2018年高考全国3卷理科数学

合集下载

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年高考真题全国Ⅲ卷(含答案)

2018年高考真题全国Ⅲ卷(含答案)

2018年普通高等学校招生全国统一考试3理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cr 52 Zn 65 I 127一、选择题:7.化学与生活密切相关。

下列说法错误的是A .泡沫灭火器可用于一般的起火,也适用于电器起火B .疫苗一般应冷藏存放,以避免蛋白质变性C .家庭装修时用水性漆替代传统的油性漆,有利于健康及环境D .电热水器用镁棒防止内胆腐蚀,原理是牺牲阳极的阴极保护法8.下列叙述正确的是A .24 g 镁与27 g 铝中,含有相同的质子数B .同等质量的氧气和臭氧中,电子数相同C .1 mol 重水与1 mol 水中,中子数比为2∶1D .1 mol 乙烷和1 mol 乙烯中,化学键数相同9.苯乙烯是重要的化工原料。

下列有关苯乙烯的说法错误的是A .与液溴混合后加入铁粉可发生取代反应B .能使酸性高锰酸钾溶液褪色C .与氯化氢反应可以生成氯代苯乙烯D .在催化剂存在下可以制得聚苯乙烯10.下列实验操作不当的是A .用稀硫酸和锌粒制取H 2时,加几滴CuSO 4溶液以加快反应速率B .用标准HCl 溶液滴定NaHCO 3溶液来测定其浓度,选择酚酞为指示剂C .用铂丝蘸取某碱金属的盐溶液灼烧,火焰呈黄色,证明其中含有Na +D .常压蒸馏时,加入液体的体积不超过圆底烧瓶容积的三分之二11.一种可充电锂-空气电池如图所示。

当电池放电时,O 2与Li +在多孔碳材料电极处生成Li 2O 2-x (x =0或1)。

下列说法正确的是A .放电时,多孔碳材料电极为负极B .放电时,外电路电子由多孔碳材料电极流向锂电极C .充电时,电解质溶液中Li +向多孔碳材料区迁移D .充电时,电池总反应为Li 2O 2-x =2Li+(1-2x)O 212.用0.100 mol·L-1 AgNO3滴定50.0 mL 0.0500 mol·L-1 Cl-溶液的滴定曲线如图所示。

(完整版)【精校版】2018年高考全国Ⅲ卷理综高考试题(word版含答案)

(完整版)【精校版】2018年高考全国Ⅲ卷理综高考试题(word版含答案)

2018年暑假教师业务提升试题(3 )理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cr 52 Zn 65 I 127一、选择题:本题共13个小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •下列研究工作中由我国科学家完成的是A •以豌豆为材料发现性状遗传规律的实验B •用小球藻发现光合作用暗反应途径的实验C .证明DNA是遗传物质的肺炎双球菌转化实验D •首例具有生物活性的结晶牛胰岛素的人工合成2.下列关于细胞的结构和生命活动的叙述,错误的是A •成熟个体中的细胞增殖过程不需要消耗能量B •细胞的核膜、内质网膜和细胞膜中都含有磷元素C •两个相邻细胞的细胞膜接触可实现细胞间的信息传递D •哺乳动物造血干细胞分化为成熟红细胞的过程不可逆3•神经细胞处于静息状态时,细胞内外K+和Na+的分布特征是A .细胞外《+和Na+浓度均高于细胞内B •细胞外K+和Na+浓度均低于细胞内C.细胞外K+浓度高于细胞内,Na+相反D •细胞外K+浓度低于细胞内,Na+相反4 •关于某二倍体哺乳动物细胞有丝分裂和减数分裂的叙述,错误的是A •有丝分裂后期与减数第二次分裂后期都发生染色单体分离B •有丝分裂中期与减数第一次分裂中期都发生同源染色体联会C •一次有丝分裂与一次减数分裂过程中染色体的复制次数相同D .有丝分裂中期和减数第二次分裂中期染色体都排列在赤道板上5•下列关于生物体中细胞呼吸的叙述,错误的是A •植物在黑暗中可进行有氧呼吸也可进行无氧呼吸B •食物链上传递的能量有一部分通过细胞呼吸散失C •有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸D .植物光合作用和呼吸作用过程中都可以合成ATP 6•某同学运用黑光灯诱捕的方法对农田中具有趋光性的昆虫进行调查,下列叙述错误的是A •趋光性昆虫是该农田生态系统的消费者B •黑光灯传递给趋光性昆虫的信息属于化学信息C •黑光灯诱捕的方法可用于调查某种趋光性昆虫的种群密度D .黑光灯诱捕的方法可用于探究该农田趋光性昆虫的物种数目7 •化学与生活密切相关。

2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案) 2018年高考数学全国卷三理科考试已经落下帷幕,本试卷为考生带来了挑战,让大家从中更加深入的了解数学知识,本试卷的答案让大家从中收获了成长。

2018年高考数学全国卷三理科试题2018年高考数学全国卷三理科试题出炉,考生们做好了准备,及时解决遇到的问题,取得优异的成绩。

本次全国卷三包括4个部分组成,分别是选择题、填空题、解答题和分析题。

如下:一、选择题1. 若集合A={x|-2≤x≤2},集合B={x|x2<4},则A∩B= (A) {-2,2} (B) {-2,0,2} (C) {-1,1} (D) {0,2}2. 若平面上的两个点的坐标分别A(2,3),B(4,-3),那么它们之间的距离是(A)2(B)5(C)7(D)63. 若复数z1=1-i,z2=1+i,则z1、z2的共轭复数分别为(A)1-i,1+i(B)1+i,1-i(C)-1+i,-1-i(D)-1-i,-1+i4. 若函数y=3x3-6x2+9x+3在x=2处取得极值,则极大值为(A)-12(B)-9(C)15(D)185. 若两个圆O1,O2的半径分别是6,9,则O1, O2相切的条件是(A)r1=r2(B)r1+r2=15(C)r1-r2=3(D)r1+r2=3二、填空题1. 下列各式中,(1+√5)5次方的展开式中,常数项为a_1r_1+a_3r_3+a_5r_5,其中a_1,a_3,a_5分别为______,_______,_______。

答案:a_1=5 ; a_3=-5 ; a_5=12.函数f (x)=2x2+8x+9,x≤1时的最大值为_________。

答案:13三、解答题1.求实数a,b满足等式|a-3|-|b+3|=4的解。

答:解得a=-1、b=-72.曲线y=x3+3x2+3x+c的图象经过点(1,1),求参数c的值。

答:设y=x3+3x2+3x+c设点P(1,1)在曲线上,即1=1+3+3+cc=0四、分析题1.已知实数x,y满足约束条件2x+y≤12,x,y≥0,求此约束条件下的最大值。

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷理科新课标Ⅰ

2018年全国统一高考数学试卷理科新课标Ⅰ

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案一、选择题:1.C2.B3.A4.B5.D6.A7.B8.D9.C10.A11.B12.A二、填空题:13.614.-6315.1616.三、解答题:17.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.18.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,=,故V F﹣PDE因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,=,故V F﹣PDE又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.19.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.20.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f (p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.21.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.选考题:22.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k=或0,(0舍去)或k=或0经检验,直线与曲线C2没有公共点.故C1的方程为:.23.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].更多内容请您关注101教育高考网:https:///。

2018年全国统一高考数学真题试卷及答案解析【全国卷三】

2018年全国统一高考数学真题试卷及答案解析【全国卷三】

2018年高考真题理科数学 (全国III卷)一、填空题:(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合A={x∣x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。

若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.若,则( )A. B. C. D.5.的展开式中的系数为( )A.10B.20C.40D.806.直线x+y+2=0分别与x轴,y交于A,.两点,点P在圆(x-2)²+y ²=2上,则∆ABP面积的取值范围是( )A.[2,6]B.[4,8]C.D.7.函数y=-+x²+2的图像大致为A . B.C. D.8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<p(x=6),则p=< span="">( )A .0.7 B.0.6 C.0.4 D.0.39.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C=( )A. B. C. D.10.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.设F1、F2是双曲线的左、右焦点,O是坐标原点,过F2作C的一条渐近线的垂线,垂足为P,若,则C的离心率为( )A. B.2 C. D.二、填空题(本题共4小题,每小题5分,共20分。

2018年全国卷高考真题(理科)

2018年全国卷高考真题(理科)

伪满时期的哈尔滨市立医院,如今仍是医院。后来得知赵一曼女士曾在这里 住过院,我便翻阅了她的一些资料。 赵一曼女士, 是一个略显瘦秀且成熟的女性。在她身上弥漫着拔俗的文人气 质和职业军人的冷峻。在任何地方,你都能看出她有别于他人的风度。 赵一曼女士率领的抗联活动在小兴安岭的崇山峻岭中, 那儿能够听到来自坡 镇的钟 声,冬夜里,钟声会传得很远很远。钟声里,抗联的兵士在森林里烤火,烤野味 儿,或者唱着“火烤胸前暖,风吹背后寒......战士们哟”......这些都给躺在 病床上的赵一曼女士留下清晰回忆。 赵一曼女士单独一间病房,由警察昼夜看守。 白色的小柜上有一个玻璃花瓶,里面插着丁香花。赵一曼女士喜欢丁香花。 这束丁香花,是女护士韩勇义折来摆放在那里的。听说,丁香花现在已经成为这 座城市的“市花”了。 她是在山区中了日军的子弹后被捕的。滨江省警务厅的大野泰治对赵一曼女 士进行了严刑拷问,始终没有得到有价值的回答,他觉得很没面子。 大野泰治在向上司呈送的审讯报告上写道: 赵一曼是中国共产党珠河县委委员,在该党工作上有与赵尚志同等的权 力。她是北满共产党的重要干部,通过对此人的严厉审讯,有可能澄清中共与苏 联的关系。 1936 年初,起一曼女士以假名“王氏”被送到医院监禁治疗。 《滨江省警务厅关于赵一曼的情况》扼要地介绍了赵一曼女士从市立医院逃 走和被害的情况。 赵一曼女士是在 6 月 28 日逃走的。夜里,看守董宪勋在他叔叔的协助下, 将赵一曼抬出医院的后门。一辆雇好的出租车已等在那里。几个人上了车, 车立刻就开走了。出租车开到文庙屠宰场的后面,韩勇义早就等候在那里, 扶着赵一曼女士上了雇好的轿子,大家立刻向宾县方向逃去。 赵一曼女士住院期间, 发现警士董宪勋似乎可以争取。经过一段时间的观 察、分析,她觉得有把握去试一试。 她躺在病床上,和蔼地问董警士:“董先生,您一个月的薪俸是多少?” 董警士显得有些忸怩,“十多块钱吧……” 赵一曼女士遺憾地笑了,说:“真没有想到,薪俸会这样少。” 董警士更加忸怩了。 赵一曼女士神情端庄地说:“七尺男儿,为着区区十几块钱,甘为日本人役 使,不是太愚蠢了吗?” 董警士无法再正视这位成熟女性的眼睛了,只是哆哆嗦嗦给自己点了一颗

2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word版含解析

2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word版含解析

2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word 版含解析一、典例分析,融合贯通典例1.【2018年全国高考课标3第16题】已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________. 解法一:点评:由题先设出直线方程,与抛物线方程联立,再借助条件90AMB =︒∠,化为向量语言转换为关于k 方程,进行求解。

解题以方程思想为指针,设而不求为桥梁,最终建立k 方程,完成求解。

解法二:同上,由90AMB =︒∠,则1MA MB k k ?-可得;2121211144011MA MBy y k k k k x x --??-?+=++ 2k \=.点评:将条件90AMB =︒∠,解读为1MA MBk k ?-,进行求解。

解法三:如图所示,点评:数形结合,将90∠的条件化为圆,运用圆的切线性质而简化运算。

AMB=︒二.方法总结,胸有成竹直线与圆锥曲线一直以来是我们高考关注的一个热点话题,主要涉及到圆锥曲线的方程和几何性质,以及直线与圆锥曲线的位置关系的综合运用。

综合考查学生的数学思想、数学方法与数学能力。

1. 直线与圆锥曲线的位置关系的应用问题求解的基本思路:由于直线与圆锥曲线的位置关系一直为高考的热点。

这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想,运用圆锥曲线的定义与平面几何的知识,化难为易,化繁为简,收到意想不到的解题效果;另外采取“设而不求”法,“点差法”与弦长公式及韦达定理,减少变量,建立方程去解决; 2. 基本知识与基本方法(1).直线与圆锥曲线的位置关系的判定方法:直线l :(,)0f x y =和曲线:(,)0C g x y =的公共点坐标是方程组(,)0(,)0f x y g x y =⎧⎨=⎩的解,和C 的公共点的个数等于方程组不同解的个数.这样就将l 和C 的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式∆,若能数形结合,借助图形的几何性质则较为简便.(2).弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”).(3).弦长公式1212||||AB x x y y =-=-. (4).焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)三.精选试题,能力升级1.【2018河南省焦作市高三联考】已知抛物线C : 22(0)y px p =>的焦点为F ,点M 在抛物线C 上,且32MO MF ==(O 为坐标原点),则MOF ∆的面积为( )A.2B. 12C. 14D.【答案】A2.【2018年全国高考课标1第11题】已知双曲线 22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N 若OMN ∆为直角三角形,则MN =A.B. 3C.D. 4 【答案】B【解析】根据题意,可知其渐近线的斜率为3±(2,0)F ,从而得到030FON ∠=, 所以直线MN 的倾斜角为060或0120,根据双曲线的对称性,设其倾斜角为060,可以得出直线MN 的方程为2)y x -,分别与两条渐近线y x =和y x =联立,求得3(,22M N -B. 3.【2018湖南省长沙市高三联考】抛物线C : 22(0)x py p =>的焦点F 与双曲线22221y x -=的一个焦点重合,过点F 的直线交C 于点A 、B ,点A 处的切线与x 、y 轴分别交于点M 、N ,若OM N ∆的面积为12,则AF 的长为()A. 2B. 3C. 4D. 5 【答案】A4.【2018山东省潍坊市二模】直线()2(0)y k x k =+>与抛物线2:8C y x =交于A , B 两点, F 为C 的焦点,若sin 2sin ABF BAF ∠=∠,则k 的值是( )A.3 B. 3C. 1D. 【答案】B【解析】分别过A , B 项抛物线的准线作垂线,垂足分别为M , N ,则AF AM =,BF BN =. 设直线()2(0)y k x k =+>与x 轴交于点P ,则()2,0P -.5.【2018衡水金卷】已知抛物线22(0)x py p =>的焦点为F ,过焦点F 的直线l 分别交抛物线于点,A B , 过点,A B 分别作抛物线的切线12,l l ,两切线12,l l 交于点M ,若过点M 且与y 轴垂直的直线恰为圆221x y +=的一条切线,则p 的值为( ) A.14 B. 12C. 2D. 4 【答案】C【解析】由题可知抛物线22(0)x py p =>的焦点为F 0,,2p ⎛⎫⎪⎝⎭且过焦点F 的直线斜率存在, 所以可设直线:2p l y kx =+,联立方程组222{ ,20,22py kx x kpx p x py =+∴--==设()11,A x y ,()22,,B x y 则21212,2.x x p x x kp =-+=又由22x py =得2,,2x xy y p p =∴='所以过A 点的切线方程为()22111111111:,2x x x x x l y y x x y y x x p p p p p-=-∴=+-=-. 同理可知过点B 的切线方程为2222:,2x x l y x p p =-联立方程组211122122222{ ,{ ,222x x x x y x x p px x p x x y y x p p p +=-=∴==-=-因此点12,,22x x p M +⎛⎫-⎪⎝⎭过点M 与y 轴垂直的直线为(0)2p y p =->,而圆221x y +=与y 轴负半轴交于点(0,-1),所以1, 2.2pp -=-∴=故选C. 点评:本题的思路比较自然,只要循序渐进,一步一步转化就可以了. 主要是计算有点复杂,在求出过点A 的切线方程2111:2x x l y x p p =-后,不必再重新求过点B 的切线方程,只要利用对称性同理求出2222:2x x l y x p p=-可以提高解题效率.6.【2017高考新课标I 】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的最小值为( )A .16B .14C .12D .10【答案】A 【解析】解法一:设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 方程为1(1)y k x =-。

2018年高考数学全国卷试题答案解析(6套)

2018年高考数学全国卷试题答案解析(6套)

中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则

2018-2016三年高考真题理科数学分类汇编:集合(解析附后)

2018-2016三年高考真题理科数学分类汇编:集合(解析附后)

2018-2016三年高考真题理科数学分类汇编:集合(解析附后)2018-2016三年高考真题分类汇编:集合(解析附后)考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义。

理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用XXX(Venn)图表达集合间的基本关系及集合的基本运算。

选择题★★☆2.集合间的基本关系选择题★★☆3.集合间的基本运算选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系。

2.深刻理解、掌握集合的元素、子、交、并、补集的概念。

熟练掌握集合的交、并、补的运算和性质。

能用XXX(Venn)图表示集合的关系及运算。

3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法。

4.本节内容在高考中分值约为5分,属中低档题。

命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x|x<2},B={-2,1,2},则AB=()A。

{0,1} B。

{-1,1} C。

{-2,1,2} D。

{-1,1,2}2.【2018年理新课标I卷】已知集合A={x|x²-4x+3=0},B={x|x²-2x-3=0},则AB中元素的个数为()A。

2 B。

3 C。

4 D。

53.【2018年全国卷III理】已知集合A={x|x²-5x+6>0},B={x|x-2>0},C={x|x<3},则A∩B∩C=()A。

{x|x2} D。

2018年浙江高考理科数学试题含答案(Word版)

2018年浙江高考理科数学试题含答案(Word版)

2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、(1)设全集,集合,则( )A. B 、 C 、 D 、(2)已知就是虚数单位,,则“”就是“”得( )A 、 充分不必要条件B 、 必要不充分条件C 、 充分必要条件D 、 既不充分也不必要条件(3)某几何体得三视图(单位:cm)如图所示,则此几何体得表面积就是A 、 90B 、 129C 、 132D 、 1384.为了得到函数得图像,可以将函数得图像( )A.向右平移个单位 B 、向左平移个单位C 、向右平移个单位D 、向左平移个单位5.在得展开式中,记项得系数为,则 ( )A 、45B 、60C 、120D 、 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A. B 、 C 、 D 、7.在同意直角坐标系中,函数得图像可能就是( )8.记,,设为平面向量,则( )A 、B 、C 、D 、9、已知甲盒中仅有1个球且为红球,乙盒中有个红球与个篮球,从乙盒中随机抽取个球放入甲盒中、(a)放入个球后,甲盒中含有红球得个数记为;(b)放入个球后,从甲盒中取1个球就是红球得概率记为、则A. B 、C 、D 、10.设函数,,,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,则A 、B 、C 、D 、二、填空题:本大题共7小题,每小题4分,共28分、11.若某程序框图如图所示,当输入50时,则该程序运算后输出得结果就是________、12.随机变量得取值为0,1,2,若,,则________、13.当实数,满足时,恒成立,则实数得取值范围就是________、14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖、将这8张奖券分配给4个人,每人2张,不同得获奖情况有_____种(用数字作答)、15.设函数若,则实数得取值范围就是______16.设直线与双曲线(0a b>>)两条渐近线分别交于点,若点满足,则该双曲线得离心率就是__________17、如图,某人在垂直于水平地面得墙面前得点处进行射击训练、已知点到墙面得距离为,某目标点沿墙面得射击线移动,此人为了准确瞄准目标点,需计算由点观察点得仰角得大小、若则得最大值19(本题满分14分)已知数列与满足、若为等比数列,且(1)求与;(2)设。

2018年全国卷3高考理科数学试题解析版

2018年全国卷3高考理科数学试题解析版

C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得

,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:

所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设

所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则

故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体

2018年高考全国3卷理科数学试题及答案解析

2018年高考全国3卷理科数学试题及答案解析
22则a32a2a6,即a12d2a1d a15d又∵a11,代入上式可得d22d 0又∵d 0,则d 2
6 5 6 5∴S66a12d 1 622 24,故选A.
22
10.已知椭圆C:x2y21(a b 0)的左、右顶点分别为A1,A2,且以线段A1A2为直ab
径的圆与直线bx ay 2ab 0相切,则C的离心率为()
A.πB.3πC.πD.π
424【答案】B
【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r12 1 3,
22
23π则圆柱体体积Vπr2hπ,故选B.
4
9.等差数列an的首项为1,公差不为0.若a2,a3,a6成等比数列,则an前6项的和为()
A.24B.3C.3D.8
【答案】A
【解析】∵an为等差数列,且a2,a3,a6成等比数列,设公差为d.
A.
【答案】
【解析】
B.
)
C.40
D.80
C
由二项式定理可得,原式展开中含
2 2 3 3 3 2
x C522xyy C532x y
33
x y的项为
3 33 3
40x3y3,则x3y3的系数为40,故选C.
22
5.已知双曲线C:x2y21
a2b2
a 0,b 0)
的一条渐近线方程为
y5x,
y x,
2
且与椭圆
3
D.
x8π对称
3
7.执行右图的程序框图,为使输出
的最小值为()
A.
B.
C.
D.2
答案】D
解析】程序运行过程如下表所示:
S
M
t
初始状态
0
100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26, B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B .2C 3D 212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点()02-,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,, ()f x ax b +≤,求a b +的最小值.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题二、填空题13.1214.3-15.316.2 17.解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =. 18.解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:超过m不超过m 第一种生产方式15 5 第二种生产方式 5 15(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为CD的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M,(2,1,1),(0,2,0),(2,0,0)AM AB DA=-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 2sin,5DA =n , 所以面MAB 与面MCD . 20.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =. 于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列. 设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-= 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||d =.所以该数列的公差为28或28-. 21.解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=.所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 22.解:(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =l 与O 交于两点当且仅当|1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈. 综上,α的取值范围是(,)44π3π.(2)l的参数方程为cos,(2sinx tt y tαα=⎧⎪⎨=-+⎪⎩为参数,44απ3π<<).设A,B,P对应的参数分别为A t,B t,P t,则2A BPt tt+=,且At,Bt满足222sin10t tα-+=.于是22sinA Bt tα+=,2sinPtα=.又点P的坐标(,)x y满足cos,2sin.PPx ty tαα=⎧⎪⎨=-+⎪⎩所以点P的轨迹的参数方程是2sin2,222cos222xyαα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<).23.解:(1)13,,21()2,1,23, 1.x xf x x xx x⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x=的图像如图所示.(2)由(1)知,()y f x=的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a≥且2b≥时,()f x ax b≤+在[0,)+∞成立,因此a b+的最小值为5.。

相关文档
最新文档