材料力学答案第6章

合集下载

材料力学第六章 弯曲变形

材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω

B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq


+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI

第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

2 z
W
M
2 x
W2
[ ]
7-17 图示直角曲拐,C端受铅垂集中力F作用。已知a=160mm,AB杆直径D=40mm,
l=200mm ,E=200GPa, μ=0.3,实验测得D点沿45º方向的线应变 ε45º=0.265 × 10-3。试求:
(1)力F的大小;(2)若AB杆的[σ]=140MPa,试按最大切应力理论校核其强度。
T Wp
16 M 0
D3
16 125 .6
0.023
79.96MPa
单元体可画成平面单元体如图(从上往下观察)
A
6-5 试用求下列各单元体中ab面上的应力(单位MPa) 。
解:(a)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70 1 2
35
(MPa)
x y sin(2 30 ) 70
2
3 60.62 (MPa) 2
(b)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70
(MPa)
x
y
2
sin(2 30 )
0
6-6 各单元体的受力如图所示,试求:(1)主应力大小及方向并在原单元体图上绘出主 单元体;(2)最大切应力(单位MPa) 。
解: (3) My 、Mz、Mx 和F 同时作用,拉弯扭组合,任一截 面D1点是危险点
应力状态:
D1
FN M F
M
2 y
M
2 z
y
AW A

材料力学习题册答案_第6章_弯曲变形

材料力学习题册答案_第6章_弯曲变形
15
得 x=0.519l
所以
W
m
ax
=0.00652
ql 4 EI
3 用叠加法求如图 7 所示各梁截面 A 的挠度和转角。EI 为已知常数。
解 A 截面的挠度为 P 单独作用与 M 0 单独作用所产生的挠度之和。 查表得:
y AP
Pl 3 24 EI
y = M 0l 2 Pl 3
AM 0
8EI
度 y = Fl 3 。 C 32 EI
4. 如图 4 所示两梁的横截面大小形状均相同,跨度为 l , 则两梁的力 图 相同 ,两梁的变形 不同 。(填“相同”或“不同”)
5. 提高梁的刚度措施有 提高Wz 、 降低 M MAX 等。 四、计算题 1 用积分法求图 5 所示梁 A 截面的挠度和 B 截面的转角。
8EI
y y 则 y A
AP
= Pl 3
AM0 12 EI
同理,A 截面的转角为 P 单独作用与 M 0 单独作用所产生的转角之和。
查表得
AP
Pl 2 8EI
对于 AM0 可求得该转角满足方程 EI =-Plx+C 边界条件 x=0 0 可得 C=0
现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连
续 条件来确定。
2. 用积分法求图 2 所示梁变形法时,边界条件为:YA 0,A 0,YD 0 ;
连续条件为:
YA
1
YA
2
,
B
1
B
2
,
YC3.
如图
3
所示的外伸梁,已知
B
截面转角
B
=
Fl 2 16 EI
,则 C 截面的挠
于零的截面处。

材料力学(金忠谋)第六版答案第06章

材料力学(金忠谋)第六版答案第06章

弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

试求梁内最大拉应力与最大压应力。

已知I z =10170cm 4,h 1=,h 2=。

刘鸿文版材料力学第六章

刘鸿文版材料力学第六章

F6bl
(l2
b2 ) x1
CB 段: a x2 l
y
F
A A
DC
FAy x1
x2
a
ym ax b
B B x
FBy
EI
Fb 2 2l
2
x2
F 2
(
x2
a)2
Fb (l2 6l
b2 )
EIy2
Fb 6l
x32
F 6
(
x2
a)3
F6lb (l2 b2 ) x2
目录
§6-3 用积分法求弯曲变形
目录
§6-5 简单超静定梁
例7 梁AB 和BC 在B 处铰接,A、C 两端固定,梁的抗弯刚度均为EI,F = 40kN, q = 20kN/m。画梁的剪力图和弯矩图。
解 从B 处拆开,使超静定结构变成两个悬臂 梁。
MA
FA FB
FB FB
yB2
yB1
FB
变形协调方程为: 物理关系
yB1 yB 2
4
EI
ql 4 48EI
ql 4 16 EI
11ql 4 ( ) 384 EI
3
ql 3
B i 1 Bi 24EI
ql 3 16EI
ql 3 3EI
11ql 3 ( ) 48EI
目录
§6-4 用叠加法求弯曲变形
例4 已知:悬臂梁受力如图示,q、l、
yC
EI均为已知。求C截面的挠度yC和转角C
§6-4 用叠加法求弯曲变形
讨论 叠加法求变形有什么优缺点?
目录
§6-5 简单超静定梁
1.基本概念: 超静定梁:支反力数目大于有效平衡方程数目的梁 多余约束:从维持平衡角度而言,多余的约束 超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统

《材料力学》第6章 简单超静定问题 习题解

《材料力学》第6章 简单超静定问题 习题解

第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。

设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。

试求各杆的轴力。

解:以节点A 为研究对象,其受力图如图所示。

∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。

工程力学c材料力学部分第六章 弯曲变形

工程力学c材料力学部分第六章 弯曲变形
q
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2

材料力学-第6章梁的应力分析与强度计算 (B)

材料力学-第6章梁的应力分析与强度计算 (B)

dx=-yd
式中的负号表示 y 坐标为正的线段产生 压缩变形; y 坐标为负的线段产生伸长 变形。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
应用平面假定确定应变分布
dx=-yd
将线段的长度改变量除以原长dx,即 为线段的正应变,于是得到
dx d y = =-y =- dx dx
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
对称面—— 梁的横截面具有对称轴,所有相同的对 称轴组成的平面,称为梁的对称面(symmetric plane)。
梁的对称面
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
主轴平面 —— 梁的横截面没有对称轴,但是
加载平面与主轴平面一致
q
FP1
M
FP2
平面弯曲 —— 所有外力(包括力偶)都作用于梁的同一主
轴平面内时,梁的轴线弯曲后将弯曲成平面曲线,这一曲线位 于外力作用平面内。这种弯曲称为平面弯曲(plane bending)。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力
M l
FP M
怎样确定横截面上的内力分布规律呢?
第6章 梁的应力分析与强度计算(B)
应力是不可见的,但变形却是可见的,而且二 者之间通过材料的物性关系相联系。因此,为了确 定内力的分布规律,必须分析和研究杆件的变形, 必须研究材料受力与变形之间的关系,即必须涉及 变形协调与物性关系两个重要方面。二者与平衡原 理一起组成分析弹性体内力分布规律的基本方法。
第6章 梁的应力分析与强度计算(B)
平面弯曲时梁横截面上的正应力 斜弯曲的应力计算 弯矩与轴力同时作用时横截面上的正应力 弯曲强度计算 结论与讨论

材料力学第六章 应力状态理论和强度理论

材料力学第六章 应力状态理论和强度理论

单元体的各个面均为主平面,其上的主应力为: 单元体的各个面均为主平面,其上的主t
9
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
3、三向应力状态(空间应力状态) 、三向应力状态(空间应力状态) 定义:三个主应力均不为零。 定义:三个主应力均不为零。 例如:导轨与滚轮接触点处,取导轨表面任一点 的单元体 的单元体, 例如:导轨与滚轮接触点处,取导轨表面任一点A的单元体, 它各侧面均受到压力作用,属于三向应力状态。 它各侧面均受到压力作用,属于三向应力状态。
工程力学
Engineering mechanics
第六章 应力状态理论 和强度理论
1
工程力学
Engineering mechanics


前面的分析结果表明, 前面的分析结果表明,在一般情况下杆件横截面上不同点 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 因此,当提及应力时,必须明确“哪一个面上哪一点” 因此,当提及应力时,必须明确“哪一个面上哪一点”的应力或 哪一点哪一个方向面上”的应力。 者“哪一点哪一个方向面上”的应力。 如果危险点既有正应力,又有切应力,应如何建立其强度 如果危险点既有正应力,又有切应力, 条件? 条件? 如何解释受力构件的破坏现象? 如何解释受力构件的破坏现象? 对组合变形杆应该如何进行强度计算? 对组合变形杆应该如何进行强度计算? 要全面了解危险点处各截面的应力情况。 要全面了解危险点处各截面的应力情况。
2
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
一、一点的应力状态 定义:过受力体内一点所有方向面上应力的集合。 定义:过受力体内一点所有方向面上应力的集合。 一点的应力状态的四要素 四要素: 一点的应力状态的四要素: )、应力作用点的坐标 (1)、应力作用点的坐标; )、应力作用点的坐标; )、过该点所截截面的方位 (2)、过该点所截截面的方位; )、过该点所截截面的方位; )、应力的大小 (3)、应力的大小; )、应力的大小; )、应力的类型 (4)、应力的类型。 )、应力的类型。 二、研究应力状态的目的 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, )、扭转 其危险点处于单向应力状态或纯剪切应力状态,受力简单, 其危险点处于单向应力状态或纯剪切应力状态,受力简单,可直 接由相应的试验确定材料的极限应力,建立相应的强度条件。 接由相应的试验确定材料的极限应力,建立相应的强度条件。

材料力学简明教程(景荣春)课后答案第六章

材料力学简明教程(景荣春)课后答案第六章

( ) wA
= − q0l 4 30EI

,θB
= q0l3 24EI
(顺)
讨论:请读者按右手坐标系求 wA ,θB 并与以上解答比较。
(c)
(c1)
解 图(c1)
( ) ∑ M B = 0 , FC
= − Me l

CA 段
M
=

Me l
x1
⎜⎛ 0 ⎝

x1
<
l 2
⎟⎞ ⎠
AB 段
M
=

Me l
l 2

x2

l ⎟⎞ ⎠
Ew1′′
=
3 8
qlx1

1 2
qx12
EIw1′
=
3 16
qlx12

1 6
qx13
+
C1
EIw1
=
1 16
qlx13

1 24
qx14
+
C1 x1
+
D1
EIw′2′
=
3 8
qlx2

ql 2
⎜⎛ ⎝
x2

l ⎟⎞ 4⎠
EIw′2
=
3 16
qlx22

ql 4
⎜⎛ ⎝
x2
24
EIw′(l) = 0 ,− q l 3 + 3Al 2 + 2Bl = 0
6
解式(a),(b)得
A = ql , B = − ql 2
12
24
即挠曲线方程为
EIw = − q x4 + ql x3 − ql 2 x2 24 12 24

材料力学第6章 弯曲内力

材料力学第6章 弯曲内力

精品文档
6.1 梁的内力—剪力和弯矩
例题 6-2
(2)计算(jìsuàn)指定截面上的剪力和 弯矩
C截截面面C左(以侧梁的左力半:边为研究对象):
FAy 2 kN () (+)
FSC Fy FAy 2kN
C截面左侧的力矩:
FAy * 2m (+)
M e 8kN m (-)
M C
M F 2m - M -4kN m O
19
精品文档
6.2 剪力图和弯矩图
例题 6-3
(2) 作剪力图(lìtú)和弯矩图
由剪力、弯矩方程画剪力、弯矩图。
注意: 画图时应将剪力图、弯矩图与计算简图 对齐,并注明图名(FS图、M图)、 峰值点的值及正负号。
秦飞 编著《材料力学》 第6章 弯曲(wānqū)内
20

精品文档
6.2 剪力图和弯矩图
(plane bending)。当所有外力均作用在纵向对称面内时,梁只发生平面弯曲。
秦飞 编著《材料力学》 第6章 弯曲(wānqū)内力
6
精品文档
6.1 梁的内力(nèilì)—剪力和弯 矩
梁在外力作用下,其任一横截面上的内力可用截面法确定。
(1)截:在横截面m-m处假想地将梁分为两段
原来处于平衡状态的梁,被截出的任意段也处于平衡状态。
秦飞A编y 著《材料力学(cái lieào lìxué)》 第6章 弯
16
曲内力
精品文档
6.1 梁的内力(nèilì)—剪力和弯矩 例题 6-2
截面B(以梁右半边为研究对象):
B左截面
F 2kN (+)
FBy 4kN (-)
FSB左 F FBy -2kN

材料力学习题 应力状态分析答案详解

材料力学习题 应力状态分析答案详解
解析: 与 无关
13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变 、 后,所能算出的材料常数有( D )。
(A)只有E;(B)只有v;(C)只有G;(D)E、v和G均可算出。
解析:中间段为纯弯曲,A点为单向拉伸,

14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是( C )。
解答:
确定 , 确定
6、 物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a)和(b)所示。试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
确定
确定
2、已知应力状态如图。试求主应力及其方向角,并确定最大切应力值。
解答:
确定
所以 确定
3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。
解答:
确定
所以 确定
4、用解析法求图示单元体ab面上的应力( ),并求 及主应力。
解答:
5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。
由第三强度理论 安全
10、直径为20mm的圆截面折杆受力情况如图所示,已知:F=0.2kN,材料的许用应力为 。试用第三强度理论确定折杆的长度a的许用值。
解答:
在危险截面A上危险点在七上下边缘
由第三强度理论

11、AB、CD两杆互相垂直,在水平面内,C点的集中力2F及D点的集中力F与刚架平面垂直。已知F=20kN,l=1m,各杆直径相同d=10cm, 。试按最大切应力强度理论校核强度。

材料力学第6章拉压杆件的应力变形分析与强度设计

材料力学第6章拉压杆件的应力变形分析与强度设计

解:首先分析钢杆和铝筒的受力:钢杆BC承受拉伸,铝筒承受 压缩。C点的位移等于钢杆的伸长量与铝筒的压缩量之和:
Rigid plate
F´P B
FP AsB Ea
Aa Es
Fixed rigid plate
A
FP
l l
C F´P
第2类习题 变形计算
长为1.2m、横截面面积为1.10×10-3m2的铝制筒放置在固定刚块上,直径 为15.0mm的钢杆BC悬挂在铝筒顶端的刚性板上,若二者轴线重合、载荷作 用线与轴线一致,且已知钢和铝的弹性模量分别为Es = 200GPa,Ea = 70GPa, FP = 60kN。试求钢杆上C处位移。
50mm。求铝板与钢板横截面上的最大正应力。
steel aluminum
Rigid plate
FNs

Es As Es As Ea Aa
FP
FNa

Ea Aa Es As Ea Aa
FP
TSINGHUA UNIVERSITY
1.复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式
图示由铝板和钢板组成的复合材料柱,纵向截荷FP通过刚性平板沿着柱的中心线施加 在其上。试:
1.导出复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式; 2.已知FP = 385kN;Ea = 70GPa,Es = 200GPa;b0 = 30mm,b1 = 20mm,h =
50mm。求铝板与钢板横截面上的最大正应力。
铝板
a
FNa EaFP
Aa
b0hsE2b1haE
钢板
s A F s N sE sb 0 h E sE F P a2 b 1 hb 0 hs E E sF 2 P b 1 haE

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)
图 6-2-4 (2)补充方程 作铰 A 的位移图,由几何关系可得变形协调方程: Δl1/sin30°=2Δl2/tan30°+Δl3/sin30°③ 其中,由胡克定律可得物理关系:
8 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

Δl1=FN1l1/EA1=FN1l/(EA1cos30°) Δl2=FN2l2/EA2=FN2l/(EA2) Δl3=FN3l3/EA3=FN3l/(EA3cos30°) 代入式③可得补充方程: FN1l/(EA1sin30°·cos30°)=2FN2l/(EA2tan30°)+FN3l/(EA3sin30°·cos30°)④ (3)求解 联立式①②④,可得各杆轴力:FN1=8.45kN,FN2=2.68kN,FN3=11.55kN。
9 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

MB = 0
FN2 Leabharlann 2 2a+
FN4
2 2
a
+
FN3
2a − F ( 2 a + e) = 0 2

根据结构的对称性可得 FN2=FN4③
(2)补充方程
如刚性板的位移图所示,根据几何关系可得:Δl1+Δl3=2Δl2④
由结构对称可知 Δl2=Δl4,其中,由胡克定律可得各杆伸长量:
Δl1=FN1l/EA,Δl2=FN2l/EA,Δl3=FN3l/EA
代入式④,整理可得补充方程:FN1+FN3=2FN2⑤
(3)求解
联立式①②③⑤,解得各杆轴力:
FN1
=
(1 4

e )F(压) 2a
FN2
=
FN4
=
F 4

材料力学性能 习题解答

材料力学性能 习题解答

第6章 热学性能 习题解答名词解释:格波:晶格振动波。

声子:晶格振动波的量子化,严格意义上是晶格简谐振动的量子化。

光子:光波的量子化。

声频支振动:晶格振动波的振动频率在声频范围。

光频支振动:晶格振动波的振动频率在声频范围。

热容: “当一系统由于加给一微小的热量dQ 而温度升高dT 时,dQ/dT 这个量即是该系统的热容。

”(GB3102.4-93)即单位温度升高时所需要的热量。

杜隆—珀替定律:无论晶体属于何种类型,其比热容(单位焦耳/(开尔文·千克))均为3R/MM ,其中R 为普适气体常数(单位焦耳/(开尔文·摩尔))MM 为摩尔质量(单位千克/摩尔)。

热膨胀系数:实际应用中,有两种主要的热膨胀系数,分别是:线性热膨胀系数(CLTE):体积热膨胀系数:热导率:单位温度梯度下,单位时间内通过单位垂直面积的热量。

热应力:温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。

又称变温应力。

综合题:1. 热容的本质是什么?dT dx Q t S λ∆⨯∆⨯∆=-答案:物体分子对热量的敏感程度和反应强度。

敏感程度决定吸收多少热;反应强度决定升高多少温度。

这些与分子结构,分子间距离有关。

2. 阐述晶态固体的热容随温度的变化规律。

用经典理论解释热容的经验理论。

❖答案:高温下: C V =3N A K B=3R;低温下: C V正比于 T3。

能量均分3.德拜热容理论取得了什么成功?讨论德拜热容理论在实际应用中的优点及不足。

❖答案:高温下: C V =3N A K B=3R;低温下: C V正比于 T3。

理论与实验数据符合得比较好。

计算复杂。

4.影响热容的因素有哪些?答案:过程,等温过程,等压过程。

5.什么是非简谐振动?由于非简谐振动,引起声子发生怎样的变化?答案:非简谐振动,引起声子导热。

6.阐述固体材料的热膨胀机理。

答案:固体材料中原子受力不对称,导致热膨胀。

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第6章_圆轴扭转

工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第6章_圆轴扭转

该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =

ρ ⋅ τdA =

r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
16 M x
3 π d1
=
16 M x
3 π D2 (1 − α 4 )

d1 = (1 − α 4 ) 3 D2
1
(a)
二者重量之比
W1 A1 d2 = = 2 1 2 W2 A2 D2 (1 − α )
(b)
式(a)代入式(b) ,得
W1 (1 − α 4 ) = W2 1−α2
2 3
所以,正确答案是
16 M x 3 16 × 10.53 × 10 6 = = 96.3 π [τ ] π × 60
(3)按刚度条件求轴的直径
θ=
Mx ≤ [θ ] GI P
[θ ] = 1D / 2m =
π
180 × 2 × 10 3
rad/mm
6
D≥4
32M x 32 × 10.53 × 10 6 =4 = 110.6mm Gπ [θ ] 82 × 10 3 π [θ ]

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。

(A )a 点;(B )b 点;(C )c 点;(D )d 点 。

2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==; (B)AC AC /2,/2ττσ==; (C)AC AC /2,/2ττσ==;(D)AC AC /2,/2ττσ=-=。

4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。

关于它们的正确性,现有四种答案,正确答案是( D )。

(A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的。

5、对于图示三种应力状态(a )、(b )、(c )之间的关系,有下列四种答案,正确答案是( D )。

(A )三种应力状态均相同;(B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。

解答:max τ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。

(A )脆性材料;(B )塑性材料;(C )材料为各向同性,且处于线弹性范围内;(D )任何材料; 8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适用于( C )。

(A )任何材料在任何变形阶级; (B )各向同性材料在任何变形阶级; (C )各向同性材料应力在比例极限范围内;(D )任何材料在弹性变形范围内。

材料力学课后答案d

材料力学课后答案d
(3)、(4) 四种情况的最大剪力和最大弯矩,那么,下列式子中,正确的有 D E 。
-3-
工程力学习题解答
A. M 1 > M 2 > M 3 > M 4 C. M1 > M 2 = M 3 > M 4 E. FS1 = FS2 = FS3 = FS4
F
B. M1 = M 2 > M 3 > M 4 D. M 1 > M 2 > M 3 = M 4 F. FS1 > FS2 > FS3 > FS4
A
B
C
D
分析:这是对称结构承受对称荷载的情况,支反力偶矩必定对称,扭矩图必定反对称。
-2-
第 6 章 杆件的内力
因此只需根据支反力偶矩进一步判断扭矩正负即可。
6-2(4) 在梁的集中力作用处,其左、右两侧无限接近的横截面上的弯矩是 A 的。
A.相同
B.数值相等,符号相反
C.不相同
D.符号一致,数值不相等

1 4
q0 L

q0
⎜⎛ ⎝
x

L 2
⎟⎞ ⎠

FS
=
0

FS
=
1 4
q0 L

q0 x

∑m = 0 ,
M
+
q0 L 4
⎜⎛ x ⎝

L 2

2 ⎟⎞ 3⎠
+
q0
⎜⎛ ⎝
x

L 2
⎟⎞ ⋅ ⎠
1 ⎜⎛ x 2⎝

L 2
⎟⎞ ⎠
=
0,
M = − q0 (12x2 − 6Lx + L2 ) 。 24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wC = − 5qa 4 48 EI (↓)
,得截面 B 的转角为 将以上所得 C 值和 x = 2a 代入式(a)
θB =
q q 7qa 3 3qa 3 1 3qa ]= ( 2a ) 2 − ( 2 a ) 3 + ( 2a − a ) 3 − [ EI 8 48EI 16 6 6

1 qa 3 q 4 3qa 3 ( x − x − x) EI 8 24 16
5
w2 =
5.计算 wC 和 θB
3qa 3 1 qa 3 q 4 q x + x] [ x − ( x − a) 4 − EI 8 16 24 24
将 x = a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
(也可通过左侧题号书签直接查找题目与解)
6-2
大致形状。
图示各梁,弯曲刚度 EI 均为常数。试根据梁的弯矩图与约束条件画出挠曲轴的
题 6-2 图 解:各梁的弯矩图及挠曲轴的大致形状示如图 6-2。
1
6-4
图示简支梁,左、右端各作用一个力偶矩分别为 M1 与 M2 的力偶。如欲使挠曲
轴的拐点位于离左端 l/3 处,则力偶矩 M1 与 M2 应保持何种关系。
2.建立挠曲轴近似微分方程并积分
3
自 A 向右取坐标 x ,由题图可见,弯矩的通用方程为
M =
挠曲轴的通用近似微分方程为
Me x − M e < x − a >0 2a
EI
将其相继积分两次,得
d2w M e = x − M e < x − a >0 2 2a dx
dw M e 2 = x − M e < x − a > +C dx 4a M M EIw = e x 3 − e < x − a > 2 +Cx + D 12a 2 EI
由此得 AC 段与 CB 段的挠曲轴方程分别为
w1 =

1 M e 3 M ea ( x − x) 12 EI 12a
w2 =
M a 1 Me 3 Me [ x − ( x − a) 2 − e x] 2 12 EI 12a
θ 5.计算 wC 和
B
将 x = a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
题 6-4 图 解:解法 1,常规解法 1.建立弯矩方程 左端 A 的支反力为
FAy =
自左端向右取坐标 x ,弯矩方程为
M1 + M 2 l
()
M ( x) =
2.建立挠曲轴近似微分方程
M1 + M 2 x − M1 l
EI
M + M2 d2w = M ( x) = 1 x − M1 2 l dx
3.确定积分常数 该梁的位移边界条件为: 在 x = 0 处, w = 0 在 x = 2a 处, w = 0 将条件(c)代入式(b),得
(a) (b)
(c) (d)
D=0
将条件(d)代入式(b),得
C=−
M ea 12
4.建立挠曲轴方程 将所得 C、D 值代入式(b),得挠曲轴的通用方程为
w=
M a 1 Me 3 Me < x − a > 2 − e x] [ x − 2 12 EI 12a
M 2 : M1 =
直接得到
2l l : 3 3
M 2 = 2M 1
6-6
的挠度。
图示各梁,弯曲刚度 EI 均为常数。试用奇异函数法计算截面 B 的转角与截面 C
题 6-6 图 (a)解:1.求支反力 由梁的平衡方程
∑M
B
= 0 和 ∑ Fy = 0 可得
FAy = Me M (↑),FBy = e (↓) 2a 2a
2
依题意,在 x = l / 3 处有拐点,即 w′′ = 0 ,于是,
(
由此得
M1 + M 2 l ) − M1 = 0 3 l
M 2 = 2M 1
解法 2,简便解法 分析本题的弯矩图:左端为 − M 1 ,右端为 + M 2 ,将这两个端值点连线,即得到 M 图, 示如图 6-4。 M ( x ) = 0 的点为拐点,依题意,此点应在 x = l / 3 处,由几何上的比例关系
dw 3qa 2 q 3 q = x − x + < x − a > 3 +C dx 8 6 6 qa 3 q 4 q EIw = x − x + < x − a > 4 +Cx + D 8 24 24
EI
(a) (b)
3.确定积分常数 该梁的位移边界条件为: 在 x = 0 处, w = 0 在 x = 2a 处, w = 0 将条件(c)、(d)分别代入式(b),得
(c) (d)
D = 0,C = −
3qa 3 16
4.建立挠曲轴方程 将所得 C 、 D 值代入式(b),得挠曲轴的通用方程为
w=
1 qa 3 q 4 q 3qa 3 [ x − x + < x − a >4 − x] EI 8 24 24 16
由此得 AC 段与 CB 段的挠曲轴方程分别为
w1 =
FBy =
1 qa (↑) 4
2.建立挠曲轴近似微分方程并积分 自 A 向右取坐标 x ,由题图可见,弯矩的通用方程为
M =
q q 3qa x − x2 + < x − a >2 4 2 2
挠曲轴的通用近似微分方程为
EI
将其相继积分两次,得
d 2 w 3qa q q = x − x2 + < x − a >2 2 4 2 2 dx
wC = 0
4
将以上所得 C 值和 x = 2a 代入式(a),得截面 B 的转角为
θB =
(b)解:1.求支反力 由梁的平衡方程
1 4 M ea 2 Ma Ma − M ea − e ) = − e (3) ( EI 4a 12 12 EI
∑M
B
= 0 和 ∑ Fy = 0 可得
FAy =
3 qa (↑), 4
第六章
题号
弯曲变形
页码
6-2 .........................................................................................................................................................1 6-4 .........................................................................................................................................................2 6-6 .........................................................................................................................................................3 6-8 .........................................................................................................................................................8 6-9 .......................................................................................................................................................10 6-12 .....................................................................................................................................................11 6-14 .....................................................................................................................................................11 6-15 .....................................................................................................................................................13 6-16 .....................................................................................................................................................14 6-18 .....................................................................................................................................................16 6-20 .....................................................................................................................................................17 6-22 .....................................................................................................................................................18 6-24 .....................................................................................................................................................19 6-25 .....................................................................................................................................................19 6-26 .....................................................................................................................................................20 6-27 .....................................................................................................................................................22 6-28 .....................................................................................................................................................24 6-29 .....................................................................................................................................................25
相关文档
最新文档