八年级数学上学期周考试题(10_15,无答案) 新人教版

合集下载

八年级数学上学期期中模拟卷(湖北武汉专用,人教版八上第11~13章:三角形+全等三角形+轴对称)解析

八年级数学上学期期中模拟卷(湖北武汉专用,人教版八上第11~13章:三角形+全等三角形+轴对称)解析

2024-2025学年八年级数学上学期期中模拟卷(湖北武汉专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八上第11~13章(三角形+全等三角形+轴对称)。

5.难度系数:0.61。

第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.没有哪一门学科能像数学这样,利用如此多的符号展现一系列完备且完美的世界.下列几种著名的数学曲线中,不是轴对称的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的定义可知,B 、C 、D 均为轴对称图形,A 不是轴对称图形故选A.2.如图,直线12//l l ,一个含45°角的直角三角板如图所示放置,点A 在直线2l 上,直角顶点C 在直线1l 上,已知么130Ð=°,则2Ð的度数为( )A.45°B.60°C.65°D.75°【答案】D【解析】∵l1∥l2,∴∠DCA=∠1=30°,∵∠DCA +∠DCB=90°,∴∠DCB=90°-30°=60°,∴∠2=180°-∠B-∠DCB=180°-45°-60°=75°,故选D..3.若点A关于x轴的对称点为(-2,3),则点A关于y轴的对称点为()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)【答案】B【解析】∵点A关于x轴的对称点为(-2,3),∴A(-2,-3),∴点A关于y轴的对称点为(2,-3).故选B.4.如图.花瓣图案中的正六边形ABCDEF 的内角和是( )A .720°B .900°C .1080°D .360°【答案】A 【解析】正六边形ABCDEF 的内角和()62180720=-´°=°,故选A .5.如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .BD 平分∠ABCB .点D 是线段AC 的中点C .AD =BD =BCD .△BCD 的周长等于AB +BC【答案】B 【解析】∵在ABC V 中,AB AC =,36A Ð=°,∴18036722ABC C °-°Ð=Ð==°,∵AB 的垂直平分线是DE ,∴AD BD =,∴36ABD A Ð=Ð=°,∴723636DBC ABC ABD ABD Ð=Ð-Ð=°-°=°=Ð,∴BD 平分ABC Ð,故A 正确;∴BCD △的周长为:BC CD BD BC CD AD BC AC BC AB ++=++=+=+,故D 正确;∵36DBC Ð=°,72C Ð=°,∴18072BDC DBC C =°--=°∠∠∠,∴BDC C Ð=Ð,∴BD BC =,∴AD BD BC ==,故C 正确;∵BD CD >,∴AD CD >,∴点D 不是线段AC 的中点,故B 错误.故选B .6.下列条件中,能判定△ABC ≌△DEF 的是( )A .AB=DE ,BC=EF ,∠A=∠EB .∠A=∠E ,AB=EF ,∠B=∠DC .∠A=∠D ,∠B=∠E ,∠C=∠FD .∠A=∠D ,∠B=∠E ,AC=DF【答案】D【解析】A .AB=DE ,BC=EF ,∠A=∠E ,SSA 不能确定全等;B .∠A=∠E ,AB=EF ,∠B=∠D ,AB 和EF 不是对应边,不能确定全等;C .∠A=∠D ,∠B=∠E ,∠C=∠F ,AAA 不能确定全等;D .∠A=∠D ,∠B=∠E ,AC=DF ,根据AAS ,能判断△ABC ≌△DEF .故选D .7.如图,在ABC V 中,已知点D ,分别为,BC AD 的中点2EF FC =,且ABC V 的面积为12,则BEF △的面积为( )A .3B .5C .6D .4【答案】D 【解析】∵点D 是BC 的中点,∴△ABD 的面积=△ACD 的面积=12△ABC =6,∵E 是AD 的中点,∴△ABE 的面积=△DBE 的面积=14△ABC 的面积=3,△ACE 的面积=△DCE 的面积=14△ABC 的面积=3,∴△BCE 的面积=12△ABC 的面积=6,∵EF =2FC ,∴△BEF 的面积=23×6=4,故答案为:4.8.如图,在ABC V 中,AB AC =,36A Ð=°.按照如下步骤作图:①分别以点A ,B 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN ,交AC 点D ;③以D 为圆心,BC 长为半径作弧,交AC 的延长线于点E ;④连接BD ,BE .则下列结论中错误的是( )A .MN BE∥B .AD BD BC ==C .3AEB CBE Ð=ÐD .2AB CE BE+=【答案】D【解析】AB AC =Q ,36A Ð=°,1180722ABC ACB A \Ð=Ð=°-Ð=°(),由题意得:BC DE =,MN 是AB 的垂直平分线,DA DB \=,DN AB ^,36A DBA \Ð=Ð=°,36DBC ABC DBA \Ð=Ð-Ð=°,72CDB A DBA \Ð=Ð+Ð=°,72CDB ACB \Ð=Ð=°,BD BC \=,AD DB BC DE \===,故选项B 正确;BD DE =Q ,1180542DBE DEB CDB \Ð=Ð=°-Ð=°(),\365490EBA DBA DBE Ð=Ð+Ð=°+°=°,即EB AB ^,又DN AB ^Q ,MN BE \∥,故选项A 正确;36DBC Ð=°Q ,54DBE Ð=°,543618CBE DBE DBC \Ð=Ð-Ð=°-°=°,54AEB Ð=°Q ,3AEB CBE \Ð=Ð,故选项C 正确;Q 36A Ð=°,90ABE Ð=°,2AE BE \¹,AB CE AC CE AE +=+=Q ,2AB CE BE \+¹,故选项D 错误.故选D .9.如图,已知ABC V 中,AB AC =,90BAC Ð=°,EPF Ð的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F (点E 不与A 、B 重合),90EPF Ð=°,过点F 作FH BC ^于点H ,给出以下四个结论:①AE CF =;②EPF V 是等腰直角三角形;③12ABC AEPF S S =四边形△;④当BP BE =时,2FA CF FH -=.上述结论中始终正确的个数有( )A .4个B .3个C .2个D .1个【答案】A【解析】如图,AB AC =Q ,90BAC Ð=°,ABC \V 是等腰直角三角形,90BAC Ð=°Q ,P 是BC 中点,AP CP \=,APE ÐQ 、CPF Ð都是APF Ð的余角,12\Ð=Ð,在APE V 与V CPF 中,3412AP CP Ð=Ðìï=íïÐ=Ðî,()ASA APE CPF \V V ≌,①由APE CPF V V ≌得到AE CF =,故①正确;②由APE CPF V V ≌得到PE PF =,EPF ÐQ 是直角,EPF \△是等腰直角三角形,故②正确;③由APE CPF V V ≌得到APE CPF S S =△△,则AEP APF CPF APF AEPF S S S S S =+=+=V V V V 四边形12ABC S V ,∴12ABC AEPF S S =四边形△,故③正确;④延长EF 交BC 的延长线于点G ,∵BP BE =,∴BP BE PC AP AF ====,∴67.5BPE BEP Ð=Ð=°,67.5APF AFP Ð=Ð=°,∴67.54522.5GFC AFE Ð=Ð=°-°=°,∴22.522.5G FCH Ð=Ð-°=°,18067.59022.5FPC Ð=°-°-°=°,∴PF FG =,CF CG =,∵FH BC ^,∴PH GH =,FH CH =,∵FA FH PC CH PH -=-=,CF FH CG CH GH +=+=,∴FA FH CF FH -=+,∴2FA CF FH -=,∴④正确;∴正确结论为①②③④.故选A .10.如图,已知ABC V 是等边三角形,点D 、E 分别在边AB 、BC 上,CD 、AE 交于点F ,60AFD Ð=°.FG 为AFC V 的角平分线,点H 在FG 的延长线上,HG CD =,连接HA 、HC .①BD CE =;②60AHC Ð=°;③FC CG =;④CBD CGH S S =△△;其中说法正确的有( )A .1个B .2个C .3个D .4个【答案】C 【解析】①∵△ABC 是等边三角形,∴∠B =∠ACE =60°,BC =AC ,∵∠AFD =∠CAE +∠ACD =60°,∠BCD +∠ACD =∠ACB =60°,∴∠BCD =∠CAE ,在△BCD 和△CAE 中,B ACE BC AC BCD CAE Ð=Ðìï=íïÐ=Ðî,∴△BCD ≌△CAE (ASA ),∴BD =CE ,故①正确;②作CM ⊥AE 交AE 的延长线于M ,作CN ⊥HF 于N ,如图:∵∠EFC =∠AFD =60°∴∠AFC =120°,∵FG 为△AFC 的角平分线,∴∠CFH =∠AFH =60°,∴∠CFH =∠CFE =60°,∵CM ⊥AE ,CN ⊥HF ,∴CM =CN ,∵∠CEM =∠ACE +∠CAE =60°+∠CAE ,∠CGN =∠AFH +∠CAE =60°+∠CAE ,∴∠CEM =∠CGN ,在△ECM 和△GCN 中,90CEM CGN CME CNG CM CN Ð=ÐìïÐ=Ð=°íï=î,∴△ECM ≌△GCN (AAS ),∴CE =CG ,EM =GN ,∠ECM =∠GCN ,∴∠MCN =∠ECG =60°,由①知△CAE ≌△BCD ,∴AE =CD,∵HG =CD ,∴AE =HG ,∴AE +EM =HG +GN ,即AM =HN ,在△AMC 和△HNC 中,90AM HN AMC HNC CM CN =ìïÐ=Ð=°íï=î,∴△AMC ≌△HNC (SAS ),∴∠ACM =∠HCN ,AC =HC ,∴∠ACM ﹣∠ECM =∠HCN ﹣∠GCN ,即∠ACE =∠HCG =60°,∴△ACH 是等边三角形,∴∠AHC =60°,故②正确;③由②知∠CFH =∠AFH =60°,若FC =CG ,则∠CGF =60°,从而∠FCG =60°,这与∠ACB =60°矛盾,故③不正确;④∵△ECM ≌△GCN ,△AMC ≌△HNC ,∴S △AMC ﹣S △ECM =S △HNC ﹣S △GCN ,即S △ACE =S △CGH ,∵△CAE ≌△BCD ,∴S △BCD =S △ACE =S △CGH ,故④正确,∴正确的有:①②④,故选C .第二部分(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知三角形的两边长分别为3和7,第三边为x ,则x 的取值范围是 .【答案】410x <<【解析】根据三角形的三边关系,得第三边的取值范围:7373x -<<+,解得410x <<,故答案为:410x <<.12.如图,在△ABC 中,AB =13,AC =10,AD 为中线,则△ABD 与△ACD 的周长之差= .【答案】3【解析】∵AD 是△ABC 中BC 边上的中线,∴BD =DC =12BC ,∴△ABD 与△ACD 的周长之差=(AB +BD +AD )﹣(AC +DC +AD )=AB ﹣AC=13﹣10=3.则△ABD 与△ACD 的周长之差=3.故答案为3.13.如图,在△ABC 中,BD 平分ABC Ð,CD 平分ACB Ð,连接AD ,作DE AB ^,2DE =,6AC =,则ADC △的面积为 .【答案】6【解析】如图,过点D 作DF BC ^于点F ,DG AC ^于点G ,∵BD 平分ABC Ð,DE AB ^,DF BC ^,∴DE=DF=2,∵CD 平分ACB Ð,DF BC ^,DG AC ^,∴DG=DF=2,∴1162622ADC S AC DG =×=´´=V .故答案是:6.14.如图,长方形纸带ABCD 中,AB CD ∥,将纸带沿EF 折叠,A ,D 两点分别落在A ¢,D ¢处,若162Ð=°,则2Ð的大小是 .【答案】56°/56度【解析】∵AB CD ∥,∴162AEF Ð=Ð=°,由折叠知62A EF AEF ¢Ð=Ð=°,∴218056AEF A EF ¢Ð=°-Ð-Ð=°.故答案为:56°.15.如图,ACB 90Ð=°,AC 2=,AB 4=,点P 为AB 上一点,连接PC ,则12PC PB +的最小值为 .【答案】3【解析】过P 点作PM ⊥BC 于点M ,将△ACB 沿AB 向上翻折得到△ADB ,且△ACB ≌△ADB ,过P 点作PN ⊥BD 于点N ,如图,∵在Rt △ACB 中,AC =2,AB =4,∴∠ABC =30°,∴BC =∵PM ⊥BC ,∴在Rt △PMB 中,有PM =12PB ,∴PC +12PB =PC +PM ,∵△ACB ≌△ADB ,∴∠ABD =∠ABC =30°,∵PN ⊥BD ,PB =PB ,∴∠PMB =∠PNB =90°,∴Rt △PNB ≌Rt △PMB ,∴PN =PM ,∴PC +12PB =PC +PM =PC +PN ,∵要求PN +PC 的最小值,∴可知当P 、N 、C 三点共线,根据垂线段最短可知,当CN ⊥BD 时,CN 最小,如图,∵CN ⊥BD ,∠CBD =∠ABC +∠ABD =60°,BC =∴在Rt △ABN 中,CN =3,则PC +12PB =PC +PM =PC +PN 的最小值是3,即PC +12PB 最小为3,故答案为:3.16.如图,在Rt ABC △中,90ACB Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,过点B 作BI EH ^于点I ,延长IB 交AC 于点J ,给出下列结论:①AB MG =.②BEH AFN S S =△△.③过点B 作BI EH ^于点I ,延长IB 交AC 于点J ,则AJ CJ =.④若J 是AC 中点,则2BJ EH =.其中正确的结论有 (只填写序号).【答案】①②③④【解析】∵在Rt ABC △中,90Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC MC =,BC GC =,90MCA GCB Ð=Ð=°∵90ACB Ð=°∴90MCG ACB Ð=Ð=°∴()SAS ACB MCG V V ≌∴AB MG =,故①正确;如图所示,过点F 作FO NA ^交NA 延长线于点O ,∵90FAO BAO CAB BAO Ð+Ð=Ð+Ð=°∴FAO CABÐ=Ð又∵90O ACB Ð=Ð=°,AF AB=∴()AAS AFO ABC V V ≌∴OF BC=∵AN AC=∵12ANB S AN OF =×V ,12ACB S AC BC =×V ∴ABC AFN S S =△△,同理可得:ABC BEH S S =V △,∴BEH AFN S S =△△,故②正确;如图所示,过点A 作AP BJ ^BJ 的延长线于点P ,过点C 作CQ BJ ^.∵90ABP BEI Ð+Ð=°,90EBI BEI Ð+Ð=°∴ABP BEIÐ=Ð又∵90P BIE Ð=Ð=°,AB BE=∴()AAS ABP BEI V V ≌∴AP BI=同理可证,()AAS BCQ HBI V V ≌∴CQ BI=∴CQ AP=∵90P CQJ Ð=Ð=°,AJP CJQÐ=Ð∴()AAS AJP CJQ V V ≌∴AJ CJ =,故③正确;延长BJ 交AN 于T ,过T 作TK BA ^于K ,过H 作HL EB ^于L ,∵J 为AC 中点;同理可得:BCJ TAJ V V ≌,∴ABC BEH ABT S S S ==V V V ,BJ =,∴1122AB TK BE HL ×=×,而AB BE =,∴TK HL =,∵AN BM ∥,90CBH ABE Ð=Ð=°,∴180TAB ABC ABC EBH Ð+Ð=°=Ð+Ð,∴TAB HBE Ð=Ð,∴TAK HBL Ð=Ð,∴TAK HBL V V ≌,∴TA HB =,∴TAB HBE V V ≌,∴HE BT =,而TJ BJ =,∴2EH BJ =;故④正确.故答案为:①②③④.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)如图,已知AB DC =,ABC DCB Ð=Ð,求证:A D Ð=Ð.【解析】证明::在△ABC 和 DCB △中,AB DC ABC DCB BC CB =ìïÐ=Ðíï=î,(4分)∴()SAS ABC DCB △≌△,(6分)A D \Ð=Ð.(8分)18.(8分)已知,如图,PD OA ^,PE OB ^,垂足分别为D ,E ,且PD PE =,试证明点P 在AOB Ð的平分线上.【解析】证明:连接OP ,如图,(2分)在Rt OPD V 和Rt OPE △中,PD PE OP OP=ìí=î∴()Rt Rt HL OPD OPE V V ≌(6分)∴Ð=ÐPOD POE ,∴OP 是AOB Ð的平分线,∴点P 在AOB Ð的平分线上.(8分)19.(8分)已知△ABC .(1)如图(1),C B Ð>Ð,若 AD BC ^于点D ,AE 平分BAC Ð,你能找出EAD Ð与B C ÐÐ,之间的数量关系吗?并说明理由.(2)如图(2),AE 平分BAC Ð,F 为AE 上一点,FM BC ^于点M ,EFM Ð与B C ÐÐ,之间有何数量关系?并说明理由.【解析】(1)解:∵AE 平分BAC Ð,∴1118022EAC BAC B C Ð=Ð=°-Ð-Ð(),又∵AD BC ^,∴90DAC C Ð=°-Ð,∴1902EAD EAC DAC B C C C B Ð=Ð-а-Ð-Ð-°-Ð=Ð-Ð)()(),∴12EAD C B Ð=Ð-Ð().(4分)(2)解:如图,过点 A 作AD BC ^于D ,∵FM BC ^,∴A D F M ∥,∴12EFM EAD C B Ð=Ð=Ð-Ð() .(8分)20.(8分)如图是44´的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,在给定的网格中按要求画图.(保留作图痕迹,要求:借助网格,只用无刻度的直尺,不要求写出画法)(1)画出线段PM ,使PM AB ∥,且点M 为格点;(2)在线段AB 上画出点Q ,使PQ AB ^;(3)请直接写出PM 与PQ 的位置关系________.【解析】(1)解:如图,点M 即为所求;;(3分)(2)解:如图,点Q 即为所求;(6分)(3)解:∵PM AB ∥,PQ AB ^,∴PM PQ ∥,故答案为:垂直.(8分)21.(8分)如图,在等边△ABC D ,E 分别在边,BC AC 上,且,AE CD BE = 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:AD BE =;(2)求PBQ Ð的度数;(3)若6,2PQ PE ==,求AD 的长.【解析】(1)证明:∵ABC V 为等边三角形,∴,60AB CA BAE C =Ð=Ð=°,在AEB V 与CDA V 中,∵AB CA BAE C AE CD =ìïÐ=Ðíï=î,∴()SAS AEB CDA ≌V V ,∴AD BE =.(3分)(2)解:由(1)得:AEB CDA △△≌,∴ABE CAD Ð=Ð,∴60BAD ABE BAD CAD BAC Ð+Ð=Ð+Ð=Ð=°,∴60BPQ BAD ABE Ð=Ð+Ð=°,∵BQ AD ^,∴90BQP Ð=°,∴90906030PBQ BPQ Ð=°-Ð=°-°=°.(6分)(3)解:∵30PBQ Ð=°,90BQP Ð=°,6PQ =,∴212==BP PQ ,∵2PE =,∴14BE BP PE =+=,∵AD BE =,∴14AD =.(8分)22.(10分)如图所示,已知B (﹣2,0),C (2,0),A 为y 轴正半轴上的一点,点D 为第二象限一动点,点E 在BD 的延长线上,CD 交AB 于点F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC的度数是否发生变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.【解析】(1)证明:∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(3分)(2)证明:过点A作AM⊥CD于点M,作AN⊥BE于点N,如下图所示:则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,由(1)可知:∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴DA平分∠CDE.(角的两边距离相等的点在角的平分线上);(6分)(3)解:∠BAC的度数为在CD上截取CP=BD,连接AP,如下图所示:∵CD=AD+BD,∴AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP (SAS) ,(8分)∴AD=AP,∠BAD=∠CAP,∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP =60°.∴∠BAC =∠BAP +∠CAP =∠BAP +∠BAD =60°.(10分)23.(10分)数学活动课上,王老师提出这样一个问题:在△ABC 中,AD 是BC 边上的中线,若7AB =,4AC =,你能判断AD 的取值范围吗?如图①,小明同学考虑到,利用线段相等,可以构造全等把一些分散的已知条件整合在一个三角形里,因此得到如下解题思路:延长AD 到E ,使DE AD =,连接BE ,构造一对全等三角形,然后在ABE D 中就可以判断AE 的取值范围,从而求出AD 的取值范围.(1)按照上述思路,请完成小明的证明过程;(2)类比上述解题思路,解决问题:如图②,在ABC V 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF AB ∥交ED 的延长线于点F ,若AD BC ^,1AE =,2CF =,求AC 的长.(3)如图③,王老师在原△外部,以A 为直角顶点作两个等腰直角三角形,分别为ABM V 与ACN △,连接MN ,猜想MN 与中线AD 的数量关系,并证明你的结论.【解析】(1)AD Q 是BC 边上的中线,BD CD \=.在ADC △和EDB △中,CD BD ADC BDE AD ED =ìïÐ=Ðíï=î,(SAS)ADC EDB \△≌△,AC BE \=,AB BE AE AB BE -<<+Q ,2AB AC AD AB AC \-<<+,7AB =Q ,4AC =,3211AD \<<,1.5 5.5AD \<<.(3分)(2)CF AB Q ∥,B FCD \Ð=Ð,BED F Ð=Ð,AD Q 是BC 边上的中线,BD CD \=,(AAS)BDE CDF \△≌△,2BE CF \==,123AB AE BE \=+=+=,AD BC ^Q ,BD CD =,3AC AB \==.(6分)(3)2MN AD =.理由:延长AD 至E ,使DE AD =,连接CE ,如图所示:由(1)得:BAD CED ≌△△,BAD E \Ð=Ð,AB CE =,90BAM NAC Ð=Ð=°Q ,180BAC MAN \Ð+Ð=°,即180BAD CAD MAN Ð+Ð+Ð=°,180E CAD ACE Ð+Ð+Ð=°Q ,ACE MAN \Ð=Ð,(9分)BAM QV 和ACN △是等腰直角三角形,AB MA \=,AC AN =,CE MA \=,在ACE △和NAM △中,CE AM ACE MAN AC NA =ìïÐ=Ðíï=î,(SAS)ACE NAM \V V ≌,AE MN \=,2AD MN \=.(10分)24.(12分)阅读理解:如图1,在V ABC 中,D 是BC 边上一点,且BD m DC n =,试说明ABD ACD S m S n =△△.解:过点A 作BC 边上的高AH ,∵12ABD S BD AH =×△,12ACD S DC AH =×△,∴1212ABDACD BD AH S BD S CD DC AH ×==×△△,又∵BD m DC n=,∴ABD ACD S m S n =△△.根据以上结论解决下列问题:如图2,在V ABC 中,D 是AB 边上一点,且CD ⊥AB ,将V ACD 沿直线AC 翻折得到V ACE ,点D 的对应点为E ,AE ,BC 的延长线交于点F ,AB =12,AF =10.(1)若CD =4,求V ACF 的面积;(2)设△ABF 的面积为m ,点P ,M 分别在线段AC ,AF 上.①求PF +PM 的最小值(用含m 的代数式表示);②已知23AM MF =,当PF +PM 取得最小值时,求四边形PCFM 的面积(用含m的代数式表示).【解析】(1)∵CD ⊥AB ,∴∠ADC =90°,由翻折得,CE =CD =4,∠AEC =∠ADC =90°,∴CE ⊥AF ,∵AF =10,∴S △ACF =12AF •CE =12×10×4=20.(3分)(2)①如图2,作MN ⊥AC 于点O ,交AB 于点N ,连接FN 、PN ,,由翻折得,∠OAM =∠OAN ,∵AO =AO ,∠AOM =∠AON =90°,∴△AOM ≌△AON (ASA ),∴OM =ON ,AM =AN ,∴AC 垂直平分MN ,∴PM =PN ,∴PF +PM =PF +PN ≥FN ,∴当点P 落在FN 上且FN ⊥AB 时,PF +PM 的值最小,为此时FN 的长;(5分)如图3,FN ⊥AB 于点N ,交AC 于点P ,PM ⊥AF ,由S △ABF =12AB •FN =m ,得12×12FN =m ,解得,FN =16m ,此时PF +PM =FN =16m ,∴PF +PM 的最小值为16m .(8分)②如图4,当PF +PM 取最小值时,FN ⊥AB 于点N ,交AC 于点P ,PM ⊥AF ,设CD =CE =a ,PM =PN =x ,∵AB =12,AF =10,∴1126215102ABCAFC a S S a ´==´V V ,∴S △AFC =511S △ABF =511m ;∵23AM MF =,∴AM =25AF =25×10=4,∴AN =AM =4,∴BN =12=4=8,(10分)∴4182AFN BFN S S ==V V ,∴S △AFN =13S △ABF =13m ,由S △APM =12×4x ,S △APN =12×4x ,得S △APM =S △APN ,设S △APM =S △APN =2n ,∵23APM FPM S AM S MF ==V V ,∴S △FPM =3n,由S △APN +S △APM +S △FPM =S △AFN =13m ,得2n +2n +3n =13m ,∴n =121m ,∴S △APM =2n =221m ,∴S 四边形PCFM =511m -221m =83231m .(12分)。

人教版2024~2025学年八年级上册期中数学复习训练试题[含答案]

人教版2024~2025学年八年级上册期中数学复习训练试题[含答案]

二、境空题:本大题共 6 小题,每小题 3 分,共 18 分,请将答案直接填在答题
纸中对应的横线上.
13.已知点 P(-2,1),则点 P 关于 x 轴对称的点的坐标是 .
14.如果将一副三角板按如图方式叠放,那么 1 等于

15.如图,D 在 BC 边上, EAC 40° , △ ABC ≌△ ADE ,则 B 的度数为
A.5
B.8
C.9
D.10
11.如图,在 V ABC 中, BAC 90°,AB 6,AC 8,BC 10,EF 垂直平分 BC ,点 P
为直线 EF 上的任意一点,则 AP + BP 的最小值是( )
A.6
B.7
C.8
D.10
12.如图,C 为线段 AE 上一动点(不与点 A,E 重合),在 AE 同侧分别作正三角形 ABC 和
2024-2025 学年第一学期人教版八年级期中数学复习训练试
卷(天津)
试卷满分:120 分 考试时间:100 分钟
一、选择题本大愿共 12 小题每小题 3 分共 36 分在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.下列图形中,不是轴对称图形的是( )
A.
B.
C.
D.
2.下列长度的三条线段中,能组成三角形的是( )
2
A. AF BF
B. AE
C. DBF + DFB 90°
D. BAF EBC
7.如图, Rt△ ABC 中, ACB 90°, A 55° ,将其折叠,使点 A 落在边 CB 上 A 处,折
痕为 CD ,则 ADB ( )
A. 40°
B. 30°

2022-2023学年八年级第一学期期中考试数学试卷附详细答案

2022-2023学年八年级第一学期期中考试数学试卷附详细答案

2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )2.在平面直角坐标系中,点A(−1,4)关于x轴对称的点的坐标为( )A.(1,4)B.( −1,4)C.(0,−4)D.(−1,−4)3.下列正多边形中,内角和是540°的是( )4.如图,用纸板挡住部分三角形后,能用尺规画出与此三角形全等的三角形,其全等的依据是( )A.ASAB.AASC.SASD.HL5.若α为正六边形的一个外角,则α的度数为( )A.45°B.50°C.60°D.72°4题图A5题图B E F C6.如图,△ABF ≌△ACE ,点B 和点C 是对应顶点,则下列结论中不一定...成立的是() A.∠B=∠C B.BE=CF C.∠BAE=∠CAF D.AE=EF7.如图,物业公司计划在小区内修建一个电动车充电桩,要求到A ,B ,C 三个出口的距离都相等,则充电桩应建在( )A.△ABC 的三条高的交点处B.△ABC 的三条角平分线的交点处C.△ABC 的三条中线的交点处D.△ABC 的三条边的垂直平分线的交点处 8.如图,E 是△ABC 的边AC 的中点,CF ∥AB ,连接FE 并延长交AB 于点D ,若AB=9,CF=6,则BD 的长为( )A.1.5B.2C.3D.3.59.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,若BC=10,DE=3,则△BCE 的面积为( )A.14B.15C.18D.30 10.具备下列条件的△ABC ,不是..直角三角形的是( ) A.∠A ︰∠B ︰∠C=5︰2︰3 B.∠A −∠C=∠B C.∠A=∠B=2∠C D.∠A=12∠B=13∠C11.如图,△ABC 与△A 1B 1C ,关于直线MN 对称,P 为MN 上任一点(P 不与AA 1共线),下列结论不正确...的是( ) A.AP=A 1P B.△ABC 与△A 1B 1C 1的面积相等 C.MN 垂直平分线段AA 1 D.直线AB ,A 1B 1的交点不一定在MN 上 12.如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,A8题图BCEFD 7题图ABC9题图则∠AEC=( )A.28°B.59°C.60°D.62°13.如图,将三角形纸片ABC 翻折,点A 落在点A ´的位置,折痕为DE.若∠A=30°,∠BDA ´=80°,则∠CEA ´的度数为( )A.15°B.20°C.30°D.40°14.如图,小亮和小明分别用尺规作∠APB 的平分线PQ ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确15.如图,AD 为△ABC 的中线,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,下列结论正确的有( )①∠EDF=90°;②∠BAD=∠CAD ;③△BDE ≌△DCF ;④EF ∥BC. A.4个 B.3个 C.2个 D.1个16.有一道题目:“如图,∠AOB=60°,点M ,N 分别在OA ,OB 上运动(不与点O 重合),13题图A CBDE A ´A14题图APP B BQQ小明小亮11题图A MN CBP A 1B 1C 112题图ME 平分∠AMN ,ME 的反向延长线与∠MNO 的平分线交于点F ,在点M ,N 的运动过程中,求∠F 的度数.”甲的解答:∠F 的度数不能确定,它随着点M ,N 的运动而变化,且随∠OMN 的增大而减小;乙的解答:∠F 始终等于45°,下列判断正确的是( )A.甲说的对B.乙说的对C.乙求的结果不对,∠F 始终等于30°D.两人说的都不对,凭已知条件无法确定∠F 的值或变化趋势二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.如图,AB=AC ,点D ,E 分别在AB ,AC 上,连接BE ,CD ,要使△ABE ≌△ACD ,则添加的条件是_______.(只需填一个即可)18.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,若△BCD 的周长为5,BC=2,则AC 的长为_______,边AB 长的取值范围是_______.19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E.17题图ACEDB18题图19题图ABCD E16题图A EBFMON 15题图(1)若∠C=50°,∠BAC=60°,则∠ADB的度数为_______.(2)若∠BED=45°,则∠C的度数为_______.(3)猜想∠BED与∠C的数量关系为_______.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.已知一个多边形的边数为n.(1)若n=7,求这个多边形的内角和.比一个四边形的外角和多90°,求n的值.(2)若这个多边形的内角和的1421.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−4),B(3,−3),C(1,−1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)写出(1)中所画的△A1B1C1的各顶点坐标.(3)连接CC1,BB1,则四边形BCC1B1的面积为_______.22.如图,在Rt△ABC中,∠ACB=90°,D为边AB上一点.将△ACB沿CD折叠,使点A恰好落在边BC上的点E处.(1)若AC=6,BC=8,AB=10,求△BDE 的周长. (2)若∠B=37°,求∠CDE 的度数.23.已知:如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点P ,且PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F. (1)求证:PE=PF.(2)若∠BAC=60°,连接AP ,求∠EAP 的度数.24.在△ABC 中,AF 平分∠BAC ,CD ⊥AF ,垂足为F ,与AB 交于点D.(1)如图1,若∠BAC=80°,∠B=40°,求∠BCD 的度数. (2)如图2,在△ABC 内部作∠ACE=∠B ,求证:∠BCD=∠DCE.A图2图1AAD BEC25.如图,AE=AF ,AE ⊥AF ,点E ,F ,B 在同一直线上,AB=AC ,∠BAC=90°.(1)判断△AEB 与△AFC 是否全等?若全等,请给出证明;若不全等,请说明理由. (2)当EF 和BF 满足什么数量关系时,CE=CB?请给出结论并说明理由.26.【问题提出】如图1,△ABC 是直角三角形,∠BAC=90°,AB=AC ,直线l 经过点A ,分别过点B ,C 向直线l 作垂线,垂足分别为D ,E.求证:△ABD ≌△CAE.【变式探究】若图1中的点B ,C 在直线l 的两侧,其他条件不变(如图2所示),判断△ABD 与△CAE 是否依然全等,并说明理由.【深入思考】如图3,在△ABC 中,AB=AC ,直线l 经过点A ,且点B ,C 位于直线l 的两侧,若∠BDA+∠BAC=180°,∠BDA=∠AEC ,判断线段BD ,CE ,DE 之间的数量关系,并加以说明.图1l图2图3ACD E BlF2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )1.解:D 是轴对称图形,关于对称轴两侧对称且能完全重合,故选D 。

24-25学年八年级数学期中模拟卷01(全解全析)【测试范围:八年级上册第11章~第13章】(人教版

24-25学年八年级数学期中模拟卷01(全解全析)【测试范围:八年级上册第11章~第13章】(人教版

2024-2025学年八年级数学上学期期中模拟卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八年级上册第十一章~第十三章。

5.难度系数:0.75。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.未来计算机发展方向是让计算机能看、能听、能说、会思考!下列表示计算机视觉交互应用的图标中,文字上方的图案是轴对称图形的是()A.B.C.D.【答案】A【详解】A. 沿此直线对折,两边能完全重合,是轴对称图形,故此项正确;选项B、C、D均找不到一条直线对折,使得直线两边的图形能完全重合,所以都不是轴对称图形,故此三项均错误;故选:A.2.下列长度的三条线段能组成三角形的是()A.3cm,4cm,5cmB.2cm,2cm,4cm C.1cm,6cm,7cm D.2cm,6cm,9cm【答案】A【详解】解:A 、3+4>5,能组成三角形,符合题意;B 、2+2=4,不能组成三角形,不符合题意;C 、1+6=7,不能组成三角形,不符合题意;D 、2+6<9,不能组成三角形,不符合题意.故选:A .3.下面作三角形最长边上的高正确的是( )A .B .C .D .【答案】C【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.4.已知一个多边形的内角和是720°,则该多边形的边数为( )A .4B .6C .8D .105.如图,已知ABC DEF ≌△△,且60,40A B Ð=°Ð=°,则F Ð的度数是( )A .80°B .70°C .60°D .50°【答案】A【详解】解:∵60,40A B Ð=°Ð=°,∴180604080ACB Ð=°-°-°=°,∵ABC DEF ≌△△,∴80A B F C Ð=°Ð=;故选A .6.等腰三角形一腰上的高与另一腰的夹角为54°,则该等腰三角形底角的度数为( )A .72°B .72°或36°C .36°D .72°或18°7.如图,在ABC V 中,DE 是AC 的垂直平分线,3cm AE =,ABD V 的周长为12cm ,则ABC V 的周长为( )A .15cmB .16cmC .17cmD .18cm8.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C 【详解】解:AD Q 是BAC Ð的平分线,且,,4DE AB DF AC DE ^^=,4DF DE \==,9.如图,△ABC 的面积为10cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .3cm 2B .5cm 2C .6cm 2D .8cm 2,ABP EBP Ð=Ð,90°,10.如图,已知,AB AC AE AF ==,则ABE ACF V V ≌的根据是( )A .ASAB . AASC .SSSD .SAS 【答案】D 【详解】解:在ABE V 与ACF △中,AB AB A A AE AF =ìïÐ=Ðíï=î,∴()SAS ABE ACF ≌△△,故选:D .11.如图,Rt △ABC 中,ÐACB =90°,AC =6,BC =8,AB =10,BD 平分ÐABC ,如果点M ,N 分别为BD ,BC 上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .6【答案】B 【详解】解:如图所示:过点C 作CE ⊥AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC于点N,∵BD 平分∠ABC ,∴ME =MN ,∴CM +MN =CM +ME =CE .∵Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,CE ⊥AB ,12.如图,已知ABC V 和ADE V 都是等腰三角形,90BAC DAE Ð=Ð=°,BD ,CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ^;③AF 平分CAD Ð;④45AFE Ð=°.其中正确结论的个数有( )A .①②③B .①②④C .②④③D .①③④二、填空题(本题共6小题,每小题2分,共12分.)13.如图,9060ABC ABD D CAD Ð=°Ð=°V V ≌,,,则ABD Ð的度数为 .【答案】60°/60度【详解】∵60ABC ABD CAD Ð=°V V ≌,,∴18060ABD D DAB Ð=°-Ð-Ð=°,故答案为:60°.14.若点()12A a -,与点()21B b -,关于x 轴对称,则a b += .【答案】2【详解】解:∵点()12A a -,与点()21B b -,关于x 轴对称,∴1212a b -=-=-,,解得31,==-a b ,∴312a b +=-=.故答案为:2.15.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于E ,若DE =2cm ,则BC = cm .16.如图,△ABC ≌△ADE ,若∠B =70°,∠C =30°,∠DAC =25°,则∠EAC 的度数为 .【答案】55°/55度【详解】解:∵∠B =70°,∠C =30°,∴∠BAC =180°﹣70°﹣30°=80°,∵△ABC ≌△ADE ,∴∠DAE =∠BAC =80°,又∠DAC =25°,∴∠EAC =∠DAE ﹣∠DAC =80°﹣25°=55°.故答案为:55°.17.如图,在四边形ABCD 中,60D Ð=°,若沿图中虚线剪去D Ð,则12Ð+Ð= .18.如图,等边ABC V 的边长为12cm ,M ,N 两点分别从点AB 同时出发,沿ABC V 的边顺时针运动,点M的速度为1cm/s ,点N 的速度为2cm/s ,当点N 第一次到达B 点时,M ,N 两点同时停止运动,则当M ,N 运动时间t = s 时,AMN V 为等腰三角形.【答案】4或16【详解】如图1所示,设点M 、N 运动x 秒后,AN =AM ,由题意可知,AN =12-2x ,AM =x ,∴12-2x =x ,解得x =4,∴点M 、N 运动4秒后,AMN V 是等腰三角形;如图2所示,假设AMN V 是等腰三角形,∴AN =AM ,ÐAMN =ÐANM ∴ÐAMC =ÐANB④ÐC =ÐB =60° ,AC =AB ∴ACM △≌ABN V (AAS ),∴CM =BN设点M 、N 运动y 秒后,AN =AM ,由题意可知,∴CM =y -12,NB =36-2y ,∵CM =BN ,∴y -12=36-2y ,解得y =16,故假设成立,∴当点M 、N 运动4秒或16秒时,AMN V 为等腰三角形.故答案为:4或16.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)已知三角形的三边长分别为a―2,a―1和a+1,求a的取值范围.【详解】解:∵―2<―1<1,(1分)∴a―2<a―1<a+1,(2分)∵三角形的三边长分别为a―2,a―1和a+1,∴a―2+a―1>a+1a―2>0,(4分)∴a>4.(6分)20.(6分)如图,(1)求作一点P,使P至M,N的距离相等,且到AB,BC的距离相等;(2)在BC上求一点Q,使QM+QN最小.(2)解:如图,点Q即为所求.(6分)21.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC V 的顶点均在格点上,点A 的坐标为(6,4)-.(1)作111A B C △,使其与ABC V 关于x 轴对称.(2)在y 轴上画出点P ,使PA PC +的值最小.A 关于y 轴的对称点A ¢,(4分)A C³¢三点共线时,PA PC +有最小值,(6分)如图所示,点P即为所求.22.(10分)如图,在△ABC中,点D在边BC上.(1)若∠1=∠2=35°,∠3=∠4,求∠DAC的度数;(2)若AD为△ABC的中线,△ABD的周长比△ACD的周长大3,AB=9,求AC的长.【详解】(1)解:∵∠1=∠2=35°,∴∠3=∠1+∠2=70°,(2分)∵∠3=∠4,∴∠3=∠4=70°,(4分)∴∠DAC=180°―∠3―∠4=40°;(5分)(2)解:∵AD为△ABC的中线,∴BD=CD,(6分)∵△ABD的周长比△ACD的周长大3,∴AB+AD+BD―(AC+AD+CD)=3,(7分)∴AB+AD+BD―AC―AD―CD=3,(8分)∴AB ―AC =3,∵AB =9,∴AC =6.(10分)23.(10分)如图,点B ,F ,C ,E 在直线l 上,点A ,D 在l 的两侧,,,∥Ð=Ð=AB DE A D AB DE .(1)求证:ABC DEF ≌△△;(2)若10,3BE BF ==,求FC 的长.24.(10分)如图所示,在ABC V 中,DE 是边AB 的垂直平分线,交AB 于E ,交AC 于D ,连接BD .(1)若ABC C Ð=Ð,50A Ð=°,求DBC Ð的度数.(2)若AB AC =,且BCD △的周长为18cm ,ABC V 的周长为30cm ,求BE 的长.25.(12分)【教材呈现】以下是人教版八年级上册数学教材第53页的部分内容.如图1,四边形ABCD 中,AD CD =,AB CB =.我们把这种两组邻边分别相等的四边形叫做“筝形”.【性质探究】(1)如图1,连接筝形ABCD 的对角线AC 、BD 交于点O ,试探究筝形ABCD 的性质,并填空:对角线AC 、BD 的关系是: ;图中ADB Ð、CDB Ð的大小关系是:.【概念理解】(2)如图2,在ABC V 中,AD BC ^,垂足为D ,EAB V 与DAB V 关于AB 所在的直线对称,FAC V 与DAC △关于AC 所在的直线对称,延长EB ,FC 相交于点G .请写出图中所有的“筝形”,并选择其中一个进行证明;【应用拓展】(3)如图3,在(2)的条件下,连接EF ,分别交AB 、AC 于点M 、H .求证:B A C FE G Ð=Ð.【详解】解:(1)∵DA DC =,BA BC =,∴BD 垂直平分AC ,∵AC BD ^,AD CD =,∴ADB CDB Ð=Ð;(2分)(2)图中的“筝形”有:四边形AEBD 、四边形ADCF 、四边形AEGF ;(3分)证明四边形AEBD 是筝形:由轴对称的性质可知AE AD =,BE BD =;\四边形AEBD 是筝形.同理:AF AD =,CD CF =;\四边形ADCF 是筝形.连接EF ,∵AE AD =,AF AD =,∴AE AF =,∴AEF AFE Ð=Ð,∵AD BC ^,∴90AEG AFG ADB ADC Ð=Ð=Ð=Ð=°,∴GEF GFE Ð=Ð,∴EG FG =,∴四边形AEGF 是筝形;(8分)(3)证明:如图3中,由轴对称的性质可知:CAD CAF Ð=Ð,BAD BAE Ð=Ð,90ADB AEB Ð=Ð=°,AD AF AE ==,∴()22EAF EAD DAF BAD DAC BAC Ð=Ð+Ð=Ð+Ð=Ð,AEF AFE Ð=Ð,2180EAF AEF ÐÐ\+=°,22180BAC AEF ÐÐ\+=°,90BAC AEF ÐÐ\+=°,90FEG AEF Ðа+=Q , BAC FEG \Ð=Ð.(12分)26.(12分)等腰Rt ABC △,90ACB Ð=°,AC BC =,点A 、C 分别在x 轴、y 轴的正半轴上.(1)如图1,求证:BCO CAO Ð=Ð;(2)如图2,若5OA =,2OC =,求B 点的坐标;(3)如图3,点(0,3)C ,Q 、A 两点均在x 轴上,且12AQ =.分别以AC 、CQ 为腰,第一、第二象限作等腰Rt CAN V 、等腰Rt QCM V ,连接MN 交y 轴于P 点,OP 的长度是否发生改变?若不变,求出OP 的值;若变化,求OP 的取值范围.【详解】(1)解:如图1,90ACB Ð=°Q ,=90AOC а,90BCO ACO CAO ACO \Ð+Ð=°=Ð+Ð,D ,则90CDB AOC Ð=Ð=°Q 等腰Rt CAN V 、等腰Rt QCM V ,180MCQ ACN \Ð+Ð=°,360180180ACQ MCN \Ð+Ð=°-°=°,CNH ACQ \Ð=Ð,又90HCN ACO QAC ACO Ð+Ð=°=Ð+ÐQ ,HCN QAC \Ð=Ð,在HCN V 和QAC △中,CNH ACQ CN AC HCN QAC Ð=Ðìï=íïÐ=Ðî,(ASA)HCN QAC \△≌△,CH AQ \=,HN QC =,QC MC =Q ,HN CM \=,Q 12AQ =,12CH \=,NH CM ∥Q ,PNH PMC \Ð=Ð,\在PNH △和PMC △中,HPN CPM PNH PMC HN CM Ð=ÐìïÐ=Ðíï=î,。

人教版八年级数学上册经典精品练习题-强烈推荐

人教版八年级数学上册经典精品练习题-强烈推荐

人教版八年级数学第一学期期末考试试卷(试卷满分120分,考试时间100分钟)题号 一二三四五六七八 总分 累分人得分祝你考出好成绩!一、精心选一选(请将下列各题唯一正确的选项代号填在题后的括号内.本大题共10小题,每小题3分,共30分.)1、下列运算中,计算结果正确的是 ( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2、在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第四象限B. 第三象限C.第二象限D. 第一象限 3、化简:a+b-2(a-b)的结果是 ( ) A.3b-a B.-a-b C.a+3b D.-a+b 4、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、 E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm 5、下列多项式中,不能进行因式分解的是 ( ) A. –a 2+b 2 B. –a 2-b 2 C. a 3-3a 2+2a D. a 2-2ab+b 2-16、小明家下个月的开支预算如图所示,如果用于衣服上的支 是200元,则估计用于食物上的支出是 ( ) A. 200元 B. 250元 C. 300元 D. 3507、下列函数中,自变量的取值范围选取错误..的是 ( ) A .y=2x 2中,x 取全体实数 B .y=11x +中,x 取x ≠-1的实数 C .y=2x -中,x 取x ≥2的实数 D .y=13x +中,x 取x ≥-3的实数 得分阅卷人食物30%教育22%衣服20%其他28%图2AB C FED8、下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④ A 、②③④ B 、①②③ C 、①②④ D 、①②④ 9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80° 10、如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置 的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D二、耐心填一填(本大题共6小题,每小题4分,共24分.)11、32c ab -的系数是 ,次数是 。

人教版八年级数学上册-第十一、十二、十三章综合测试--无答案

人教版八年级数学上册-第十一、十二、十三章综合测试--无答案

人教版八年级数学上册-第十一、十二、十三章综合测试--无答案(共8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--八年级数学上学期第十一、十二、十三章综合测试(满分 100 分,考试时间 100 分钟)一、选择题(每小题 3 分,共 30 分)1.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD 的条件是()A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDAA12B CD2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3 cm,4 cm,8 cm B.8 cm,7 cm,15 cmC.13 cm,12 cm,20 cm D.5 cm,5 cm,11 cm3.如图,△ABC 中,AD 是BC 边上的高,AE,BF 分别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°AFB E D C4.若等腰三角形的底边长为6 cm,一腰上的中线把它的周长分成差为2 cm的两部分,则腰长为()A.4 cm B.8 cm C.4 cm 或8 cm D.以上都不对5.在△ABC 中,∠ABC 与∠ACB 的平分线相交于D,且∠BDC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°ED6. 如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点 D ,E ,AD =3,BE =1,则 DE 的长是( ) A .1 B .2 C .3 D .4BAC7. 如图,在方格纸中,以 AB 为一边作△ABP ,使之与△ABC 全等,从 P 1,P 2,P 3,P 4 四个点中找出符合条件的点 P ,则点 P 有( ) A .1 个 B .2 个 C .3 个 D .4 个8. 某中学新体育馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( ) A .正方形 B .正六边形 C .正八边形 D .正十二边形9. 如图,AB ∥CD ,BP 和 CP 分别平分∠ABC 和∠DCB ,AD 过点 P ,且与AB 垂直.若 AD =8,则点 P 到 BC 的距离是( ) A .2 B .4 C .6 D .8B ACDP空三角形支架10. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点 G ,过点 G 作 EF∥BC 交 AB 于 E ,交 AC 于 F ,过点 G 作 GD ⊥AC 于 D ,下列四个结论:①EF =BE +CF ;②∠BGC =90°+ 1∠A ;③点 G 到△ABC 各边的距离相等;2④设 GD =m ,AE +AF =n ,则其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个ABC二、填空题(每小题 3 分,共 15 分)11. 空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是 .调12. 用一条宽处处相等的足够长的纸条,打一个结,如图 1 所示,然后轻轻拉紧、压平就可以得到如图 2 所示的正五边形 ABCDE ,其中∠BAC = 度.A 图1图2DE GF BECDDFGB E C13. 如图,在△ABC 中,AD ,AE 分别是边 BC 上的中线和高,AE =2 cm ,S ABD = cm 2,则 BC 的长为.AD EC14. 已知等边△ABC 中,点 D ,E 分别在边 AB ,BC 上,把△BDE 沿直线 DE 翻折,使点 B 落在点 B′处,DB′,EB′分别交边 AC 于点 F ,G ,若 ∠ADF =80°,则∠EGC 的度数为 .AB′15. 如图,在△ABC 中,AB =AC =16 cm ,∠B =∠C ,BC =10 cm ,点 D 为 AB 的中点,如果点 P 在线段 BC 上以 2 cm/s 的速度由 B 点向 C 点运动,同时, 点 Q 在线段 CA 上由 C 点向 A 点运动.若当△BPD 与△CQP 全等时,则点 Q 的运动速度可能为 cm/s .C三、解答题(本大题共 8 小题,共 55 分)16.(6 分)有一条长为 21 cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的 3 倍,那么底边长是多少?(2)能围成一边长为 5 cm 的等腰三角形吗?说明理由.17.(6 分)如图,三条公路两两相交于A,B,C 三点,现计划在△ABC 内建一座综合供应中心,要求到三条公路的距离相等,请你找出符合条件的地点.(要求尺规作图并保留作图痕迹)ACB18. (6 分)如图,在△ABC 中,∠A=40°,∠B=70°,CE 平分∠ACB,CD⊥AB 于点D,DF⊥CE 于点F,求∠CDF 的度数.CFA E D B19.(6 分)如图,点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于点F,连接AD,AE,若∠1=∠2=∠3,AC=AE.求证:△ABC≌△ADE.EB D C20.(7 分)已知:如图,AB=AC,BD=CD,DE⊥AB 于点E,DF⊥AC 于点F.求证:DE=DF.FCDE BA A2F321. (7 分)如图,在四边形 OACB 中,CM ⊥OA 于 M ,且 CA =CB ,∠A +∠B =180°.(1)求证:OC 平分∠AOB ;(2)判断线段 OA ,OB ,OM 之间的等量关系,并说明理由.CBOM A22. (8 分)如图,已知 BD ,CE 是△ABC 的边 AC ,AB 上的高,点 P 在 BD 的延长线上,且 BP =AC ,点 Q 在 CE 上,且 CQ =AB ,猜想线段 AP 与 AQ 有何关系,并证明你的猜想.APBCDEQDH2 1AGC23. (9 分)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图 1,∠BAD =90°,AB =AD ,过点 B 作 BC ⊥AC 于点 C ,过点 D 作 DE ⊥AC 于点 E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到 AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型. 【模型应用】(2)①如图 2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接 BC ,DE ,且 BC ⊥AH 于点 H ,DE 与直线 AH 交于点 G .求证:点 G 是 DE 的中点. ②如图 3,在平面直角坐标系 xOy 中,点 A 为平面内任一点,点 B 的坐标为(4,1).若△AOB 是以 OB 为斜边的等腰直角三角形,请直接写出点 A 的坐标.BD CA EE图1图2图3B12。

人教版八年级数学上册期中常考精选30题

人教版八年级数学上册期中常考精选30题

人教版八年级数学上学期期中常考精选30题考试范围:第十一章-第十三章的内容,共30小题.一、选择题(共8小题)1.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是()A.7cm、5cm、12cm B.6cm、7cm、14cmC.9cm、5cm、11cm D.4cm、10cm、6cm【答案】C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.2.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.【答案】C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(2022·全国·八年级专题练习)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )A.2B.3【答案】B【分析】过点D作DE⊥AB于的面积列式计算即可得解.【详解】解:如图,过点D作【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.4.(2022·江苏扬州·七年级期末)在.B.C.D.【点睛】本题主要考查了三角形的高线的定义,是基础题,熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.5.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠2=80°,那么∠1的度数为()A.60°B.50°C.40°D.30°【答案】B【详解】解:如图,∵AB P CD,∴∠2=∠3=80°,∵∠3=∠1+30°,∴∠1=∠3-30°=80°-30°=50°.故选:B.【点睛】本题考查了平行线的性质和三角形外角的性质,关键是根据两直线平行,得出与∠2相等的角.6.(2022·黑龙江双鸭山·七年级阶段练习)小刚想做一个等腰三角形的相框,他已经找到两根长分别是10cm 和5cm的细木条,他找的第三根木条长应是()A.15cm B.7cm C.10cm D.5cm【答案】C【分析】根据等腰三角形的定义以及构成三角形三边的关系逐项判断即可.【详解】A项,以10cm、5cm、15cm为三边无法构成等腰三角形,故A项不符合题意;B项,以10cm、5cm、7cm为三边无法构成等腰三角形,故B项不符合题意;C项,以10cm、5cm、10cm为三边可以构成等腰三角形,故C项符合题意;D项,以10cm、5cm、5cm为三边,即有5+5=10即此时无法构成三角形,故D项不符合题意;故选:C.【点睛】本题考查了等腰三角形的定义以及构成三角形三边的关系的知识,掌握等腰三角形的定义以及构成三角形三边的关系是解答本题的关键.有两条边相等的三角形被称作等腰三角形.7.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC 的面积为16,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE 、CE ,图中阴影部分的面积为( )A .4B .5C .6D .8【答案】D 【分析】由D 是BC 的中点可得出△ABD 的面积等于△ACD 的面积等于8,再得出△BDE 的面积等于△CDE 的面积,即可得出阴影部分的面积.【详解】解:∵D 是BC 的中点,∴BD =CD ,∴8ABD ACD BDE CDE S S S S ===,V V V V ,∴8ACE BDE ACE CDE ACD S S S S S +=+==V V V V V ,故选:D .【点睛】本题主要考查三角形的中线的性质,关键是要牢记三角形的中线平分三角形的面积.8.(2022·黑龙江·肇东市第十中学八年级期末)如图,在△ABC 中,AD 平分∠BAC ,AD ⊥BD 于点D ,DE ∥AC 交AB 于点E ,若AB =8,则DE 的长度是( )A .6B .2C .3D .4【答案】D 【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD =∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD =DF ,根据平行线的性质得到BE =ED ,EA =ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD平分∠BAC,AD⊥BD,∴∠BAD=∠FAD,∠ADB=∠ADF=90在△BAD和△FAD中,BADADADBÐìïíïÐ=î∴△BAD≌△FAD(ASA),∴∠ABD=∠F,∵DE∥AC,10.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图所示的是自行车的三角形支架,这是利用三角形具有 ________________.【答案】稳定性【分析】根据三角形的特性即可解答.【详解】解:∵三角形具有稳定性,∴自行车三角形支架是利用了三角形稳定性的特性.故答案为:稳定性.【点睛】本题考查了三角形的特性,解决本题的关键是掌握三角形的特性.11.(2020·北京·垂杨柳中学八年级期中)已知点A (m +1,2)和点B (﹣2,n +1)关于y 轴对称,则m =___,n =___.【答案】 1 1【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得m +1=2,n +1=2,再解方程即可.【详解】∵点A (m +1,2)和点B (﹣2,n +1)关于y 轴对称,∴m +1=2,n +1=2,解得m =1,n =1,故答案为:1;1.【点睛】此题主要考查了关于y 轴对称的点的坐标,关键是掌握点的坐标的变化规律.12.(2022·山东泰安·七年级期末)如图,AC ,BD 相交于点O ,∠A =∠D ,请补充一个条件,使△ACB ≌△DBC ,你补充的条件是______(填出一个即可).【答案】ABC DCB Ð=Ð(答案不唯一)【分析】本题要判定△ACB ≌△DBC ,已知∠A =∠D ,CB BC =,则可以添加ABC DCB Ð=Ð从而利用AAS 判定其全等.【详解】解:添加ABC DCB Ð=Ð,∵ABC DCB Ð=Ð,∠A =∠D ,CB BC=∴△ACB ≌△DBC .(AAS )故答案是:ABC DCB Ð=Ð(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2022·黑龙江大庆·七年级期末)琪琪画了一个等腰三角形,量得两条边长分别为12cm 和5cm ,那么它的周长为______.【答案】29cm ##29厘米【分析】因为三角形为等腰三角形,应分两种情况:①12cm 是底边时;②5cm 是底边时分别求解.【详解】解:应分两种情况:当12cm 是底边,5cm 是腰时,此时等腰三角形的三边长分别为:12cm ,5cm ,5cm ,∵5512+<,∴此时不能构成三角形;当5cm 是底边,12cm 是腰时,等腰三角形的三边长分别为:12cm ,12cm ,5cm ,此时51212+>,满足三角形的任意两边之和大于第三边,能构成三角形,∴三角形的周长为:12cm +12cm +5cm =29cm ,综上可得三角形的周长为29cm .故答案为:29cm .【点睛】本题考查了三角形的三边之间的关系,等腰三角形的定义及分类讨论的思想,熟记三角形任意两边之和大于第三边是解题的关键.14.(2022·北京一七一中八年级阶段练习)如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,过点C 作平行于AB 的直线交DE 的延长线于点F .若DE =FE ,AB =5,CF =3,则BD 的长是________.【答案】2【分析】先根据平行线的性质可得,A ECF ADE F Ð=ÐÐ=Ð,再根据AAS 定理证出ADE CFE @V V ,然后根据全等三角形的性质可得3AD CF ==,最后根据线段和差即可得.【详解】解:CF AB Q ∥,,A ECF ADE F \Ð=ÐÐ=Ð,在ADE V 和CFE V 中,AECF ADE F DE FE Ð=ÐìïÐ=Ðíï=î,()AAS ADE CFE \@V V ,AD CF \=,5,3AB CF ==Q ,532BD AB AD AB CF \=-=-=-=,故答案为:2.【点睛】本题考查了平行线的性质、三角形全等的判定与性质,正确找出两个全等三角形是解题关键.15.(2022·江西吉安·八年级期末)如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F .若2AD =,6AB =,当BC =______时,点B 在线段AF 的垂直平分线上.【答案】4【分析】通过求证△FEC ≌△AED 来证明CF =AD ;若点B 在线段AF 的垂直平分线上,则应有AB =BF 因为AB =8,CF =AD =2,所以BC =BF -CF =6-2=4时有AB =BF .【详解】解:∵AD ∥BC ,∴∠DAE =∠CFE ,∠D =∠ECF ,∵E 为CD 的中点,∴DE =CE ,在△ADE 与△FCE 中,DAE CFE D ECF DE CE Ð=ÐìïÐ=Ðíï=î,∴△ADE ≅△FCE (AAS ),∴CF =AD ;连接BE ,∵BE 垂直平分AF ,∴AB =BF ,∵AD =CF ,∵AD =2,AB =6,∴BC =BF -CF ,【答案】2【分析】过P作PF∥BC交NF=AN,证△PFM≌△QCM【详解】解:过P作PF∥∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=∴△APF是等边三角形,∴AP=PF=AF,∵PN⊥AC,(1)求证:△BCE≌△BDE;(2)若30Ð=°,CE=1,求A【答案】(1)证明见解析()HL BCE BDE \@V V .(2)解:90,30C A Ð=°Ð=°Q ,9060ABC A \Ð=°-Ð=°,BE Q 平分ABC Ð,30CBE ABE \Ð=Ð=°,30ABE A \Ð=Ð=°,AE BE \=,又Q 在Rt BCE V 中,90,30,1C CBE CE Ð=°Ð=°=,22BE CE \==,2AE \=.【点睛】本题考查了直角三角形全等的判定、角平分线的性质、等腰三角形的判定、含30度角的直角三角形的性质,熟练掌握直角三角形全等的判定和等腰三角形的判定是解题关键.18.(2022·全国·八年级课时练习)如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.【答案】(1)60°(2)12【分析】(1)根据三角形的外角的性质求出∠F ,再根据全等三角形的对应角相等解答;(2)根据题意求出BE 、BC ,再根据全等三角形的性质解答.(1)解:∵∠BED =130°,∠D =70°,∴∠F =∠BED -∠D =60°,∵V ABC ≌V DEF ,∴∠ACB =∠F =60°;(2)∵2BE =EC ,EC =6,∴BE =3,∴BC =BE +EC =9,∵V ABC ≌V DEF ,∴EF =BC =9,∴BF =EF +BE =12.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.19.(2022·新疆乌鲁木齐·八年级阶段练习)用一条长41cm 的细绳围成一个三角形,已知此三角形的第一条边为xcm ,第二条边是第一条边的3倍少4cm .(1)请用含x 的式子表示第三条边的长度.(2)若此三角形恰好是一个等腰三角形,求这个等腰三角形的三边长.【答案】(1)()454x -cm(2)7cm ,17cm ,17cm【分析】(1)依据三角形的第一条边为xcm ,第二条边是第一条边的3倍少4cm ,即可用含x 的式子表示第三条边的长度.(2)依据三角形恰好是一个等腰三角形,分三种情况讨论,即可得到这个等腰三角形的三边长.(1)解:∵三角形的第一条边长为xcm ,第二条边长比第一条边长的3倍少4cm ,∴第二条边长为()34x -cm .∴第三条边长为()()4134454x x x ---=-cm .(2)解:若x =3x -4,则x =2,此时三边长分别为2cm ,2cm 和37cm ,根据三角形三边关系可知,2,2,37不能组成三角形;若x =45-4x ,则x =9,此时三边长分别为9cm ,9cm 和23cm ,根据三角形三边关系可知,9,9,23不能组成三角形;若3x -4=45-4x ,则x =7,此时三边长分别为7cm ,17cm ,17cm ,根据三角形三边关系可知,7,17,17可以组成三角形.∴这个等腰三角形的三边长分别为7cm ,17cm ,17cm .【点睛】本题主要考查了等腰三角形的性质以及三角形的三边关系,解题的关键是根据三角形的三边关系进行判断.20.(2022·重庆市巴渝学校八年级期中)如图,在ABC V 中,BA BC =,BF AC ^于点F .【点睛】本题主要考查了作轴对称图形,求三角形的面积,根据两点之间线段最短求线段和最小等,准确的画出图形是解题的关键.22.(2021·福建·莆田第七中学八年级期中)(1)〖问题背景〗如图1,B 、E 、M 三点共线,∠DEF =∠B =∠M ,DE =EF ,求证:△DBE ≌△EMF ;(2)〖变式运用〗如图2,B 、E 、C 三点共线,△DEF 为等边三角形,∠B =60°,∠C =30°,求证:EC =BD +BE .【答案】(1)见详解(2)见详解【分析】(1)根据∠DEM =∠B +∠BDE ,∠B =∠DEF ,可得∠BDE =∠MEF ,利用AAS 即可证明DBE EMF @V V ;(2)延长DB 至N 点,使得BE =BN ,连接EN ,根据BE =BN ,可得∠BNE =∠BEN ,即有∠BNE =∠BEN =30°,进而得∠C =∠BNE ,根据∠DEF +∠CEF =∠DBE +∠BDE ;根据△DEF 是等边三角形,可得DE =EF ,∠DEF =60°,即有∠CEF =∠BDE ,利用AAS 即可证明DNE ECF @V V ,则有EC =DN ,即可得EC =BD +BE .【详解】(1)证明:∵B 、E 、M 三点共线,∴∠DEM =∠B +∠BDE ,∴∠DEF +∠MEF =∠B +∠BDE ,∵∠B =∠DEF =∠M ,∴∠BDE =∠MEF ,∵DE =EF ,∠B =∠M ,∴DBE EMF @V V ;(2)证明:延长DB 至N 点,使得BE =BN ,连接EN ,如图,∵BE =BN ,∴∠BNE =∠BEN ,∵∠BNE +∠BEN =∠DBE =60°,∴∠BNE =∠BEN =30°,∵∠C =30°,∴∠C =∠BNE ,∵B 、E 、C 三点共线,∴∠DEC =∠DBE +∠BDE ,∴∠DEF +∠CEF =∠DBE +∠BDE ,∵△DEF 是等边三角形,∴DE =EF ,∠DEF =60°,∵∠DBE =60°,∴∠DBE =60°=∠DEF ,∴∠CEF =∠BDE ,∵∠C =∠BNE ,DE =EF ,∴DNE ECF @V V ,∴EC =DN ,∵BE =BN ,DN =BN +BD ,∴EC =BD +BE .【点睛】本题主要考查了等边三角形的性质和全等三角形的判定及其性质,构造辅助线BN 是解答本题的关键.23.(2022·上海·八年级开学考试)(1)如图1,在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB .过D 作EF P BC 交AB 于E ,交AC 于F ,请说明EF =BE +CF 的理由.(2)如图2,BD 平分∠ABC ,CD 是△ABC 中∠ACB 的外角平分线,若仍然过点D 作EF P BC 交AB 于E ,交AC 于F ,第(1)题的结论还成立吗?如果成立,请说明理由;如果不成立,你能否找到EF 与BE 、CF 之间类似的数量关系?【答案】(1)见解析;(2)不成立,EF =BE ﹣CF .【分析】(1)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE =ED ,CF =FD 即可;(2)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE =DE ,DF =CF 即可.【详解】(1)∵在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB ,∴∠EBD =∠DBC ,∠DCB =∠FCD .又∵EF P BC 交AB 于E ,交AC 于F ,∴∠EDB =∠DBC ,∠FDC =∠DCB∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =ED ,CF =FD ,∴EF =ED +DF =BE +CF .即:EF =BE +CF .(2)不成立.EF =BE ﹣CF .理由如下:∵BD 平分∠ABC ,CD 是△ABC 中∠ACB 的外角平分线,∠EBD =∠DBC ,∠FCD =∠DCG ,∵EF P BC 交AB 于E ,交AC 于F ,∴∠EDB =∠DBC ,∠FDC =∠DCG ,∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =DE ,DF =CF ,∴EF =ED ﹣DF =BE ﹣CF .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形判定与性质等问题,解题的关键是上述知识点的综合应用.24.(2022·辽宁铁岭·八年级期末)如图,在ABC V 中,90ACB Ð=°,10cm AB =,6cm BC =,若动点P 从点A 出发,沿着三角形的三边,先运动到点C ,再运动到点B ,最后运动回到点A ,2cm/s P V =,设点P 的运动时间为ts .∵∴的角平分线上,过点∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、直角三角形的性质,解题的关键是熟练掌握全等三角形的判定与性质.26.(2021·湖北·公安县教学研究中心八年级阶段练习)如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)当t=1时,△ACP与△BPQ是全等,理由见解析(2)存在当x=2,t=1或x=3,t=2时,△ACP与△BPQ全等.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(1)解:△ACP≌△BPQ,证明:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵t=1,∴AP=BQ=2,∴BP=6,∴BP=AC,在△ACP和△BPQ中,(1)如图,连接CE.①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【答案】(1)①42°;②30°;(2)∠BEC的度数为48°或132°或12°.质,正确的画出图形辅助解决问题是解题的关键.28.(2021·重庆市渝北区实验中学校八年级期中)在ABC V 中,,AB AC E =是BC 中点,,G H 分别为射线,BA AC 上一点,且满足180GEH BAC ÐÐ+=o(1)如图1,若45B Ð=o ,且,G H 分别在线段,BA AC 上,2CH =,求线段AG 的长度;(2)如图2,连接AE 并延长至点D ,使DE AE =,过点E 作EF BD ^于点F ,当点G 在线段BA 的延长线上,点H 在AC 延长线上时,求证:2BF CH BG+=【答案】(1)2(2)见解析【分析】(1)连接AE ,可证△ABC 是等腰直角三角形,进一步可得AE =CE ,∠C =∠EAG =45°,根据已知条件,可得∠CEH =∠AEG ,即可证明△CEH ≌△AEG (ASA ),从而求出AG ;(2)作EI ⊥AB 于I ,在BG 上截取IJ =BI ,连接EJ ,可知EI 是线段BJ 的垂直平分线,根据线段垂直平分线的性质以及等腰三角形的性质易证△ECH ≌△EJG (AAS ),可得CH =GJ ,再证明△BFE ≌△BIE (AAS ),可得BF =BI ,即可得证.(1)解:连接AE ,如图所示:∵∠B =45°,AB =AC ,∴∠B =∠C =45°,∴∠CAB =180°-∠B -∠C =90°,∴△ABC 是等腰直角三角形,∵E 为BC 的中点,∴AE =CE ,AE ⊥BC ,∠CAE =∠BAE =45°,∴∠C =∠BAE ,∴∠GEH =∠AEC =90°,∴∠CEH =∠AEG ,在△CEH 和△AEG 中,C BAC AE CECEH AEG Ð=Ðìï=íïÐ=Ðî∴△CEH ≌△AEG (ASA ),∴AG =CH =2;(2)证明:作EI ⊥AB 于I ,在BG 上截取IJ =BI ,连接EJ ,如图所示:则EI 是线段BJ 的垂直平分线,∴EJ =BE ,∵E 是BC 的中点,∴BE =EC ,∴EJ =EC ,∵∠GEH +∠BAC =180°,∠GAH +∠BAC =180°,∴∠GEH =∠GAH ,∴∠JGE =∠CHE ,∵EJ =EB ,AB =AC ,∴∠EJB =∠ABC =∠ACB ,∴∠EJG =∠ECH ,∴△ECH ≌△EJG (AAS ),∴CH =JG ,∵AC =AB ,点E 是BC 的中点,∴AE ⊥BC ,又DE =AE ,∴BD =AB ,∴∠ABE =∠DBE ,∵EF ⊥BD ,EI ⊥AB ,(1)若D恰好在BC的中点上(如图1)①求证CD=CE;②求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2)其他条件不变,请给予证明;若不成立,请说明理由.△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB ACABD ACEBD CE=ìïÐ=Ðíï=î,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

2024-2025学年人教版数学八年级上册期中考试试题【含答案】

2024-2025学年人教版数学八年级上册期中考试试题【含答案】
2024 年秋季学期八年级期中考试试题
注意事项:
数学 (考试时间:120 分钟 试卷满分:150 分)
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置 上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号 涂黑.如 需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写 在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一.选择题(本大题共有 12 道选择题,每小题只有一个选项是最符合题意的, 请将此选项选出并涂在答题卡相应位置.每小题 3 分,共 36 分)
试卷第 1 页,共 7 页
C.
D. 4.如图在△ABD 和△ACE 都是等边三角形,则△ADC≌△ABE 的根据是( )
A.SSS
B.SAS
C.ASA
D.AAS
5.一个正多边形的内角和等于 1080°,这个正多边形的每个外角是( )
A.30°
B.45°
C.60°
D.75°
6.在VABC 中,已知 ÐABC = 66° ,ÐACB = 54° , BE 是 AC 上的高,CF 是 AB 上的高,H
试卷第 5 页,共 7 页
(1)若∠ABE=40°,求∠EBC 的度数; (2)若 ΔABC 的周长为 41cm,一边为 15cm,求 ΔBCE 的周长. 23.如图,线段 AC 、BD 交于点 M ,过 B 、D 两点分别作 AC 的垂线段 BF 、DE , AB = CD
(1)若 ÐA = ÐC ,求证: FM = EM ; (2)若 FM = EM ,则 ÐA = ÐC 是真命题吗?(直接判断,不必证明) 24.已知:在锐角△ABC 中,AB=AC.D 为底边 BC 上一点,E 为线段 AD 上一点,且∠BED =∠BAC=2∠DEC,连接 CE. (1)求证:∠ABE=∠DAC; (2)若∠BAC=60°,试判断 BD 与 CD 有怎样的数量关系,并证明你的结论; (3)若∠BAC=α,那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请 说明理由. 25.如图,已知VABC 中,ÐB = ÐC,AB = 8 厘米, BC = 6 厘米,点 D 为 AB 的中点.如果 点 P 在线段 BC 上以每秒 2 厘米的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上以每秒 a 厘米的速度由 C 点向 A 点运动,设运动时间为 t(秒)( 0 £ t £ 3 ).

人教版八年级上学期数学《期末考试题》附答案解析

人教版八年级上学期数学《期末考试题》附答案解析
解得:k=4,
故答案为4.
[点睛]本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.
14.已知4y2+my+1是完全平方式,则常数m的值是______.
[答案]4或-4
[解析]
[详解]∵4y2-my+1是完全平方式,
∴-m=±4,即m=±4.
故答案为4或-4.
15.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________
5.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A.AB=DEB.∠B=∠EC.EF=BCD.EF//BC
6.已知 ,则分式 的值为()
A.1B.5C. D.
7.一个多边形 每一个外角都等于36 ,则该多边形的内角和等于()
A 1080°B. 900°C. 1440°D. 720°
(1)求原计划每天铺设路面的长度;
(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25 000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.
23.阅读理解:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
③∵∠1=∠B=30°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
④∵如图,在直角△ACD中,∠2=30°,∴CD= AD.
∴BC=CD+BD= AD+AD= AD,S△DAC= AC•CD= AC•AD.
∴S△ABC= AC•BC= AC•A D= AC•AD.

人教版八年级数学上册13.2 画轴对称图形练习题(无答案)

人教版八年级数学上册13.2 画轴对称图形练习题(无答案)

13.2画轴对称图形1.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A 的坐标是()A.(4,1) B.(-1,4) C.(-4,-1) D.(-1,-4)2.在平面直角坐标系中,点P(-2,3)关于y轴的对称点的坐标为()A.(-2,-3) B.(2,-3) C.(-2,3) D.(2,3)3.在平面直角坐标系中,点A(-1,2)与点B(-1,-2)关于()A.y轴对称B.x轴对称C.原点对称D.直线y=x对称4.将点A(3,2)向左平移4个单位长度得到点A′,则点A′关于y轴对称的点的坐标是() A.(-3,2) B.(-1,2) C.(1,-2) D.(1,2)5.若点A和点B(2,-3)关于y轴对称,则A,B两点间的距离为()A.4 B.5 C.6 D.106.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是()A.-5 B.-3 C.3 D.17.如图是小明画的正方形风筝图案,他以图中的对角线AB所在的直线为对称轴,在对角线的下方再画一个三角形,使得到的新风筝图案成为轴对称图形.若图中有一图形为此轴对称图形,则此图形为()8.将一张正方形纸片按图所示步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是图13-2-9中的()9.在平面直角坐标系中,若点P(m-1,m+1)在x轴上,则它关于y轴的对称点的坐标是________.10.如图,在平面直角坐标系xOy 中,已知A (-1,4),B (4,2),C (-1,0)三点. (1)点A 关于y 轴的对称点A ′的坐标为________,点B 关于x 轴的对称点B ′的坐标为________,线段AC 的垂直平分线与y 轴的交点D 的坐标为________;(2)以(1)中的点A ′,B ′,D 为顶点的△A ′B ′D 的面积为________.11.在平面直角坐标系中,点A 的坐标是(-1,2),作点A 关于y 轴的对称点,得到点A ′,再将点A ′向下平移4个单位长度,得到点A ″,则点A ″的坐标是(________,________).12.平面直角坐标系中的点P (2-m ,12m )关于x 轴的对称点在第四象限,则m 的取值范围为__________.13.如图在正三角形网格中,已有两个小正三角形被涂黑,再将图中的一个空白小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形的方法有________种.14.如图,以长方形ABCD 的两条对称轴为x 轴和y 轴建立直角坐标系,若点A 的坐标为(4,3).(1)写出长方形的另外三个顶点B ,C ,D 的坐标; (2)求该长方形的面积.15.如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).分别写出点D,C,B关于y轴对称的点F,G,H的坐标,并画出点F,G,H.顺次连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说说它具有怎样的性质,它像我们熟知的什么图形?16.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(1,2),B(3,4),C(2,9).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向右平移8个单位长度后得到的△A2B2C2,并写出点C2的坐标.17.如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形.18.如图,已知四边形ABCD和直线l,在图中作出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称(不要求写作法,保留作图痕迹).19.图①②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上,在图①、图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.20.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.21.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标(点A,B,C的对应点分别为A1,B1,C1);(2)将△ABC向右平移6个单位长度,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标(点A,B,C的对应点分别为A2,B2,C2);(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图中画出这条对称轴;(4)求△ABC的面积.。

2024年八年级上册数学期中考试模拟试卷 人教版

2024年八年级上册数学期中考试模拟试卷 人教版

人教版2024—2025学年八年级上学期数学期中考试模拟试卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图案不是轴对称图形的是( )A .B .C .D .2、下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm3、如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条让其固定,其所运用的几何原理是( )A .三角形的稳定性B .垂线段最短C .两点确定一条直线D .两点之间,线段最短4、下列说法中,表示三角形的重心的是( )A .三角形三条中线的交点B .三角形三条高所在的直线的交点C .三角形三条角平分线的交点D .三角形三条边的垂直平分线的交点5、等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°6、如图,在Rt △ABC 中,∠ABC =90°,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,∠BAE =20°,则∠C 的度数是( )A .30°B .35°C .40°D .50°7、使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .两条边对应相等8、如图,点D 、E 分别在AC 、AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A .∠B =∠C B .AD =AE C .∠BDC =∠CEB D .BD =CE9、若P =(x ﹣3)(x ﹣4),Q =(x ﹣2)(x ﹣5),则P 与Q 的大小关系是( )A .P >QB .P <QC .P =QD .由x 的取值而定10、如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立;(2)OM +ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(每小题3分,满分18分)11、已知点A (a ﹣1,﹣2)与点B (﹣5,b +5)关于x 轴对称,则a +b = .12、等腰三角形的周长为11cm ,其中一边长为2cm ,则该等腰三角形的腰长为 .13、一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.14、如图,AD 平分∠CAB ,若S △ACD :S △ABD =4:5,则AB :AC = .15、如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的角平分线,若∠EAD =10°,∠C =70°,则∠B 的度数为 .16、如图,在等腰△ABC 中,AB =AC =8,∠ACB =75°,AD ⊥BC 于D ,点M 、N 分别是线段AB 、AD 上的动点,则MN +BN 的最小值是 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,在△ABC 中,点D 为∠ABC 的平分线BD 上的一点,过点D 作EF ∥BC 交AB 于点E ,交AC 于点F ,连接CD ,若BE +CF =EF .求证:△CFD 是等腰三角形.19、如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 的对称的△A 1B 1C 1;(2)在DE 上画出点P ,使P A +PC 最小;(3)在DE 上画出点Q ,使QA ﹣QB 最大.20、如图,在△ABC 中,AB =AC ,D 是BC 上任意一点,过点D 分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.21、已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)求AD的长.22、某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?23、如图,直线MN一侧有一等腰Rt△ABC,其中∠ACB=90°,CA=CB,直线MN过顶点C,分别过点A,B作AE⊥MN,BF⊥MN,垂直分别为点EF,∠CAB的角平分AG交BC于点O,交MN于点G,连接BG,满足AG⊥BG,延长AC,BG交于点D.(1)证明:CE=BF;(2)求证:AC+CO=AB;(3)若BG=2,求线段AO的长度.24、定义:有一组对角互补的四边形叫做互补四边形.(1)互补四边形ABCD中,若∠B:∠C:∠D=2:3:4,则∠A=°;(2)已知:如图1,在四边形ABCD中BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD是互补四边形;(3)如图2,互补四边形ABCD中,∠B=∠D=90°,AB=AD,CD=3,点E,F分别是边BC,CD 的动点,且∠EAF=∠BAD,△CEF周长是否变化?若不变,请求出不变的值;若有变化,说明理由.25、在平面直角坐标系中,点A的坐标为(0,a),点B的坐标为(b,0),且a、b满足a2﹣12a+36+|a﹣b|=0.点C为x轴负半轴上一个动点,OC<OB,BD⊥AC于点D,交y轴于点E.(1)求点A、点B的坐标;(2)求证:OD平分∠CDB.(3)延长BD到点F,使得BF=AB,连接CF若此时∠ACF=∠ABF,2∠DAO=∠ABD,画出图形并证明:CD+CF=AD.。

人教版八年级数学上学期期中考试复习测试题(含答案)

人教版八年级数学上学期期中考试复习测试题(含答案)

人教版八年级数学上学期期中考试复习测试题(含答案)一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.5,12,13 D.6,7,83.到△ABC的三边距离相等的点是△ABC的()A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边垂直平分线的交点4.如图,一棵大树在一次强台风中于离地面10m处折断倒下,倒下部分的树梢到树的距离为24m,则这棵大树折断处到树顶的长度是()A.10m B.15m C.26m D.30m5.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC的长度为()A.6 B.7 C.8 D.9(第4题)(第5题)(第6题)(第7题)6.如图,已知∠ABC=∠DCB,AC、BD交于点E,添加以下条件,不能判定△ABC≌△DCB的是()A.AB=DC B.BE=CE C.AC=DB D.∠A=∠D7.如图,在△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,E是AD中点,若BD=9,则CE的长为()A.3 B.3.5 C.4 D.4.58.在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共 10 小题,每小题 3 分,共 30 分)9.已知图中的两个三角形全等,则∠α的度数是°.10.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.(第9题)(第10题)(第13题)(第14题)11.已知一个等腰三角形的两边分别为5和10,则它的周长为.12.若一直角三角形两直角边长分别为6和8,则斜边长为.13.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠B的度数为°. 14.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m、n于点B,C,连接AB,BC.若∠1=40°,则∠ABC=°.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3= .(第15题)(第16题)(第17题)(第18题)16.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.17.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是.18.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是.三、解答题(本大题共 10 小题,共 96 分)19.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:△ABC≌△DFE.20.(8分)如图,△ABC中,DE,FG分别为AB、AC的垂直平分线,E、G分别为垂足,若△DAF的周长为16,求BC的长.21. (8分)如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点均在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)在直线l上找一点P,使PA+PB的长最短;(3)△A1B1C1的面积为________.22.(8分)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)求证:DE=DF;(2)如果S△A BC=14,AC=7,求DE的长.23.(10分)如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?24.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.25. (10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,点E、F分别是BD和AC的中点,连接EF.(1)求证:EF⊥AC;(2)若BD=26,EF=5,求AC的长.26.(10分)如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.27. (12分)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC 于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并说明理由;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2;(3)在(2)的条件下猜想线段EF、CF、AC的数量关系是否发生改变,若不变,请说明理由;若改变,写出它们的数量关系,并加以证明.28. (12分)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)请用t的代数式表示BP和BQ的长度:BP=,BQ=.(2)若点Q在到达点A后继续沿三角形的边长向点C移动,同时点P也在继续移动,请问在点Q从点A到点C的运动过程中,t为何值时,直线PQ把△ABC的周长分成4:5两部分?(3)若P、Q两点都按顺时针方向沿△ABC三边运动,请问在它们第一次相遇前,t为何值时,点P、Q能与△ABC的一个顶点构成等边三角形?直接写出答案。

24-25八年级数学第一次月考卷(考试版)【测试范围:人教版八年级上册11.1-12.1】山西专用

24-25八年级数学第一次月考卷(考试版)【测试范围:人教版八年级上册11.1-12.1】山西专用

2024-2025学年八年级数学上学期第一次月考卷(山西专用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版八年级上册11.1-12.1。

5.考试结束后,将本试卷和答题卡一并交回。

6.难度系数:0.8。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.△ABC的三角之比是1:2:3,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下列四个图形中,线段AD是△ABC的高的是( )A.B.C.D.3.如图,在△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是( )A .20B .24C .26D .284.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线.则下列结论错误的是( )A .BF =CFB .∠BAE =∠EAC C .∠C +∠CAD =90°D .S △BAE =S △EAC5.如图,将一副三角尺按图中所示位置摆放,点C 在FD 的延长线上,点C 、F 分别为直角顶点,且∠A =60°,∠E =45°,若AB ∥CF ,则∠CBD 的度数是( )A .15°B .20°C .25°D .30°6.如图,把△ABC 沿EF 翻折,叠合后的图形如图,若∠A =60°,∠1=95°,则∠2的度数是( )A .15°B .20°C .25°D .35°7.如图,将五边形ABCDE 沿虚线裁去一个角,得到六边形ABCDGF ,则下列说法正确的是( )A .外角和减少180°B .外角和增加180°C .内角和减少180°D .内角和增加180°8.如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为( )A.30°B.40°C.45°D.60°9.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为( )A.180°﹣α﹣βB.α+βC.α+2βD.2α+β10.如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC =α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为( )A.30°B.45°C.60°D.75°第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

初中八年级数学上学期期中考前测试卷(人教版)含答案解析

2022-2023学年八年级上学期期中考前必刷卷数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC中,4AB AC==,15B∠=︒,CD是腰AB上的高,则CD的长()A.4B.2C.1D.1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC的两条角平分线相交于点D,过点D作EF∥BC,交AB于点E,交AC于点F,若AEF的周长为30cm,则AB AC+=()cm.A.10B.20C.30D.4011.(2022·全国·八年级专题练习)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70︒,则∠EAN的度数为()A.35︒B.40︒C.50︒D.55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC中,∠C=90°∠B=30°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④1:3ACD ACBS S=:.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC的边AB上一点P,作PE AC⊥于点E,Q为BC延长线上一点,当AP CQ=时,PQ交AC于点D,则DE的长为()A.13B.12C.23D.不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC中,90BAC∠=︒,2AB AC=,点D是线段AB的中点,将一块锐角为45︒的直角三角板按如图()ADE放置,使直角三角板斜边的两个端点分别与A、D重合,连接BE、CE,CE与AB交于点.F下列判断正确的有()①ACE≌DBE;②BE CE⊥;③DE DF=;④DEF ACFS S=A.①②B.①②③C.①②④D.①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a,3)和点Q(4,b)关于x轴对称,则()2021a b+=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A、B、C、D四点共线,E为公共顶点.则∠BEC=_____.○………………内………………○………………装………………○………………订………………○………………线………………○…………○………………外………………○………………装………………○………………订………………○………………线………………○…………学校:______________姓名:_____________班级:_______________考号:______________________17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ;(2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''V (其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法);(2)直接写出A ',B ',C '三点的坐标:A '(),B '(),C '()(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC,求作一个△DEF,使EF=BC,∠F=∠C,DE=AB(即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹):①画EF=BC;②在线段EF的上方画∠F=∠C;③画DE=AB;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC中,点D在边BC延长线上,100ACB∠=︒,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且50CEH∠=︒.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;25.(2022·全国·八年级专题练习)(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D¢的位置时,你能求出∠A'、∠D¢、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC中,∠ABC=90°,AB=BC,点A,B分别在坐标轴上.(1)如图①,若点C的横坐标为﹣3,点B的坐标为;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD垂直x轴于D点,试猜想线段CD与AM的数量关系,并说明理由;(3)如图③,OB=BF,∠OBF=90°,连接CF交y轴于P点,点B在y轴的正半轴上运动时,△BPC与△AOB的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C 1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC≌△DEF,∠FED=15°,得∠CBA=15°,再根据三角形内角和即可得答案.【详解】解:∵△ABC≌△DEF,∠FED=15°,∴∠CBA=∠FED=15°,∵∠A=132°,∴∠C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:∵|a﹣,∴a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,6符合条件;故选:A .【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a 、b 的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、∵C D ∠=∠,BAC BAD ∠=∠,AB =AB ,∴ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、∵BC BD =,AC AD =,AB =AB ,∴ABC ABD △≌△(SSS ),正确,故此选项不符合题意;C 、∵BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,∴ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键.5.D【分析】若使PA +PC =BC ,则PA =PB ,P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,∴BC =BP +PC =BA +PC ,故A 不符合题意;B.由作图可知PA =PC ,∴BC =BP +PC =BP +PA ,故B 不符合题意;C.由作图可知AC =PC ,∴BC =BP +PC =BP +AC ,故C 不符合题意;D.由作图可知PA =PB ,∴BC =BP +PC =PA +PC ,故D 符合题意;故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键.6.C【分析】设∠O=x ,进而根据三角形外角的性质表示出∠2,即可表示出∠3,同理表示出∠4,可得∠5,再表示出∠6,即可∠7,最后根据∠8=∠O +∠7得出答案即可.【详解】设∠O=x ,∵∠2是△ABO 的外角,且∠O =∠1,∴∠2=∠O +∠1=2x ,∵∠4是△BCO 的外角,∴∠4=∠O +∠3=3x ,∴∠5=∠4=3x .∵∠6是△CDO 的外角,∴∠6=∠O +∠5=4x ,∴∠7=∠6=4x .∵∠8是△DEO 的外角,∴∠8=∠O +∠7=5x ,即5x =90°,解得x =18°.故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键.7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答.【详解】∵ED 是边AC 的垂直平分线,∴AE =EC ,∵AB =10厘米,BC =8厘米,∴BC +CE +EB =BC +AE +EB =BC +AB =18厘米,即△BEC 的周长为18厘米,故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键.8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABO S :BCO S △:CAO S AB = :BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点,OD OE OF ∴==,ABO S ∴ :BCO S △:12CAO S AB OD ⎛⎫=⋅ ⎪⎝⎭ :12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式.9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30°角的直角三角形的性质可得CD 的长.【详解】解:AB AC = ,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高,CD AB ∴⊥,122CD AC ∴==,故选:B【点睛】本题主要考查了等腰三角形的性质,含30°角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到∠EBD =∠EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案.【详解】解:∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠EBD =∠EDB ,同理:FD =FC ,∴AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm ,即AB +AC =30cm ,故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键.11.B【分析】根据三角形内角和定理可求∠B +∠C ,根据垂直平分线性质,EA =EB ,NA =NC ,则∠EAB =∠B ,∠NAC =∠C ,从而可得∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,即可得到∠EAN =∠B +∠C -∠BAC ,即可得解.【详解】解:∵∠BAC =70︒,∴∠B +∠C =18070110︒︒︒﹣=,∵AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,∴EA =EB ,NA =NC ,∴∠EAB =∠B ,∠NAC =∠C ,∴∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,∴∠EAN =∠B +∠C -∠BAC ,=11070︒︒﹣=40︒.故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求∠EAN 的关系式是关键.12.D【分析】①根据作图的过程可以判定AD 是∠BAC 的角平分线;②利用角平分线的定义可以推知∠CAD =30°,则由直角三角形的性质来求∠ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.又∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,即∠ADC =60°.故②正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°,∴CD =12AD ,∴BC =CD +BD =12AD +AD =32AD ,DAC S =12AC •CD =14AC •AD .∴ABC S =12AC •BC =12AC •32AD =34AC •AD .∴DAC S :ABC S =14AC •AD :34AC •AD =1:3.故④正确.综上所述,正确的结论是:①②③④,故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质.13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明 AEP ≅ CFQ ,再证明 DEP ≅ DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果.【详解】如图,过点Q 作AD 的延长线的垂线于点F ,∵△ABC 是等边三角形,∴∠A =∠ACB =60°,∵∠ACB =∠QCF ,∴∠QCF =60°,又∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠CFQ =90°,又AP =CQ ,∴△AEP ≅△CFQ (AAS ),∴AE =CF ,PE =QF ,同理可证,△DEP ≅△DFQ ,∴DE =DF ,∴AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE ,∴DE =12AC =12.故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE ≌DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE ≌DBE 得到ACE DBE S S = ,由BD AD =得到DAE DBE S S = ,所以ACE DAE S S = ,从而可对④进行判断.【详解】解:2AB AC = ,点D 是线段AB 的中点,BD AD AC ∴==,ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒ ,180********EDB EDA ∠∠=︒-=︒-︒=︒,EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴ ≌SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒- .而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒- ,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误;ACE Q V ≌DBE ,ACE DBE S S ∴= ,BD AD = ,DAE DBE S S ∴= ,ACE DAE S S ∴= ,DEF ACF S S ∴= ,所以④正确.故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:∵点P (a ,3)和点Q (4,b )关于x 轴对称,∴a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.16.48°##48度【分析】根据多边形的内角和,分别得出∠ABE =120°,∠DCE =108°,再根据平角的定义和三角形的内角和算出∠BEC .【详解】解:由多边形的内角和可得,∠ABE =()621806-⨯︒=120°,∴∠EBC =180°﹣∠ABE =180°﹣=60°,∵∠DCE =()521805-⨯︒=108°,∴∠BCE =180°﹣108°=72°,由三角形的内角和得:∠BEC =180°﹣∠EBC ﹣∠BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S === ,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB = ,ABC 的面积01S =,101BCB ABC S S S ∴=== ,又1BC CC = ,1111B CC BCB S S ∴== ,112B BC S ∴= ,同理可得:11112,2A CC A AB S S == ,111122217A B C S S ∴==+++= ,同理可得:2221112277A B C A B C S S S === ,归纳类推得:7n n n A B n C n S S == ,其中n 为非负整数,202220227S ∴=,故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP V 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅V V ,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,∵点D 是AB 的中点∴152BD AB ==∵BD PC=∴()853BP cm =-=∴B 点向C 点运动了33t =,1t =秒∵BPD CQP≅△△∴BP CQ=∴31v =⨯∴3/sv cm =②设运动了t 秒,当BD CQ =时,BDP QCP≅V V ∵5BD =,142PB PC BC ===∴34t =解得43t =秒∵BD CQ =∴453v =⨯∴15/s 4v cm =故答案为:3或154.【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF = ,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅ .(2)解:12,4BF EC == ,8BE CF BF EC ∴+=-=,BE CF = ,4BE ∴=,448BC BE EC ∴=+=+=.【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y 轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A 点关于x 轴的对称点A '',连接A B ''交x 轴于点P ,P 点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A (−4,1),B (−2,3),C (1,−2),∴A 点关于y 轴对称的点为(4,1),B 点关于y 轴对称的点为(2,3),C 点关于y 轴对称的点为(−1,−2),∴A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A 点关于x 轴的对称点A ',连接A B ''交x 轴于点P ,∴AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,以C为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,作线段BC的垂直平分线,此线与坐标轴有2个交点,∴△BCQ是等腰三角形时,Q点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD⊥BC,进一步求出∠EDC=30°,然后根据三角形内角和定理推出∠DOC=90°,再根据三角形的外角性质可求出∠DEC=30°,从而得出∠EDC=∠DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD≌△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB AC ABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析(2)2,D EF ';(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)2个;其中三角形D EF '(填三角形的名称)与△ABC 明显不全等,故答案为:2,D EF ';(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证;(3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +== 和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒ ,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒ ,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠,EN EH ∴=,EM EN ∴=,又 点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S = ,21ACE DCE S S +∴= ,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=,又14AC CD += ,211223142x AC CD ⨯=∴⨯==+,3EM ∴=,8.5AB = ,ABE ∴ 的面积为11518.53224AB EM ⋅=⨯⨯=.【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2∠A =∠1+∠2;见解析;(2)2∠A =∠1﹣∠2;见解析;(3)2(∠A +∠D )=∠1+∠2+360°,见解析【分析】(1)根据翻折的性质表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出∠3、∠4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,∠3=EDA '∠=12(180-∠1),∠4=DEA '∠=12(180-∠2),∵∠A +∠3+∠4=180°,∴∠A +12(180-∠1)+12(180-∠2)=180°,整理得,2∠A=∠1+∠2;(2)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180+∠2),∵∠A+∠3+∠4=180°,∴∠A+12(180-∠1)+12(180+∠2)=180°,整理得,2∠A=∠1-∠2;(3)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180-∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+12(180-∠1)+12(180-∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH ⊥y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解;(2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG ⊥y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解.【详解】解:(1)如图①,过点CH ⊥y 轴于H ,∴90BHC ABC ∠=︒=∠,∴90BCH CBH ABH CBH ∠+∠=∠+∠=︒,∴BCH ABH ∠=∠,∵点C 的横坐标为﹣3,∴3CH =,在ABO 和BCH 中,BCH ABHBHC AOB BC AB∠=∠⎧⎪∠∠⎨⎪=⎩=,∴ABO BCH ≌,∴3CH BO ==,∴点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CADAD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADN ADC ≌,∴CD DN =,∴2CN CD =,∵90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,∴BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCNBA BC ABM CBN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABM CBN ≌,∴AM CN =,∴2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG ⊥y 轴于G,∵90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,∴BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,∴BAO CBG ≌,∴BG AO =,CG OB =,∵OB BF =,∴BF GC =,在CGP 和FBP 中,90CPG FPBCGP FBP CG BF∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,∴CGP FBP ≌,∴PB PG=,∴1122PB BG AO==,∵12AOBS OB OA∆=⨯⨯,111222PBCS PB GC OB OA∆=⨯⨯=⨯⨯⨯,∴12PBC AOBS S∆∆=:.【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。

人教版八年级上学期期中考试数学试卷 (含答案)

人教版八年级上学期期中考试数学试卷 (含答案)

人教版八年级上学期期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,112.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.(3分)一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.84.(3分)一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°5.(3分)如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定6.(3分)一个多边形的内角和比外角和的三倍少180°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形7.(3分)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是()A.△ABC≌△CDE B.E为BC中点C.AB⊥CD D.CE=AC8.(3分)下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是( )9.(3分)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD10.(3分)如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDB B .∠BEDC .21∠AFBD .2∠ABF二、填空题(每小题3分,共24分)11.(3分)已知等腰三角形的一边等于6cm ,一边等于12cm ,则它的周长为 .12.(3分)已知△ABC 中,∠A :∠B :∠C =1:3:5,则△ABC 是 三角形.13.(3分)如图,△ABC 中,∠B =40°,∠C =30°,点D 为边BC 上一点,将△ADC 沿直线AD 折叠后,点C 落到点E 处,若DE ∥AB ,则∠ADC 的度数为 .14.(3分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.15.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若BC=15,且BD:DC=3:2,AB =25,则△ABD的面积是.16.(3分)如图,△ABC三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是.17.(3分)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是.18.(3分)如图所示,线段AB=8cm,射线AN⊥AB于点A,点C是射线上一动点,分别以AC、BC为直角边作等腰直角三角形,得△ACD与△BCE中,连接DE交射线AN于点M,则CM的长为.三、解答题(共66分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20.(8分)如图,∠MON=90°,点A,B分别在射线OM、ON上移动,BE是∠ABN的平分线,BE的反向延长线与∠OAB平分线相交于点C,试问:∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.21.(10分)如图,已知,DA=DC,BA=BC,点P在BD上,PM⊥AD于点M,PN⊥CD于点N,求证:DM=DN.22.(10分)如图,已知AB=DC,AE⊥BC于点E,DF⊥BC于点F,CE=BF连接AD交EF于点O.求证:AD 与EF互相平分.23.(8分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,求∠MAB的度数.24.(10分)如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,探究BC,AB,CD之间的数量关系,并证明.25.(12分)已知在△ABC中,∠BAC=90°,AB=CA,将△ABC放在平面直角坐标系中,如图所示.(1)如图1,若A(1,0),B(0,3),求C点坐标;(2)如图2,若A(1,3),B(﹣1,0),求C点坐标.。

八年级上册数学练习册答案人教版(共9篇)

八年级上册数学练习册答案人教版(共9篇)

八年级上册数学练习册答案人教版(共9篇)八年级上册数学练习册答案人教版〔一〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔二〕: 八年级上册数学练习册积的乘方答案人教版豆丁网是芝麻开花29页的吗如果是,下面是答案等于把积的每个因式分别相乘;〔ab〕^n=a^n ·b^n ;a^n·b^n·c^n 〔1〕4a 〔2〕-27x〔1〕4*10^6 〔2〕1CDBDBB2.4*10 *1.5*10 *1.2*10原式 =2.4*1.5*1.2*10 *10 *10=4.32*10^7cm【^的意思就是xx的x次方,*是乘号如果显示乱码的话后面数是178的世平方,179是立方】八年级上册数学练习册答案人教版〔三〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔四〕: 请问八年级数学人教版上册配套练习册33页第13题怎么做如图〔略):四个点A(0,1)B(-3,4)C(-5,4)D(-5,1).〔1〕画出四边形ABCD关于x=-1的对称图形A"B"C"D";〔2〕你知道四边形ABCD与A"B"C"D"重叠局部是什么图形吗求出重叠局部的面积.关于x=-1对称,既对称点y轴坐标不变,x轴点为-1*2减去对应点的x轴的点,例如A(0,1)关于x=-1对称点A"为〔-1*2-0,1〕即A"为〔-2,1〕,对应的手下的就是B"〔1,4〕C"(3,4)D"(3,1)画出坐标图就可以看出来重叠的是等腰三角形,面积就很好算的了,求出AB与A"B"相交的点,h就出来的了,h-1就是高,底是2,面积不是很好求的吗···八年级上册数学练习册答案人教版〔五〕: 人教版八年级上册数学书复习题14的答案复习题14 【复习稳固】 1.小亮为赞助“希望工程〞现已存款100元他方案今后三年每月存款10元存款总数y 单位元将随时间x 单位月的变化而改变.指出其中的常量与变量自变量与函数试写出函数解析式.2.判断以下各点是否在直线y=2x+6上这条直线与坐标轴交于何处—5 — 4 — 7 ,20 27 1 32 317 3.填空〔1〕直线xy3221 经过第象限 y随x的增大而〔2〕直线y=3x — 2经过第象限 y随x的增大而 .4.根据以下条件分别确定函数y=kx+b的解析式 1 y与x成正比例 x=5时y=6 2 直线y=kx+b经过点 3,6 与点 21 21 .5.试根据函数y=3x — 15 的图象或性质确定x取何值时 1 y 0 2 y 0.【综合运用】 6.在某火车站托运物品时不超过1千克的物品需付2元以后每增加1千克缺乏1千克按1千克计需增加托运费5角设托运p千克 p为整数物品的费用为c元写出c的计算公式.7.某水果批发市场规定批发苹果不少于100千克时批发价为每千克2.5元.小王携带现金3000元到这市场采购苹果并以批发价买进.如果购置的苹果为x千克小王付款后还剩余现金y元试写出y关于x的函数解析式并指出自变量x的取值范围.8.均匀地向一个容器注水最后把容器注满.在注水过程中水面高度h随时间t的变化规律如下图图中OABC为一折线这个容器的形状是图中哪一个你能画出向另两个容器注水时水面高度h随时间t变化的图象草图吗9.等腰三角形周长为20. 1 写出底边长y关于腰长x的函数解析式 x为自变量 2 写出自变量取值范围 3 在直角坐标系中画出函数图象.10.A 8,0 及在第一象限的动点P x y 且x+y=10 设△OPA的面积为S 1 求S 关于x的函数解析式 2 求x的取值范围 3 求S=12时P点坐标 4 画出函数S 的图象.11. 1 画出函数y=|x—1|的图象不要告诉我买什么教材,我的教材丢了,现在买也来不及了、、1.常量已存款100元,三年,每月存款10元;变量总数y ,时间x;自变量x;函数y;函数解析式:y=10x+1002. —5 — 4在交于0,6;32 317 在交于付三,03.1 2 4,减小;〔2〕1 3 4 增大4.〔1〕y=五分之六x 〔2)y=五分之十三x+五分之九5.(1) x大于5 〔2〕x小于五6.分两种情况第一种:p 小于1 c=2第二种:p大于1 c=(p-1)0.5+27.y=3000-2.5x x大于等于100小于等于12008.图三9.1 y=-2x+20 2 x大于5小于10 3.略 10.s=-4x+40 x大于0小于10 p(7,3) 略 11.用列表法和图象法八年级上册数学练习册答案人教版〔六〕: 义务教育教科书配套练习册数学八年级下册人民教育出版社 101-104个人认为人民教育出版社出版的义务教育课程标准实验教科书数学八年级下册第83页例2解答不完整,应该有两个答案,一个是西北方向,一个是东南方向.附上原题——例2 “远航〞号、“海天〞号轮船同时离开港口,各自沿一固定...八年级上册数学练习册答案人教版〔七〕: 求人教版数学八年级上册数学书上P137和138页的答案大神们帮帮助求人教版数学八年级上册数学书上复习题14P137和138页的答案【八年级上册数学练习册答案人教版】1.常数100,10;自变量x,函数y.y=10x+100(0≤x≤36,x为整数〕2.(-5,-4),(2/3,22/3)在直线y=2x+6上;〔-7,20〕,(-7/2,1)不在直线y=2x+6上.直线y=2x+6与x轴交与〔0,6〕3.(1)一、二、四,减小;〔2〕一、三、四,增...八年级上册数学练习册答案人教版〔八〕: 求八年级上册的数学练习题给我八年级上册的数学题要完整的无论什么题都行只要是八年级上册的数学题选一选(每题3分,共30分) 如果一个正方形的面积是,那么它的对角线长为( ) A. B. C. D. 2.算术平方根比原数大的数是( ) A.正实数 B.负实数 C.大于0而小于1的数 D.不存在 3.以下图形中,绕某个占旋转1800后能与自身重合的有( ) ①..推荐程度:授权方式:免费软件软件大小:未知下载:4442023-10-22 八年级数学期中试卷一,选择题:(此题有8小题,每题3分,共24分.) 如图,:AB‖CD,假设∠1=50°,那么∠2的度数是( )A,50° B,60° C,130 D,120° 如图,在以下条件中,能够直接判断‖的是( )A.∠1=∠4 B.∠3=∠4 C.∠2+∠3=180°D.∠1=∠2 等腰三角形一边是3,一边是6,那么它的周长等于( )A.12 B.12 或15 C.15 D.18或15 以下各组数据能作为..推荐程度:授权方式:免费软件软件大小:未知下载:2362023-01-31 八年级函数及其图象测试题八年级数学《函数及其图象》测试题姓名:___班级:___考号:___分数:___一、精心选一选!(每题2分,共30分) 1、函数的自变量x 的取值范围是__. A、 B、且 C、 D、且 2、在直角坐标系中,点P(1,-1) 一定在___上. A.、抛物线y=x2上 B、双曲线y= 上 C、直线y=x上 D、直线y=-..推荐程度:授权方式:免费软件软件大小:未知下载:442023-01-31 八年级数学(上)函数同步练习题及答案八年级数学上学期函数同步练习题附答案☆我能选 1.假设y与x的关系式为y=30x-6,当x= 时,y的值为〔〕 A.5 B.10 C.4 D.-4 2.以下函数中,自变量的取值范围选取错误的选项是〔〕 A.y=2x2中,x取全体实数B.y= 中,x取x≠-1的实数 C.y= 中,x取x≥2的实数 D.y= 中..推荐程度:授权方式:免费软件软件大小:未知下载:412023-01-31 八年级上学期数学一次函数测试题八年级数学(上)一次函数试题姓名一. 填空〔每题4分,共32分〕 1.一个正比例函数的图象经过点〔-2,4〕,那么这个正比例函数的表达式是 . 2.一次函数y=kx+5的图象经过点〔-1,2〕,那么k= . 3.一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是图象与坐..推荐程度:授权方式:免费软件软件大小:未知下载:302023-01-31 北师大版八年级数学单元测试题第六章一次函数测试北师大彼八年级(上)第六章一次函数测试题一填空题: 1、某晚报的售价是每份0.50元,y表示销售x份报纸的总价,那么y与x的函数关系式是〔〕.假设直线y=kx经过点〔1,2〕,那么k的值是〔〕 2、假设函数y=〔m—2〕x+5—m是一次函数,那么m满足的条件是〔〕假设此函数是正比例函数,那么m 的值是〔〕,..推荐程度:授权方式:免费软件软件大小:未知下载:202023-01-31 八年级上一次函数图象训练题北师大版八年级上一次函数图象习题一.选择题: 1.点A( , )关于轴的对称点的坐标是〔〕 (A) ( , ) (B) ( , ) (C) ( , ) (D) ( , ) 2.以下函数中,自变量的取值范围不正确的选项是〔 ..推荐程度:授权方式:免费软件软件大小:未知下载:232023-01-31 八年级数学反比例函数测试题人教版八年级(下)数学反比例函数测试题一选择题:〔每题5分,共25分〕1、以下函数中,y是x的反比例函数的是〔〕 A B C D 2、y与x成正比例,z 与y成反比例,那么z与x之间的关系是〔〕 A 成正比例 B 成反比例 C 有可能成正比例也有可能是反比例 D 无法确..推荐程度:授权方式:免费软件软件大小:未知下载:172023-01-31 八年级分式函数测试题八年级分式函数测试题〔考试时间:100分钟:总分值:100分〕一.细心填一填,〔每题2分,共30分〕 1.假设分式的值为零,那么; 2.分式 , , 的最简公分母为; 3.计算:; 4.假设 ,那么必须满足的条件是; 5. 点A〔-3,2〕关于y轴对称的点的坐标是 ..推荐程度:授权方式:免费软件软件大小:未知下载:102023-01-31 北师大版八年级数学(上)一次函数测试题八年级上学期数学(北师大版)一次函数试题推荐程度:授权方式:免费软件软件大小:未知下载:182023-01-31 八年级数学应用题 31道八年级数学分式方程应用题班级姓名 1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量. 2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是..推荐程度:授权方式:免费软件软件大小:未知下载:202023-11-21 八年级数学(上)期末检测题班级姓名评分 (卷面总分:120分;测试时间:120分钟) 一,填空题:(每题3分,共30分) 1,的绝对值是 ,= ,= ; 2,两个无理数的乘积是有理数,试写出这样的两个无理数 ; 3,一个多边形的内角和……推荐程度:授权方式:免费软件软件大小:未知下载:7412023-11-21 8年级数学上学期期末试卷2023-2023学年上学期期末水平测试8年级数学试卷 (考试时间120分钟,总分值100分) 一,填空题:(简洁的结果,表达的是你敏锐的思维,需要的是细心!每题3分,共30分) 1,8的立方根是……推荐程度:授权方式:免费软件软件大小:未知下载:3432023-11-21 八年级数学上学期期末检测试卷惠安县2023—2023学年度上学期八年级数学期末检测试卷一,填空题.(每题2分,共24分) 1,计算:= . 2,不等式>5的解...ABCD中,E,F分别是对角线AC,CA延长线上的点,且CE=AF,试说明四边形BEDF是平行四边形. 23,(5分)如图,在梯形...推荐程度:授权方式:免费软件软件大小:未知下载:2502023-11-21 八年级上学期期末考试数学试卷澧县2023年上学期八年级期末考试数学试卷班次_______ 姓名_______ 计分______ 一,填空题:每空2分,共30分 1,计算:① =_____.② =______. 2,当x______时, 有意义. 3,图1……推荐程度:授权方式:免费软件软件大小:未知下载:2592023-11-21 八年级上学期期末数学试题05—06学年度上学期八年级数学期末试题数学说明:本试卷分第一卷和第二卷两局部,第一卷36分,第二卷84分,共120分;答题时间120分钟. 第I卷(共45分) 一,请你选一选.(每题3分,共45分) 1.假设,一次函数的图象大致形状是 ( ) 2.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB的角平分线,且相交于点F,那么图中的等..推荐程度:授权方式:免费软件软件大小:未知下载:2262023-11-19 华师大版八年级数学(上)期末复习试题一华师大数学八年级上学期期末复习试题一班级:____________姓名:____________评价:____________ 一. 选择题:在下面四个选项中只有一个是正确的.(此题共18分,每题3分) 1. 以下计算正确的选项是( ) ……推荐程度:授权方式:免费软件软件大小:未知下载:2572023-11-19 八年级(上)数学期末试题八年级数学(上)期末试题(10) 本卷总分值100分,考试时间100分钟姓名: . 班别: .座号: .评分: . 选择题:(此题共8小题,每题2分,共16分,每题给出的4个答案中,只有一个是正确的,请你把所选的答案的编号填入该题后面的括号内.) 1.16的平方根是 [ ] A. 4 B. ±4 C.……八年级上册数学练习册答案人教版〔九〕: 八年级上册数学126页的练习答案1.自变量X的取值满足什么条件时,函数Y=3X+8的值满足以下条件(1)Y=0(2)Y=-7 (3)Y>0 (4)Y〔1〕x=-8/3〔2〕x=-5〔3〕3x+8>0 3x>-8 x>-8/3〔4〕3x+8。

人教版八年级第一学期期中数学试卷及答案

人教版八年级第一学期期中数学试卷及答案

人教版八年级第一学期期中数学试卷及答案(试卷共6页,考试时间120分钟,满分150分)一、选择题:(本大题共12个小题,每小题4分,共48分)每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. 在下列长度的四组线段中,能组成三角形的是()A. 3,7,15B. 1,2,4C. 5,5,10D. 2,3,32. 下列图形中具有稳定性的是()A B C D3. 若画△ABC中AB边上的高,下列画法中正确的是().A B C D4. 如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. ASAB. SASC. AASD. SSS5. 如图2,、、分别表示,ABC的三边长,则下面与,ABC一定全等的三角形是( )A B C D6. 等腰三角形的两边长是6cm和3cm,那么它的周长是( )A. 9cmB. 12 cmC. 12 cm或15 cmD. 15 cm7. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形8. 在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积是8,则△BEF的面积是()8题 9题 10题A. 2B. 1C. 4D. 39. 如图,AB ∥DE ,AF =DC ,若要证明△ABC ≌△DEF ,还需补充的条件是( )A. AC =DFB. AB =DEC. ∠A =∠DD. BC =EF10. 如图,已知点O 是△ABC 内一点,且点O 到三边的距离相等,,A=40゜,则,BOC=( )A .130°B .140°C .110°D .120°11. 关于x 的不等式组3420x a x -<⎧⎨->⎩有3个正整数解,且关于x 方程2x ﹣a =2有整数解,则满足条件的所有整数a 的值之和为( )A. 25B. 26C. 27D. 3912. 如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. 一个多边形的每个外角都等于60°,则这个多边形的边数为________.14. 如图,小强利用全等三角形的知识测量池塘两段M,N 的距离,如果OP =ON ,OQ=OM ,PQ=30m 则池塘两段M,N 的距离为________.15. 如图,在,ABC 中,,C =90°,AD 平分,BAC ,AB =5,CD =2,则,ABD 的面积是________.14题 15题 17题16. 小马虎同学在计算某个凸多边形的内角和时得到1840°,老师说他算错了,于是小马虎认真地检查了一遍发现漏算了一个内角,求漏算的那个内角是________度.17. 在ABC 中,5AC =,中线7AD =,则AB 边的取值范围是________.18. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19. 如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.如图,在Rt ABC △中,,C =90°.(1)作,BAC 的平分线AD 交边BC 于点D .(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若,BAC =38°,求,ADB 的度数.四、解答题(每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.AE 和BD 相交于点O .21. 如图,,A =,B ,AE =BE ,点DAC 边上,,1=,2,(1)求证:△AEC ,△BED ;(2)若,1=42°,求,BDE的度数.22、如图,AD是,ABC的高,AE平分,BAC.(1)若,B=64°,,C=48°,求,DAE的度数;(2)若,B﹣,C=32°,求,DAE的度数.23.如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.24. 如图所示,在人教版八年级上册数学教材P53的数学活动中有这样一段描述:(1)D 为△ABC 外一点,若AD =CD ,AB =CB ,则我们把这种两组邻边分别相等的四边形叫做“筝形”,试猜想筝形对角线AC 、BD 有什么性质?并证明你的猜想.(2)知识拓展:如果D 为△ABC 内一点,BD 平分∠ABC ,且AD =CD ,试证明:AB =CB .五.解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25. 对于一个三位自然数m ,若m 的百位数字等于两个一位正整数a 与b 的和()a b >,m 的个位数字等于两个一位正整数a 与b 的差,m 的十位数字等于b ,则称m 是“和差数”,规定(),m F a b =.例如:723是“和差数”,因为752=+,352=-,22=,所以723是“和差数”,即()7235,2F =.(1)填空:()3,1F =______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数910010n x y =⨯++(18x ≤<,18y ≤<,x 、y 是整数,即n 的百位数字是9,十位数字是x ,个位数字是y )为“和差数”,求所有满足条件的“和差数”n .26. (1)如图1,在四边形ABCD 中,AB =AD ,,B =,D =90°,E 、F 分别是边BC 、CD 上的点,且,EAF =12,BAD . 求证:EF =BE +FD ;(2)如图2在四边形ABCD 中,AB =AD ,,B +,D =180°,E 、F 分别是边BC 、CD 上的点,且EF =BE +FD ; 求证:,EAF =12,BAD ,(3)如图3在四边形ABCD 中,AB =AD ,,B +,ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且,EAF =40°,,BAD =80°, 写出EF 、BE 、FD 之间的数量关系,并证明你的结论.数学试卷参考答案一、选择题D C C A B D C A B C B C二、填空题:6 30m 5 140 919AB << 4:3三、解答题:19. 解∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE . ---------------2在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩--------------------5∴△ABF≌△DCE,∴∠A=∠D.--------------------8 20.解:(1)如图,AD即为所作:--------------------5(2),AD平分,BAC,,BAC=38°,,1192CAD BAC∠∠==︒,,,C=90°,,,ADB=,CAD+,C=109°. --------------------8四、解答题21.解(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∵∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∵A BAE BEAEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△BED(ASA).--------------------5(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=(180°-42°)÷2=69°,∴∠BDE=∠C=69°.--------------------10 22.解:(1),AD是,ABC的高,,B=64°,,C=48°,,,BAC=180°-,B-,C=68°,,BAD=26°.,AE平分,BAC,,,BAE=34°.,,DAE=,BAE-,BAD=8°;--------------------5(2),,B-,C=32°,,,B=,C+32°.,AD是,ABC的高,,,BAC=180°-,B-,C=148°-2,C,,,BAD=90°-,B=58°-,C.,AE平分,BAC,,,BAE=74°-,C.,,DAE=,BAE-,BAD=74°-,C-(58°-,C)=16°,答:,DAE的度数为16°.--------------------10 23.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS).--------------------3②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.--------------------5(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD =CE ,CD =BE ,∴DE =EC ﹣CD =AD ﹣BE . --------------------1024.解:(1)猜想BD ⊥AC∵AD =CD ,AB =CB ,在△ADB 和△BCD 中,AB BCAD DC BD BD=⎧⎪=⎨⎪=⎩∴△ADB ≌△CDB (SSS ),∴∠BAD =∠BCD ,∠ADO =∠CDO ,在△AOD 和△ODC 中,AD DCADO ODC OD OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COD (SAS ),∴∠AOD =∠COD ,而∠AOD +∠COD =180°,∴∠DOC =90°,∴BD ⊥AC . --------------------5 (2)如图,过点D 分别作DE ⊥AB ,DF ⊥ACA ,垂足分别为E ,F , ∵BD 平分∠ABC ,∴DE =DF ,∵AD =AD ,∴Rt △BDE ≌Rt △BDF (HL ),∴BE =BF ,∵ED =FD ,AD =CD ,∴Rt △ADE ≌Rt △CDF (HL ),∴AE =CF ,∴BE +AE =CF +BF ,即AB =CB . --------------------10五.解答题:25. 解:(1) 412; --------------------2(2)311是“和差数”,,321=+,121=-,11=,,311是“和差数”; --------------------4(3),910010n x y =⨯++(18x ≤<,18y <≤,x 、y 是整数) ,9a b a b y +=⎧⎨-=⎩,29a y =+,514a y b =⎧⎪=⎨⎪=⎩,633a y b =⎧⎪=⎨⎪=⎩,752a y b =⎧⎪=⎨⎪=⎩,871a yb =⎧⎪=⎨⎪=⎩,941n =或933或925或917. --------------------10 26.解:(1)延长EB 到G ,使BG =DF ,连接AG .,,ABG =,ABC =,D =90°,AB =AD ,,,ABG ,,ADF .,AG =AF ,,1=,2.,,1+,3=,2+,3=,EAF =12,BAD .,,GAE =,EAF .又,AE =AE ,,,AEG ,,AEF .,EG =EF .,EG =BE +BG .,EF =BE +FD --------------------4(2)证明:如图2,延长CB 至M ,使BM =DF ,连接AM , ∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D , 在△ABM 和△ADF 中,1AB ADD BM DF=⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,MB=FD,∵EF =BE +FD∴EF=BE+MB∴EF=EM在△MAE和△F AE中,{AM=AF EM=EF AE=AE∴△MAE≌△F AE(SSS),∴∠EAF=∠MAE∵∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,而∠2+∠4+∠EAF=∠BAD∴∠EAF=12∠BAD--------------------8(3)结论EF=BE+FD不成立,应当是EF=BE-FD.证明:在BE上截取BG,使BG=DF,连接AG.,,B+,ADC=180°,,ADF+,ADC=180°,,,B=,ADF.,AB=AD,,,ABG,,ADF.,,BAG=,DAF,AG=AF.,,BAG+,EAD=,DAF+,EAD=,EAF=12,BAD.,,GAE=,EAF.,AE=AE,,,AEG,,AEF.,EG=EF,EG=BE-BG,EF=BE-FD.--------------------12。

人教版2022—2023学年八年级上学期期末测试数学试卷含答案

人教版2022—2023学年八年级上学期期末测试数学试卷含答案

八数(上)期末试卷第1页(共6页)人教版2022—2023 学年度上学期期末质量测评八年级数学试卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置,并将条形码粘贴在答题卡上的指定位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.若分式35x -有意义,则x 的取值范围是A .x ≠5B .x ≠-5C .x >5D .x >-52.下列等式成立的是A .x y --=()x y --B .22()()y x x y -=-C .222()x y x y +=+D .2(6)(6)6x x x +-=-3.如图,在△ABC 中,若∠C =∠ABC =2∠A ,BD 是AC 边上的高,则∠DBC 的度数为A .16°B .18°C .20°D .22°4.已知点A (x -2,3)关于y 轴对称的点在第二象限,则A .x >2B .x <2C .x >0D .x <05.下列各式中计算一定正确的是A .632a a a ¸=B .326(3)6a a =C .235a a a ×=D .0(32)1a -=八数(上)期末试卷第2页(共6页)6.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为A .51510´米B .51.510-´米C .61.510-´米D .40.1510-´米7.如图,在△ABC 中,∠C =90°,∠ABC =60°,用直尺和圆规作线段AB 的垂直平分线交AC 于点D ,若AD =6,则CD 的长为A .1.5B .3C .4.5D .68.如图,在等边△PQB 中,点A 为PQ 上一动点(不与P ,Q 重合),再以AB 为边作等边△ABC ,连接PC .有以下结论:①PB 平分∠ABC ;②AQ =CP ;③PC ∥QB ;④PB =PA +PC ;⑤当BC ⊥BQ 时,△ABC 的周长最小.其中一定正确的有A .①②③B .②③④C .③④⑤D.②③④⑤二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分.请将结果直接填写在答题卡相应位置上)9.已知三角形的两边长分别是2cm 和5cm ,第三边长是奇数,则第三边长是☆cm .10.计算231649a bb a的结果是☆.11.等腰三角形的一个外角是140°,则它的顶角的度数是☆.12.已知2()9x y -=,xy =4,则2()x y +的值为☆.13.一个六边形共有n 条对角线,则n 的值为☆.14.老李家两次同在一家粮店购买大米,两次大米的价格分别为每千克a 元和b 元(a ≠b ),若每次买100元大米,且a ,b 间满足2ab =5(a +b ),则两次购买大米的平均单价为每千克☆元.八数(上)期末试卷第3页(共6页)15.如图,等边△ABC 中,点D ,E ,F 分别是边AB ,BC ,CA 延长线上一点,且BD =CE =AF =21AB ,连接DE ,EF ,DF ,则DEFABCS S △△=☆.16.著名数学家华罗庚曾经谈到我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是其中一例.该三角形中的数据排列有着一定的规律,按此规律排列下去,第20行的左边第3个数是☆.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题8分=4分+4分)分解因式:(1)22363ax axy ay ++;(2)4161x -.18.(本题8分=4分+4分)解下列方程:(1)12111x x x -=--+;(2)22411x x =--.八数(上)期末试卷第4页(共6页)19.(本题8分=4分+4分)如图,在直角坐标网格中,每个网格均为小正方形,△ABC 的各顶点均在格点上,它们的坐标分别为A (1,1),B (4,2),C (3,4).(1)在图1中格点上找一点P ,使BP ⊥AC ,用无刻度的直尺画出BP ,并写出P 点坐标;(保留画图痕迹,不写作法)(2)在图2中x 轴上找点Q ,使QA +QB 的值最小,用无刻度的直尺画出点Q 的位置,并写出点Q 的坐标.(保留画图痕迹,不写作法)20.(本题8分=4分+4分)计算:(1)(a 2)3•(a 2)4÷(a 2)5;(2)[(2)()2()8]a b a b b a b a a ++-+-¸.八数(上)期末试卷第5页(共6页)21.(本题8分)先化简,再求值:223211(1)131x x x x x x -++-+--- ,其中x =2022.22.(本题10分=5分+5分)如图,在等边△ABC 中,点D ,E 分别在边AC ,AB 上,且AD =BE ,BD ,CE 交于点P ,CF ⊥BD ,垂足为点F .(1)求证:BD =CE ;(2)若PF =5,求CP 的长.23.(本题10分=3分+2分+5分)在Rt △ABC 中,AC =BC ,∠ACB =90°,点O 为AB 的中点.(1)若∠EOF =90°,两边分别交AC ,BC 于E ,F 两点.①如图1,当点E ,F 分别在边AC 和BC 上时,求证:OE =OF ;②如图2,当点E ,F 分别在AC 和CB 的延长线上时,连接EF ,若OE =6,则S △EOF =☆.(2)如图3,若∠EOF =45°,两边分别交边AC 于E ,交BC 的延长线于F ,连接EF ,若CF =3,EF =5,试求AE的长.24.(本题12分=5分+4分+3分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批A、B两种空气净化装置,每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据销售情况,需购进A、B两种设备共20台,总费用不高于15万元.①求A种设备至少要购买多少台?②若每台A种设备售价0.6万元,每台B种设备售价1.4万元,商场应如何进货才能使这批空气净化装置售完后获利最多?八数(上)期末试卷第6页(共6页)人教版 2022—2023 学年度上学期期末质量测评八年级数学参考答案一、选择题:题号12345678答案ABBACCBD二、填空题:9.510.43a11.40°或100°12.2513.914.515.13416.171三、解答题:17.解:(1)原式=223(2)a x xy y ++………………………………2分=23()a x y +………………………………4分(2)原式=22(41)(41)x x +-………………………………6分=2(41)(21)(21)x x x ++-………………………………8分18.解:(1)12111x x x -=--+去分母得:x +1=(x -2)(x -1)-(x -1)(x +1)………………………………1分整理得:x +1=x 2-3x +2-x 2+14x =2∴x =21………………………………2分经检验:x =21是原方程的根………………………………3分故原方程的解为x =21.………………………………4分(2)22411x x =--去分母得:2(x +1)=4………………………………5分整理得:2x +2=4∴x =1………………………………6分经检验:x =1不是原方程的根应舍去………………………………7分故原方程无解.………………………………8分19.解:(1)画法如图1,………………………………2分P (1,4);………………………………4分(2)画法如图2,………………………………6分Q (2,0).………………………………8分20.解:(1)(a 2)3•(a 2)4÷(a 2)5=a 6•a 8÷a 10………………………………2分=1410a a ¸=4a ………………………………4分(2)[(2)()2()8]a b a b b a b a a++-+-¸=222(32228)a ab b ab b a a ++---¸………………………………6分=2(8)a ab a a +-¸=(8)a a b a +-¸………………………………7分=8a b +-………………………………8分21.解:223211(1)131x x x x x x -++-+--- =23(1)11(1)(1)31x x x x x x x -++---+-- ………………………………3分=111x xx x +---………………………………4分=11x -………………………………5分∵x =2022,………………………………6分∴原式=11202212021=-………………………………8分22.解:(1)证明:∵△ABC 为等边三角形,∴AB =BC ,∠BAC =∠ABC =60º,………………………………1分又∵AD =BE ,在△ABD 和△BCE 中,∵AB BC BAC ABC AD BEì=ïïÐ=Ðíï=ïî,∴△ABD ≌△BCE (SAS ),………………………………4分∴BD =CE………………………………5分(2)由(1)可知∠ABC =60º,△ABD ≌△BCE ,∴∠ABD =∠BCE ,………………………………6分∵∠ABD +∠CBD =∠ABC =60º,∴∠BCE +∠CBD =60º,………………………………7分∴∠FPC =∠BCE +∠CBD =60º,………………………………8分∵CF ⊥BD ,∴△CPF 为直角三角形,∴∠FCP =30º,………………………………9分∴CP =2PF ,∵PF =5,∴CP =10.………………………………10分23.解:(1)①证明:连OC ,………………………………1分在等腰直角△ABC 中,∵O 为中点,∴OC ⊥AB ,OC =OA =OB ,∵∠EOF =∠AOC =90°,∴∠AOE =∠COF 又OA =OC ,∠A =∠OCF =45°∴△AOE ≌△COF (ASA )…………………2分∴OE =OF .……………………………3分②18;………………………………5分(2)如图,过O 作OM ⊥OE 交BC 于M ,连接OC ,…………………………6分由(1)①可得△AOE ≌△COM .∴AE =CM ,OE =OM ∵∠EOM =90°,∠EOF =45°∴OF 平分∠EOM ,即∠EOF =∠MOF =45°……………………………7分在△OEF 和△OMF 中∵45OE OMEOF MOF OF OFì=ïïÐ=Ð=°íï=ïî∴△OEF ≌△OMF (SAS )……………………………8分∴EF =MF =5……………………………9分∴AE =CM =MF -CF =5-3=2.……………………………10分24.解:(1)设A种设备每台x万元,则B种设备每台(x+0.7)万元,………………1分根据题意得:37.20.7x x=+,……………………………2分解得x=0.5,……………………………3分经检验,x=0.5是原方程的解,……………………………4分∴x+0.7=1.2.则A种设备每台0.5万元,B种设备每台l.2万元;……………………………5分(2)①设购买A种设备a台,则购买B种设备(20-a)台,……………………………6分根据题意得:0.5a+1.2(20-a)≤15,……………………………7分解得:a≥907=6127,……………………………8分∵a为整数,∴A种设备至少购买13台;……………………………9分②每台A种设备获利0.6-0.5=0.1(万元),……………………………10分每台B种设备获利1.4-1.2=0.2(万元),……………………………11分∵0.2>0.1,∴购进B种设备越多,获利越多,∴当购买A种设备13台,B种设备20-13=7(台)时,获利最多.…………………12分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

咸阳百灵中学2015-2016学年八年级上学期周考数学试题
一、选择题(每小题3分,共30分)
1、下列说法中,错误的是()
A.对于坐标平面内的点,都有唯一的一对有序实数与它对应;
B. 两点关于x轴对称,则它们的横坐标相同;
C. 在直角坐标系中,原点的坐标是0;
D.坐标轴上的点不属于任何一个象限.
2. 在平面内,确定一个点的位置一般需要的数据个数是( )
A.1 B .2 C .3 D.4
3. 气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是 A.西太平洋 B.距台湾300海里 C.北纬26º,东经133º D.台湾与冲绳之间
4. 下列语句,其中正确的有( )
①点(3,2)与(2,3)是同一个点②点(0,-2)在x轴上③点(0,0)是坐标原点
A.0个
B.1个
C.2个
D.3个
5. 在平面直角坐标系中,下列各点在第四象限的()
A.(2,1) B.(2,-1) C.(-2,1) D.(-2,-1)
6. 已知点
(,)
P a b在平面直角坐标系中,且a>0,b<0,则点(,)
P a b在().
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7. 在平面直角坐标系中,点P(2,3)关于y轴的对称点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
8. 课间操时,小华、小军、小刚的位置如图,小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成( ).
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
9. 如图所示,小明从家到学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面哪条线路不能到达学校( ).
A .(0,4)→(3,4)→(4,2)→(4,0)
B .(0,4)→(4,4)→(4,0)
C .(0,4)→(1,4)→(1,1)→(4,1)→(4,0)
D .(0,4)→(0,0)→(4,0)
10. 如图所示,雷达探测器测得六个目标A ,B ,C ,D ,E ,F 出现,按照规定的目标表示方法,目标C ,F 的位置表示为C(6,120°),F(5,210°),按照此方法在表示目标A ,B ,D ,E 的位置时,其中表示不正确的是( ).
A .A(5,30°) B.B(2,90°) C.D(4,240°) D .E(3,60°)
二、 填空题(每题3分,共24分)
11. 点P (1,2)关于y 轴对称的点的坐标是 。

12. 如图是永州市几个主要景点示意图,根据图中信息,九疑山的中心位置点C 可以表示为__________.
13. 如图,点关于y 轴的对称点的坐标是____________.
14. 已知点1P 关于x 轴的对称点,23(2a P -)52-a 是第三象限内的整点(横、纵坐标都
为整数的点,称为整点),则点1P
的坐标是__________. 15. 如图所示,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD
与△ABC全等,那么点D的坐标是__________.
16. 如果a<0,b>0,则点A(a,b)在第__________象限,点Q(a
,b)在第__________象限.
17. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第100个点的坐标为________。

18. 点P(x,y)满足|x|=3,
2
y=16,则点P的坐标是__________.
三、解答题(共46分)
19. (6分)建立适当的直角坐标系,表示边长为2的正六边形的各个顶点的坐标.
20. (8分)已知点A,B,根据下列要求确定a、b的值:
直线AB∥x轴.
直线AB∥y轴.
AB两点在第一、三象限的角平分线上.
21. (8分)建立直角坐标系,然后按照给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

并回答这是一个什么图形。

O(0,0),B(4,4),A(4,0),C(0,4)。

22. (8分)如图5-2-1,用(0,0)表示点O,表示图中六边形各个顶点的位置.
.
23. (8分)小丽和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。

可是她忘记了在图中标出原点和x轴、y轴。

只知道游乐园D的坐标为,你能帮她求出其他各景点的坐标?
24. (8分)在平面直角坐标系中,
(1).确定下列各点:A,B,C;
(2).若以A,B,C为顶点,做一个平行四边形,试写出第四个顶点的位置坐标,你的答案是唯一的吗?
求出这个平行四边形的面积.。

相关文档
最新文档