热能与动力工程专业英语翻译 5.11(1)

合集下载

热能与动力工程专业外文翻译、中英对照、英汉互译

热能与动力工程专业外文翻译、中英对照、英汉互译

毕业设计外文翻译原文标题:Proposal for a high efficiency LNGpower-generation System utilizing wasteheat from the combined cycle中文标题:一个高效的利用液化天然气联合循环余热的发电系统学院名称:能源与动力工程学院专业名称:热能与动力工程Proposal for a high efficiency LNG power-generation system utilizing waste heat from the combined cycleY. Hisazumi*, Y. Yamasaki, S. SugiyamaEngineering Department, Osaka Gas Co., 1-2 Hiranomachi 4-chome Chuo-ku, Osaka 541, Japan Accepted 9 September 1998AbstractHigh-efficiency power-generation with an LNG vaporizing system isproposed: it utilizesthe LNG's cold energy to the best potential limit. This system can be applied to LNG vaporizers in gas companies or electric power companies and recovers the LNG's cold energy as electric power. The system consists of a Rankine cycle using a Freon mixture, natural-gas. Rankine cycle and a combined cycle with gas and steam turbines. The heat sources for this system are the latent heat from the steam-turbine's condenser and the sensible heat of exhaust gas from the waste-heat recovery boiler. In order to find out the optimal condition of the system, several factors, such as gas turbine combustion pressure, steam pressure, condensing temperature in combined cycle, composition of mixture Freon, and natural gas vaporizing pressure are evaluated by simulation. The results of these studies show that in the total system, about 400 kWh can be generated by vaporizing 1 ton of LNG, including about 60 kWh/LNG ton recovered from the LNG cold energy when supplying NG in 3.6 MPa.. About 8.2MWh can be produced by using 1 ton of LNG as fuel, compared with about 7 MWh by the conventional combined system. A net efficiency of over 53%HHV could be achieved by the proposed system. In the case of the LNG terminal receiving 5 million tons of LNG per year, this system can generate 240 MW and reduce the power of the sea water pump by more than 2MW. 1998 Elsevier Science Ltd. All rights reserved.1. IntroductionIn the fiscal year 1994, the amount of LNG imported to Japan reached about 43 million tons; of this 31 million tons were used as fuel for power generation. As shown in Fig. 1, about 20% of the LNG imported was used for power generation [2]. Fig. 2 shows the major LNG power generation systems now in operation and their outputs. Several commercial LNG power generation plants have been constructed since 1979, and their total output has reached approximately 73 MW. Among the new power-generation plants without CO2 emission, this value of 73 MW is second to the 450 MW input of geo-thermal power generation plants in Japan, with the exception of power generation by refuse incinerators, and is much larger compared with the 35 MW output of solar-power plants and the 14 MW output of wind-power stations.Table 1 shows the LNG power generation plants constructed in Japan. The economics of LNG power generation became worse as the appreciation of the yen madethe cost of energy kept constant but while raising the construction cost; the adoption of the combined cycle utilizing gas-turbine and steam turbine (hereafter called combined cycle) increased the gas send-out pressure and lowered the power output per ton of LNG. Therefore, no LNG powergeneration plants were constructed in the 1990s due to lower cost effectiveness of the systems.As for the thermal power plant using natural gas as fuel, the steam turbine produced only about 6 MWh of power output per ton of LNG. But recently, improvement in blade-cooling technology and materials of the gas turbine enabled a 1400℃class turbine to be designed and increased the combustion pressure up to 3 MPa. Therefore, as shown in Fig. 3, the heat efficiency of the combined cycle has been improved and the electrical output from 1 ton of LNG has reached about 7MWh.In this paper, a proposal is made for the high-efficiency LNG power generation system based on a new concept which fully utilizes the cold energy without discarding it into the sea. The system is composed of the combined cycle and the LNG power-generation plant.2. High-efficiency LNG power-generation system2.1. Basic componentsFig.4 shows the process flow diagram of the high-efficiency LNG power-generation system. This complex system consists of the combined cycle and the LNG power generation cycle. The combined cycle is composed of a gas turbine (GAS-T) and a steam turbine (ST-T) using natural gas (NG) as fuel, while the LNG power generation cycle is composed of a Freon (uorocarbon) mixture turbine (FR-T) and a natural-gas turbine (NG-HT, NG-LT) using the latent heat of condensation from the exhaust steam and the sensible heat of the exhaust gas as heat sources. The plate fin type heat exchanger can be used for the LNG/natural gas (LNG-CON) and LNG/ Freon mixture (FR-CON). The shell-and-tube type can be selected as exchangers for exhaust steam/natural gas (LNG-VAP),exhaust steam/Freon mixture(FR-VAP), and exhaust gas/natural gas (NG-SH) applications according to the operating conditions.Ice thickness on the surface of the heat-exchanger tubes becomes a problem as heat is exchanged between exhaust gas and cold natural gas or Freon mixture. The ice thickness can be estimated by the technology of heat transfer between LNG and sea water, thus enabling one to avoid blockages due to ice inside the tubes.In addition, stable and continuous send-out of gas is made possible by using a bypass system, even if turbines and pumps for the Freon mixture and natural gas circulating systems (FR-RP, LNG-RP) stop.2.2. Features of the systemThe practical use of the following existing technologies in combination shows the high feasibility of the proposed system:. Power generation using Freon or hydrocarbon type Rankine cycle,. Power generation by natural-gas direct expansion],. TRI-EX type vaporizer which vaporizes LNG by using an intermediate medium or vacuum type LNG vaporizer.The Freon mixture is made up of the HFC type, which is a fluorocarbon consisting of H, F, and C and has no adverse influence on the ozone layer; it enables reduction in exergy loss at the heat exchanger and increases itscirculating flow rate to be achieved.The effective recovery of cold exergy and pressure exergy is made possible by the combined system using natural gas and Freon mixture Rankine cycle.Fig. 5 shows the temperature-heat duty relation when vaporizing 1 kg of LNG in the system shown in Fig. 4. Separation of the condensed natural-gas in two sections enables an increase in the heat duty between Freon (FR) and LNG, and a reduction of difference in temperature of LNG and natural gas between the inlet and outlet of the heat exchanger.3. Evaluation of the characteristics of the proposed system3.1. Process simulationThe characteristics of this system were evaluated by using process simulator. The followings are the conditions used for the calculation:Effciencies of rotating machines LNG compositionGas turbine (GAS-T) 88% CH4 89.39%Steam turbine (ST-T) 85% C2H6 8.65%Natural-gas turbine (NG-HT, LT) 88% C3H8 1.55%Freon turbine (FR-T) 88% iC4H10 0.20%Air compressor (AIR-C) 85% nC4H10 0.15%LNG pump (LNG-MP, RP) 70% iC5H12 0.01%Freon pump (FR-RP) 70% N2 0.05%Natural gas gross heat-value: 10,510 kcal/Nm3AIR/NG flow ratio of gas turbine: 323.2. Effects of send-out pressure of the natural gasWhen natural-gas is sent out at 3.5 or 1.8 MPa, evaluations were made of the effects of send-out pressure of the LNG and change in superheating temperature of the natural gas on the total output of the high pressure (NG-HT) and the low pressure (NG-LT) natural-gas expansion-turbines. Fig. 6 shows the results of this calculation, where self consumption of power is calculated from the power, raising the pressure of the LNG up to the inlet pressure of the turbine minus the power required for the original send-out pressure. In both cases, the inlet pressure rise for the turbine causes an increase of self consumption power, but brings about a greater out-put. About 7 MPa of the inlet pressure of the turbine is appropriate considering the pressure tolerance of the heat exchangers.When the superheating temperature of the natural gas at the inlet to the turbine becomes high, the recovery of power increases, but the temperature of the exhaust gas from the outlet of the natural-gas super heater (NG-SH) declines, thus indicating that there is a limitation to superheating gas.3.3. Effects of combustion pressure of the gas turbineThe outputs of the gas turbine and the steam turbine, and the efficiency per gross heating value were evaluated by changing the combustion pressure of the gas turbine operating at 1300℃turbine-inlet temperature - see Fig. 7.If the combustion pressure of the gas turbine becomes high, the output of the gas turbine increases, but the output of the steam turbine decreases because the rise in combustion pressure causes a lowering of the exhaust-gas temperature at the outlet of the gas turbine and consequently a decline in the steam temperature at the inlet of the steam turbine. However, the overall efficiency of the turbines increases upon increasing the combustion pressure because the increment of gas-turbine output exceeds the decrement of steam turbine output. As a result, taking the pressure loss into account, it is appropriate to set the send-out pressure of the natural gas at the LNG terminal at 3.5 MPa.(FR-vap),3.4. Effects of Inlet pressure of the steam turbineFig. 8 shows the relations between the steam-turbines output and exhaust gas temperatures by changing the steam pressure in the range of 3-7 MPa. As the steam pressure increases, the output of the steam turbine rises and the temperature of the exhaust gases also increase. Besides, the power required for the water-supply pump increases with a rise in the steam pressure. Therefore, the current combined cycles operate at steam pressure of 7 MPa or more because the increment of the output of steam turbine exceeds the additional power required for the water-supply pump.3.5. Rankine cycle using a Freon-mixture refrigerant.The Freon refrigerant was selected from the HFC refrigerants on the basis of marketability, boiling point and freezing-point. Table 2 shows the physical properties of HFC Freon.When only HFC-23 is used as the medium, because of its low freezing-point it never freezes even if heat is exchanged between the LNG and HFC-23. But if HFC-23 is heated by the exhaust steam of the steam turbine, the pressure rises approximately up to the critical pressure. Therefore, the use of HFC-23 is not cost effective, because it is then necessary to set a high design pressure. To cope with this problem, we evaluated the compound refrigerant composed of HFC-134a (with high boiling point) and HFC-23.Fig. 9 shows saturated vapor pressure at various temperatures, the boiling point and the dew point at atmospheric pressure for mixtures of HFC-23 andHFC-134a of various compositions. The saturated pressure at each temperature rises with the increasing mole ratio of HFC-23: Hence, 40-45% of the mole ratio of HFC-23 is the optimal value considering the design pressure of the equipment.Fig. 10 shows the plots of the output of the Freon turbine versus the condensing temperature of the steam turbine when changing the composition of the HFC-23. In this figure, the turbine outlet pressure is determined in such a way that thedifference in temperature between the LNG and Freon mixture is not less than 5℃in the Freon condenser (FR-CON). The Freon turbine's inlet-pressure is set to the saturatedtemperature of the Freon mixture, i.e. less than 2℃from the steam-condensing temperature.This figure indicates that the output of the turbine scarcely correlates with the mole ratio of HFC-23. The higher the steam-condensing temperature becomes, the greater the output per ton of LNG the turbine produces, but in such a case, it is necessary to evaluate the system as a whole because more fuel is required, as described below. The result indicates that the optimal mole composition of HFC-23 and HFC-134a is 40%/60% considering both design pressure and the output of the turbine.3.6. Comprehensive evaluation from the viewpoint of the steam-condensing Temperature.As the dew point of the exhaust gas is 42℃, it is wise to set the exit temperature of the exhaust gas from the natural-gas super heater (NG-SH) to 80℃or more in order to prevent white smoke from the smoke stack. Table 3 shows the effect of the steam-condensing temperature on the generated output of the total system. The lower steam-condensing temperature brings about a higher efficiency of the total system, but also causes a lowering in the inlet temperature of natural-gas turbine. Therefore, it is appropriate to set the steam-condensing temperature at approximately 30℃.When the condensing temperature is 30C, the generated outputs per ton of LNG of the combined cycle and LNG power generation plant are 342.83 and67.55 kWh, respectively, resulting in 402.64 kWh of total generated output aftersubtracting the self-use power. As 48.94 kg of fuel is used for operating the system, the generated outputs of the combined cycle and the total system reach about 7 and 8.2 MWh, per ton of fuel respectively.3.7. Evaluation of exergyNatural-gas is liquefied at an LNG liquefaction terminal, with the consumption of about 380 kWh/LNG-ton: 1 ton of LNG having about 250 kWh of physical exergy as cold exergy and 13.5 MWh of chemical exergy. Fig. 11 shows the result of evaluating the exergy of the system shown in Fig. 4 under the optimal condition. The total output of Freon and natural gas turbines is 67.5 kWh, and the effective recovery percentage of cold exergy is 56%. As 90 kWh out of the pressure exergy can be recovered as output, about 157 kWh of net recovery can be obtained, which indicates the recovery percentage reaches about 63% for 250 kWh of LNG cold exergy. This conversion efficiency is higher than that achieved from chemical exergy to electric power.Most of the exergy loss occurs in the heat exchanger and the turbine, and in mixing with re-condensed LNG. As for the turbines, the loss of energy may be improved by using high-efficiency turbines. On the other hand, modification of the heat exchanger to reduce the energy loss may cause increased complexity of the system and is difficult to be done from the economic viewpoint. Though the recovery.percentage of cold energy in this system is low compared with the 80% in air-separation equipment, this system has the advantage of recovering a large amount of the available cold energy.4. ConclusionThe paper has proposed a high-efficiency LNG power generation system in combination with a combined-cycle power generation system fueled by natural-gas. The system utilizes LNG cold energy and it requires no sea water as a heat source.This system can be applied to LNG vaporization and send-out processes of gas companies or electric-power companies. The system recovers LNG coldenergy as an electric-power output without wasting it into sea water. The system consists of Rankine cycle with Freon mixture and a natural-gas Rankine cycle using the latent heat of exhaust steam from the steam turbine and the sensible heat of exhaust gas from the waste-heat recovery boiler. To improve the total efficiency of the system, a simulation was conducted to evaluate several factors, such as the composition of the Freon mixture, natural gas send-out pressure, as well as the combustion pressure steam inlet pressure, and steam-condensing temperature of the combined cycle. As a result, not less than 60 kWh/LNG-ton of output was generated even at a high natural-gas send-out pressure of 3.5 MPa. This value is considerably higher than the output generated at a LNG send-out pressure of 3 or 4 MPa, as given in Table 2.The system can produce about 400 kWh of net output when vaporizing 1 ton of LNG. While the conventional combined-cycle system in operation generates about 7 MWh when 1 ton of LNG is used as fuel, the system using the same amount of fuel generates about 8.2 MWh with a high degree of efficiency: a not-less-than 53% conversion efficiency was achieved per gross heat value.In the case of an LNG terminal receiving 5 million tons of LNG per year, this system can generate a power of about 240 MW when 600 t of LNG is used in an hour. With the elimination of about 24,000 tons per hour of sea water, which has been used for vaporizing 600 t/h of LNG in the conventional system, no less than 2 MW of electric power for operating sea water pumps can be saved.The proposed system emits no CO2, and can generate a large amount of electricity with high cost efficiency when incorporated into a combined cycle, with no use of sea water. Therefore, we consider that installation of this system is the one of the most favorable means of investment to put a new energy source or energy-saving equipment to practical use.To realize the full potential of this system, it is necessary to understand the heat characteristics of the Freon mixture, the icing and heat transfer characteristics of exhaust steam, the controllability of total system and the characteristics against partial load.References[1] The Center for Promotion of Natural gas Foundation. Research and development report of cold energy utilizing system, 1994[2] Japan's Energy and Economy Research Center. Energy and economy statistical data in 1995[3] Abe. Operating results and future prospect of a recent combined-cycle power generation plant. Thermal and Nuclear Power 1995;46(6):33-41[4] Maertens J. Design of Rankine cycles for power generation. Int. Refrig. 1986;9:137-43[5] Terada, Nakamoto. Power generation utilizing LNG cold. Thermal and Nuclear Power Generation 1986;37(10):66-71[6] Ooka, Ueda, Akasaka. Advanced LNG vaporizer and power generation utilizing LNG cold. Chemical Engineering 1981;45(3):187-90[7] Miura. The development of LNG vaporizer using vacuum steam heat (VSV). Journal of Japan Gas Society 1992;45:34-6[8] Nagai. Software-package and the usage. Chemical Equipment1994;August:31-7[9] Daikin Co. Ltd. Freon Data Sheet of HFC23一个高效的利用液化天然气联合循环余热的发电系统日本大阪541燃气有限公司工程部1-2平野町4肖梅中央谷,1998年9月概述本文提出了一个高效液化天然气气化发电系统,它是利用液化天然气冷能的最佳潜能极限。

热能与动力工程专业英语单词汇总

热能与动力工程专业英语单词汇总

1st1.axial [‘æksiəl] 轴向的2.blade [bleid] 叶片3.case/casing [keis] 壳体4.centrifugal [sen‘trifjuɡəl] 离心的5.chamber [‘tʃeimbə] 室6.diffuser [di‘fju:zə] 扩压器7.discharge [dis‘tʃɑ:dʒ] 流量;排出8.draft [drɑ:ft] 吸出,通风9.generator [‘dʒenəreitə] 发电机10.hydraulic/hydro [hai‘drɔ:lik] 水(力)的11.impeller [im‘pelə] 叶轮12.machinery [mə‘ʃi:nəri] 机械13.mixed-flow 混流的14.passage ['pæsidʒ] 流道15.pressure [‘preʃə] 压力16.pump [pʌmp] 泵17.runner [‘rʌnə] 转轮18.rotor [‘rəutə] 转子19.shaft [ʃɑ:ft] 传动轴20.spiral [‘spaiərəl] 螺旋形的21.stator [‘steitə] 定子22.suction [‘sʌkʃən] 吸入(出)23.turbine [‘tə:bain] 水轮机,透平,涡轮机24.tubular [‘tju:bjulə] 管状的25.vane [vein] 叶片26.volute [və‘lju:t] 螺旋形27.wheel [hwi:l] 水轮28.wicket [‘wikit] 导叶;小闸门29.Axial/mixed-flow/centrifugal/volute pump 轴流/混流/离心/旋流泵30.Kaplan/Francis/bulb/tubular/Pelton turbine 轴流/混流/灯泡/贯流/水斗水轮机31.Hydraulic machinery/pump/turbine 水力机械/水泵/水轮机32.Pump turbine 水泵水轮机33.Spiral/volute casing 蜗壳34.Volute/runner chamber 蜗壳室/转轮室35.Draft tube/bend/cone/elbow 尾水管/弯管/泄水锥/肘管36.Diffuser vane 扩压叶片37.Diffusing passage 扩压流道38.Stay vane 固定导叶39.Wicket gate 活动导叶40.Pressure/suction side 压力/吸力侧41.Suction eye 吸入孔42.Suction height 吸出高度43.Volute suction 涡形吸入室44.Volute throat 蜗壳喉部45.Volute tongue 蜗壳隔舌2nd1.Cascade [kæs'keid] 叶栅2.Lift/resistance [ri'zistəns] force 升力/阻力3.Pitch(wise) 节距(方向的)4.Span(wise) 翼展(方向的)5.Stream(wise) 流线(方向的)6.Chord [kɔ:d] 弦,弦长7.Chord length 弦长8.Chord-spacing ratio 叶栅稠密度9.Velocity triangle 速度三角形10.Absolute/relative velocity 绝对/相对速度11.Peripheral [pə'rifərəl] /Circumferential [sə,kʌmfə'renʃəl] velocity 圆周速度12.Tangential [tæn'dʒenʃəl] /axial/radial velocity 切向/轴向/径向速度13.Velocity circulation[,sə:kju'leiʃən] 速度环量14.Meridional [mə'ridiənəl] channel 子午(轴面)流道15.Meridional velocity 子午(轴面)速度16.Angular ['æŋɡjulə] velocity 角速度17.Revolution[,revə'lu:ʃən] speed 转速18.Specific [spi'sifik] speed 比转速19.Blade angle 叶片安放角20.Flow angle 水流角21.Incidence/attack angle 入射角/攻角22.Tip clearance 叶片外缘间隙23.Inlet/outlet edge 进出口边3rd&4th1.Head 水头2.Cavitation 空化3.Cavitation erosion/damage 空蚀4.Sand erosion 泥沙磨损5.Eddy/vortex 涡6.Vortex core 涡带7.Opening 开度8.No/over/partial load 空载/过载/部分载荷9.Hydraulic Thrust 水推力10.Pressure pulsation 压力脉动11.Torque/moment 转矩/力矩12.Viscosity 粘度13.Dynamic 动力学(的)14.Kinematic [,kini‘mætik]运动学(的)15.Vibration 振动16.Transient [‘trænsiənt] 瞬态的17.Resonance [‘rezənəns] 共振18.Amplitude 幅值19.Frequency 频率20.Water hammer 水锤21.Power/output 功率/出力22.Operating condition 工况23.Runaway 飞逸24.Characteristic 特性25.Performance 性能26.Rated 额定的27.Inertia [i‘nə:ʃiə] 惯性28.Penstock 压力钢管6th1.Continuous medium连续介质2.Body/Surface force体积力/表面力pressible [kəm'presəbl]可压缩的4.Capillarity [,kæpi‘lærəti]毛细(管)现象5.Surface tension表面张力6.Fluid dynamics/kinematics流体动力学/运动学7.Aerodynamics [,εərəudai'næmiks]空气动力学8.Statics 静力学9.Conservation of mass [,kɔnsə'veiʃən]质量守恒10.Euler/Lagrange[lə'greidʒ]欧拉/拉格朗日11.Stream line/surface/tube流线/流面/流管12.Path line迹线13.Steady/Unsteady定常/非定常14.Integral/Differential [,difə'renʃəl]积分/微分15.Material derivative[di‘rivətiv]随体导数16.Divergence [dai'və:dʒəns ]散度17.Curl 旋度18.Bernoulli equation [bə:'nu:li]伯努利方程19.Irrotational flow[,irəu‘teiʃənəl]无旋流20.Potential flow [pəu'tenʃəl] 有势流21.Velocity potential速度势22.Stream function流函数plex potential ['kɔmpleks]复势24.Vorticity [vɔ:'tisəti]涡量25.Vortex dynamics涡动力学26.Single phase flow单相流27.Axisymmetric flow[,æksisi‘metrik]轴对称流7th1.Constitutive [‘kɔnstitju:tiv] equation 本构方程2.Tensor张量3.Strain rate应变率4.Normal stress正应力5.Shear stress剪切应力6.Newtonian [nju:'təuniən] fluid牛顿流体7.Thermodynamics[,θə:məudai'næmiks]热力学8.Definite condition定解条件9.Initial condition初始条件10.Boundary condition边界条件11.Adhesion [əd‘hi:ʒən] condition粘附条件12.No slip condition无滑移条件13.Rotation有旋性14.Dissipation [disi'peiʃən]耗散性15.Diffusivity [,difju:sivəti]扩散性16.Similarity law 相似律17.Geometric similarity几何相似18.Mechanical similitude力学相似19.Dimensionless/Non-dimensional无量纲20.Reynolds ['renəldz] number雷诺数21.Froude [fru:d] number 弗劳德数22.Strouhal [strəuhæl]number斯特劳哈尔数23.Euler/Mach number欧拉数24.Model test模型试验8th1.Turbulence['tə:bjuləns] 湍流minar['læminə] 层流3.Statistical [stə‘tistikəl] theory统计理论4.Ensemble [eŋ‘sɔŋblə] average系综平均5.Turbulent kinetic [ki'netik] energy湍动能6.Producing rate生成率7.Dissipation rate耗散率8.Turbulivity[tə:bju‘liviti]湍流度9.Reynolds stress雷诺应力10.Transport equation输运方程11.Isotropy [ai‘sɔtrəpi]各向同性12.Energy spectrum[‘spektrəm] 能谱13.Turbulent closed mode湍流封闭模式14.Wall function 壁面函数15.Eddy viscosity model涡粘模型16.Coherent [kəu‘hiərənt]structure拟序(相干)结构17.Boundary layer边界层18.Adverse pressure gradient逆压梯度19.Viscous friction粘性摩阻20.Reverse flow回流9th1.Perfect gas理想气体2.State equation状态方程3.Density/Temperature 密度/温度4.Gas constant ['kɔnstənt]气体常数5.Heat conduction [kən'dʌkʃən]热传导6.Specific heat capacity/ratio比热容/比热比7.Internal energy内能8.Enthalpy [en‘θælpi]焓9.Entropy [‘entrəpi]熵10.Adiabatic [,ædiə‘bætik]绝热的11.Isentropy [‘isentrəpi]等熵12.Acoustic [ə‘ku:stik] velocity声速13.Subsonic/Transonic/Supersonic/Hypersonic压/跨/超/高超音速14.Stagnation [stæɡ‘neiʃən] 滞止15.Critical parameter临界参数16.Velocity coefficient [,kəui'fiʃənt]速度系数17.Shock wave激波pression wave压缩波10th1.Anemometry [,æni‘mɔmitri]测速法2.Visco(si)metry [vis‘kɔmitri]粘度测定法3.Flow visualization[,vizjuəlai'zeiʃən]流动显示4.Oil smoke/film visualization油烟/油膜显示5.Orifice ['ɔrifis ]meter孔板流量计6.Wind/water tunnel风/水洞7.Shock tube激波管8.Towing ['təuiŋ] tank拖拽水池9.Rotating arm basin ['beisən]旋臂水池10.Pressure tap测压孔11.Manometer [mə'nɔmitə]压力计12.Anemometer [,æni‘mɔmitə]流速计13.Velocimetry [,ve'ləsimitri]速度测量学ser Doppler ['dɔplə] Velocimetry多普勒激光测速法15.Particle Image Velocimetry粒子图像测速法16.Flow meter流量计17.Vorticity meter涡量计18.Sensor/ transd ucer[trænz‘dju:sə]传感器11th1.Continuity[,kɔnti‘nju:iti] equation连续性方程2.Momentum/energy equation动量/能量方程3.Nonlinear [nɔn‘liniə]非线性4.Partial differential equation偏微分方程5.Convection diffusion equation对流扩散方程6.Direct Numerical Simulation直接数值模拟7.Finite difference method有限差分法8.Finite volume method有限体积法9.Finite element method有限元法10.Conservation form守恒形式11.Grid/mesh generation网格生成12.(Un)Structured grid(非)结构化网格13.Grid independence网格无关性14.Difference scheme差分格式15.Second order accuracy二阶精度16.Elliptic [i‘liptik ]equation椭圆型方程17.Parabolic [,pærə‘bɔlik] equation抛物型方程18.Hyperbolic [,haipə‘bɔlik] equation双曲型方程19.Consistency [kən‘sistənsi] condition相容条件20.Implicit [im‘plisit] scheme隐式格式21.Explicit [ik‘splisit] scheme显示格式22.Residual[ri‘zidjuəl]残差23.Parallel [‘pærəlel] computing并行计算24.Cluster [‘k lʌstə]机群25.Pre/post process前/后处理。

热能与动力工程专业 英语

热能与动力工程专业 英语

热能与动力工程专业英语
热能与动力工程专业英语是研究热能与动力学原理、热能转换与传递技术、动力机械与工程物理等相关课程的英语,主要包括以下方面:
1. 热力学 Thermodynamics:热力学基础、热力学第一、二、三定律、热力学循环、热力学性质等。

2. 热传递 Heat Transfer:传热基础、传热方式、传热计算、
传热器件、传热与流动耦合等。

3. 动力学 Kinetics:动力学基础、运动学、动力学原理、动力学计算、动力学分析等。

4. 动力机械 Power Machinery:燃烧技术、燃气轮机、蒸汽轮机、内燃机、燃气发动机等。

5. 工程物理 Engineering Physics:传感器与检测技术、光学
物理、声学物理、材料物理、电子物理等。

学习热能与动力工程专业英语需要掌握一定的语言基础,如词汇、语法、阅读能力等。

同时,也需要了解相关学科的基础知识,如物理学、数学、工程学等。

在实践中,可以通过阅读相关文献、学习课程、参加学术交流等方式提高英语水平和学科素养。

- 1 -。

热能与动力工程专业英语单词

热能与动力工程专业英语单词

热能与动力工程专业英语单词第一篇:热能与动力工程专业英语单词一、absolute pressure绝对压力mass flow ratio质量流量比account for 占…比例natural convection自然对流at rest 静止Nusselt number努赛尔数average temperatures平均温度oil shales 石油页岩boundary layer 边界层 on the down side 弱(缺)点 branched chain reactions 支链反应orifice flow meter孔流速计brown coal 褐煤Pitot tube皮托管carbon black黑烟末 controlled variable 控制量cope with 与..竞争cross sectional areas 横截面desired value 期望值differential pressure压力落差electric furnace 电炉 Energy-transfer 能量转换equilibrium temperature平衡温度feedback control 反馈控制feedback control 反馈控制forced convection 强迫对流gage pressure 表压heat capacity 热容heat transfer 传热(学)heating furnace 加热炉ice bath 冰浴in contrast to 与…相对比in steam boiler furnaces 蒸汽锅炉炉膛内internal energy 内能manipulated variable 被控制量pressure drop 压降 pressure head 压头principles of thermodynamics 热力学定律reference temperature 参考温度Reynolds number 雷诺数Seebeck effect塞贝克效应solar hot water 太阳能集热器Stefan-boltzmann law斯蒂波尔兹曼定律 strain gauge 应变仪suction blower吸风机take into account 重视,考虑temperature gradient 温度梯度the activation energy 活化能the concentrations of hydrogen氢原子浓度thefirstlawofthermodynamics热力学第一定律the rate of the reaction 反应速率thermodynamic state热力学状态washingmachine洗衣机younger coals初期煤二、absolute 完全的afterburner 喷射器引擎加热室analog类似物appealingly 吸引人的approximately 大概近似automotive 自动推进的 autopilot 自动驾驶仪average temperatures平均温度bellows 波纹管biomedical 生物医学的blackbody 黑体boundary 边界bourdon tube 布尔登管by convention 根据惯例calculus 微积分capacitive电容的centrifugal governor 离心调速器combination 结合,化合物compartment 间隔间compensation补偿concentration 集中 concentration浓度conduction 引流输送conduit 导管confine 限制confusion 混乱consequently 从而consumption 消耗量contamination 玷污controller 控制器convection heat transfer 对流传热convection 对流convergent趋于一点的correlation 互相关系crystal 结晶状的 deficiency 缺乏degraded 被降级的deterministic 确定性的diaphragm隔膜diffuse 扩散discrepancy 相差 disorder 杂乱dissimilar 不同的dissipate 驱散droplet 小滴electromagnetic 电磁的embrace 包含emissive 发射率enclosure 围栏endothermic 吸热enthalpy 焓established 以确定的evaporate 使蒸发flow channel 液流通路flow meter 流量计function 功能geometric 几何的gradient 梯度heat transfer coefficient 传热系数 heat transfer 传热(学)homogeneity 同种implication 刻度in addition 另外 inductance电感induction 感应insensitive 感觉迟钝的insufficient 不足的integral 完整的interchangeably 可交换的intermediate 中间的junction 交叉点mathematical 数学的mechanism 机理mechanisms 机理medium媒介methane 甲烷missile guidance 导弹制导mobile可移动的molar 质量的molecular motion 分子运动 Newton law of cooling 牛顿冷却定律non-linearity非线性on the other hand 另一方面organism 生物体orifice plate 孔板oscillation摆动 parallel 相似的peat 泥煤块perpendicular垂直的正交的phase change 相变physiological 生理学的 prescribe 指示规定pressure drop 压降 progressively 进步properties of the fluid 流体的物性property 性质特性proportionality constant 比例常数proportionality factor 比例因子proportionality 比例 pulverize将..粉碎 radiate 辐射radiation 辐射relay servomechanism 继电器式伺服机构representative 代表reproducibility 再现性residual 残留restriction 限制reversible 可逆的rinse刷root locus 根轨迹sequence 连续servomechanism 自动驾驶装置sheath护套significant 有意义的sinusoidal 正弦曲线 soak浸透space vehicle 航天器spacecraft航天飞船spherical 球形的start with 以..开始stochastic 随机的 stringent 严厉的substantially 实质上subtle 敏感的surface area 表面积 swirl 漩涡thermal conductivity 导热性 thermal radiation热辐射 thermal 热量的thermistor热敏电阻thermodynamics 热力学thermostat 自动调温器transformed 转换undergo 经历vacuum 真空 valency 化合价 vane 翼velocity profile速度剖面图view factor 角系数vortex shedding 涡旋脱落wet test meter 湿试剂第二篇:热能与动力工程专业英语单词汇总1st1.axial *‘æksiəl]轴向的2.blade [bleid]叶片3.case/casing [keis] 壳体4.centrifugal *sen‘trifjuɡəl] 离心的5.chamber *‘tʃeimbə] 室6.diffuser *di‘fju:zə] 扩压器7.discharge *dis‘tʃɑ:dʒ] 流量;排出8.draft [drɑ:ft] 吸出,通风9.generator *‘dʒenəreitə] 发电机10.hydraulic/hydro *hai‘drɔ:lik] 水(力)的11.impeller *im‘pelə]叶轮12.machinery [mə‘ʃi:nəri] 机械13.mixed-flow 混流的14.passage ['pæsidʒ] 流道15.pressure *‘preʃə] 压力16.pump [pʌmp] 泵17.runner *‘rʌnə]转轮18.rotor *‘rəutə] 转子19.shaft [ʃɑ:ft] 传动轴20.spiral *‘spaiərəl] 螺旋形的21.stator *‘steitə] 定子22.suction *‘sʌkʃən] 吸入(出)23.turbine *‘tə:bain] 水轮机,透平,涡轮机24.tubular *‘tju:bjulə] 管状的25.vane [vein] 叶片26.volute [və‘lju:t+ 螺旋形27.wheel [hwi:l] 水轮28.wicket *‘wikit+ 导叶;小闸门29.Axial/mixed-flow/centrifugal/volute pump轴流/混流/离心/旋流泵30.Kaplan/Francis/bulb/tubular/Pelton turbine轴流/混流/灯泡/贯流/水斗水轮机31.Hydraulic machinery/pump/turbine 水力机械/水泵/水轮机32.Pump turbine 水泵水轮机33.Spiral/volute casing 蜗壳34.Volute/runner chamber 蜗壳室/转轮室35.Draft tube/bend/cone/elbow 尾水管/弯管/泄水锥/肘管36.Diffuser vane 扩压叶片37.Diffusing passage 扩压流道38.Stay vane 固定导叶39.Wicket gate 活动导叶40.Pressure/suction side 压力/吸力侧41.Suction eye 吸入孔42.Suction height 吸出高度43.Volute suction 涡形吸入室44.Volute throat 蜗壳喉部45.Volute tongue 蜗壳隔舌2nd1.Cascade [kæs'keid] 叶栅2.Lift/resistance [ri'zistəns] force 升力/阻力3.Pitch(wise)节距(方向的)4.Span(wise)翼展(方向的)5.Stream(wise)流线(方向的)6.Chord [kɔ:d]弦,弦长7.Chord length 弦长8.Chord-spacing ratio 叶栅稠密度9.Velocity triangle 速度三角形10.Absolute/relative velocity 绝对/相对速度11.Peripheral [pə'rifərəl] /Circumferential [sə,kʌmfə'renʃəl] velocity 圆周速度12.Tangential [tæn'dʒenʃəl] /axial/radial velocity切向/轴向/径向速度13.Velocity circulation[,sə:kju'leiʃən] 速度环量14.Meridional [mə'ridiənəl] channel 子午(轴面)流道15.Meridional velocity 子午(轴面)速度16.Angular *'æŋɡjulə] velocity 角速度17.Revolution[,revə'lu:ʃən] speed 转速18.Specific [spi'sifik] speed 比转速19.Blade angle 叶片安放角20.Flow angle 水流角21.Incidence/attack angle 入射角/攻角22.Tip clearance 叶片外缘间隙23.Inlet/outlet edge 进出口边3rd&4th1.Head 水头2.Cavitation 空化3.Cavitation erosion/damage空蚀4.Sand erosion 泥沙磨损5.Eddy/vortex 涡6.Vortex core 涡带7.Opening 开度8.No/over/partial load 空载/过载/部分载荷9.Hydraulic Thrust 水推力10.Pressure pulsation 压力脉动11.Torque/moment 转矩/力矩12.Viscosity 粘度13.Dynamic 动力学(的)14.Kinematic *,kini‘mætik+运动学(的)15.Vibration 振动16.Transient *‘trænsiənt] 瞬态的17.Resonance *‘rezənəns] 共振18.Amplitude 幅值19.Frequency 频率20.Water hammer 水锤21.Power/output 功率/出力22.Operating condition 工况23.Runaway 飞逸24.Characteristic 特性25.Performance 性能26.Rated 额定的27.Inertia *i‘nə:ʃiə] 惯性28.Penstock 压力钢管6th1.Continuous medium连续介质2.Body/Surface force体积力/表面力pressible [kəm'presəbl]可压缩的4.Capillarity *,kæpi‘lærəti]毛细(管)现象5.Surface tension表面张力6.7.8.9.Fluid dynamics/kinematics流体动力学/运动学Aerodynamics *,εərəudai'næmiks]空气动力学Statics 静力学Conservation of mass [,kɔnsə'veiʃən]质量守恒10.Euler/Lagrange[lə'greidʒ]欧拉/拉格朗日11.Stream line/surface/tube流线/流面/流管12.Path line迹线13.Steady/Unsteady定常/非定常14.Integral/Differential [,difə'renʃəl]积分/微分15.Material derivative*di‘rivətiv]随体导数16.Divergence [dai'və:dʒəns ]散度17.Curl 旋度18.Bernoulli equation [bə:'nu:li]伯努利方程19.Irrotational flow[,irəu‘teiʃənəl]无旋流20.Potential flow [pəu'tenʃəl] 有势流21.Velocity potential速度势22.Stream function流函数plex potential ['kɔmpleks]复势24.Vorticity [vɔ:'tisəti]涡量25.Vortex dynamics涡动力学26.Single phase flow单相流27.Axisymmetric flow*,æksisi‘metrik+轴对称流7th1.Constitutive *‘kɔnstitju:tiv] equation 本构方程2.3.4.5.Tensor张量Strain rate应变率Normal stress正应力Shear stress剪切应力6.Newtonian [nju:'təuniən] fluid牛顿流体7.Thermodynamics*,θə:məudai'næmiks]热力学8.Definite condition定解条件9.Initial condition初始条件10.Boundary condition边界条件11.Adhesion [əd‘hi:ʒən] condition粘附条件12.No slip condition无滑移条件13.Rotation有旋性14.Dissipation [disi'peiʃən]耗散性15.Diffusivity [,difju:sivəti]扩散性16.Similarity law 相似律17.Geometric similarity几何相似18.Mechanical similitude力学相似19.Dimensionless/Non-dimensional无量纲20.Reynolds ['renəldz] number雷诺数21.Froude [fru:d] number 弗劳德数22.Strouhal [strəuhæl]number斯特劳哈尔数23.Euler/Mach number欧拉数24.Model test模型试验8th1.Turbulence['tə:bjuləns]湍流minar['læminə] 层流3.Statistical [stə‘tistikəl] theory统计理论4.Ensemble *eŋ‘sɔŋblə] average系综平均5.Turbulent kinetic [ki'netik] energy湍动能6.Producing rate生成率7.Dissipation rate耗散率8.Turbulivity[tə:bju‘liviti+湍流度9.Reynolds stress雷诺应力10.Transport equation输运方程11.Isotropy *ai‘sɔtrəpi]各向同性12.Energy spectrum*‘spektrəm] 能谱13.Turbulent closed mode湍流封闭模式14.Wall function 壁面函数15.Eddy viscosity model涡粘模型16.Coherent [kəu‘hiərənt]structure拟序(相干)结构17.Boundary layer边界层18.Adverse pressure gradient逆压梯度19.Viscous friction粘性摩阻20.Reverse flow回流9th1.Perfect gas理想气体2.State equation状态方程3.Density/Temperature 密度/温度4.Gas constant ['kɔnstənt]气体常数5.Heat conduction [kən'dʌkʃən]热传导6.Specific heat capacity/ratio比热容/比热比7.Internal energy内能8.Enthalpy *en‘θælpi]焓9.Entropy *‘entrəpi]熵10.Adiabatic [,ædiə‘bætik+绝热的11.Isentropy *‘isentrəpi]等熵12.Acoustic [ə‘ku:stik+ velocity声速13.Subsonic/Transonic/Supersonic/Hypersonic压/跨/超/高超音速14.Stagnation [stæɡ‘neiʃən] 滞止15.Critical parameter临界参数16.Velocity coefficient [,kəui'fiʃənt]速度系数17.Shock wave激波pression wave压缩波10th1.Anemometry *,æni‘mɔmitri]测速法2.Visco(si)metry *vis‘kɔmitri]粘度测定法3.Flow visualization[,vizjuəlai'zeiʃən]流动显示4.Oil smoke/film visualization油烟/油膜显示5.Orifice ['ɔrifis ]meter孔板流量计6.Wind/water tunnel风/水洞7.Shock tube激波管8.Towing ['təuiŋ+ tank拖拽水池9.Rotating arm basin ['beisən]旋臂水池10.Pressure tap测压孔11.Manometer [mə'nɔmitə]压力计12.Anemometer *,æni‘mɔmitə]流速计13.Velocimetry [,ve'ləsimitri]速度测量学ser Doppler ['dɔplə] Velocimetry多普勒激光测速法15.Particle Image Velocimetry粒子图像测速法16.Flow meter流量计17.Vorticity meter涡量计18.Sensor/ transducer*trænz‘dju:sə]传感器11th1.Continuity[,kɔnti‘nju:iti+ equation连续性方程2.3.4.5.Momentum/energy equation动量/能量方程Nonlinear [nɔn‘liniə]非线性Partial differential equation偏微分方程Convection diffusion equation对流扩散方程6.Direct Numerical Simulation直接数值模拟7.Finite difference method有限差分法8.Finite volume method有限体积法9.Finite element method有限元法10.Conservation form守恒形式11.Grid/mesh generation网格生成12.(Un)Structured grid(非)结构化网格13.Grid independence网格无关性14.Difference scheme差分格式15.Second order accuracy二阶精度16.Elliptic *i‘liptik +equation椭圆型方程17.Parabolic [,pærə‘bɔlik] equation抛物型方程18.Hyperbolic [,haipə‘bɔlik] equation双曲型方程19.Consistency [kən‘sistənsi] condition相容条件20.Implicit *im‘plisit+ scheme隐式格式21.Explicit *ik‘splisit+ scheme显示格式22.Residual*ri‘zidjuəl]残差23.Parallel *‘pærəlel] computing并行计算24.Cluster *‘klʌstə]机群25.Pre/post process前/后处理第三篇:热能与动力工程专业一直希望自己能够从事一种富有挑战性的事业,去实现自己的人生价值。

最新热能与动力工程专业英语(整理版)

最新热能与动力工程专业英语(整理版)

热能与动力工程Thermal Energy and Power Engineering材料与能源学院:Institute of Materials and Energy空调制冷:refrigeration and air conditioning热传导:thermol conduction学生毕业后能胜任现代火力发电厂,制冷与低温工程及相关的热能与动力工程专业的技术与管理工作,并能从事其它能源动力领域的专门技术工作.The graduates may find employment of technology and management in the fields of the Thermal Energy &Power Engineering (TEPE) and its relevance, such as modern power plant or the Refrigeration and Cryogenics Engineering (RCE), the graduates may also engaged in the special technique in the fields related to TEPE.现代空气动力学、流体力学、热力学、水力学以及航空航天工程、水利水电工程、热能工程、流体机械工程都提出了一系列复杂流动问题,其中包括高速流、低速流、管道流、燃烧流、冲击流、振荡流、涡流、湍流、旋转流、多相流等等A series of complicated flow problems have been posed in modern fluid mechanics, aero dynamics, thermodynamics, and aeronautical and aerospace engineering, water conservancy and hydropower engineering, heat energy engineering, fluid machinery engineering, and so on, and they cover high-speed flow, low-speed flow, eddy flow, turbulent flow, burning flow, impact flow, oscillating flow, backflow, and two-phase flow, etc.In the thermal engineering, the studied objects normally are isolated from one another and then we try to analysis the change and interaction, the studied objects isolated is named thermodynamic system.在热力工程中,通常将研究对象分离出来再分析其变化及(与外界)的相互作用,该对象即热力系统。

热能动力工程专业英语

热能动力工程专业英语
Professional English for Thermal Power Engineering
contents
目录
• Overview of Thermal Power Engineering
• Fundamentals of Thermal Power Engineering
• Professional vocabulary for thermal power engineering
Application fields of thermal power engineering
Power generation
Thermal power plants are the main way of power generation, accounting for a large promotion of global electricity production
• Integration with information technology: The integration of thermal power engineering with information technology allows for more effective monitoring, control, and optimization of thermal power plants
• Radiation Heat Transfer: Radiation heat transfer occurs when electromagnetic waves transfer energy between objects Understanding radiation heat transfer is important for designing heat exchanges and other thermal systems

热能与动力工程专业英语-翻译(李瑞扬)

热能与动力工程专业英语-翻译(李瑞扬)

热能与动力工程专业英语-翻译(李瑞扬)1.3 The Characteristics of Fluids 流体的特征constituent:组成的;tangential:切向的;restrain:限制、约束;equilibrium:平衡,均衡;interface:相互关系、分界面;molecule:微小颗粒、分子;continuum:连续体;vessel:容器;tar:焦油、柏油;pitch:树脂;imperceptibly:察觉不到的,细微的;restore:恢复;subside:下沉、沉淀、减退、衰减;hypothetically:假设地、假想地;sphere:球、球体;microvolume:微元体积;rarest:最稀罕的,虽珍贵的A fluid is a substance which may flow; that is, its constituent particles may continuously change their positions relative to one another. Moreover, it offers no lasting resistance to the displacement, however great, of one layer over another. This means that, if the fluid is at rest, no shear force (that is a force tangential to the surface on which it acts )can exist in it. A solid, on the other hand, can resist a shear force while at rest; the shear force may cause some displacement of one layer over another, but the material does not continue to move indefinitely. In a fluid, however, shear forces are possible only while relative movement between layers is actually taking place. A fluid is further distinguished from a solid in that a given amount of it owes its shape at any particular time to that of a vessel containing it, orto forces which in some way restrain its movement. 流体是可以流动的物质,也就是说,组成流体的质点可以连续的改变它们的相对位置。

热能与动力工程专业英语

热能与动力工程专业英语

i.e. it is in steady-state.Often we will consider process that change “slowly”-termed quasi-equilibrium or quasi-static process.A process is quasi-equilibrium if the time rate of change of the process is slow relative to the time it takes for the system to reach thermodynamic equilibrium.It is necessary that a system be quasi-equilibrium before applying many of the thermodynamics relations to that system.热力学第一二定律:In simplest terms,the law of thermodynamics dictate the specific for the movement of heat and work.Basically,the First Law of Thermodynamic is a statement of the conservation of energy-the Second Law is a statement about the direction of that conservation-and the Tired Law is a statement about reaching absolute Zero.The first law of thermodynamic is a statement of the principle of conservation of energy.It can also be considered as defining a property,the internal energy.The Second law of Thermodynamic states that in all energy exchanges,if no energy enters or leaves the system,the potential energy of the state will always be less than that of the initial states.This is also commonly referred to as entropy.举例说明热力学定律应用:a cup of hot coffee left on a table eventually cools,but a cup of cool coffee in the same room never gets hot by itself.The high-temperature energy of the coffee is degraded(transformed into a less useful form at a lower temperature)once it is transferred to the surrounding air.An ordinary house is,in some respects,an exhibition hall filled with womders of thermodynamics.Many ordinary household utensils and applicances are designed,in whole or in part,by using the principles of thermodynamics.Some examples include the electric or gas range,the heating and air-condition systems,the refrigerator,the humidifier,the pressure cooker,the water heater,the iron,and even the computer,and the TV.On a large scale,thermodynamics plays a major part in the design and analysis of automotive engines,rockets,jet engine,and conventional or nuclear power plans,solar collectors,and the design of vehicle form ordinary cars to airplanes.绝热系统:isolated systems:not exchangeing heat,matter or work with their environment.开口系统:exchanging energy (heat and work )and matter with their environment .闭口系统:exchangeing energy (heat and work )but not matter with their environment .孤立系统:rigid boundary :not allowing exchange of work .辐射换热:The mechanism in this case is electromagnetic radiation .We shall limit our discussion to electromagnetic radiation which is propagated as a result of a temperature difference ;this is called thermal radiation .对流传热:when a fluid at rest or in motion is in contact with a surface at a temperature different from the plate ,energy flows in the direction of the lower temperature as required by the principle of thermodynamics .we say that heat is convected away ,and we call the process convection heat transfer .对流传热的方式:There are two convection modes :forced convection and natural convection .If a heated plate were exposed to ambient room air without an external source of motion ,a movement of the air would be experienced as a result of the density gradients near the plate .We call this natural ,or free ,convection as opposed to forced convection ,which is experienced in the case of the fan blowing air over a plate .传热学:Heat transfer is the science that seeks to predict the energy transfer that may take place between material bodies as a result of a temperature difference .传热学和热力学的区别:Thermodynamics teaches that this energy transfer is defined as heat .The science of heat transfer seeks not merely to explain how heat energy may be transferred ,but also to predict the rate at which the exchange will take place under certain specified conditions .The fact that a heat -transfer rate is the desired objective of an analysis points out the difference between heat transfer and thermodynamics .Thermodynamics deals with systems in equilibrium ;it may be used to predict the amount of energy required to change a system from one equilibrium state to another ;it may not be used to predict how fast a change will take place since the system is not in equilibrium during the process .Heat transfer supplements the first and second principles of thermodynamics by providing additional experimental rules which may be used to establish energy -transfer rates .As in the science of thermodynamics ,the experimental rules used as a basis of the subject of heat transfer are rather simple and easily expanded to encompass a variety of practical situations .影响辐射传热的因素:To take account of the “gray” nature of such surface we introduce another factor into热能与动力工程thermal energy and power engineering能量转化energy-transfer比例常数proportionality constant比例系数proportionality factor活性中心active center对流传热convection heat transfer电磁辐射electromagnetic radiation角系数view factor准静态过程quasi-static process准平衡quasi-equilibrium静态平衡static equilibrium强度参数intensive property广延参数extensive property燃烧机理combustion mechanism平均分子运动average molecular motion 热反应堆thermal reactor热力学性质thermodynamic property摩尔热容molar heat capacity动能kinetic energy压缩因子compressibility factor温度传感器temperature sensor测量电路measurement circuit电压输出voltage output静电荷electrostatic charge励磁电源excitation power内能internal energy能量原理energy principle能量平衡energy balance能量守恒conservation of energy剪切应力shear force/stress角速度angular velocity速度梯度velocity gradient温度梯度temperature gradient一维one-dimensional机械能mechanical energy内能internal energy动能kinetic energy势能potential energy凝固/硬化take a set流体动力学fluid dynamic hydrodynamics 蒸汽发生系统steam generating system辅助设备auxiliary equipment空煤比the air-coal ratio质量作用定律the law of mass action阿伦尼乌斯定律arrhennius law活化分子active molecule活化分子碎片active molecule fragments 活化能activation energy 自由价free valency支链反应定律the law of branched chain reactions 化学反应方程式stoichiometric equation活化中心active centres能级energy levels甲烷methane ch4压缩机compressor冷凝器condenser膨胀阀expansion valve可逆reversible绝热adiabatic等熵isentropic余隙容积clearance volume比容specific volume压力损失pressure loss溶液给水温度liquid feed temperature体积流速the volume flow rate液压头liquid head成比例的proportional成反比例的inversely proportional热力学定律principles of thermodynamics平衡温度equilibrium temperature相变phase change导热性thermal conductivity传热系数heat transfer coefficient强制对流forced convection自然对流natural convection外表面external surface焓enthalpy熵entropy对流传热convection heat transfer牛顿冷却公式Newton law of cooling流体物性properties of the liquid质量流量比mass flow ratio电磁辐射能electromagnetic energy热辐射thermal radiation净辐射量net radiation流体力学fluid mechanics热力学性质thermodynamic property牛顿粘性定律Newton law of vosicosity温熵图temperature-entropy diagram回转式发动机rotary engine汽轮机steam turbine光化学烟雾photochemical smog核电站nuclear power plant流化床燃烧fluildized bed combustion余热锅炉a heat recovery builer表面积surface areai.e. it is in steady-state.Often we will consider process that change “slowly”-termed quasi-equilibrium or quasi-static process.A process is quasi-equilibrium if the time rate of change of the process is slow relative to the time it takes for the system to reach thermodynamic equilibrium.It is necessary that a system be quasi-equilibrium before applying many of the thermodynamics relations to that system.热力学第一二定律:In simplest terms,the law of thermodynamics dictate the specific for the movement of heat and work.Basically,the First Law of Thermodynamic is a statement of the conservation of energy-the Second Law is a statement about the direction of that conservation-and the Tired Law is a statement about reaching absolute Zero.The first law of thermodynamic is a statement of the principle of conservation of energy.It can also be considered as defining a property,the internal energy.The Second law of Thermodynamic states that in all energy exchanges,if no energy enters or leaves the system,the potential energy of the state will always be less than that of the initial states.This is also commonly referred to as entropy.举例说明热力学定律应用:a cup of hot coffee left on a table eventually cools,but a cup of cool coffee in the same room never gets hot by itself.The high-temperature energy of the coffee is degraded(transformed into a less useful form at a lower temperature)once it is transferred to the surrounding air.An ordinary house is,in some respects,an exhibition hall filled with womders of thermodynamics.Many ordinary household utensils and applicances are designed,in whole or in part,by using the principles of thermodynamics.Some examples include the electric or gas range,the heating and air-condition systems,the refrigerator,the humidifier,the pressure cooker,the water heater,the iron,and even the computer,and the TV.On a large scale,thermodynamics plays a major part in the design and analysis of automotive engines,rockets,jet engine,and conventional or nuclear power plans,solar collectors,and the design of vehicle form ordinary cars to airplanes.绝热系统:isolated systems:not exchangeing heat,matter or work with their environment.开口系统:exchanging energy (heat and work )and matter with their environment .闭口系统:exchangeing energy (heat and work )but not matter with their environment .孤立系统:rigid boundary :not allowing exchange of work .辐射换热:The mechanism in this case is electromagnetic radiation .We shall limit our discussion to electromagnetic radiation which is propagated as a result of a temperature difference ;this is called thermal radiation .对流传热:when a fluid at rest or in motion is in contact with a surface at a temperature different from the plate ,energy flows in the direction of the lower temperature as required by the principle of thermodynamics .we say that heat is convected away ,and we call the process convection heat transfer .对流传热的方式:There are two convection modes :forced convection and natural convection .If a heated plate were exposed to ambient room air without an external source of motion ,a movement of the air would be experienced as a result of the density gradients near the plate .We call this natural ,or free ,convection as opposed to forced convection ,which is experienced in the case of the fan blowing air over a plate .传热学:Heat transfer is the science that seeks to predict the energy transfer that may take place between material bodies as a result of a temperature difference .传热学和热力学的区别:Thermodynamics teaches that this energy transfer is defined as heat .The science of heat transfer seeks not merely to explain how heat energy may be transferred ,but also to predict the rate at which the exchange will take place under certain specified conditions .The fact that a heat -transfer rate is the desired objective of an analysis points out the difference between heat transfer and thermodynamics .Thermodynamics deals with systems in equilibrium ;it may be used to predict the amount of energy required to change a system from one equilibrium state to another ;it may not be used to predict how fast a change will take place since the system is not in equilibrium during the process .Heat transfer supplements the first and second principles of thermodynamics by providing additional experimental rules which may be used to establish energy -transfer rates .As in the science of thermodynamics ,the experimental rules used as a basis of the subject of heat transfer are rather simple and easily expanded to encompass a variety of practical situations .影响辐射传热的因素:To take account of the “gray” nature of such surface we introduce another factor into热能与动力工程thermal energy and power engineering能量转化energy-transfer比例常数proportionality constant比例系数proportionality factor活性中心active center对流传热convection heat transfer电磁辐射electromagnetic radiation角系数view factor准静态过程quasi-static process准平衡quasi-equilibrium静态平衡static equilibrium强度参数intensive property广延参数extensive property燃烧机理combustion mechanism平均分子运动average molecular motion 热反应堆thermal reactor热力学性质thermodynamic property摩尔热容molar heat capacity动能kinetic energy压缩因子compressibility factor温度传感器temperature sensor测量电路measurement circuit电压输出voltage output静电荷electrostatic charge励磁电源excitation power内能internal energy能量原理energy principle能量平衡energy balance能量守恒conservation of energy剪切应力shear force/stress角速度angular velocity速度梯度velocity gradient温度梯度temperature gradient一维one-dimensional机械能mechanical energy内能internal energy动能kinetic energy势能potential energy凝固/硬化take a set流体动力学fluid dynamic hydrodynamics 蒸汽发生系统steam generating system辅助设备auxiliary equipment空煤比the air-coal ratio质量作用定律the law of mass action阿伦尼乌斯定律arrhennius law活化分子active molecule活化分子碎片active molecule fragments 活化能activation energy自由价free valency 支链反应定律the law of branched chain reactions 化学反应方程式stoichiometric equation活化中心active centres能级energy levels甲烷methane ch4压缩机compressor冷凝器condenser膨胀阀expansion valve可逆reversible绝热adiabatic等熵isentropic余隙容积clearance volume比容specific volume压力损失pressure loss溶液给水温度liquid feed temperature体积流速the volume flow rate液压头liquid head成比例的proportional成反比例的inversely proportional热力学定律principles of thermodynamics平衡温度equilibrium temperature相变phase change导热性thermal conductivity传热系数heat transfer coefficient强制对流forced convection自然对流natural convection外表面external surface焓enthalpy熵entropy对流传热convection heat transfer牛顿冷却公式Newton law of cooling流体物性properties of the liquid质量流量比mass flow ratio电磁辐射能electromagnetic energy热辐射thermal radiation净辐射量net radiation流体力学fluid mechanics热力学性质thermodynamic property牛顿粘性定律Newton law of vosicosity温熵图temperature-entropy diagram回转式发动机rotary engine汽轮机steam turbine光化学烟雾photochemical smog核电站nuclear power plant流化床燃烧fluildized bed combustion余热锅炉a heat recovery builer表面积surface area。

英汉对照_各专业名称

英汉对照_各专业名称

高校各专业英汉对照表机械与汽车工程学院College of Mechanical and Automotive Engineering 1.热能与动力工程Thermal Energy and Power Engineering2.工业工程Industrial Engineering3.车辆工程V ehicle Engineering4.机械设计制造及其自动化Mechanical design, Manufacture and its Automation电气与信息工程学院College of Electrical and Information Engineering1.测控技术与仪表Technology and Instrument of Detecting and Control2.电子信息工程Electric and Information Engineering3. 电气工程及其自动化Electrical Engineering and its Automation4. 自动化Automation计算机与通信学院School of Computer and Communication1.计算机科学与技术Computer Science and Technology2.通信工程Communication Engineering3.信息安全Information Security化学化工学院School of Chemistry and Chemical Engineering1.化学Chemistry2.应用化学Applied Chemistry3.化工工程与工艺Chemical Engineering and Technology4.生物技术Biotechnology应用物理系Department of Applied Physics1.应用物理Applied Physics2.电子科学与技术Electronic Science and Technology材料科学与工程学院College of Material Science and Engineering1.材料成型及控制工程Material Molding and Control Engineering2.材料科学与工程Material Science and Engineering外国语学院College of Foreign Languages1.日语Japanese2. 英语English土木工程学院College of Civil Engineering1.给水排水工程Water Supply and Drainage Engineering2.工程管理Engineering Management3.建筑环境与设备工程Building Environment and Equipment4.土木工程Civil Engineering建筑学院College of Architecture1.建筑学Architecture2.城市规划Urban Planning3.艺术设计Art Design (环境艺术方向Specialty of Environmental Art)环境科学与工程学院College of Environmental Science and Engineering 1.环境工程Environmental Engineering2.环境科学Environmental Science设计艺术学院School of Design (College of Art Design)1.工业设计Industrial Design2.艺术设计(工业造型)Art Design (Industrial Modeling)3.艺术设计(视觉传达设计)Art Design (Visual Communication Design)工商管理学院College of Business Administration1.电子商务Electronic Commerce2.工商管理Business Administration3.市场营销Marketing工程力学系Department of Engineering Mechanics1.工程力学Engineering Mechanics广播影视艺术学院College of Broadcasting, Film & T elevision Arts 1.播音与主持艺术Broadcasting and Hosting Arts2.广播电视编导Television Writing and Directing3. 表演Acting新闻与传播学院College of Journalism and Communication1.新闻学Journalism2. 广告学Advertising政治与公共管理学院College of Political Science and Public Administration 1.政治学与行政学Political science and Public Administration2.行政管理Public Administration中国语言文学学院College of Chinese Language and Literature1.汉语语言文学Chinese Language and Literature统计学College of Statistics1. 统计学Statistics法学院College of Law1. 法学Law经济与贸易学院College of Economics and T rade1.国际经济与贸易International Economics and Trade2.经济学Economics体育学院College of Physical Education1. 社会体育Social Sports软件学院College of Software1.软件工程Software Engineering数学与计量经济学院College of Mathematics and Econometrics1.数学与应用数学Mathematics and Applied Mathematics2.信息与计算机科学Information and computational Science会计学院College of Accounting1.财务管理Financial management2.财政学Public Finance3.会计学Accounting4.信息管理与信息系统Information Management and Information System金融学院College of Finance1.金融学Finance2.保险Insurance。

能源与动力工程专业英语词汇

能源与动力工程专业英语词汇

专业名称•动力工程及工程热物理:Power Engineering and Engineering Thermophysics工程热物理:Thermal Physics of Engineering •动力工程:Power Engineering;Dynamic Engineering•热能工程:Thermal Engineering(Thermal Energy Engineering•制冷与低温工程:Refrigeration and Cryogenic[ˌkraɪəˈdʒɛnɪk]Engineering •流体机械及工程:Fluid Mechanics and Engineering•热能动力工程:Thermal Energy and Dynamic Engineering•能源与动力工程学院:School of Energy and Power Engineering热力学thermodynamics1.adiabatic process[ˌædiəˈbætɪk]绝热过程2.aerodynamics[ˌeroʊdaɪˈnæmɪks]空气动力学,空气动力学专家,n,adj空气动力学的3.buoyancy[ˈbɔɪənsi,ˈbujən-]浮升力pressibility压缩性5.gasdynamics气体动力学6.hydraulics[haɪˈdrɔlɪks]水力学7.hydrodynamics流体水力学8.hydrostatics[ˌhaɪdrə'stætɪks]流体静力学9.open system开口系统10.reversible process[rɪˈvɚsəbəl]可逆过程11.thermodynamics equilibrium[ˌikwəˈlɪbriəm]热力平衡12.viscous[ˈvɪskəs]粘性的13.inviscid[ɪn'vɪsɪd]无粘性的14.thermodynamics、thermodynamic property热力学、热力性质15.entropy[ˈɛntrəpi]熵16.enthalpy[en'θælpɪ]焓17.internal energy内能18.potential energy势能19.kinetic energy动能20.work功21.mechanical/shaft work机械功/轴功22.flow work流动功23.specific volume比容24.cycle循环25.Saturated temperature/pressure/liquid/ vapor[ˈsætʃəreɪtɪd]饱和温度/压力/液体/蒸汽26.subcooled liquid过冷液体27.quality(蒸汽干度28.dry saturated vapor干饱和蒸汽29.superheated vapor过热蒸汽30.the first/second law of thermodynamics热力学第一/二定律31.the law of the conservation of energy能量守恒定律32.reversible/irreversible process可逆/不可逆过程33.pressure drop压降34.heat exchanger热交换器35.entropy production熵产[ˈɛntrəpi]36.coefficient of performance性能系数37.refrigerating capacity/effect制冷量38.Carnot cycle卡诺循环/nit/39.refrigerating efficiency制冷效率40.equation of state状态方程41.ideal gas constant理想气体常数42.isotherm等温线43.triple point三相点44.hydrocarbons碳氢化合物/烃45.cryogenic低温学[ˌkraɪəˈdʒenɪk]46.least-square fitting最小二乘法47.specific heat/specific heat capacity比热/比热容48.azeotropic mixture共沸混合物[əˌzi:ə'trɒpɪk]49.zeotropic mixture非共沸混合物50.dew point(temperature露点(温度[dju: pɔint][du pɔɪnt]51.isentropic compression/process等熵压缩/过程[aɪsen'trɒpɪk]52.condenser冷凝器53.evaporator蒸发器54.expansion valve膨胀阀55.throttling valve节流阀pressor压缩机pressor displacement压缩机排气量58.volumetric efficiency容积效率59.single-stage/two-stage/double-stage/compound compression单/双级压缩60.intercool/intercooler中间冷却(器61.intermediate pressure中间压力62.pressure ratio压力比63.insulating material保温材料流体力学1.流体力学fluid mechanics2. 动力粘度 absolute/dynamicviscosity3. 速度梯度 velocity gradient英[ˈgreɪdiənt]美[ˈɡrediənt]4. 运动粘度 kinematic viscosity英[ˌkɪnɪ'mætɪk]美[ˌkɪnə'mætɪk]英 [vɪ'skɒsətɪ]美 [vɪˈskɑsɪti] 5. 伯努力方程Bernoulli Equation英 [bə:ˈnu:liiˈkweiʃən]6. 体积流量 volumetric flow rate7. 质量流量 mass flow rate8. 层流 laminar flow9. 紊流 turbulence/turbulentflow10. 雷诺数 Reynolds number11. 摩擦力 friction/frictionalforce12. 摩擦系数 coefficient of friction13. 微分方程 differential equation14. 阻力 drag force 或 resistance15. 阻力系数 drag coefficient传热学1. 热传递 heat transfer2. 热传导 thermal conduction3. 热对流 thermal convection4. 热辐射 thermal radiation5. 层流底层 laminar sublayer6. 过渡层 buffer layer, 缓冲区或人, buffer dinner 自助餐 buffet 英[ˈbʌfit]7. 强迫对流 forced convection8. 自然 /自由对流 natural/freeconvection9. 稳态导热 steady-state conduction10. 导热系数 thermal conductivity11. 热阻 thermal resistance12. (总传热系数 (overallheat transfer coefficient13. 表面积 surface area14. 串联 series 系列15. 并联 parallel 英[ˈpærəlel]并行, Parallel computing 并行计算16. 接触热阻 contact thermal resistance17. (对数平均温差(logarithmicmean temperature difference [ˌlɒɡə'rɪðmɪk]18. 顺流 parallel flow19. 逆流 counter flow20. 相变 phase change21. 冷库 cold storage 热库 thermal reservoir/heat bath22. 边界条件 boundary condition23. 黑体辐射 blackbody radiation24. 辐射力 emissive power25. 维恩位移定律Wien’s displacement Law 26. 半球发射率 hemispherical emittance [ˌhemɪˈsferɪkl]27. 吸收率 absorptance 英 [əb'sɔ:ptəns] 28. 透射率 transmittance英 [træns'mɪtns]n. 播送 ; 发射 ; 传动 ; 透明度 ; 29. 反射率 reflectance30. 漫射辐射 diffuse radiation31.(充分发展的层流 /紊流 fully developed laminar/turbulentflow湿空气1. 湿空气学 psychrometrics2. 干空气 dry air3. 湿空气 moistair4. 大气压 barometricpressure5. 热力学温标 thermodynamic temperature scale6. 含湿量 humidity ratio7. 比焓 specific enthalpy 英[en'θælpɪ]8. 比熵 specific entropy 英[ˈentrəpi]9. 绝对湿度 absolute humidity10. 饱和含湿量 saturation humidity ratio 英[ˌsætʃəˈreɪʃn]英[ˈreɪʃiəʊ]11. 相对湿度 relative humidity12. 热力学湿球温度 thermodynamic wet-bulb temperature13. 分压力 partial pressure14. 总压 total pressure15. 通用气体常数 universal gas constant 16. 湿球 /干球温度 dry-bulb/wet-bulbtemperature 17. 焓湿图 psychrometric chart制冷空调1. 集中 /分散供冷 central/decentralizedcooling 英[ˌdi:'sentrəlaɪzd]2. 锅炉 boiler3. 往复 /螺杆 /离心 /涡旋式压缩机 /冷水机组 reciprocating/helicalrotary(或screw/centrifugal/scrollcompressor/waterchiller unit4. 吸收式制冷 /冷水机组 absorption refrigeration/waterchiller unit5. 热回收 heat reclaim/recovery6. 冷却塔 cooling tower7. 空气 /水冷却冷凝器 air-cooled/water-cooled condenser8. 蒸发式冷凝器 evaporative condenser9. 净正吸入压力 /压头 netpositive suction pressure/head10. 供 /回干管 main supply/returnline11. 二 /三通阀 two/three-wayvalve12. 平衡阀 balancing valve13.一次/二次冷冻水系统primary/secondary chilled water system14.备用泵spare pump15.疏水器、存水弯、水封trap16.水/冰蓄冷water/ice thermal storage17.空气/水/地源热泵air/water/ground source heat pump18.定/变风量constant/variable air volume19.经济器economizer20.静/动压static/dynamic pressure21.毛细管capillary tube英[kəˈpɪləri]22.全封闭压缩机hermetically sealed/hermetic compressor英[hɜ:ˈmetɪk]23.半封闭式压缩机semi-hermetic/semi-hermetically sealed compressor24.直接膨胀direct expansion26.离心/轴流式风机centrifugal/axial fan英[ˈæksiəl]27.立管riser英['raɪzə]28.内/外平衡式热力膨胀阀internally/externally equalized thermostatic expansion valve29.吸/排气管suction/discharge line30.电磁阀solenoid valve美['solə,nɔɪd]31.恒压阀constant pressure valve32.迎风面积/速度face area/velocity33.(一拖多分体式空调器(multi-split air conditioner34.水环热泵water loop heat pump35.能效比energy efficiency ratio36.变容压缩/压缩机positive displacement compression/compressor37.速度/动压式压缩/压缩机velocity/dynamic compression/compressor38.流量系数flow coefficient39.水锤water hammer40.闸阀gate valve41.球阀ball valve42.蝶阀butterfly valve43.平衡阀balancing valve44.安全阀safety/relief valve n.救济;减轻,解除;安慰;浮雕45.止回阀check/backflow prevention valve boiler锅炉1.air heater空气预热器2.auxiliary辅助的,辅机[ɔ:gˈzɪliəri]3.bare tube光管4.blast[英][blɑ:st]鼓风5.blowdown排污6.capacity[英][kəˈpæsəti]出力7.cogenerator热电联产机组pressor压缩机bustion燃烧10.condenser凝汽器11.counterflow逆流12.critical pressure临界压力13.diesel oil柴油gasoline,gaslene, gas,petro(英,汽油14.drainage疏水、排水设备,排水系统15.drum汽包16.economizer[英][i:'kɒnəmaɪzə]省煤器17.excess air[英][ɪkˈses]过量空气18.extended surface扩展受热面19.fin鳍片、肋片、散热片、翅片20.flue gas烟气21.fluid(-bed流化床(fluidizedbed[英]['flu:ɪdaɪzd22.furnace炉膛23.fouling污垢,击球出界(羽毛球 [英]['faʊlɪŋ]24.generator发电机25.header联箱、集箱,集管26.hopper[英][ˈhɒpə(r]斗、料斗l磨煤机(pulverizer[英]['pʌlvəraɪzə]28.motor汽车、马达、电动机29.platen屏、管屏[美]['plætən]30.Prandtl numbers普朗特数31.pressure loss压力损失32.regenerator回热器,蓄热器,再生器[英][rɪ'dʒenəˌreɪtə]33.Reynolds numbers雷诺数34.slag结渣美[slæɡ]35.sootblower吹灰器美[su:tb'ləʊər]36.steam line blowing蒸汽管路吹洗37.superheater过热器38.turbine汽轮机39.suction真空,负压steam turbine蒸汽轮机40.gas turbine燃气轮机41.back pressure背压42.blower送风机、吹灰器43.boundary layer边界层44.chimney英[ˈtʃɪmni]烟囱、烟道、烟筒45.cooling tower冷却水塔46.coupling连接,连接法兰,耦合47.critical speed临界转速48.cylinder圆筒、汽缸49.head汽包封头、扬程、水头50.impeller叶轮、推进器、压缩器rge turbine-generator unit大型汽轮发电机组52.non-destructive testing(NDT无损检验53.digital-controlled machine数控机床54.fixed blade固定叶片,导向叶片55.operational speed运行转速56.outing casing外缸57.inner casing内缸58.rigid coupling刚性连轴器solid coupling59.rotor转子60.stress concentration应力集中61.two-shift operation两班制运行62.wake尾流Thermal Power Plant:热电厂1.automatic control system:自动控制系统2.boiler feed pump:锅炉给水泵feed pump:给水泵3.chamber:燃烧室/ei/4.circulating water:循环水5.check valve:止回阀,逆止阀6.non-return valve:逆止阀,止回阀7.controlling valve:控制阀,调节阀8.cooling water(CW:冷却水9.cycle efficiency:循环效率10.data processing system:数据处理系统11.de-aerator[英]['eɪəreɪtə]除氧器12.de-aerator tank:除氧水箱13.desuperheater:减温器14.desuperheater spraywater:喷水减温15.drain pump:疏水泵16.full-load:满负荷erning system:调速系统(governing:调节,调整18.heat-transfer coefficient:换热系数19.isolating valve:隔离阀20.load rejection:甩(抛负荷21.main steam:主汽22.motorized isolating valve:电动隔离阀23.lubricating oil:润滑油24.nuclear plant:核电厂25.orifice:[orifis]孔,口,孔板26.pipework:管路27.power station:电厂28.pressure reducing valve:减压装置29.reliability:安全性,可靠性30.relief valve:安全阀31.running speed:运行转速32.sealing:密封,封闭,焊封33.self-sealing:自密封的34.stainless steel:不锈钢35.stop valve:断流阀,截止阀36.strainer:滤盆,滤器,滤网,拉紧装置37.supercritical plant:超临界机组38.synchronizer:英]['sɪŋkrənaɪzə]同步器,同步机,同步装置39.throttle:节流阀[美]/ˈθrɑ:tl/喉咙,气管,vt.&vi.扼杀,压制;勒死,使窒息;使节流40.turbine-generator unit:汽轮发电机组41.ultra-supercritical:超超临界英][ˈʌltrə] [美]['ʌltrə]42.vacuum:真空43.vent:通道,通风口44.actuator:/aiktjueite/执行机构45.brake:闸,制动器46.damper:[美]['dæmpər]挡板,调节风门47.distributed control system(DCS分散控制系统48.disturbance:干扰,扰动49.feedback control:反馈控制50.forced draught(FDfan:送风机[英][fɔ:st drɑ:ft/51.furnace purge:炉膛吹扫ernor valve:调节阀53.induced draught(IDfan:引风机54.make-up pump:补水泵55.overheating:过热,超温56.preamp:前置放大器/ˈpriæmp/57.primary air fan:一次风机58.sensor:传感器59.shutdown:停机,停炉,停运,关机,关闭;倒闭,停工,停业,停播。

热能与动力工程专业英语翻译李瑞扬

热能与动力工程专业英语翻译李瑞扬

1.3T h e C h a r a c t e r i s t i c s o f F l u i d s流体的特征constituent:组成的;tangential:切向的;restrain:限制、约束;equilibrium:平衡,均衡;interface:相互关系、分界面;molecule:微小颗粒、分子;continuum:连续体;vessel:容器;tar:焦油、柏油;pitch:树脂;imperceptibly:察觉不到的,细微的;restore:恢复;subside:下沉、沉淀、减退、衰减;hypothetically:假设地、假想地;sphere:球、球体;microvolume:微元体积;rarest:最稀罕的,虽珍贵的A fluid is a substance which may flow; that is, its constituent particles may continuously change their positions relative to one another. Moreover, it offers no lasting resistance to the displacement, however great, of one layer over another. This means that, if the fluid is at rest, no shear force (that is a force tangential to the surface on which it acts )can exist in it. A solid, on the other hand, can resist a shear force while at rest; the shear force may cause some displacement of one layer over another, but the material does not continue to move indefinitely. In a fluid, however, shear forces are possible only while relative movement between layers is actually taking place. A fluid is further distinguished from a solid in that a given amount of it owes its shape at any particular time to that of a vessel containing it, or to forces which in some way restrain its movement. 流体是可以流动的物质,也就是说,组成流体的质点可以连续的改变它们的相对位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.11 Boiler Design
5.11
–Pressure boiler ,there is no steam drum ,but rather an arrangement of tubes in which steam is generated and superheated .
the boiler is a drun-or once- through type ,whether it is an individual unit or a small part of a large complex ,it is necessary in design to give proper consideration to the
为确定锅炉和其它传热设备所吸收的热量,使用最佳效率值,燃料的类型或者设计的设备所需燃料。

确定所需的炉膛的尺寸和形状,考虑炉膛的位置,燃料床的燃烧器的空间要求,并结合完成完全燃烧所需要的充足的炉膛容积。

对流换热表面的大体布置必须是这样计划,就是过热器和再热器,在设置时,必须放置在最佳温度区域内,这个最佳温度区域内的烟气温度是足够高的,可以较好的把烟气温度传
然而在饱和位置或锅炉表面有一定的灵活性,在过热器前后必须有足够的对流换热表面用来传热使给水达到饱和温度以及产生炉膛内不能产生的多余的蒸汽。

20%的需要蒸汽。

.锅炉设备或附件必须把炉膛、锅炉、过热器、再热器及空气加热器紧密联系在一起,密封的气体燃料或输送管道必须用来传送烟气到烟囱。

After the steam requirements-steam flow ,steam pressure and temperature-and boiler feedwater temperature are determined ,the required rate of heat absorption ,q, is q=w’(h’2- h’1)+ w”(h”2- h”1) (5.1)
q,由方程确定: q=w’(h’2- h’1)+ w”(h”2- h”1)(5.1)
其中:q=热吸收率,英热/小时
w’=primary steam or feedwater flow ,lb/h
w’ =主蒸汽或给水流量,磅/小时
w”=reheat steam flow , lb/hr
w” =再热蒸汽流量,磅/小时
h’1=enthalpy of feedwater entering , Btu/lb
h’1=给水入口焓,英热/磅
h’2=enthalpy of primary steam leaving superheater , Btu/lb
h’2=主蒸汽离开过热器的焓,英热/磅
h”1=enthalpy of steam entering reheater , Btu/lb
h”1=蒸汽进入再热器的焓,英热/磅
h”2=enthalpy of steam leaving reheater , Btu/lb
”蒸汽离开再热器的焓,英热/磅
100减去热损失的总和的百分比表示。

w F=q/(Q H×eff) (5.2)
5.2)确定给煤率。

w F=q/(Q H×eff) (5.2)
where: w F=fuel input rate , lb/hr
其中:w F=给煤率, 磅/小时
Q H=high heat value of fuel , Btu/lb
Q H=燃料高热值, 英热/磅
eff=efficiency
效率。

相关文档
最新文档