范钦珊材料力学第六章习题解答
材料力学第六版答案第06章
弯曲应力6-1求图示各梁在刃一刃截面上力点的正应力和危 险截面上最大正应力。
时间:2021.03.02 创作:欧阳数a=10cmV■ • W ■■A-O 0O r —412cmLB1■ —< 丄<题6-1图 解.(a )m-mmax23 x4xb= 20.37唤490.8x 10 亠(压) (b) M = S KN ・ m M “ = 0 5KN • m max5832 xlO"8(丿(C ) max1x10^x0.99x10- =38>67^25.6x10*(压)6-2图示为直径cm 的圆轴,其外伸段为空 心,内径d=4cm,求轴内最大正应力。
解:祥寻皿)6-3T 字形截面铸铁梁的尺寸与所受载荷如图示。
DV® 6-3 图^niaxl ^niax2 bmin2 (压(拉)试求梁内最大拉应力与最大压应力。
已知7L=10170cm:, h二9・ 65cm,厶二15. 35cm。
解:A截面:40 X IO3r而EX9.65W37.95 咖4()X1()s xl5.35 xIO-2=-50.37Mpa10170 xlO"sE截面2()xl(). X 15.35 X IO-2=30A9Mpa10170 xlO"820x10 X9.65 X IO-2 =-18.98A7/?6/10170 xlO"86-4 一根直径为〃的钢丝绕于直径为〃的圆轴上。
(1)求钢丝由于弯曲而产生的最大弯曲正应力(设钢丝处于弹性状态)(2)若d =lmm,材料的屈服极限6二700MP8,弹性模量启210GPa,求不使钢丝产生残余变形的轴径几丄=理_解:~P~EJ解: 10 x( 30x20'~~12-30x12?~~12~~=1568 nun2查表:b_26-5矩形悬臂梁如图示.已知1= 4 m, h = 3, ^10kN/m,许用应力[。
]二lOMpa。
试确定此梁横截面尺寸。
材料力学_范钦珊_习题参考解答
OB
B F P 60kN
Ea
1 .2 m
A
FP
x
解:1.铝筒: u A − u B
=
−FPl AB Ea Aa
(其中 uA = 0)
As
A' 2.1m
Es
C FP = 60 kN
x
uB
=
60 ×103 ×1.2 ×103 70 ×103 ×1.10 ×10−3 ×106
= 0.935 mm
Mx1= Mx2 2.确定轴和薄壁管横截面上的最大剪应力 设轴受 T = 73.6N·m 时,相对扭转角为 ϕ0 ,于是,有
dφ0 = M x = T dx GIp1 GIp1
(a)
焊接后卸载,管承受扭转,其相对扭转角为 ϕ 2 ,轴上没有恢复的相对扭转角为 ϕ1 = ϕ0 − ϕ2 ,即
其中
ϕ1 + ϕ2 = ϕ0
×103 × 10 −6
= 95.5 MPa
σ BC
=
FN2 A2
=
4 × (50 + 30) ×103 π × 302 ×10−6
= 113 MPa
(2) ∆l = ∆l AB
+ ∆lBC
=
FN1l1 EA1
+ FN2l2 EA2
= 1.06 mm
2-3 长度 l=1.2 m、横截面面积为 1.10×l0-3 m2 的铝制圆筒放置在固定的刚性块上;直 径 d=15.0 mrn 的钢杆 BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。若在钢杆的 C 端施加轴向拉力 FP,且已知钢和铝的弹性模量分别为 Es=200 GPa,Ea=70 GPa;轴向载荷 FP=60 kN, 试求钢杆 C 端向下移动的距离。
清华出版社工程力学答案-第6章 拉压杆件的应力变形分析与强度设计
∑ Fx = 0 , FNAC cos 45D + FNAD = 0
解得 AD 杆轴力大小为: FNAD = 15kN(拉)
2. 强度条件
拉杆:
AAD
=
FNAD [σ ]+
=
15 ×103 120 ×10−6
= 125mm2
压杆:
AAC
=
2. 钢杆的伸长量:
ΔlBC
=
FPlBC Es As
=
60×103 × 2.1 200×109 × π ×152 ×10−6
= 3.565mm
4
3. 钢杆 C 端向下移动的距离: uC = ΔlAB + ΔlBC = 0.935 + 3.565 = 4.50 mm
6-3 螺旋压紧装置如图所示。现已知工件所受的压紧力为 F=4 kN。装置中旋紧螺栓
10
习题 6-10 图
解:1.活塞杆 受到的轴力为:
FN
=
pA
=
p
⎡π ⎢ ⎣
(
D
2− 4
d2)⎤ ⎥ ⎦
=
⎡π 2.5⎢
⎣
(5602 − 4
1002
)
⎤ ⎥ ⎦
=
596.12kN
活塞杆的正应力: σ = FN = 596.12 ×103 = 75.9MPa A杆 π ×1002 / 4
工作安全系数: n = σ s = 300 = 3.95 σ 75.9
弹性模量E和泊松比ν 。
l0
b
解:1.计算弹性模量E
h 习题 6-11 图
11
εx
=
高教范钦珊材料力学习题集_【有答案】
习题1-1图 习题1-2图习题1-3图习题1-4图习题1-5图习题1-6图 材料力学习题集第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图ABABC)(ql 2lM QF QF 454141第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F x M=; (B ))(d d Q x q x F -=,Q d d F x M-=; (C ))(d d Q x q x F -=,Q d d F x M=; (D ))(d d Q x q x F =,Q d d F xM-=。
高教范钦珊材料力学习题集 有答案
习题1-1图习题1-2图习题1-3图习题1-4图习题1-5图习题1-6图材料力学习题集第1章引论1-1图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M。
关于固定端处横截面A-A上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2图示带缺口的直杆在两端承受拉力F P作用。
关于A-A截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是D 。
1-3图示直杆ACB在两端A、B处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P。
关于杆中点处截面A-A在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致。
关于杆中点处截面A-A在杆变形后的位置(对于左端,由AA'→;对于右端,由AA''→),有四种答案,试判断哪一种答案是正确的。
正确答案是C 。
1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是C 。
第2章杆件的内力分析习题2-1图习题2-2图习题2-3图习题2-4图A BABC)(ql 2lM QF QF 454141(a-1) (b-1)AD EC MABCB 2M2M 34122-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F x M=; (B ))(d d Q x q x F -=,Q d d F x M-=; (C ))(d d Q x q x F -=,Q d d F x M=; (D ))(d d Q x q x F =,Q d d F xM-=。
材料力学课后标准答案
解:取轴向长为 的管分析:微元 上,作用力为
向分量 ,积分得
则: ,而
则:
题6-12图题6-13图
6-13长输水管受内压 ,管的内径为 , , ,用第四强度理论计算壁厚。(提示:可设管的轴向应变为零。)
解: ,数据代入,得:
,
所以
现已知
,
得
题6-5图
题6-6图题6-7图
6-6图示简支梁为 工字梁, , 。 点所在截面在集中力 的左侧,且无限接近 力作用的截面。试求: 点在指定斜截面上的应力; 点的主应力及主平面位置(用单元体表示)。
解: 所处截面上弯矩、剪力:
,
查型钢表后, 点以下表面对中性轴静矩:
,
同理,积分得
所以, 处转角为 ,为顺时针方向; 处挠度为 ,为竖直向下。
8-6试求图示各刚架 点的竖直位移,已知刚架各杆的 相等。
解: 段: ; 段上
由卡氏定理, 处的竖直位移
分段带入后面积分:
为正值,则与 同向,竖直向下
分析可知, 处已经作用有竖直方向的力,为了能利用卡氏定理解题, 处和竖杆中间处的 分别为
(压), (拉)
进而求得 (拉),由
求得:
8-3计算图示各杆件结构的变形能。
题8-3图
解: 首先求解 处的约束反力为
弯矩方程为:
则
分段积分:
解: 以逆时针方向为正,
,积分得
8-4试求图示各梁的 点的挠度的转角。
题8-4图
解: 以 点为 轴起点,结构的弯矩方程为:
则:
得
撤去 和 ,在 处作用逆时针向
理论力学课后答案范钦珊)
AyF FBCAAxF 'F CCDCF FAxF DR F FACBDAyFFDR F A CBD Ax F Ay F(a-1)第1篇 工程静力学基础第1章 受力分析概述1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。
试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。
习题1-1图解:(a )图(c ):11 sin cos j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y =投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
(b )图(d ): 分力:22)cot sin cos (i F ϕααF F x -= ,22sin sin j F ϕαF y = 投影:αcos 2F F x = , )cos(2αϕ-=F F y讨论:ϕ≠90°时,投影与分量的模不等。
1-2 试画出图a 和b 两种情形下各物体的受力图,并进行比较。
习题1-2图1y F x1F 1yF α1x F yF (c ) 2x F 2y F 2y 2x 2x F 2y F F(d )比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。
1-3 试画出图示各物体的受力图。
习题1-3图F AxF AyF D C B A B F或(a-2)FF AF DCA(a-1)BF AxF AAyF C(b-1)W F BD C AyF F(c-1)F F CB B F A或(b-2) αDAF ABCBFAx F AAyFDF DC αF1-4 图a 所示为三角架结构。
荷载F 1作用在铰B 上。
杆AB 不计自重,杆BC 自重为W 。
试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。
习题1-4图C F CAAF (e-1) BF FCDBOOx F OyF W1O F A(f-1)FF DCABBF(e-3)'F AOOxF OyF AW(f-2)AF 1F A1O(f-3)F AF BF AAF xB 2F'yB 2F'1(c-1)F A B1B F(b-1)Dy F DDx F yB F C2(b-2)xB 2F'1F 1F'yB 2F'B(b-3)B WDxF DCyB F'(c-2)AF A D GF CH F H (a)1-5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。
高教范钦珊材料力学习题集 有答案
材料力学习题集第1章引论1-1图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M。
关于固定端处横截面A -A上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
A-A在(b-1)(a-1) (b-1)(a-2) (b-2)(c) (d)(c-2) (d-2)(e) (f)(e-1) (f-1)(e-2) (a) (b)(c) (d)(a-1)(c-1) (d-1)(f-2)(b )0=∑A M ,022R 2=⋅+⋅+⋅--l F l ql lql ql B , ql F B 41R =(↑) 0=∑y F ,ql F A 41R =(↓), 2R 4141ql l ql l F M B C =⋅=⋅=(+) 2ql M A =(c )0=∑y F ,ql F A =R (↑) 0=∑A M ,2ql M A =0=∑D M ,022=-⋅-⋅+D M lql l ql ql(d )0=∑B Mql F A 45R =(↑) 0=∑y F ,ql F B 43R =(↑)0=∑B M ,22l qM B =0=∑D M ,23225ql M D = (e )0=∑y F ,F R C = 00=∑C M ,0223=+⋅+⋅-C M lql l ql0=∑B M ,221ql M B =0=∑y F ,ql F B =Q2max ||ql M =(f )0=∑A M ,ql F B 21R =(↑)0=∑y F ,ql F A 21R =(↓)0=∑y F ,021Q =-+-B F ql ql0=∑D M ,042221=+⋅-⋅D M ll q l ql281ql M E =∴ ql F 21||max Q =2-5 试作图示刚架的弯矩图,并确定max ||M 。
解: 图(a ):0=∑A M ,02P P R =⋅-⋅-⋅l F l F l F B P R F F B =(↑)0=∑y F ,P F F Ay =(↓) 0=∑x F ,P F F Ax =(←)弯距图如图(a-1),其中l F M P max 2||=,位于刚节点C 截面。
材料力学习题第六章应力状态分析答案详解
材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。
20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。
2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。
5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。
(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。
(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。
材料力学课后习题答案6章
由切应力互等定理可知,纵截面上的切应力 τ x 与 τ 2max 一样大。 左、右端面上弯曲正应力构成的轴向合力分别为
Fx1 =
bh Fa 1 σ1max ( ) = 2 2 2h bh Fa 1 Fx 2 = σ 2max ( ) = h 2 2
左、右端面上弯曲切应力构成的竖向合力大小相等,其值为
(也可用左侧题号书签直接查找题目与解)
6-3
图示带传动装置,胶带的横截面为梯形,截面形心至上、下边缘的距离分别为
y1 与 y2,材料的弹性模量为 E。试求胶带内的最大弯曲拉应力与最大弯曲压应力。
题 6-3 图 解:由题图可见,胶带中性层的最小曲率半径为
ρmin = R1
依据
σ=
Ey ρ
可得胶带内的最大弯曲拉应力和最大弯曲压应力分别为
Fy 1 = F y 2 =
1ห้องสมุดไป่ตู้F 6
Fa 2h
顺便指出,纵截面上弯曲切应力构成的轴向合力为
FSx = τ x ( ab) =
3.检查单元体的平衡方程是否满足
∑F ∑F
x
= 0,Fx 2 − Fx1 − FSx = = 0,Fy1 − Fy 2
y
Fa Fa Fa − − =0 h 2 h 2h F F = − =0 6 6
题 6-10 图 解:1.查№18 工字钢的有关数据 工字钢截面大致形状及尺寸符号示如图 6-10。
图 6-10 由附录 F 表 4 查得
h = 180mm,b = 94mm t = 10.7mm,I z = 1660cm 4,Wz = 185cm 3
2.计算顶边 AB 的长度改变量 顶边处有
3
σ max =
计算中用到 h1 = h / 2 − t = 79.3mm。
材料力学第6章拉压杆件的应力变形分析与强度设计
解:首先分析钢杆和铝筒的受力:钢杆BC承受拉伸,铝筒承受 压缩。C点的位移等于钢杆的伸长量与铝筒的压缩量之和:
Rigid plate
F´P B
FP AsB Ea
Aa Es
Fixed rigid plate
A
FP
l l
C F´P
第2类习题 变形计算
长为1.2m、横截面面积为1.10×10-3m2的铝制筒放置在固定刚块上,直径 为15.0mm的钢杆BC悬挂在铝筒顶端的刚性板上,若二者轴线重合、载荷作 用线与轴线一致,且已知钢和铝的弹性模量分别为Es = 200GPa,Ea = 70GPa, FP = 60kN。试求钢杆上C处位移。
50mm。求铝板与钢板横截面上的最大正应力。
steel aluminum
Rigid plate
FNs
Es As Es As Ea Aa
FP
FNa
Ea Aa Es As Ea Aa
FP
TSINGHUA UNIVERSITY
1.复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式
图示由铝板和钢板组成的复合材料柱,纵向截荷FP通过刚性平板沿着柱的中心线施加 在其上。试:
1.导出复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式; 2.已知FP = 385kN;Ea = 70GPa,Es = 200GPa;b0 = 30mm,b1 = 20mm,h =
50mm。求铝板与钢板横截面上的最大正应力。
铝板
a
FNa EaFP
Aa
b0hsE2b1haE
钢板
s A F s N sE sb 0 h E sE F P a2 b 1 hb 0 hs E E sF 2 P b 1 haE
《理论力学》(范钦珊)习题解答第2篇第4-6章
(b)υ(a)第2篇 工程运动学基础第4章 运动分析基础4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。
已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2π,试确定小环 A 的运动规律。
解:Rv a a 2nsin ==θ,θsin 2R v a =θθtan cos d d 2tR v a tv a ===,⎰⎰=t v v t R v v 02d tan 1d 0θ t v R R v t s v 00tan tan d d -==θθ⎰⎰-=t s t t v R R v s 0000d tan tan d θθtv R R R s 0tan tan ln tan -=θθθ4-2 质。
1.⎪⎩⎪⎨⎧-=-=225.1324tt y tt x , 2.⎩⎨⎧==t y t x 2cos 2sin 3解:1.由已知得 3x = 4y (1)⎩⎨⎧-=-=t y t x 3344 t v 55-=⎩⎨⎧-=-=34y x5-=a为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。
2.由已知,得 2arccos 213arcsin y x= 化简得轨迹方程:2942x y -= (2)轨迹如图(b ),其v 、a 图像从略。
4-3点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为221Rt s π=,式中s 以厘米计,t 以秒计。
轨迹图形和直角坐标的关系如右图所示。
当点第一次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。
解:Rt s v π== ,R v a π== t ,222n Rt Rv a π==y 坐标值最大的位置时:R Rt s 2212ππ== ,12=∴tA习题4-1图习题4-2图习题4-3图e e -t(c)e e -t(b)R tR(a)习题4-6图R a a x π==t ,R a y 2π-=4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。
清华大学材料力学习题详解(范钦珊)第6章
6-3 几何图形尺寸如图所示(单位为 mm) 。试: 1、 确定形心主轴与水平方向的夹角; 2、 确定形心主惯性矩。
(a) 习题 6-3 图
(b)
解:1、确定形心位置 将组合图形分解为 1、2、3 三个矩形。根据反对称性,矩形 1 的形心 C1 即为组合图形 的形心。 2、建立初始坐标系,确定组合图形对于初始坐标系的惯性矩与惯性积 以 C1 为坐标原点,奖励 C1zy 坐标系,利用叠加的方法,求组合图形对于 z、y 轴的惯 性矩与惯性积
I y + Iz
−
= ( 9.422 − 8.223) ×106 = 1.199 × 106 mm 4 = 1.199 × 10−6 m 4 Iz0 = I y + Iz 2 I y + Iz + 1 2 −
(I
y
− I z ) + 4 ( I yz )
2
2
I y0 =
= ( 9.422 + 8.223) × 106 = 1.765 × 107 mm 4 = 1.765 × 10−5 m 4
—5—
(
)
I z = I z (1) + I z ( 2 ) + I z ( 3) ⎡ 20 × 703 ⎤ 10 × 1203 = + 2⎢ + 702 × 20 × 30 ⎥ 12 ⎣ 12 ⎦
(
)
= 1.44 ×106 + 2 4.667 × 104 + 6.86 × 106 = 15.17 × 106 mm 4
(
)
(
)
tanα 0 =
2 I yz I y − Iz
=
−2 × 5.88 ×106 = 1.023 ( 3.674 − 15.17 ) ×106
高教范钦珊材料力学习题集有答案完整版
高教范钦珊材料力学习题集有答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】习题1-2图习题1-4图材料力学习题集第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
B 处固定。
关于其两端的约束力有四种答案。
试分析等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
习题2-1图第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F xM=; (B ))(d d Q x q x F -=,Q d d F xM-=; (C ))(d d Q x q x F -=,Q d d F xM=; (D ))(d d Q x q xF =,Q d d F xM-=。
正确答案是 B 。
2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
习题2-3图习题2-4图 (a-1) (b-1)(a-2) (b-2)2-3 已知梁的剪力图以及a 、e 截面上的弯矩M a 和M e ,如图所示。
范钦珊《工程力学》习题解答
1 × 20 × 0.8 + 10 + 2 FRB − 3 × 20 = 0 2 FRB = 21 kN(↑) ∑ Fy = 0 ,F = 15 kN(↑)
RA
M
FP
B
qd
FAx
A
M
FP1
B
C
C
A
B D
F Ay
(a)
FRB
FRA
FRB
(b)
习题 16 图
16 直角折杆所受载荷,约束及尺寸均如图示。试求 A 处全部约束力。 解:图(a) :
(b-2)
ΣFy = 0, 图(d-2) :
FBy =
M 2d
M FA = 2 d ΣFy = 0, ΣMA = 0, M A = FBy ⋅ 2d = M ; 图(e-1) : ΣFx = 0,FBx = 0 ΣMB = 0,FRC = 0 ΣFy = 0,FBy = 0 图(e-2) : ΣFx = 0,FAx = 0 ΣFy = 0,FAy = 0 ΣMA = 0,MA = M。
FBx
FBy
(a-2)
q
B
C
F By
(b-1)
' FBy
′ = FAy = qd + FBy
7 qd 4
F Ax
FRC
3d ′ ⋅ 2d − qd ⋅ M A − FBy =0 2 ΣMA = 0, ∴ MA = 3qd 2; 图(d-1) : M FRC = 2d ΣMB = 0,
A
MA
B
F Ay
即 ∴
2 FR·MO = − FO (l3 + l1 + l2)= 0 l1 + l2 + l3 = 0
材料力学高教第二版范钦珊第6章习题答案要点
材料力学_高教第二版_范钦珊_第6章习题答案第6章杆件横截面的位移分析6-1 直径d = 36mm的钢杆ABC与铜杆CD在C处连接,杆受力如图所示。
若不考虑杆的自重,试: 1.求C、D二截面的铅垂位移;Fl2.令FP1 = 0,设AC段长度为l1,杆全长为l,杆的总伸长,写出E的表达式。
EA习题6-1图(a) (F)l(F)l解:(1)πdπdEsEs2332(FN)CDlCDπdEc4(2)EAEsAEcAEEsEclEcEs令FP6-2 承受自重和集中载荷作用的柱如图所示,其横截面积沿高度方向按材料的比重。
试作下列量的变化曲线: 1.轴力FNx(x); 2.应力; 3.位移u(x)。
解:(1),(FN变化,其中为FPFN(x)-FPx习题6-2图(a)FPFPA0FP(2)A(x)A0eFPFP— 89 —(3)A0,当。
∴,则EA0EA0EA06-3 图示连接件由两片宽20mm、厚6mm的铜片与一片同样宽厚的钢片在B处连接而成。
已知钢与铜的弹性模量分别为Es = 200GPa,Ec =105GPa,钢片与铜片之间的摩擦忽略不计。
试求E和B处的位移。
F习题6-3图解:6-4 长为1.2m、横截面面积为的铝制筒放置在固定刚块上,直径为15.0mm的钢杆BC悬挂在铝筒顶端的刚性板上,若二者轴线重合、载荷作用线与轴线一致,且已知钢和铝的弹性模量分别为kNEs = 200Gpa,Ea = 70GPa,FP = 60kN。
试求钢杆上C处位移。
Am EkN(a) 习题6-4图 (b)解:(其中uA = 0) EaAa ∴钢杆6-5 变截面圆锥杆下端B处固定,上端A处承受外力偶矩T作用,如图所示,试证明A端扭转角表达式为解:Mx = T习题6-5图6-6 试比较图示二梁的受力、内力(弯矩)、变形和位移,总结从中所得到的结论。
(a) 解:(b) wmaxFPl3 48EIFlEI— 90 —两者弯矩相同,挠曲线曲率相同,但(b)梁的最大挠度比(a)梁要大,即不相等。
工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第6章_圆轴扭转
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =
∫
ρ ⋅ τdA =
∫
r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
16 M x
3 π d1
=
16 M x
3 π D2 (1 − α 4 )
即
d1 = (1 − α 4 ) 3 D2
1
(a)
二者重量之比
W1 A1 d2 = = 2 1 2 W2 A2 D2 (1 − α )
(b)
式(a)代入式(b) ,得
W1 (1 − α 4 ) = W2 1−α2
2 3
所以,正确答案是
16 M x 3 16 × 10.53 × 10 6 = = 96.3 π [τ ] π × 60
(3)按刚度条件求轴的直径
θ=
Mx ≤ [θ ] GI P
[θ ] = 1D / 2m =
π
180 × 2 × 10 3
rad/mm
6
D≥4
32M x 32 × 10.53 × 10 6 =4 = 110.6mm Gπ [θ ] 82 × 10 3 π [θ ]
工程力学(静力学与材料力学)范钦珊唐静静课后习题答案解析
= 114°35′
图(a):A 平衡: ∑ Fy = 0 , TA = 1⋅ sinϕ1
B 平衡: ∑ Fy = 0 , TB = 2 ⋅ sin ϕ 2
∵ TA = TB
10
(1)
(2) (3)
∴ sin ϕ1 = 2 sin ϕ 2 sin ϕ1 = 2 sin(114°35′ − ϕ1) ϕ1 = 84°44′
d =3
(2)
y
4 G
C
E
θ2
Dθ d −4.5 F O
FR
3
Ax
2
习题 2-2 解图
∴ F 点的坐标为(-3, 0) 合力方向如图所示,作用线过 B、F 点;
tan θ = 4 3
AG = 6 sinθ = 6 × 4 = 4.8 5
M A = FR × AG = FR × 4.8
FR
=
20 4.8
Fw
习题 1—9 图
FT1
F Fw
T2
FN
习题 1—9 解图
7
1 一 10 图示压路机的碾子可以在推力或拉力作用下滚过 100mm 高的台阶。假定力 F 都是沿着杆 AB 的方向,杆与水平面的夹角为 30°,碾子重量为 250 N。试比较这两种情形 下,碾子越过台阶所需力 F 的大小。
习题 1-10 图
(1) 油缸的受力图; (2) 活塞铆枪的受力图; (3) 铆钳的受力图。
6
习题 1-8 图
p
q FQ
p q'
FQ'
(b)
(c)
习题 1-8 解图
1—9 安置塔器的竖起过程如图所示,下端搁在基础上,C 处系以钢绳,并用绞盘拉住; 上端在 B 处系以钢缆,通过定滑轮 D 连接到卷扬机 E 上。设塔器的重量为 FW,试画出塔器 的受力图。