=,由k S S =7得d k k ka d a 2)1(2)17(7711-+=-⨯+,将d a 51-=代入化简得028112=+-k k , 解得4=k 或7-=k (舍去),选B.7.【2019新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础知识,意在考查学生的逻辑思维能力、运算求解能力,以及转化思想的应用. 【答案】A8.【2019新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题. 【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,因为258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以2为首项,以2为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为nS 万元,则()22119109n S n n n n n =-+-=-+-()2516n =--+,因此,当5n =时,n S 取最大值16,故选B.10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的展开式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的展开式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2019浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列 C.{}n d 是等差数列 D.2{}n d 是等差数列【答案】A .【解析】设点n A 到对面直线的距离为n h ,则112n n n n+S h B B =. 由题目中条件可知1n n B B +的长度为定值,则1212n n S h B B =.那么我们需要知道n h 的关系式,过点1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了直角梯形,那11tan n n h h A A θ=+⋅,其中θ为两条线的夹角,那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-.所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2019江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 .【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2019北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________.【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 如果一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1)()61n -;(2)8.16.【2019届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】【解析】试题分析:令1(1)n a a n d =+-,则1(1)2n n n S na d -=+, 又2n n a S An Bn C +=++ 所以2211(1)22d da n d na n n An Bn C +-++-=++ 即得2d A =,12dB a =+,1C a d =- 所以11122322d d B C a a d A d d +-=++-+=+因为0A >,所以0d >232d d +≥=232d d =即d =所以1B C A+-的最小值为故答案为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2019届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】18.【2019届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】19.【2019全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和. 【答案】(1)0,1,2;(2)1893. 【解析】20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式. 【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+. 【解析】试题分析:(1) 由21()1+f x px qx=+,得2212(1)(1)1n n px qx a x a x a x +++++++=,可利用展开式含未知量的系数为0,求得2a ;(2)由已知求出数列前两项,再由(3)nx n ≥的系数为0得到数列的递推式,代入12n n n n a b a a ++=后利用裂项相消法求得数列{}n b 的前n 项和为n S ,放大后证得32n S <; (3)由(2)120n n n a pa qa --++=,因数列{}n a 是等差数列,所以1220n n n a a a ---+=,所以12(2+)(1)n n p a q a --=-对一切3n ≥都成立,然后排出数列为常数列的情况,再结合数列的前两项即可得数列{}n a 的通项公式.21.【2019年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2. (Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .(2)n=1时,2011211==b b T , n ≥2时,)321121(21)32)(12(111+-+=++=+n n n n b b n n , 所以 )32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T n n=1仍然适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n ………… (12分) 22.【2019年江西师大附中高三二模】(本小题满分12分)在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是.(Ⅰ)求1a 的值;(Ⅱ)若函数1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I );(II)32-+.【解析】 (Ⅱ)∵点在函数的图像上,∴,又∵,∴ -------------7分 如图,连接MN ,在中,由余弦定理得1a ()11,M a -1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭sin 14πφ⎛⎫-+= ⎪⎝⎭φπ<34φπ=MPN ∆。

2019届一轮复习数学(理):高考达标检测(37) 椭圆命题3角度——求方程、研性质、用关系

2019届一轮复习数学(理):高考达标检测(37)  椭圆命题3角度——求方程、研性质、用关系

高考达标检测(三十七) 椭圆命题3角度——求方程、研性质、用关系一、选择题1.如果x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,1) B .(0,2) C .(1,+∞)D .(0,+∞)解析:选A x 2+ky 2=2转化为椭圆的标准方程,得x 22+y 22k=1,∵x 2+ky 2=2表示焦点在y 轴上的椭圆, ∴2k>2,解得0<k <1. ∴实数k 的取值范围是(0,1).2.已知直线2kx -y +1=0与椭圆x 29+y 2m =1恒有公共点,则实数m 的取值范围为( )A .(1,9]B .[1,+∞)C .[1,9)∪(9,+∞)D .(9,+∞)解析:选C ∵直线2kx -y +1=0恒过定点P(0,1), 直线2kx -y +1=0与椭圆x 29+y 2m =1恒有公共点,即点P(0,1)在椭圆内或椭圆上, ∴09+1m≤1,即m ≥1, 又m ≠9,∴1≤m <9或m >9.3.椭圆x 2a 2+y 2b 2=1(a>b>0)的中心在原点,F 1,F 2分别为左、右焦点,A ,B 分别是椭圆的上顶点和右顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率为( )A.13B.12C.22D.55解析:选D 如图所示,把x =-c 代入椭圆方程x 2a 2+y 2b 2=1(a>b>0),可得P ⎝⎛⎭⎪⎫-c ,b 2a ,又A(0,b),B(a,0),F 2(c,0), ∴k AB =-b a ,kPF 2=-b 22ac,∵PF 2∥AB ,∴-b a =-b 22ac,化简得b =2c.∴4c 2=b 2=a 2-c 2,即a 2=5c 2,∴e = c 2a 2=55.4.如图,椭圆与双曲线有公共焦点F 1,F 2,它们在第一象限的交点为A ,且AF 1⊥AF 2 ,∠AF 1F 2=30°,则椭圆与双曲线的离心率之积为( )A .2 B.3 C.12D.32解析:选A 设椭圆的长轴长为2a 1,双曲线的实轴长为2a 2,焦距为2c, 由椭圆与双曲线的定义可知, |AF 1|+|AF 2|=2a 1, |AF 1|-|AF 2|=2a 2,在Rt △AF 1F 2中,∠AF 1F 2=30°, 则|AF 2|=12|F 1F 2|=c ,|AF 1|=32|F 1F 2|=3c,所以2a 1=(3+1)c,2a 2=(3-1)c ,即e 1=ca 1=23+1,e 2=c a 2=23-1,所以e 1·e 2=23+1×23-1=2,即椭圆与双曲线的离心率之积为2.5.已知P(x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的左、右焦点,若PF 1―→·PF 2―→<0,则x 0的取值范围为( )A.⎝ ⎛⎭⎪⎪⎫-263,263 B.⎝ ⎛⎭⎪⎪⎫-233,233 C.⎝ ⎛⎭⎪⎪⎫-33,33D.⎝ ⎛⎭⎪⎪⎫-63,63解析:选A ∵F 1(-3,0),F 2(3,0),∴PF 1―→·PF 2―→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3.又∵x 204+y 20=1,∴PF 1―→·PF 2―→=x 20+1-x 204-3<0,解得-263<x 0<263.6.中心为原点,一个焦点为F(0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A.2x 275+2y 225=1 B.x 275+y 225=1 C.x 225+y 275=1 D.2x 225+2y 275=1解析:选C 由已知得c =52,设椭圆的方程为x 2a 2-50+y 2a 2=1,联立得⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0, 设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=12a 2-5010a 2-450,由题意知x 1+x 2=1,即12a 2-5010a 2-450=1,解得a 2=75,所以该椭圆方程为y 275+x 225=1.二、填空题7.若F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b<1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B|,AF 2⊥x 轴,则椭圆E 的方程为________________.解析:设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2,则可设A(c ,b 2),B(x 0,y 0), 由|AF 1|=3|F 1B|,可得AF 1―→=3F 1B ―→,故⎩⎪⎨⎪⎧-2c =3x 0+c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得251-b 29+19b 2=1,解得b 2=23,故椭圆方程为x 2+3y 22=1.答案:x 2+3y 22=18.已知过点M(1,-1)的直线l 与椭圆x 24+y 23=1相交于A ,B 两点,若点M 是AB 的中点,则直线l 的方程为____________________.解析:法一:设A(x 1,y 1),B(x 2,y 2),由中点坐标公式可知:x 1+x 2=2,y 1+y 2=-2,则⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1,两式相减得:x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,则y 1-y 2x 1-x 2=-3x 1+x 24y 1+y 2=34, 所以直线AB 的斜率k =y 1-y 2x 1-x 2=34,所以直线l 的方程y +1=34(x -1),即3x -4y -7=0.法二:由点M 是AB 的中点,可设A(1+m ,-1+n), B(1-m ,-1-n),则1+m 24+-1+n 23=1,①1-m 24+-1-n 23=1,②两式相减得:m -43n =0,即n m =34,所以直线AB 的斜率k =nm =34,则直线l 的方程y +1=34(x -1),即3x -4y -7=0. 答案:3x -4y -7=09.椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过椭圆的右焦点F 2作一条直线l 交椭圆于P ,Q 两点,则△F 1PQ 内切圆面积的最大值是________.解析:因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,且△F 1PQ 的周长是定值8, 所以只需求△F 1PQ 面积的最大值. 设直线l 的方程为x =my +1,联立⎩⎪⎨⎪⎧x 24+y 23=1,x =my +1消去x ,得(3m 2+4)y 2+6my -9=0,设P(x 1,y 1),Q(x 2,y 2),则y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,于是S △F 1PQ =12|F 1F 2|·|y 1-y 2|=y 1+y 22-4y 1y 2=12m 2+13m 2+42.设m 2+1=t ,则t ≥1,即S △F 1PQ==12t 3t +12=1219t +1t+6. 因为g(t)=9t +1t 在[1,+∞)上为单调递增函数,所以g(t)≥g(1)=10,所以S△F 1PQ=≤3,所以内切圆半径r =2S△F 1PQ =8≤34, 因此△F 1PQ 内切圆面积的最大值是916π.答案:916π三、解答题10.已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,点P(-1,e)在椭圆上,e 为椭圆的离心率,且点M 为椭圆短半轴的上顶点,△MF 1F 2为等腰直角三角形.(1)求椭圆的方程;(2)过点F 2作不与坐标轴垂直的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,与椭圆相交于C ,D 两点,当F 1A ―→·F 1B ―→=λ且λ∈⎣⎢⎡⎦⎥⎤23,1时,求△F 1CD 的面积S 的取值范围.解:(1)由△MF 1F 2是等腰直角三角形,得b =c ,a 2=2c 2=2b 2,从而得到e =22,故而椭圆经过点⎝ ⎛⎭⎪⎪⎫-1,22,代入椭圆方程得12b 2+12b 2=1,解得b 2=1,a 2=2, 故所求椭圆的方程为x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0),由题意,设直线l 的方程为x =ty +1,A(x 1,y 1),B(x 2,y 2),由⎩⎪⎨⎪⎧x =ty +1,x 2+y 2=3消去x ,得(t 2+1)y 2+2ty -2=0, 则y 1+y 2=-2tt 2+1,y 1y 2=-2t 2+1,∴F 1A ―→·F 1B ―→=(x 1+1,y 1)·(x 2+1,y 2) =(x 1+1)(x 2+1)+y 1y 2 =(ty 1+2)(ty 2+2)+y 1y 2 =(t 2+1)y 1y 2+2t(y 1+y 2)+4 =-2-4t 2t 2+1+4=2-2t 2t 2+1.∵F 1A ―→·F 1B ―→∈⎣⎢⎡⎦⎥⎤23,1,∴23≤2-2t 2t 2+1≤1,解得t 2∈⎣⎢⎡⎦⎥⎤13,12. 由⎩⎪⎨⎪⎧x =ty +1,x22+y 2=1消去x ,得(t 2+2)y 2+2ty -1=0.设C(x 3,y 3),D(x 4,y 4),则y 3+y 4=-2tt 2+2,y 3y 4=-1t 2+2,∴S △F 1CD =12|F 1F 2|·|y 3-y 4|=y 3+y 42-4y 3y 4=⎝ ⎛⎭⎪⎫-2t t 2+22+4t 2+2=8t 2+1t 2+22.设t 2+1=m ,则S =8m m +12=8m +1m+2,其中m ∈⎣⎢⎡⎦⎥⎤43,32,∵S 关于m 在⎣⎢⎡⎦⎥⎤43,32上为减函数,∴S ∈⎣⎢⎢⎡⎦⎥⎥⎤435,467, 即△F 1CD 的面积的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤435,467.11.已知F 1,F 2分别是长轴长为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 1,A 2是椭圆C 的左、右顶点,P 为椭圆上异于A 1,A 2的一个动点,O 为坐标原点,点M 为线段PA 2的中点,且直线PA 2与OM 的斜率之积恒为-12.(1)求椭圆C 的方程;(2)设过点F 1且不与坐标轴垂直的直线l 交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点N ,点N 的横坐标的取值范围是⎝ ⎛⎭⎪⎫-14 ,0,求线段AB 长的取值范围.解:(1)由题意可知2a =22,则a =2,设P(x 0,y 0),∵直线PA 2与OM 的斜率之积恒为-12,∴y 02x 0+22·y 0x 0-2=-12,∴x 202+y 20=1,∴b =1,故椭圆C 的方程为x 22+y 2=1.(2)设直线l 的方程为y =k(x +1)(k ≠0),A(x 1,y 1),B(x 2,y 2),AB 的中点Q(x 0,y 0).联立⎩⎪⎨⎪⎧y =k x +1,x22+y 2=1消去y ,得(2k 2+1)x 2+4k 2x +2k 2-2=0, 则x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴x 0=-2k 22k 2+1,y 0=k(x 0+1)=k2k 2+1, ∴AB 的中点Q ⎝ ⎛⎭⎪⎫-2k 22k 2+1,k 2k 2+1, ∴QN 的直线方程为y -k2k 2+1=-1k ⎝ ⎛⎭⎪⎫x +2k 22k 2+1. 令y =0,得x =-k 22k 2+1, ∴N ⎝ ⎛⎭⎪⎫-k 22k 2+1,0,由已知得-14<-k 22k 2+1<0, ∴0<2k 2<1, ∴|AB|=1+k 2·x 1+x 22-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫-4k 22k 2+12-4×2k 2-22k 2+1=1+k 2·221+k 22k 2+1=2⎝ ⎛⎭⎪⎫1+12k 2+1. ∵12<12k 2+1<1,∴|AB|∈⎝ ⎛⎭⎪⎪⎫322 ,22, 故线段AB 长的取值范围为⎝ ⎛⎭⎪⎪⎫322 ,22. 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为22,过点D(1,0)且不过点E(2,1)的直线l 与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M.(1)求椭圆C 的方程;(2)若AB 垂直于x 轴,求直线MB 的斜率; (3)试判断直线BM 与直线DE 的位置关系,并说明理由.解:(1)由题意可得2c =22,即c =2,又e =c a =63,解得a =3, b =a 2-c 2=1,所以椭圆的方程为x 23+y 2=1.(2)由直线l 过点D(1,0)且垂直于x 轴,设A(1,y 1),B(1,-y 1),则直线AE 的方程为y -1=(1-y 1)(x -2).令x =3,可得M(3,2-y 1),所以直线BM 的斜率k BM =2-y 1--y 13-1=1.(3)直线BM 与直线DE 平行.理由如下:当直线AB 的斜率不存在时,由(2)知k BM =1.又因为直线DE 的斜率k DE =1-02-1=1,所以BM ∥DE;当直线AB 的斜率存在时,设其方程为y =k(x -1)(k ≠1),A(x 1,y 1),B(x 2,y 2),则直线AE 的方程为y -1=y 1-1x 1-2(x -2). 令x =3,得M ⎝ ⎛⎭⎪⎫3,x 1+y 1-3x 1-2, 所以直线BM 的斜率k BM =x 1+y 1-3x 1-2-y 23-x 2. 联立⎩⎪⎨⎪⎧ y =k x -1,x 2+3y 2=3消去y , 得(1+3k 2)x 2-6k 2x +3k 2-3=0,则x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k 2, 因为k BM -1=k x 1-1+x 1-3-k x 2-1x 1-2-3-x 2x 1-23-x 2x 1-2 =k -1[-x 1x 2+2x 1+x 2-3]3-x 2x 1-2=k -1⎝ ⎛⎭⎪⎫3-3k 21+3k 2+12k 21+3k 2-33-x 2x 1-2=0,所以k BM =1=k DE ,即BM ∥DE.综上所述,直线BM 与直线DE 平行.已知椭圆M :x 2a 2+y 2b 2=1(a>b>0)的右焦点F 的坐标为(1,0),P ,Q 为椭圆上位于y 轴右侧的两个动点,使PF ⊥QF ,C 为PQ 中点,线段PQ 的垂直平分线交x 轴,y 轴于点A ,B(线段PQ 不垂直x 轴),当Q 运动到椭圆的右顶点时,|PF|=22.(1)求椭圆M 的方程;(2)若S △ABO ∶S △BCF =3∶5,求直线PQ 的方程. 解:(1) 当Q 运动到椭圆的右顶点时,PF ⊥x 轴,∴|PF|=b 2a =22,又c =1,a 2=b 2+c 2,∴a =2,b =1.∴椭圆M 的方程为x 22+y 2=1.(2)设直线PQ 的方程为y =kx +b ,显然k ≠0, 联立椭圆方程得:(2k 2+1)x 2+4kbx +2(b 2-1)=0, 设点P(x 1,y 1),Q(x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-4kb2k 2+1>0, ①x 1x 2=2b 2-12k 2+1>0, ②Δ=82k 2-b 2+1>0, ③由PF ―→·QF ―→=0,得(x 1-1)(x 2-1)+y 1y 2=0, 即(k 2+1)x 1x 2+(kb -1)(x 1+x 2)+b 2+1=0, 代入化简得3b 2-1+4kb =0.④由y 1+y 2=k(x 1+x 2)+2b =2b 2k 2+1,得C ⎝ ⎛⎭⎪⎫-2kb 2k 2+1,b2k 2+1,∴线段PQ 的中垂线AB 的方程为y -b2k 2+1=-1k ⎝ ⎛⎭⎪⎫x +2kb 2k 2+1. 令y =0,x =0,可得A ⎝ ⎛⎭⎪⎫-kb 2k 2+1,0,B ⎝ ⎛⎭⎪⎫0,-b 2k 2+1, 则A 为BC 中点,故S △BCF S △ABO =2S △ABF S △ABO =2|AF||AO|=21-x A x A =2⎝ ⎛⎭⎪⎫1x A -1. 由④式得,k =1-3b 24b ,则x A =-kb 2k 2+1=6b 4-2b 29b 4+2b 2+1, ∴S △BCFS △ABO =2⎝ ⎛⎭⎪⎫1x A -1=6b 4+8b 2+26b 4-2b 2=53,解得b 2=3. ∴b =3,k =-233或b =-3,k =233. 经检验,满足条件①②③,故直线PQ 的方程为y =233x -3或y =-233x + 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第节基本不等式
【选题明细表】
一、选择题
1.(2018年高考福建卷)下列不等式一定成立的是( C)
(A)lg>lg x(x>0)
(B)sin x+≥2(x≠kπ,k∈Z)
(C)x2+1≥2|x|(x∈R)
(D)>1(x∈R)
解析:对选项A,当x>0时,x2+-x=≥0,
∴lg≥lg x;
对选项B,当sin x<0时显然不成立;
对选项C,x2+1=|x|2+1≥2|x|,一定成立;
对选项D,∵x2+1≥1,
∴0<≤1.
故选C.
2.(2018攀枝花市七中高三检测)函数y=log a(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则+的最小值为( C)
(A)2 (B)4 (C)8 (D)16
解析:函数y=log a(x+3)-1的图象恒过点A(-2,-1),
又点A(-2,-1)在直线mx+ny+1=0上,
故2m+n=1,
∴+=(2m+n)
=2+2++
≥4+2=8.
当且仅当m=,n=时取等号.
故选C.
3.已知等比数列{a n}的各项均为正数,公比q≠1,设P=(log0.5a5+log0.5a7),Q=log0.5,则P与Q的大小关系是( D) (A)P≥Q (B)P<Q (C)P≤Q (D)P>Q
解析:P=(log0.5a5+log0.5a7)=
log0.5(a5a7)=log0.5a6,
Q=log 0.5<log0.5=log0.5a6,
所以P>Q,
故选D.
4.(2018乐山市高三调研)已知x、y∈R+,2x+y=3-2xy,则2x+y的最小值是( A)
(A)2 (B)4 (C)6 (D)8
解析:由题意可得,y=,
由y>0,得-<x<,
则2x+y=2x+=2x+1+-2≥2.
故选A.
5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( B)
(A)60件(B)80件(C)100件(D)120件
解析:若每批生产x件产品,
则每件产品的生产准备费用是元,存储费用是元,总的费用
y=+≥2=20,
当且仅当=时取等号,得x=80(件),故选B.
6.(2018年高考陕西卷)小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( A)
(A)a<v<(B)v=
(C)<v<(D)v=
解析:设甲乙两地相距为s,
则v==.
由于a<b,∴+<,
∴v>a,
又+>2,
∴v<.
故a<v<,
故选A.
二、填空题
7.(2018湖北黄州模拟)已知各项为正的等比数列{a n}中,a4与a14的等比中项为2,则2a 7+a11的最小值为.
解析:由已知a 4a14=(2)2=8.
再由等比数列的性质有a4a14=a7a11=8.
又∵a7>0,a11>0.
∴2a 7+a11≥2=8.
当且仅当2a7=a11时等号成立.
答案:8
8.(2018成都一诊模拟)已知a>0,b>0,若不等式+≥恒成立,则m 的最大值是.
解析:不等式+≥恒成立⇔
m≤(2a+b)恒成立,
又(2a+b)=4+1++
≥5+2=9.
当且仅当a=b时取等号,
∴m≤9.
故m的最大值为9.
答案:9
9.(2018北京市房山区模拟)规定记号“⊗”表示一种运算,即a⊗b=+a+b(a、b为正实数).若1⊗k=3,则k的值为,此时函数f(x)=的最小值为.
解析:1⊗k=+1+k=3,即k+-2=0,
∴=1或=-2(舍),
∴k=1.
f(x)===1++≥1+2=3,
当且仅当=即x=1时等号成立.
答案:13
三、解答题
10.已知函数f(x)=lg x,若x1,x2>0,判断[f(x1)+f(x2)]与f的大小,并加以证明.
解:[f(x1)+f(x2)]≤f.
证明如下
∵f(x1)+f(x2)=lg x1+lg x2=lg(x1x2),
f=lg ,
且x1,x2>0,x1x2≤,
∴lg(x1x2)≤lg,
∴lg(x1x2)≤lg ,
即(lg x1+lg x2)≤lg .
∴[f(x1)+f(x2)]≤f,
当且仅当x1=x2时,等号成立.
11.已知lg(3x)+lg y=lg(x+y+1).
(1)求xy的最小值;
(2)求x+y的最小值.
解:由lg(3x)+lg y=lg(x+y+1),得
(1)∵x>0,y>0,
∴3xy=x+y+1≥2+1,
∴3xy-2-1≥0.
即3()2-2-1≥0,
∴(3+1)(-1)≥0.
∴≥1,
∴xy≥1,当且仅当x=y=1时,等号成立.
∴xy的最小值为1.
(2)∵x>0,y>0,
∴x+y+1=3xy≤3·.
∴3(x+y)2-4(x+y)-4≥0.
∴[3(x+y)+2][(x+y)-2]≥0,
∴x+y≥2.
当且仅当x=y=1时取等号,
∴x+y的最小值为2.
12.(2018山东烟台模拟)某商店预备在一个月内分批购入每张价值为20元的书桌共36张,每批都购入x张(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4张,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
解:(1)设题中比例系数为k,若每批购入x张书桌,
则共需分批,每批价值为20x元,
由题意得f(x)=·4+k·20x.
由x=4时,f(x)=52,
得k==.
∴f(x)=+4x(0<x≤36,x∈N*).
(2)由(1)知f(x)=+4x(0<x≤36,x∈N*),
∴f(x)≥2=48(元).
当且仅当=4x,即x=6时,上式等号成立.
故只需每批购入6张书桌,可以使资金够用.。

相关文档
最新文档