高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系练习含解析新人教A版选修1_1

合集下载

高中数学第一章常用逻辑用语1.1.2、1.1.3四种命题四种命题间的相互关系

高中数学第一章常用逻辑用语1.1.2、1.1.3四种命题四种命题间的相互关系
第二十四页,共三十一页。
命题的间接(jiàn jiē)证明
当一个(yī ɡè)命题的真假不容易证明时,常借助它的逆否命题的真假来证明;利
用原命题与逆否命题,逆命题与否命题的等价关系进行判断.
典例 4 关 于 命 题 “ 若 抛 物 线 y = ax2 + bx + c 的 开 口 向 下 , 则 {x|ax2 + bx +
证明如下:
若a+b<0,则a<-b,b<-a, 又∵f(x)在(-∞,+∞)上是增函数, ∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b),
即逆否命题为真命题.
∴原命题为真命题.
12/12/2021
第二十三页,共三十一页。
跟踪(gēnzōng) 练习3
判断命题“已知 a、x 为实数,若关于 x 的不等式 x2+(2a+1)x+a2+2>0 的 解集是 R,则 a<74”的逆否命题的真假.
12/12/2021
第十一页,共三十一页。
12/12/2021
互动 探究· (hù dònɡ)
攻重难
第十二页,共三十一页。
命题(mìng tí)方向 1
命题的四种形式(xíngshì)之间的转换
典例 1 写出下列命题的逆命题、否命题与逆否命题. (1)负数的平方是正数; (2)正方形的四条边相等. [思路分析] 此题的题设和结论不很明显(míngxiǎn),因此首先将命题改写成“若p,则 q”的形式,然后再写出它的逆命题、否命题与逆否命题.
种命题中,真命题的个数为( ) D A.0
B.1
C.2
D.4
[解析] 原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.21.1.3 四种命题间的相互关系优化

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.21.1.3 四种命题间的相互关系优化

1.1.2-1.1.3 四种命题间的相互关系[课时作业][A组基础巩固]1.与命题“能被6整除的整数,一定能被3整除”等价的命题是( )A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,能被3整除解析:即写命题“若一个整数能被6整除,则一定能被3整除”的逆否命题.答案:B2.“△ABC中,若∠C=90°,则∠A、∠B全是锐角”的否命题为( )A.△ABC中,若∠C≠90°,则∠A、∠B全不是锐角B.△ABC中,若∠C≠90°,则∠A、∠B不全是锐角C.△ABC中,若∠C≠90°,则∠A、∠B中必有一个钝角D.以上均不对解析:“全是”的否定是“不全是”,故选B.答案:B3.命题“若x=3,则x2-9x+18=0”,那么它的逆命题、否命题、逆否命题中,真命题的个数有( )A.0个 B.1个 C.2个D.3个解析:∵x2-9x+18=0,∴(x-3)(x-6)=0.∴x=3或x=6.∴逆命题为假,从而否命题为假.又原命题为真,则逆否命题为真.答案:B4.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数”②命题“若x>1,则x-1>0”的否命题是“若x≤1,则x-1≤0”③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x=-4是方程x2+3x-4=0的根”的否命题是“x=-4不是方程x2+3x-4=0的根”A.1 B.2 C.3 D.4解析:①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x2+3x-4=0的根”.答案:C5.命题“若a 、b 都是奇数,则ab 必为奇数”的等价命题是( )A .如果ab 是奇数,则a ,b 都是奇数B .如果ab 不是奇数,则a ,b 不都是奇数C .如果a ,b 都是奇数,则ab 不是奇数D .如果a ,b 不都是奇数,则ab 不是奇数解析:等价命题即为逆否命题,故选B.答案:B6.命题“若x ≠1,则x 2-1≠0”的真假性为________.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x 2-1=0,则x =1”,因为x 2-1=0,x =±1,所以该命题是假命题,因此原命题是假命题.答案:假命题7.命题“当AB =AC 时,△ABC 是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有__________个.解析:原命题为真命题,逆命题“当△ABC 是等腰三角形时,AB =AC ”为假命题,否命题“当AB ≠AC 时,△ABC 不是等腰三角形”为假命题,逆否命题“当△ABC 不是等腰三角形时,AB ≠AC ”为真命题.答案:28.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.解析:逆命题为“若1<x <2,则m -1<x <m +1”,是真命题,∴(1,2)⊆(m -1,m +1),即⎩⎪⎨⎪⎧ m -1≤1,m +1≥2,∴1≤m ≤2.答案:[1,2]9.分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若实数a ,b ,c 成等比数列,则b 2=ac ;(2)函数y =log a x (a >0且a ≠1)在(0,+∞)上是减函数时,log a 2<0.解析:(1)逆命题是:若b 2=ac ,则a ,b ,c 成等比数列,假命题;否命题是:若实数a ,b ,c 不成等比数列,则b 2≠ac ,假命题;逆否命题是:若实数a ,b ,c 满足b 2≠ac ,则a ,b ,c 不成等比数列,真命题.(2)逆命题:若log a 2<0,则函数y =log a x (a >0且a ≠1)在(0,+∞)上是减函数,是真命题; 否命题:若函数y =log a x (a >0且a ≠1)在(0,+∞)上不是减函数,则log a 2≥0,是真命题; 逆否命题:若log a 2≥0,则函数y =log a x (a >0且a ≠1)在(0,+∞)上不是减函数,是真命题.10.写出命题“若a ≥-14,则方程x 2+x -a =0有实根”的逆命题、否命题和逆否命题,并判断它们的真假.解析:逆命题:若方程x 2+x -a =0有实根,则a ≥-14,否命题:若a <-14,则方程x 2+x -a =0无实根,逆否命题:若方程x 2+x -a =0无实根,则a <-14.由Δ=1+4a ≥0可得a ≥-14,所以可判断其原命题、逆命题、否命题和逆否命题都是真命题. [B 组 能力提升]1.对于原命题“周期函数不是单调函数”,下列陈述正确的是( )A .逆命题为“单调函数不是周期函数”B .否命题为“周期函数是单调函数”C .逆否命题为“单调函数是周期函数”D .以上三者都不对解析:其逆命题、否命题、逆否命题的表述都不正确.答案:D2.给出命题:若函数y =f (x )是幂函数,则它的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0解析:原命题是真命题,因为幂函数的图象不过第四象限,反过来,图象不过第四象限时,该函数不一定是幂函数,所以逆命题为假命题,根据等价命题的真假性相同可知,否命题为假命题,逆否命题为真命题,故选C.答案:C3.命题“已知不共线向量e 1,e 2,若λe 1+μe 2=0,则λ=μ=0”的等价命题为__________________,是________命题(填“真”或“假”).解析:等价命题即为原命题的逆否命题.由于原命题是真命题,∴逆否命题也是真命题.答案:已知不共线向量e 1,e 2,若λ,μ不全为0,则λe 1+μe 2≠0 真4.设有两个命题:①关于x 的不等式mx 2+1≥0的解集是R ;②函数f (x )=log m x 是减函数(m >0且m ≠1).如果这两个命题中有且只有一个真命题,则m 的取值范围是________.解析:对①当m =0时,1≥0,mx 2+1≥0的解集是R ,当m ≠0时,⎩⎪⎨⎪⎧ m >0,Δ=-4m ≤0,∴m >0,∴①为真命题时,m ≥0.对②,∵f (x )=log m x 是减函数,∴0<m <1,而②为真命题时,0<m <1.当①真②假时,有⎩⎪⎨⎪⎧ m ≥0,m >1,即m >1;当①假②真时,有⎩⎪⎨⎪⎧m <0,0<m <1,即m ∈∅. 答案:m >1 5.判断命题“若m >0,则方程x 2+2x -3m =0有实数根”的逆否命题的真假.解析:∵m >0,∴12m >0,∴12m +4>0.∴方程x 2+2x -3m =0的判别式Δ=12m +4>0.∴原命题“若m >0,则方程x 2+2x -3m =0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m >0,则方程x 2+2x -3m =0有实数根”的逆否命题也为真.6.(1)如图,证明命题“a 是平面π内的一条直线,b 是平面π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明).解析:(1)如图,设c ∩b =A ,P 为直线b 上异于点A 的任意一点,作PO⊥π,垂足为O ,则O ∈c ,∵PO ⊥π,a ⊂π,∴PO ⊥a ,又a ⊥b ,b ⊂平面PAO ,PO ∩b =P ,∴a ⊥平面PAO ,又c ⊂平面PAO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是平面π外的一条直线(b 不垂直于π),c 是直线b 在平面π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.。

2018版高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A版选修1_1(含解析)

2018版高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A版选修1_1(含解析)

1.1.2 四种命题1.1.3 四种命题间的相互关系1.了解四种命题的概念,会写出某命题的逆命题、否命题和逆否命题.(重点)2.认识四种命题之间的关系以及真假性之间的关系.(难点)3.利用命题真假的等价性解决简单问题.(难点、易错点)[基础·初探]教材整理1 四种命题阅读教材P4~P6,完成下列问题.1.四种命题的概念一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.如果是另一个命题条件的否定和结论的否定,那么把这样的两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.2.四种命题的形式原命题:若p,则q.逆命题:若q,则p.否命题:若﹁p,则﹁q.逆否命题:若﹁q,则﹁p.判断(正确的打“√”,错误的打“×”)(1)有的命题没有逆命题.( )(2)四种命题中,原命题是固定的.( )(3)“对顶角相等”的否命题为“对顶角不相等”.()【解析】(1)只要原命题确定了,它的逆命题就确定了,故(1)错.(2)四种命题中原命题具有相对性,故(2)错.(3)“对顶角相等”的否命题为“若两个角不是对顶角,则这两个角不相等”,故(3)错.【答案】(1)×(2)×(3)×教材整理2 四种命题间的相互关系阅读教材P6~P8,完成下列问题.1.四种命题之间的相互关系2.四种命题的真假关系(1)四种命题的真假性,有且仅有下面四种情况(2)四种命题的真假性之间的关系①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.判断(正确的打“√”,错误的打“×”)(1)对于一个命题的四种命题,可以一个真命题都没有.( )(2)两个互逆命题的真假性相同.( )(3)命题“若a>-3,则a>-6”以及它的逆命题,否命题,逆否命题中,真命题的个数有3个.( )【解析】(1)若原命题为假命题,则其逆否命题为假命题,逆命题和否命题可都为假命题,故(1)对.(2)两个互逆命题的真假性无关,故(2)错.(3)原命题和逆否命题正确,否命题和逆命题错误,故(3)错.【答案】(1)√(2)×(3)×[小组合作型]写出以下命题的逆命题、否命题和逆否命题:(1)如果直线垂直于平面内的两条相交直线,那么这条直线垂直于平面;(2)如果x>10,那么x>0;(3)当x=2时,x2+x-6=0.【导学号:97792002】【精彩点拨】根据四种命题的结构写出所求命题.【自主解答】(1)逆命题:如果直线垂直于平面,那么直线垂直于平面内的两条相交直线;否命题:如果直线不垂直于平面内的两条相交直线,那么直线不垂直于平面;逆否命题:如果直线不垂直于平面,那么直线不垂直于平面内的两条相交直线.(2)逆命题:如果x>0,那么x>10;否命题:如果x≤10,那么x≤0;逆否命题:如果x≤0,那么x≤10.(3)逆命题:如果x2+x-6=0,那么x=2;否命题:如果x≠2,那么x2+x-6≠0;逆否命题:如果x2+x-6≠0,那么x≠2.1.写出一个命题的其他三种命题的步骤(1)分析命题的条件和结论;(2)将命题写成“若p,则q”的形式;(3)根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.注意:如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.2.常见词语的否定[再练一题]1.(1)命题“若m>n,则m-1>n-2”的逆否命题为________.(2)分别写出下列命题的逆命题、否命题、逆否命题:①正数的平方根不等于0;②若x2+y2=0(x,y∈R),则x,y全为0.【解析】(1)若m-1≤n-2,则m≤n.(2)①逆命题:若一个数的平方根不等于0,则这个数是正数;否命题:若一个数不是正数,则这个数的平方根等于0;逆否命题:若一个数的平方根等于0,则这个数不是正数.②逆命题:若x,y全为0,则x2+y2=0(x,y∈R);否命题:若x2+y2≠0(x,y∈R),则x,y不全为0;逆否命题:若x,y不全为0,则x2+y2≠0(x,y∈R).把下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题,然后判断它们的真假:(1)正偶数不是素数;(2)平行于同一条直线的两条直线平行.【精彩点拨】把命题改写成“若p,则q”的形式→依据定义写出另外三种命题→判断真假【自主解答】(1)原命题:若一个数是正偶数,则这个数不是素数,是假命题;逆命题:若一个数不是素数,则这个数是正偶数,是假命题;否命题:若一个数不是正偶数,则这个数是素数,是假命题;逆否命题:若一个数是素数,则这个数不是正偶数,是假命题.(2)原命题:若两条直线平行于同一条直线,则这两条直线平行,是真命题.逆命题:若两条直线平行,则这两条直线平行于同一条直线,是真命题.否命题:若两条直线不平行于同一条直线,则这两条直线不平行,是真命题.逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线,是真命题.在判断一个命题的真假时,可以有两种方法:一是分清原命题的条件和结论,直接对原命题的真假进行判断;二是不直接写出命题,而是根据命题之间的关系进行判断,即原命题和逆否命题同真同假,逆命题和否命题同真同假.[再练一题]2.下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题.其中是真命题的是________.【解析】①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy =1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题.所以真命题是①②③.【答案】①②③[探究共研型]探究1 我们学习了四种命题的关系,那么在直接证明某一个命题为真命题有困难时,该怎么办?【提示】可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.探究2 根据互为逆否命题的真假性相同来判断命题的真假,是哪种证明方法的理论基础?【提示】是反证法的理论基础.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.【导学号:97792003】【精彩点拨】法一:分析已知命题→写出逆否命题→利用Δ求a的范围→判断命题真假法二:判断原命题真假→判断逆否命题真假【自主解答】法一原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断如下:∵抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,若a<1,则4a-7<0.即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真.法二先判断原命题的真假.。

高中数学 第一章 常用逻辑用语 1.1.2 四种命题 1.1.3 四种命题间的相互关系高效测评 新人

高中数学 第一章 常用逻辑用语 1.1.2 四种命题 1.1.3 四种命题间的相互关系高效测评 新人

种命题间的相互关系高效测评新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第一章常用逻辑用语1.1.2 四种命题1.1.3 四种命题间的相互关系高效测评新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第一章常用逻辑用语1.1.2 四种命题1.1.3 四种命题间的相互关系高效测评新人教A版选修2-1的全部内容。

1.3 四种命题间的相互关系高效测评新人教A版选修2-1一、选择题(每小题5分,共20分)1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2〈3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:原命题的条件是:a+b+c=3,结论是:a2+b2+c2≥3,所以否命题是:若a+b +c≠3,则a2+b2+c2<3.答案: A2.命题“若α=错误!,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1B.若α=错误!,则tan α≠1C.若tan α≠1,则α≠错误!D.若tan α≠1,则α=错误!解析:以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=错误!,则tan α=1”的逆否命题是“若tan α≠1,则α≠错误!”.答案: C3.若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的()A.原命题B.逆命题C.否命题D.逆否命题解析:设p为原命题,则q为否命题,r是逆否命题;所以r是p的逆命题的否命题.答案:C4.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3 B.2C.1 D.0解析:原命题是真命题,则其逆否命题也是真命题;逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”为假命题,则否命题是假命题.故它的逆命题、否命题、逆否命题三个命题中,只有逆否命题是真命题.故选C.答案:C二、填空题(每小题5分,共10分)5.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________.解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”,命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补",命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆".因此互为逆命题的有③和⑥,②和④;互为否命题的有①和⑥,②和⑤;互为逆否命题的有①和③,④和⑤。

高中数学四种命题间的相互关系《导学案》答案

高中数学四种命题间的相互关系《导学案》答案

第一章常用逻辑用语1.1.3 四种命题间的相互关系参考答案【典例分析】例1.【解析】选D.因为原命题与其逆否命题等价,故选D.例2.【解析】选B.因为a=-b时,|a|=|b|,则命题p为假命题,命题p的逆命题为:若a=b,则|a|=|b|,为真命题;又因为命题的逆命题与否命题互为逆否命题,命题与其逆否命题互为逆否命题,故真命题的个数是2个.例3.【解析】否命题为“若α不是第一、二象限的角,则sinα≤0”,是假命题.答案:假【变式拓展】:1.【解析】选D.与逆命题等价的是否命题,否命题是若p正确,则q正确.2.选D.命题能被6整除的整数,一定能被2整除的逆否命题是:不能被2整除的整数,一定不能被6整除.3.【解析】等价命题是“若一个四边形不是等腰梯形,则这个四边形不内接于圆”.答案:若一个四边形不是等腰梯形,则这个四边形不内接于圆4.答案:(1)互为否命题(2)真四、随堂检测1.选A.设p为“若A,则B”,那么q为“若¬A,则¬B”,r为“若¬B,则¬A”.由于q和r的条件和结论互换,故q和r互为逆命题.2.【解析】选A.由已知条件可以判断原命题为真,所以它的逆否命题也是真;而它的逆命题为真,所以它的否命题亦为真,故选A.3.因为m>0,所以12m>0,所以12m+4>0.所以方程2x+2x-3m=0的判别式Δ=12m+4>0.所以原命题“若m>0,则方程2x+2x-3m=0有实数根”为真.又因为原命题与它的逆否命题等价,所以“若m>0,则方程2x+2x-3m=0有实数根”的逆否命题也为真.4.【解析】逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,真命题.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.因为a<1,所以4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真命题.。

高中数学 第一章 常用逻辑用语 1.1.2-1.1.3 四种命题、四种命题间的相互关系教案 新人教

高中数学 第一章 常用逻辑用语 1.1.2-1.1.3 四种命题、四种命题间的相互关系教案 新人教

内蒙古开鲁县高中数学第一章常用逻辑用语1.1.2-1.1.3 四种命题、四种命题间的相互关系教案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(内蒙古开鲁县高中数学第一章常用逻辑用语1.1.2-1.1.3 四种命题、四种命题间的相互关系教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为内蒙古开鲁县高中数学第一章常用逻辑用语1.1.2-1.1.3 四种命题、四种命题间的相互关系教案新人教A版选修2-1的全部内容。

1。

1。

2四种命题 1.1.3四种命题间的相互关系教学目标知识目标了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假。

能力目标多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力。

情感目标通过学生的参与,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力。

高考知识点扫描四种命题形式及命题的真假判断教学重点会写四种命题并会判断命题的真假;四种命题之间的相互关系.教学难点1.分清命题的条件、结论和判断命题的真假2.命题的否定与否命题的区别;写出原命题的逆命题、否命题和逆否命题;3.分析四种命题之间相互的关系并判断命题的真假.教学方法启发式教学,问题引领,自主学习教具多媒体课件第课时教学设计教学内容教学过程一.四种命题原命题逆命题否命题逆否命题〈一>复习引入1.回顾初中已学过命题与逆命题的知识,什么叫做命题的逆命题?2.思考、分析问题:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若)(xf是正弦函数,则)(xf是周期函数;(2)若)(xf是周期函数,则)(xf是正弦函数;(3)若)(xf不是正弦函数,则)(xf不是周期函数;(4)若)(xf不是周期函数,则)(xf不是正弦函数.3.归纳总结学生分析、讨论,给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题.<二〉讲授新知1.基本定义:定义1:互逆命题.定义2:互否命题.定义3:互为逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。

高中数学第一章常用逻辑用语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系课件新人

高中数学第一章常用逻辑用语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系课件新人
ng tí).
(2)逆命题(mìng tí):在△ABC中,若∠A>∠B,则a>b.真命题(mì
ng tí);
否命题(mìng tí):在△ABC中,若a≤b,则∠A≤∠B.真命题(mì
ng tí);
逆否命题(mìng tí):在△ABC中,若∠A≤∠B,则a≤b.真命题(mì
ng tí).
(3)逆命题(mìng tí):若x∈(A∪B),则x∈A.假命题(mì
命题的结论的否定和条件的否定,我们把这样的两个(liǎnɡ ɡè)命题叫做互
为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题
的逆否命题.
也就是说,如果原命题为“若p,则q”,那么它的逆否命题为“若 q,
则 p”.
第四页,共17页。
1
2
3
2.四种命题(mì
ng tí)间的相互关系
x2+(2a+1)x+a2+2≤0的解集为空集,则a<2”的逆否命题的真假.
分析判断这个命题的逆否命题的真假,可先写出它的逆否命题,然
后再判断,也可以(kěyǐ)利用互为逆否命题的两个命题的等价性来
判断.
解法一原命题的逆否命题为:“已知a,x为实数,若a≥2,则关于x的
不等式x2+(2a+1)x+a2+2≤0的解集不是空集”.
借助与它同真假的(具有逆否关系的)命题来判断(或证明).
例如,判断命题“全等三角形的面积相等”的否命题的真假性.我们可以
(kěyǐ)判断原命题的逆命题:“面积相等的三角形全等”为假命题.由于原命题
的否命题和逆命题互为逆否命题,它们具有相同的真假性,因此原命题的否命
题为假命题.

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系

建联系 ―→根据不等式 ax2-2ax-3≤0 对任意 x∈R 恒成立的条件,列出关于参数 a 的不等式(组), 求解实数 a 的范围
12/9/2021
第二十八页,共三十二页。
【规范(guīfàn)解答】 因为命题“对任意x∈R,ax2-2ax-3>0不成立”等价 于对任意x∈R,ax2-2ax-3≤0恒成立,(2分) 第 一 步 , 通 过 对 条 件 分 析 , 将 所 求 问 题 转 化 为 ax2 - 2ax-3≤0在x∈R上恒成立问题 若a=0,则-3≤0恒成立,所以a=0符合题意.(4分) 设f(x)=ax2-2ax-3,当a>0时,二次函数的图像开口 向上,图像不会全部落在x轴下方,显然不符合题意.(5 分)
12/9/2021
第二十九页,共三十二页。
当 a<0 时,二次函数 f(x)=ax2-2ax-3 开口向下,只 需满足Δ≤0 即可,即aΔ<≤0,0,所以a4<a20+,12a≤0,(8 分)
所以a-<30≤,a≤0, 所以-3≤a<0.(10 分) 第二步,讨论a=0,a>0与a<0时实数a应满足的条件 综上所述,a 的取值范围是:,-3≤a≤0.(12 分) 第三步,对第二步的结果进行总结,得出实数 a 的取 值范围. 12/9/2021
第三十页,共三十二页。
典题试解
已知命题(mìng tí)“对于任意x∈R,x2+ax+1<0不成立” 是真命题,求实数a的取值范围.
解析 命题“对于任意x∈R,x2+ax+1<0不成立”等 价于“对于任意x∈R,x2+ax+1≥0成立”是真命题.
由于函数f(x)=x2+ax+1是开口向上的抛物线,由 二 次 函 数 的 图 像 易 知 : Δ = a2 - 4≤0 , 解 得 : - 2≤a≤2.

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件新人教A版选修2-

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系课件新人教A版选修2-

1.写出下列命题的逆命题、否命题、逆否命题,并判 断其真假.
(1)若a≤1,则方程x2-2x+a=0有实根; (2)弦的垂直平分线经过圆心,并平分弦所对的弧; (3)等底等高的两个三角形是全等三角形; (4)若m≤0或n≤0,则m+n≤0.
【解析】(1)逆命题:若方程x2-2x+a=0有实根,则 a≤1.真命题.
∵函数f(x)在(-∞,+∞)上是增函数, ∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题. ∴原命题为真命题. (方法二)假设a+b<0,则a<-b,b<-a. ∵函数f(x)在(-∞,+∞)上是增函数, ∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b). 这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾.因此假 设不成立,故a+b≥0.
四种命题间的转换及真假性的判断
【例 1】 写出下列命题的逆命题、否命题和逆否命题, 并判断其真假.
(1)同垂直于平面 α 的两直线平行; (2)若 m·n≤41,则方程 mx2-x+n=0 有实根; (3)若 ab=0,则 a=0 或 b=0.
【解题探究】确定命题的条件与结论,利用相关知识判 断.
4.给出命题“若x2+y2=0(x,y∈R),则x=y=0”, 在它的逆命题、否命题、逆否命题中,真命题的个数是 ________.
【答案】3 【解析】原命题及逆命题都为真命题,故否命题、逆否 命题也为真命题.
否命题:若 m·n>14,则方程 mx2-x+n=0 没有实数根.真
命题.
逆否命题:若方程
mx2-x+n=0

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A选修2_120190320377

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A选修2_120190320377

1.1.2 四种命题1.1.3 四种命题间的相互关系1.了解命题的原命题、逆命题、否命题与逆否命题.2.理解四种命题之间的关系,会利用互为逆否命题的等价关系判断命题的真假.1.四种命题(1)原命题与逆命题(2)原命题与否命题(3)原命题与逆否命题2.四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.判断(正确的打“√”,错误的打“×”)(1)任何一个命题都有逆命题、否命题和逆否命题.( )(2)两个互逆命题的真假性相同.( )(3)对于一个命题的四种命题,可以一个真命题也没有.( )答案:(1)√(2)×(3)√“若x2=1,则x=1”的否命题为( )A.若x2≠1,则x=1 B.若x2=1,则x≠1C.若x2≠1,则x≠1 D.若x≠1,则x2≠1答案:C命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案:B命题“若|a|=|b|,则a=b”及其逆命题、否命题、逆否命题中,真命题的个数为( )A.0 B.1C.2 D.4解析:选C.原命题是假命题,则逆否命题也是假命题.逆命题:若a=b,则|a|=|b|,是真命题,因此否命题也是真命题.所以四个命题中真命题的个数为2.命题“若a>1,则a>0”的逆命题是__________________,逆否命题是________________.答案:若a>0,则a>1 若a≤0,则a≤1探究点1 写原命题的其他三种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.【解】(1)原命题:若两个三角形全等,则这两个三角形三边对应相等;逆命题:若两个三角形三边对应相等,则这两个三角形全等;否命题:若两个三角形不全等,则这两个三角形三边对应不相等;逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0;逆命题:若x2-3x+2=0,则x=2;否命题:若x≠2,则x2-3x+2≠0;逆否命题:若x2-3x+2≠0,则x≠2.写出一个命题的其他三种命题的步骤(1)分析命题的条件和结论.(2)将命题写成“若p,则q”的形式.(3)根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.[注意] 如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.1.原命题“若x≤-3,则x<0”的逆否命题是( ) A.若x<-3,则x≤0 B.若x>-3,则x≥0C.若x≥0,则x>-3 D.若x<0,则x≤-3解析:选C.易知原命题的逆否命题是“若x≥0,则x>-3”.2.(2018·山东济南外国语学校高二(下)期中考试)设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是( )A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b解析:选D.条件“a=-b”和结论“|a|=|b|”互换后得到逆命题:若|a|=|b|,则a=-b.故选D.探究点2 四种命题的关系及真假判断下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中是真命题的是________.【解析】①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy =1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题,所以真命题是①②③.【答案】 ①②③(1)四种命题关系判断的两个要领①在判断四种命题之间的关系时,首先要分清命题的条件和结论,再比较每个命题的条件和结论之间的关系.②原命题与逆否命题互为逆否命题,逆命题与否命题也互为逆否命题. (2)判断四种命题真假的方法①要正确理解四种命题间的相互关系. ②正确利用相关知识进行判断推理.③若由“p 经逻辑推理得出q ”,则命题“若p ,则q ”为真;确定“若p ,则q ”为假时,则只需举一个反例说明.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q ≤94,则方程x 2+3x +q =0有实根;(2)若ab =0,则a ,b 中至少有一个为0.解:(1)逆命题:若方程x 2+3x +q =0有实根,则q ≤94.真命题.否命题:若q >94,则方程x 2+3x +q =0无实根.真命题.逆否命题:若方程x 2+3x +q =0无实根,则q >94.真命题.(2)逆命题:若a ,b 中至少有一个为0,则ab =0.真命题. 否命题:若ab ≠0,则a ,b 均不为0.真命题. 逆否命题:若a ,b 均不为0,则ab ≠0.真命题. 探究点3 等价命题的应用判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集是空集,则a <2”的真假.【解】 原命题的逆否命题为“已知a ,x 为实数,若a ≥2,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集”.判断真假如下:抛物线y =x 2+(2a +1)x +a 2+2的开口向上,判别式Δ=(2a +1)2-4(a 2+2)=4a -7, 因为a ≥2, 所以4a -7>0, 即抛物线与x 轴有交点,所以关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,故原命题的逆否命题为真,从而原命题为真.等价命题的应用原则(1)在证明某一个命题的真假性有困难时,可以证明它的逆否命题为真(假)命题,来间接地证明原命题为真(假)命题.(2)四种命题中,原命题与其逆否命题是等价的,有相同的真假性,否命题与其逆命题也是互为逆否命题,解题时不要忽视.证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.证明:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a .又因为f (x )在(-∞,+∞)上是增函数, 所以f (a )<f (-b ),f (b )<f (-a ), 所以f (a )+f (b )<f (-a )+f (-b ).即原命题的逆否命题为真命题.所以原命题为真命题.1.已知a ,b ∈R ,命题“若a +b =1,则a 2+b 2≥12”的否命题是( )A .若a 2+b 2<12,则a +b ≠1B .若a +b =1,则a 2+b 2<12C .若a +b ≠1,则a 2+b 2<12D .若a 2+b 2≥12,则a +b =1解析:选C .将原命题的条件与结论同时否定,得否命题为“若a +b ≠1,则a 2+b 2<12”.故选C . 2.(2018·浙江宁波四中月考)证明“若x 2+y 2=2,则x +y ≤2”时,可以转化为证明( )A .若x +y ≤2,则x 2+y 2=2 B .若x +y >2,则x 2+y 2≠2 C .若x 2+y 2≠2,则x +y >2D.若x+y≤2,则x2+y2≤2解析:选B.由于原命题与其逆否命题的真假性相同,所以可以转化为证明“若x+y >2,则x2+y2≠2”,故选B.3.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题解析:选A.命题:“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”是真命题.故选A.4.给出下列命题:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________.解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.答案:②和④,③和⑥①和⑥,②和⑤①和③,④和⑤[学生用书P87(单独成册)])[A 基础达标]1.命题“若a>b,则a+c>b+c”的逆命题是( )A.若a>b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a≤b,则a+c≤b+c解析:选C.命题“若p,则q”的逆命题是“若q,则p”,从而,命题“若a>b,则a+c>b+c”的逆命题是“若a+c>b+c,则a>b”.2.(2018·上海金山中学期中考试)命题“若A∪B=A,则A∩B=B”的否命题是( ) A.若A∪B≠A,则A∩B≠BB.若A∩B=B,则A∪B=AC.若A∩B≠B,则A∪B≠AD.若A∪B≠A,则A∩B=B解析:选A.否命题对命题的条件和结论都否定,故选A.3.(2018·广东佛山高二(上)期末考试)已知命题p:正数a的平方不等于0,命题q:若a的平方等于0,则a不是正数,则p是q的( )A.逆命题B.否命题C.逆否命题D.否定解析:选C.根据四种命题的关系,知“正数a的平方不等于0”的逆否命题是“若a 的平方等于0,则a不是正数”.4.命题“已知a,b为实数,若a>b,则a>b”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.0 B.1C.2 D.4解析:选C.互为逆否的命题同真同假,原命题是真命题,故其逆否命题也为真,逆命题为“已知a,b为实数,若a>b,则a>b”,这个命题是假命题,故否命题也为假,从而有2个是真命题.5.(2018·宝鸡高二检测)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题为( )A.①② B.②③C.①③ D.③④解析:选C.①逆命题为“若x,y互为相反数,则x+y=0”,真命题;②否命题为“不全等的三角形的面积不相等”,假命题;③当q≤1时,Δ=4-4q≥0,所以原命题是真命题,其逆否命题也是真命题;④的逆命题为“三个内角相等的三角形是不等边三角形”,假命题.故选C.6.(2018·泉州高二检测)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是______________.解析:根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案:若方程x2+x-m=0没有实根,则m≤07.在命题“若数列{a n}是等比数列,则a n≠0”与它的逆命题、否命题、逆否命题中,真命题的个数为________.解析:原命题为真命题,故其逆否命题为真命题,它的逆命题与否命题均为假命题.答案:28.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若x+y≠8,则x≠2或y≠6;③“矩形的对角线相等”的逆命题;④“若xy=0,则x,y中至少有一个为零”的否命题.其中真命题的序号是________.解析:①中,当k>0时,Δ=22+4k=4+4k>0,故方程有实根,为真命题;②中,其逆否命题为“若x=2且y=6,则x+y=8”为真,故原命题亦真;③中,其逆命题为“若一个四边形的对角线相等,则这个四边形为矩形”为假命题;④中,否命题为“若xy≠0,则x,y全不为零”为真命题,故为真命题的序号是①②④.答案:①②④9.写出命题“若x2+y2=0,则x,y全为0”的逆命题、否命题和逆否命题,并判断它们的真假.解:逆命题:若x ,y 全为0,则x 2+y 2=0,是真命题; 否命题:若x 2+y 2≠0,则x ,y 不全为0,是真命题; 逆否命题:若x ,y 不全为0,则x 2+y 2≠0,是真命题.10.已知命题p :“若ac ≥0,则二次不等式ax 2+bx +c >0无解”. (1)写出命题p 的否命题; (2)判断命题p 的否命题的真假.解:(1)命题p 的否命题为:“若ac <0,则二次不等式ax 2+bx +c >0有解”. (2)命题p 的否命题是真命题. 判断如下:因为ac <0,所以-ac >0⇒Δ=b 2-4ac >0⇒二次方程ax 2+bx +c =0有两个不相等的实根⇒ax 2+bx +c >0有解,所以该命题是真命题.[B 能力提升]11.原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假解析:选A .a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列.原命题与其逆命题都是真命题,所以其逆否命题和否命题也都是真命题,故选A .12.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.解析:由已知得,若1<x <2成立,则m -1<x <m +1也成立,所以⎩⎪⎨⎪⎧m -1≤1,m +1≥2,所以1≤m ≤2. 答案:[1,2]13.主人邀请张三、李四、王五三个人吃饭,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能去了.”主人听了,随口说了句:“该来的没有来.”张三听了脸色一沉,起来一声不吭地走了.主人愣了片刻,又道了句:“不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人离去的原因.解:张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因是:“不该走的又走了”的逆否命题是“没走的应该走”,李四觉得自己是应该走的.14.(选做题)证明:若a2-4b2-2a+1≠0,则a≠2b+1.证明:“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.因为a=2b+1,所以a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.所以命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,结论正确.精美句子1、善思则能“从无字句处读书”。

高中数学第一章常用逻辑用语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A版选修1

高中数学第一章常用逻辑用语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A版选修1

1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式命题为“若,则否命题为“若(1)四种命题之间的关系(2)四种命题间的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792019】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是( )【导学号:97792019】A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成比例关系,故选D.](2)命题“若ab≠0,则a,b都不为零”的逆否命题是________.若a,b至少有一个为零,则ab=0 [“ab≠0”的否定是“ab=0”,“a,b都不为零”的否定是“a,b中至少有一个为零”,因此逆否命题为“若a,b至少有一个为零,则ab=0”.]否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x 2+x -a =0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题. 解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可[跟踪训练2.判断下列四个命题的真假,并说明理由. (1)“若x +y =0,则x ,y 互为相反数”的否命题; (2)“若x >y ,则x 2>y 2”的逆否命题; (3)“若x ≤3,则x 2-x -6>0”的否命题; (4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792019】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{aΔ=4a2+12a≤0,即{a-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792019】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A版选修1

高中数学第一章常用逻辑用语1.1.2四种命题1.1.3四种命题间的相互关系学案新人教A版选修1

学习资料1.1。

2 四种命题 1.1.3 四种命题间的相互关系内容标准学科素养1。

了解命题的四种形式,会写出一个命题的逆命题、否命题、逆否命题.2.理解并掌握四种命题之间的关系及其真假性关系.3。

能够利用命题的等价性解决有关问题。

利用数学抽象提高逻辑推理授课提示:对应学生用书第4页[基础认识]知识点一四种命题错误!请将命题“正弦函数是周期函数”改写成“若p,则q”的形式.提示:若f(x)是正弦函数,则f(x)是周期函数.观察下面四个命题:(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.命题(1)与其他三个命题的条件与结论之间有什么关系?提示:命题(2)的条件和结论分别是命题(1)的结论和条件,命题(3)的条件和结论分别是命题(1)的条件的否定和结论的否定.命题(4)的条件和结论分别是命题(1)的结论的否定和条件的否定.知识梳理四种命题的定义如下表所示名称阐释互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题.互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

错误!设:命题(1)“若p,则q”是原命题,那么:命题(2)“若q,则p”是原命题的逆命题,命题(3)“若綈p,则綈q”是原命题的否命题,命题(4)“若綈q,则綈p”是原命题的逆否命题.你能发现它们之间有什么关系吗?1.根据定义,如果把命题(2)称为原命题,那么其他三个命题分别是命题(2)的什么命题?提示:命题(1)是命题(2)的逆命题.命题(3)是命题(2)的逆否命题.命题(4)是命题(2)的否命题.2.如果把命题(3)称为原命题呢?提示:命题(1)是命题(3)的否命题.命题(2)是命题(3)的逆否命题.命题(4)是命题(3)的逆命题.知识梳理四种命题间的关系知识点三四种命题的真假性关系错误!原命题,逆命题,否命题,逆否命题的真假有什么联系?原命题(1)若f(x)是正弦函数,则f(x)是周期函数;逆命题(2)若f(x)是周期函数,则f(x)是正弦函数;否命题(3)若f(x)不是正弦函数,则f(x)不是周期函数;逆否命题(4)若f(x)不是周期函数,则f(x)不是正弦函数.判断以上四个命题的真假.提示:原命题(1)是真命题,它的逆命题(2)是假命题,它的否命题(3)也是假命题,而它的逆否命题(4)是真命题.知识梳理四种命题间的真假关系原命题 逆命题 否命题 逆否命题 真真 真 真 真假 假 真 假真 真 假 假 假 假 假(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.[自我检测]1.命题“若a 〉-3,则a 〉-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .1B .2C .3D .4答案:B2.命题“若a >b ,则2a 〉2b -1”的否命题是____________________.答案:若a ≤b ,则2a ≤2b -1授课提示:对应学生用书第5页探究一 四种命题及其关系[教材P 6练习(3)]写出命题“奇函数的图象关于原点对称”的逆命题、否命题、逆否命题.解析:逆命题:“若一个函数的图象关于原点对称,则这个函数是奇函数”.否命题:“若一个函数不是奇函数,则这个函数的图象不关于原点对称".逆否命题:“若一个函数的图象不关于原点对称,则这个函数不是奇函数”.[例1] 写出下列各个命题的逆命题、否命题以及逆否命题:(1)若sin α=12,则tan α=错误!; (2)等底等高的两个三角形是全等三角形;(3)当1<x <2时,x 2-3x +2〈0;(4)若ab =0,则a =0或b =0。

2018年秋高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互关系学案

2018年秋高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的相互关系学案

1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是( )【导学号:97792009】A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成比例关系,故选D.](2)命题“若ab≠0,则a,b都不为零”的逆否命题是________.若a,b至少有一个为零,则ab=0 [“ab≠0”的否定是“ab=0”,“a,b都不为零”的否定是“a,b中至少有一个为零”,因此逆否命题为“若a,b至少有一个为零,则ab=0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法] 判断命题真假的方法 1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.2.判断下列四个命题的真假,并说明理由. (1)“若x +y =0,则x ,y 互为相反数”的否命题; (2)“若x >y ,则x 2>y 2”的逆否命题; (3)“若x ≤3,则x 2-x -6>0”的否命题; (4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.-4b-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。

高中数学 第一章 常用逻辑用语 1.1.2 四种命题 1.1.3 四种命题间的相互关系学案(含解析)新人教A版选修21

高中数学 第一章 常用逻辑用语 1.1.2 四种命题 1.1.3 四种命题间的相互关系学案(含解析)新人教A版选修21

1.1.2 & 1.1.3 四种命题四种命题间的相互关系[提出问题]观察下列四个命题:(1)若一个四边形的两条对角线相等,则这个四边形是矩形;(2)若一个四边形是矩形,则其两对角线相等;(3)若一个四边形两条对角线不相等,则这个四边形不是矩形;(4)若一个四边形不是矩形,则其两对角线不相等.问题:命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?提示:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件;对于命题(1)和(3),其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;对于命题(1)和(4),其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.[导入新知]1.四种命题的概念一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这样的两个命题叫做互逆命题,如果是另一个命题的条件的否定和结论的否定,那么把这样的两个命题叫做互否命题,如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题,把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.2.四种命题结构[化解疑难]1.用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p,q的否定.2.四种命题是相对的,一个命题是什么命题不是固定不变的.[提出问题]问题:我们同样观察知识点一中的四个命题,你能说出其中任意两个命题之间的相互关系吗?提示:命题(2)(3)是互为逆否命题,命题(2)(4)是互否命题,命题(3)(4)是互逆命题.[导入新知]1.四种命题之间的关系2.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.[化解疑难]互逆命题、互否命题、互为逆否命题反映的是两个命题之间的相对关系,不具有特指性,即四种命题中的任意两个命题之间一定具有这三种关系中的一种,且唯一.[例1]否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.[解] (1)原命题:若两个三角形全等,则这两个三角形三边对应相等;逆命题:若两个三角形三边对应相等,则这两个三角形全等;否命题:若两个三角形不全等,则这两个三角形三边对应不相等;逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0;逆命题:若x2-3x+2=0,则x=2;否命题:若x≠2,则x2-3x+2≠0;逆否命题:若x2-3x+2≠0,则x≠2.[类题通法](1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件和结论同时否定即得否命题,将条件和结论互换的同时,进行否定即得逆否命题.(2)如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.[活学活用]把下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题,然后判断它们的真假:(1)正数a的平方根不等于0;(2)平行于同一条直线的两条直线平行.解:(1)原命题:若a是正数,则a的平方根不等于0.是真命题.逆命题:若a的平方根不等于0,则a是正数.是假命题.否命题:若a不是正数,则a的平方根等于0.是假命题.逆否命题:若a的平方根等于0,则a不是正数.是真命题.(2)原命题:若两条直线平行于同一条直线,则这两条直线平行.是真命题.逆命题:若两条直线平行,则这两条直线平行于同一条直线.是真命题.否命题:若两条直线不平行于同一条直线,则这两条直线不平行.是真命题.逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线.是真命题.[例2](1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.其中真命题的个数是( )A.0 B.1C.2 D.3[解] 选B (1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x+y=0”,为真命题;(2)原命题与其逆否命题具有相同的真假性,而原命题为假命题(如x=0,y=-1),故其逆否命题为假命题;(3)该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.[类题通法]解决此类题目的关键是牢记四种命题的概念,原命题与它的逆否命题同真同假,原命题的否命题与逆命题也互为逆否命题,同真同假,故只判断二者中的一个即可.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)在△ABC中,若BC>AC,则A>B;(2)相等的两个角的正弦值相等.解:(1)逆命题:在△ABC中,若A>B,则BC>AC.真命题.否命题:在△ABC中,若BC≤AC,则A≤B.真命题.逆否命题:在△ABC中,若A≤B,则BC≤AC.真命题.(2) 逆命题:若两个角的正弦值相等,则这两个角相等.假命题.否命题:若两个角不相等,则这两个角的正弦值也不相等.假命题.逆否命题:若两个角的正弦值不相等,则这两个角不相等.真命题.[例3] 证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.[解] 证明:法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.法二:假设a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b).这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾.因此假设不成立,故a+b≥0.[类题通法]由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2,所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.2.否命题理解中的误区[典例] 将命题“当a >0时,函数y =ax +b 是增函数”写成“若p ,则q ”的形式,并写出其否命题.[解] “若p ,则q ”的形式:若a >0,则函数y =ax +b 是增函数. 否命题:若a ≤0,则函数y =ax +b 不是增函数. [易错防范]1.“a >0”的否定易误为“a <0”,“增函数”的否定易误为“减函数”,这是初学者易犯的错误.2.在写一个命题的否命题、逆否命题时,一定要搞清楚所否定的对象及其所对应的性质,如本题中,实数a 可能有三种取值,分别为a >0,a =0,a <0,从而a >0的否定是a ≤0.[成功破障](山东高考)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.故选D.[随堂即时演练]1.命题“若a ∉A ,则b ∈B ”的否命题是( ) A .若a ∉A ,则b ∉B B .若a ∈A ,则b ∉B C .若b ∈B ,则a ∉AD .若b ∉B ,则a ∉A解析:选B 命题“若p,则q”的否命题是“若綈p,则綈q”,“∈”与“∉”互为否定形式.2.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A.3 B.2C.1 D.0解析:选C 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.3.命题“若x>1,则x>0”的逆命题是__________,逆否命题是________________.答案:若x>0,则x>1 若x≤0,则x≤14.在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题中,真命题的个数为________.解析:逆命题为“若A∩B≠A,则A∪B≠B”;否命题为“若A∪B=B,则A∩B=A”;逆否命题为“若A∩B=A,则A∪B=B”;全为真命题.答案:45.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.解:(1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解.所以该命题是真命题.[课时达标检测]一、选择题1.命题“若a=-b,则||a=||b”的逆命题是( )A.若a≠-b,则||a≠||bB.若a=-b,则||a≠||bC.若||a≠||b,则a≠-bD.若||a=||b,则a=-b解析:选D 原命题的条件是a=-b,把它作为逆命题的结论;原命题的结论是||a=||b,把它作为逆命题的条件,即得逆命题“若||a=||b,则a=-b”.2.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.1 B.2C.3 D.4解析:选B 命题“若a>-3,则a>-6”的逆命题为“若a>-6,则a>-3”,为假命题,则它的否命题“若a≤-3,则a≤-6”也必为假命题;它的逆否命题“若a≤-6,则a≤-3”为真命题.故真命题的个数为2.3.与命题“能被6整除的整数,一定能被3整除”等价的命题是( )A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,能被3整除解析:选B 即写命题“若一个整数能被6整除,则一定能被3整除”的逆否命题.4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是( )A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:选A 设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”.故q与r为互逆命题.5.下列四个命题:①“若xy=0,则x=0,且y=0”的逆否命题;②“正方形是矩形”的否命题;③“若ac2>bc2,则a>b”的逆命题;④若m>2,则不等式x2-2x+m>0.其中真命题的个数为( )A.0 B.1C.2 D.3解析:选B 命题①的逆否命题是“若x≠0,或y≠0,则xy≠0”,为假命题;命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题;命题③的逆命题是“若a>b,则ac2>bc2”,为假命题;命题④为真命题,当m>2时,方程x2-2x+m=0的判别式Δ<0,对应二次函数图象开口向上且与x轴无交点,所以函数值恒大于0.二、填空题6.命题“若x≠1,则x2-1≠0”的真假性为______.解析:可转化为判断命题的逆否命题的真假,由于原命题的逆否命题是:“若x2-1=0,则x=1”,因为x2-1=0时,x=±1,所以该命题是假命题,因此原命题是假命题.答案:假命题7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.解析:由已知得,若1<x <2成立,则m -1<x <m +1也成立. ∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2.∴1≤m ≤2. 答案:[1,2] 8.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形. 其中互为逆命题的有________________________________________________________________________;互为否命题的有________________________________________________________________________;互为逆否命题的有________________________________________________________________________.(填序号)解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤ 三、解答题9.写出下列命题的逆命题、否命题、逆否命题,然后判断真假. (1)等高的两个三角形是全等三角形; (2)弦的垂直平分线平分弦所对的弧.解:(1)逆命题:若两个三角形全等,则这两个三角形等高.它是真命题. 否命题:若两个三角形不等高,则这两个三角形不全等.它是真命题. 逆否命题:若两个三角形不全等,则这两个三角形不等高.它是假命题.(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.它是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.它是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.它是真命题.10.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.解:原命题的逆否命题为“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集”.判断其真假如下:抛物线y=x2+(2a+1)x+a2+2的图象开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a -7.因为a<1,所以4a-7<0.即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点.所以关于x的不等式x2+(2a +1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真命题.。

高中数学第一章常用逻辑术语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系课后课时精练

高中数学第一章常用逻辑术语1.1命题及其关系1.1.2四种命题1.1.3四种命题间的相互关系课后课时精练

1.1.2 四种命题 1.1.3 四种命题间的相互关系A 级:基础巩固练一、选择题1.命题:“a ,b 都是奇数,则a +b 是偶数”的逆否命题是( )A .若a ,b 都不是奇数,则a +b 是偶数B .若a +b 是奇数,则a ,b 都是偶数C .若a +b 不是偶数,则a ,b 都不是奇数D .若a +b 不是偶数,则a ,b 不都是奇数答案 D解析 ∵a ,b 都是奇数的否定为:a ,b 不都是奇数;a +b 是偶数的否定为:a +b 不是偶数.∴逆否命题为:若a +b 不是偶数,则a ,b 不都是奇数.2.已知命题p :垂直于平面α内无数条直线的直线l 垂直于平面α,q 是p 的否命题,下面结论正确的是( )A .p 真,q 真B .p 假,q 假C .p 真,q 假D .p 假,q 真答案 D解析 当平面α内的直线相互平行时,l 不一定垂直于平面α,故p 为假命题.易知p 的否命题q :若直线l 不垂直于α内无数条直线,则l 不垂直于α,易知q 为真命题.3.有下列命题:①“正方形是菱形”的否命题;②“全等三角形是相似三角形”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题.其中假命题是( )A .①②B .②③④C .①③④D .①④ 答案 A解析 ①否命题为“不是正方形的四边形不是菱形”,为假命题;②否命题为“不全等的三角形不相似”,为假命题;③逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”,∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧ m >0,Δ<0,即m >1,∴其逆命题为真命题;④原命题为真,逆否命题也为真命题.4.下列有关命题的说法正确的是( )A.“若x>1,则2x>1”的否命题为真命题B.“若cosβ=1,则sinβ=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x>1,则x>a”的逆命题为真命题,则a>0答案 C解析A中,2x≤1时,x≤0,从而否命题“若x≤1,则2x≤1”为假命题,故A错误;B 中,sinβ=0时,cosβ=±1,则逆命题为假命题,故B错误;D中,由已知条件得a的取值范围为[1,+∞),故D错误.5.原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A.真,真,真 B.假,假,真C.真,真,假 D.假,假,假答案 A解析由于a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,逆命题与否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.6.下列命题中,真命题是( )A .命题“若a >b ,则ac 2>bc 2”B .命题“若a =b ,则|a |=|b |”的逆命题C .命题“当x =2时,x 2-5x +6=0”的否命题D .命题“终边相同的角的同名三角函数值相等”的逆否命题答案 D解析 命题“若a >b ,则ac 2>bc 2”是假命题;命题“若a =b ,则|a |=|b |”的逆命题为“若|a |=|b |,则a =b ”是假命题;命题“当x =2时,x 2-5x +6=0”的否命题为“若x ≠2,则x 2-5x +6≠0”是假命题; 命题“终边相同的角的同名三角函数值相等”是真命题,其逆否命题与原命题等价,为真命题.二、填空题7.命题“若x 2<2,则|x |<2”的逆否命题是________.答案 “若|x |≥2,则x 2≥2”解析 命题“若x 2<2,则|x |<2”的逆否命题是“若|x |≥ 2,则x 2≥2”.8.在原命题“若A ∪B ≠B ,则A ∩B ≠A ”与它的逆命题、否命题、逆否命题中,真命题的个数为________.答案 4解析 否命题为“若A ∪B =B ,则A ∩B =A ”,是真命题(由A ∪B =B ,知A ⊆B ,所以A ∩B =A );由于逆命题与否命题互为逆否命题,所以逆命题是真命题;逆否命题为“若A ∩B =A ,则A ∪B =B ”是真命题(由A ∩B =A 知A ⊆B ,所以A ∪B =B ),所以原命题是真命题.9.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.答案 [1,2]解析 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧ m -1≤1,m +1≥2,∴1≤m ≤2.三、解答题10.若a ,b ,c ∈R ,写出命题“若ac <0,则ax 2+bx +c =0有两个相异实根”的逆命题、否命题、逆否命题,并判断它们的真假.解 逆命题:若ax 2+bx +c =0(a ,b ,c ∈R )有两个相异实根,则ac <0,为假命题; 否命题:若ac ≥0,则ax 2+bx +c =0(a ,b ,c ∈R )至多有一个实根,为假命题;逆否命题:若ax 2+bx +c =0(a ,b ,c ∈R )至多有一个实根,则ac ≥0,为真命题.B 级:能力提升练a,b,c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄的大小顺序是否能确定?请说明理由.解能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小.所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.。

高中数学第1章常用逻辑用语1.11.1.2四种命题1.1.3四种命题间的相互关系

高中数学第1章常用逻辑用语1.11.1.2四种命题1.1.3四种命题间的相互关系

课 时
究 释
做互否命题(m,ìng如tí) 果恰好是另一个命题结论的否定和条件的否定,那么
分 层 作
疑 难
把这样的两个命题叫做互为逆否命题 ,把第一个叫做原命题时,另三

·
个可分别称为原命题的逆命题 、否命题(、mìng逆tí) 否命题 . 返

12/12/2021

第四页,共四十七页。
·




·




预 习
其中互为逆命题的有________;互为否命题的有______;互为Fra bibliotek小 结·
探 新
逆否命题的有________.
提 素


合 作
③和⑥,②和④ ①和⑥,②和⑤ ①和③,④和⑤ [互为逆 课


究 命题有③和⑥,②和④;互为否命题有①和⑥,②和⑤;互为逆否
分 层


疑 难
命题有①和③,④和⑤.]
课 堂



原命题 逆命题 否命题
逆否命题
·



新 知



_真__
素 养







探 究


_真__

时 分







作 业

·


12/12/2021

第七页,共四十七页。
·





  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 四种命题 1.1.3 四种命题间的相互关系
A级基础巩固
一、选择题
1.下列命题的逆命题为真命题的是( )
A.若xy≠0,则x,y不都为零
B.正多边形都相似
C.若m>0,则x2+x-m=0有实根
D.若x是无理数,则x-3是有理数
解析:A中逆命题为“若x,y不都为零,则xy≠0”,假命题;B中逆命题为“相似的多边形都是正多边形”,假命题;C中逆命题为“若x2+x-m=0有实根,则m>0”,假命题;D 中逆命题为“若x-3是有理数,则x是无理数”,真命题.
答案:D
2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( )
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3
D.若a+b+c≥3,则a2+b2+c2=3
解析:否定条件,得a+b+c≠3,否定结论,得a2+b2+c2<3.所以否命题是“若a+b +c≠3,则a2+b2+c2<3”.
答案:A
3.与命题“能被6整除的整数,一定能被3整除”等价的命题是( )
A.能被3整除的整数,一定能被6整除
B.不能被3整除的整数,一定不能被6整除
C.不能被6整除的整数,一定不能被3整除
D.不能被6整除的整数,不一定能被3整除
解析:原命题与它的逆否命题是等价命题,原命题的逆否命题是:不能被3整除的整数,一定不能被6整除.
答案:B
4.若命题p的逆命题是q,命题p的逆否命题是r,则q是r的( )
A.逆命题B.否命题
C.逆否命题D.以上都不正确
解析:设命题p为:“若s,则t”,则命题q为:“若t,则s”,命题r是:“若¬t,则
¬s”,由此知q为r的否命题.
答案:B
5.有下列四种命题:
①“若x+y=0,则x,y互为相反数”的否命题;
②“若x>y,则x2>y2”的逆否命题;
③“若x≤3,则x2-x-6>0”的否命题;
④“对顶角相等”的逆命题.
其中真命题的个数是( )
A.0 B.1 C.2 D.3
解析:(1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x+y=0”,为真命题;(2)原命题与其逆否命题具有相同的真假性.而原命题为假命题(如x=0,y=-1),故其逆否命题为假命题;(3)该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.答案:B
二、填空题
6.命题“若x2<4,则-2<x<2”的逆否命题为_______________,是______________(填“真”或“假”)命题.
解析:命题“若x2<4,则-2<x<2”的逆否命题为“若x≥2或x≤-2,则x2≥4”,因为原命题是真命题,所以其逆否命题也是真命题.
答案:若x≥2或x≤-2,则x2≥4 真
7.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有________个.
解析:原命题“当AB=AC时,△ABC是等腰三角形”是真命题,且互为逆否命题等价,故其逆否命题为真命题.其逆命题“若△ABC是等腰三角形,则AB=AC”是假命题,则否命题是假命题.则4个命题中有2个是真命题.
答案:2
8.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;
②若一个四边形对角互补,则它内接于圆;
③正方形的四条边相等;
④圆内接四边形对角互补;
⑤对角不互补的四边形不内接于圆;
⑥若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有________;互为否命题的有______;互为逆否命题的有________.解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写
为“若一个四边形是圆的内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系判断.
答案:②和④、③和⑥ ①和⑥、②和⑤ ①和③、④和⑤
三、解答题
9.写出命题“在△ABC 中,若a >b ,则A >B ”的逆命题、否命题和逆否命题,并判断它们的真假.
解:(1)逆命题:在△ABC 中,若A >B ,则a >b 为真命题.否命题:在△ABC 中,若a ≤b ,则A ≤B 为真命题.逆否命题:在△ABC 中,若A ≤B ,则a ≤b 为真命题.
10.判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集
是R ,则a <74
”的逆否命题的真假. 解:先判断原命题的真假如下:因为a ,x 为实数,关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集为R ,且抛物线y =x 2+(2a +1)x +a 2+2的开口向上,所以Δ=(2a +1)2-4(a 2
+2)=4a -7<0.
所以a <74
.所以原命题是真命题. 因为互为逆否命题的两个命题同真同假,所以原命题的逆否命题为真命题.
B 级 能力提升
1.若命题p 的逆命题是q ,命题q 的否命题是m ,则m 是p 的( )
A .原命题
B .逆命题
C .否命题
D .逆否命题 解析:设命题p 为“若k ,则l ”,则命题q 为“若l ,则k ”,从而命题m 为“若非l ,则非k ”,即命题m 是命题p 的逆否命题.
答案:D
2.设有两个命题:①不等式mx 2
+1>0的解集是R ;②函数f (x )=log m x 是减函数.如果这两个命题中有且只有一个是真命题,则实数m 的取值范围是________.
解析:①当m =0时,mx 2+1=1>0恒成立,解集为R.当m ≠0时,若mx 2+1>0的解集为R ,必有m >0. 综上知,不等式mx 2+1>0的解集为R ,必有m ≥0.
②当0<m <1时,f (x )=log m x 是减函数,当两个命题中有且只有一个真命题时⎩⎪⎨⎪⎧m ≥0,m ≤0或m ≥1,或⎩⎪⎨⎪⎧m <0,0<m <1, 所以m =0或m ≥1.
答案:m =0或m ≥1
3.已知p :x 2+mx +1=0有两个不等的负根,q :4x 2
+4(m -2)x +1=0无实数根.若p ,
q 一真一假,求m 的取值范围.
解:当p 为真时,即方程x 2
+mx +1=0有两个不等的负根,设两个负根为x 1,x 2,则有⎩⎪⎨⎪⎧m 2-4>0,x 1+x 2=-m <0, 解得m >2.
当q 为真时,即方程4x 2+4(m -2)x +1=0无实数根,则有16(m -2)2
-4×4×1<0,解得1<m <3.
若p 真,q 假,则⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,得m ∈[3,+∞);
若p 假,q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,得m ∈(1,2].
综上所述,m 的取值范围是(1,2]∪[3,+∞).。

相关文档
最新文档