动力学02
大学物理第二章质点动力学PPT课件

•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
非线性动力学导论讲义02(二阶系统简介)-岳宝增 (1)

0 ]为单摆倒置点(鞍点),附近相轨线双 2.平衡点[ 曲线;
0]到[ 3.从[
0]或相反的连线为分界线;
在分界线内的轨线是闭合回线 单摆作周期振动,其幅值是x 在相图中所取得的最大值。分 界线以外单摆能量E 超过势能 曲线的极大值,轨道就不再闭 合,单摆作向左或向右方向的 旋转运动(x.符号不变,x持 续增大或减小)。上下部分的波浪线的波动现象是由于 重力的影响,速度越大,波动越小。
x
dx
dx
y
某一具体相轨可以要求其通过特定的点(x,y)得到,将这 一特定的点作为初始状态(x0,y0),其中: (10)
y ( x0 ) y 0
完整的带有方向的相轨构成系统的相图 再来讨论对应常值解的相图上的平衡点
dy f ( x, y ) 0 dt dx y0 dt
的单参数曲线族;称为系统的相图,这些曲线称为相轨线。
此外,(5b)式还表示系统有如图所示的2 π 周期性;还有
.
轨线的方向性(后面讨论)。给定一对值(x,y)或(x,x ) 则对应相图上的某一点P,称为系统的一个状态。某一状态 给出了某一特定摆角为x时其角速度为x =y,这两个变量 正是我们某一特定时刻观察摆的摆动时所感知的对象的量 化表示。对给定的一对值(x,x )亦可以作为微分方程的 初始时刻;因此,任一给定的状态可以确定所有其后续的 状态,而这些状态都位于通过P(x,y)点(初始状态)的相 轨线上。上图中用箭头标定了随着时间的变化,轨线应行 进的方向;该方向可由方程(5a)确定: 当y>0时,则x >0,所以x必然随着t的增加而增大;这表明 在上半平面轨线的方向必须是从左到右;同理,在下半平
推断出微分方程解的重要性质。本章介绍一种应用非 常广泛的几何工具相平面方法,直接根据动力学系统 的微分方程来研究平衡点、周期性、解的渐进性、稳 定性等。经典力学中的单摆问题可以用来说明相平面 法如何揭示微分方程的主要动力学特性。
02液体动力学基础

(2)断面中心在基准面以上时,h取正值,反之取负值。通常选取特殊位置的水平面作为基准面。
2.3 液体动力学基础
第2章 液压传动基础
【例2-2】用伯努利方程分析如图2-13所示液压泵的吸油过程,试分析吸油高度H对泵工作
性能的影响。 解 设油箱的液面为基准面,对基准面1-1和泵进油口处的
动画演示
2.3 液体动力学基础
第2章 液压传动基础
图2-10 雷诺实验 1—隔板;2—水杯;3、7—开关;4—水箱;5—细导管;6—玻璃管
动画演示 返回
2.3 液体动力学基础
第2章 液压传动基础
液体流动时究竟是层流还是紊流,须用雷诺数来判别。
实验证明,液体在圆管中的流动状态不仅与管内的平均流速v有关,还和管径d、液体的运
律为抛物线形,如图2-9(b)所示。
其中心线处流速最高,而边缘处流速为零,计算、使用很不方便。因此,常假定过流断面上
各点的流速均匀分布,从而引入平均流速的概念。平均流速v是指过流断面通过的流量q 与该过
流断面面积A的比值,即
(2-17)
2.3 液体动力学基础
第2章 液压传动基础
在实际工程中,平均流速才具有应用价值。液压缸工作时,活塞的运动速度与液压缸中的平
体在一直管内做恒定流动,如图2-8所示。液流的过流断面面积即为管道截面面积A,液流在过
流断面上各点的流速(指液流质点在单位时间内流过的距离)皆相等,以u表示( ),流过
截面1-1的液体经时间t 后到达截面2-2处,所流过的距离为l,即
流量的法定单位为 m3/s,工程上常用的单位为L/min。二者的换算关系为1 m3 /s=6×104
02质点动力学(守恒定律)

冲量为 I
t
0
Fdt mv4 mv0 16kg m s 1
(2)由动能定理
1 2 1 2 W mv4 mv0 176J 2 2
2. 如图所示,长为l 的细线一端固定,一质量为m的小球系在 细线的另一端,并可在竖直面内摆动。若先拉动小球使线保 持平直,并在水平位置静止,然后放手使小球下落,在线下 摆至 角时,求: (1)小球的速率v; (2)细线中的张力T。
I Fdt 25t 2dt
0 0
3
3
25 3 t 225N s 3 0
I 225 0.9m s 1 m1 250
3
由动量定理:
I m1v1 0 225 I m2 v2 0 225 v1
I 225 v2 0.45m s 1 m2 500
由质点动能定理得
1 1 1 2 2 W mv4 mv2 0.5 1625 425 300 J 2 2 2
4.一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d, 现用手将小球托住使弹簧不伸长,然后放手。不计一切摩擦, 则弹簧的最大伸长量为 (A) 2d; (B) 2d; (C) d ; (D) 条件不足无法判定。 解:由胡克定律,平衡时有
外 外
非保内
E E0 0 E E0
非保内
2. 质量m=1kg的质点,从原点处由静止开始沿Ox轴运动,所 受力为 F 3 2 x(SI),那么物体在运动到3 m时的速度为 __________ 6m s 1 。
解: W Fdx
3 2xdx 3x x
解:作图:
v0
30
大学物理学第2章 动力学

受力分析涉及变力的情况
例1 如图长为 l 的轻绳,一端系质量为 m 的小球,
另有一水端平系 速于 度定v0点,o求,小t球在0任时意小位球置位的于速最率低及位绳置的,张并力具.
解 FT mg cos ma n
mg sin ma
FT mg cos mv2 / l
mm
1.图中A为定滑轮,B为动滑轮,三个物体的质量分
别 为 m1=200g , m2=100g , m3=50g , 滑 轮 及 绳 的 质 量 以及摩擦均忽略不计。求:
(1)每个物体的加速度;
(2)两根绳子的张力T1与T2。
A
T T 求a1:
a1 T1
a1
m1g (m2 m3 )g m1 m2 m3 a1 m1
直角坐标系:
F Fxi Fy j Fzk
a
axi
a
y
j
az
k
Fx max
Fy may Fz maz
Fx
max
m dvx dt
d2x m dt2
Fy ma y
m dvy dt
m
d2 dt
y
2
Fz
ma z
m dvz dt
(a) F=(m+M)g
(b) F>(m+M)g
F
(c) F=0
(d) F<(m+M)g
(d)
m M
如图所示,一只质量为m的猫,抓住一根竖直悬吊的 质量为M的直杆。当悬线突然断开时,猫沿杆竖直向 上爬,以保持它离天花板的高度不变。在此情况中, 杆具有的加速度应是下面的哪一个答案?
动力学与静力学的区别

动力学定义
动力学是研究物 体在力作用下的 运动规律和运动 状态的科学。
动力学的研究内 容包括:物体的 受力分析、运动 方程、运动学方 程、动力学方程 等。
动力学的研究方 法包括:理论分 析、实验研究、 数值模拟等。
动力学的应用领 域包括:机械工 程、航空航天、 汽车工业、生物 力学等。
动力学与静力学的 区别
汇报人:XX
目录
01 动 力 学 与 静 力 学 的 定 义 02 动 力 学 与 静 力 学 的 应 用 领 域 03 动 力 学 与 静 力 学 的 物 理 量 04 动 力 学 与 静 力 学 的 运 动 状 态 05 动 力 学 与 静 力 学 的 平 衡 状 态
1
机械工程:研究机械 系统的运动和动力传
递
汽车工程:研究汽车、 火车等交通工具的运
动和动力
航空航天工程:研究 飞行器、航天器等飞
行器的运动和动力
生物力学:研究生物 体的运动和动力,如 人体运动、动物运动
等
静力学应用领域
建筑工程:结构设计、施工、维护等 机械设计:机械零件、机构、系统的设计、分析等 航空航天:飞行器设计、发射、回收等 生物医学:人体骨骼、肌肉、关节等结构的分析与设计
3
动力学与静力学的物理量
动力学物理量
力:使物体产生加速度的物理量 质量:物体所含物质的多少 加速度:物体速度的变化率
动量:物体质量和速度的乘积
动能:物体由于其状态和位置所具有的能 量
势能:物体由于其位置和状态所具有的能 量
静力学物理量
力:静力学中研 究的主要物理量, 包括重力、弹力、 摩擦力等。
5
动力学与静力学的平衡状 态
动力学平衡状态
专题2 动力学的常见模型

项目 情境2
情境3
图示
关键能力 · 突破
滑块可能的运动情况
续表
①v0>v时,可能一直减速(条件:v≤ v02 2μgl ),也可能先 减速再匀速(条件: v02 2μgl <v<v0); ②v0<v时,可能一直加速(条件:v≥ v02 2μgl ),也可能先 加速再匀速(条件:v0<v< ) v02 2μgl
情境3
关键能力 · 突破
图示
滑块与传送带共速条件
若
v2 2g
≤l,滑块与传送带能共速
若
|
v2 v02 2g
|
≤l,滑块与传送带能共速
若
v02 2g
≤l且v0≥v,滑块与传送带能共速
关键能力 · 突破
例2 (多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始 终保持不变)顺时针运转。今将一小煤块(可视为质点)无初速度地轻放在A 端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕。已知煤块与 传送带间的动摩擦因数μ=0.4,重力加速度大小g取10 m/s2。则煤块从A运动 到B的过程中,下列说法正确的是 ( BD ) A.煤块从A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 s C.划痕长度是0.5 m D.划痕长度是2 m
关键能力 · 突破
审题关键 这里只有a球路径属于等时圆模型,b、c球如何跟等时圆模型建 立联系? 提示:b球路径比等时圆弦长要长,c球路径是直径的1/2
关键能力 · 突破
解析 由等时圆模型知,a球运动时间小于b球运动时间,a球运动时间和 沿过CM的直径的下落时间相等,所以从C点自由下落到M点的c球运动时间 最短,故C正确。
02 质点动力学答案

第二章 质点动力学答案1,【基础训练1 】、一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是(A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [ A ]解答:()()()()3/2,3/,)(00000a g a a a g a ma a m M g m M a a m mg T MaT Mg +=+∴-=++=-+=-=-2,【基础训练3】 图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮 轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) mg 21.(C) 2mg . (D) 3mg / 4. [ D ]解:mg −T +ma =ma‘,T =ma’,mg +mg/2=2ma ’.a ’=3g/4,T=3mg/4, 3,【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有(A) N =0. (B) 0 < N < F .(C) F < N <2F . (D) N > 2F . [ B ] 解:2F=(m 1+m 2)a,F+N=m 2a,2N=(-m 1+m 2)a=2F(-m 1+m 2)/ (m 1+m 2) 4,【自测1】、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ C ]解:适合用非惯性系做。
第八章 化学动力学(2)

r
H越m0 小;(4)分子有效碰撞直径越大。能使反应速率变大的条件是:
(A) (1)(2) ;
(B)
(3)(4) ;
(C) (2)(4) ;
(D)
(1)(3) 。
10.若两个同类的气相反应的活化焓值 r H相m 等,在400K时,两个反应的
活化熵
r
S
m(01)-
r
Sm(02)
=
10
J·mol-1,则这两个反应的速率之比:
(B) (D)
K pH2 pC2H4 K pC2H4 pH2
三、多选题:
1.按照化学反应速率的过渡状态理论,对于气相反应,下列说法不正确的是:
(A) 该理论不考虑分子的内部结构和分子运动状态 ;
(B) 反应过程中,反应分子先碰撞形成过渡态 ;
(C) 活化络合物与反应物之间很快达到平衡 ;
(D) 反应速率决定于活化络合物的分解速率 ;
(A) 总反应的反应物 ;
(B)
中间产物 ;
(C) 催化剂 ;
(D)
自由能 。
26.酶催化的主要缺点是:
(A) 选择性不高 ;
(B)
极易受杂质影响 ;
(C) 催化活性低 ;
(D)
对温度反应迟钝 。
27.在低于室温的温度下,在固体表面上的气体吸附一般是什么形式:
(A) 形成表面化合物 ;
电动力学复习题库02(修改)

三、简答题1. 电磁场理论赖以建立的重要实验及其重要意义。
2. 静电场能量公式12e W dV ρϕ=⎰、静磁场能量公式12m W J AdV =⋅⎰的适用条件。
3.静电场能量可以表示为12e W dV ρϕ=⎰,在非恒定情况下,场的总能量也能这样完全通过电荷或电流分布表示出来吗为什么4. 写出真空中Maxewll 方程组的微分形式和积分形式,并简述各个式子的物理意义。
5. 写出线性均匀各向同性介质中麦克斯韦方程微分形式和积分形式,其简述其物理意义。
6.电象法及其理论依据。
答:镜像法的理论基础(理论依据)是唯一性定理。
其实质是在所研究的场域外的适当地方,用实际上不存在的“像电荷”代替真实的导体上的感应电荷或介质中的极化电荷对场点的作用。
在代替的时候,必须保证原有的场方程、边界条件不变,而象电荷的大小以及所处的位置由Poisson 方程和边界条件决定。
7. 引入磁标势的条件和方法。
|答:在某区域内能够引入磁标势的条件是该区域内的任何回路都不被电流所链环,就是说该区域是没有自由电流分布的单连通区域。
若对于求解区域内的任何闭合回路,都有 则引入φm , 8. 真空中电磁场的能量密度和动量密度,并简述它们在真空中平面电磁波情况下分别与能流密度及动量流密度间的关系。
9. 真空中和均匀良导体中定态电磁波的一般形式及其两者的差别。
10. 比较库仑规范与洛伦兹规范。
11.$12.分别写出在洛仑兹规范和库仑规范下电磁场标势矢势所满足的波动方程,试比较它们的特点。
13. 写出推迟势,并解释其物理意义。
答:推迟势的物理意义:推迟势说明电荷产生的物理作用不能立刻传至场点, 而是在较晚的时刻才传到场点, 所推迟的时间r /c 正是电磁作用从源点x ’传至场点x 所需的时间, c 是电磁作用的传播速度。
14. 解释什么是电磁场的规范变换和规范不变性答:设ψ为任意时空函数,作变换ψ∇+='→A A A ,t∂∂-='→ψϕϕϕ /有B A A =⨯∇='⨯∇,E tAt A =∂∂--∇=∂'∂-'∇-ϕϕ,0d =⋅⎰Ll H 0=⨯∇H mH ϕ-∇=V rc r t t '-'=⎰d )/,(4),(0x J x Απμ即()ϕ'',A 与()ϕ,A 描述同一电磁场。
湖南农业大学生物化学04-酶学-02酶促反应动力学

(一)基本概念
失活(Inactivation) 使酶蛋白变性而引起酶活 力的丧失 变性剂 无 抑制(Inhibition) 酶的必需基团化学性质发 生改变,但酶没有变性,而导 致的酶活性的降低甚至丧失 有 选择性 抑制剂
抑制程度的表示方法: 不加抑制剂时的反应速率为v0,加抑制剂后的速率为vi 相对(残余)活力分数(a) 抑制分数(i) 指被抑制而失去活力的分数 a = vi / v0 i = 1 - a = 1 - vi / v0
二、底物浓度对酶反应速率的影响
(一)中间络合物学说
⊙
(二)酶促反应动力学方程式
⊙
Back
(一)中间络合物学说
1903年,Henri和Wurtz提出“酶底物中间络合物学说” 亦称 “中间产物学说”
E
+
S
k1 k2
ES
k3ELeabharlann +Pv Vmax
Henri用蔗糖酶水解蔗糖,得到双曲线
零级反应 混合级反应 一级反应 [S]
0.5 / 60 = K = 1/ 92000
766.7 S-1 Back
3、米氏常数的测定
基本原则:将米氏方程变化成相当于 y=ax+b的直线 方程,再用作图法求出Km。 双倒数作图法(Lineweaver-Burk法) 米氏方程的双倒数形式:
1 Km 1 1 — = —— . — + —— v Vmax [S] Vmax
不加抑制剂时的反应速率为v0加抑制剂后的速率为vi相对残余活力分数a抑制分数i指被抑制而失去活力的分数aviv0i1a1viv0二抑制作用的类型非专一性不可逆抑制作用irreversible酶的抑制作用专一性竞争性抑制competitive可逆抑制作用reversible非竞争性抑制noncompetitive反竞争性抑制uncompetitiveback可逆与不可逆抑制抑制剂与酶以非共价键结合而引起酶活力降低或丧失能用物理方法如透析超滤等除去抑制剂而使酶复活抑制作用是可逆的
物理化学动力学2的分章习题

物理化学动力学2的分章习题一、选择题1绝对反应速率理论的假设不包括()d(a)反应物分子在相撞时相互作用的势能就是分子间相对边线的函数(b)反应物分子与活化络合物分子之间存有着化学平衡(c)活化络合物的水解就是快速步骤(d)反应物分子的相对碰撞动能达到或超过某个值时才发生反应2按照绝对反应速度理论,实际的反应过程非常复杂,牵涉的问题很多,与其有关的以下观点中恰当的就是()c(a)反应分子组实际经历的途径中每个状态的能量都是最低的(b)势能二垒就是活化络合物分子在马鞍点的能量与反应物分子的平均值能量之差(c)反应分子组抵达马鞍点之后也可能将回到始态(d)活化络合物分子在马鞍点的能量最低3光化反应与黑暗反应的相同之处在于()a(a)反应都需要活化能(b)温度系数小(c)反应都向δg(恒温恒压,w'=0时)增大的方向展开(d)平衡常数需用通常的热力学函数排序4化学反应的过渡状态理论的要点是()b(a)反应物通过简单碰撞就变成产物。
(b)反应物首先必须构成活化络合物,反应速度依赖于活化络合物水解为产物的水解速度。
(c)在气体分子运动论的基础上提出来的。
(d)引入方位因子的概念,并认为它与熵变化有关5以下哪种观点不恰当()d(a)催化剂不发生改变反应热(b)催化剂不发生改变化学平衡(c)催化剂具备选择性(d)催化剂不参予化学反应6按照光化当量定律()c(a)在整个光化过程中,1个光子只能活化1个原子或分子(b)在光化反应的初级过程,1个光子活化1mol原子或分子(c)在光化反应初级过程,1个光子活化1个原子或分子(d)在光化反应初级过程,1个爱因斯坦的能量活化1个原子或分子7温度对光化反应速度的影响()d(a)与热反应大致相同(b)与热反应大不相同,温度升高,光化反应速度上升(c)与热反应大不相同,温度升高,光化反应速度维持不变(d)与热反应大不相同,温度的变化对光化反应速度的影响较小8两个h与m粒子同时磁圈,出现以下反应:h+h+m=h2(g)+m,此反应的活化能ea就是()a.大于零b.小于零c.等于零d.不能确定9化学反应的过渡状态理论认为()a.反应速率决定于活化络合物的生成速率b.反应速率决定于络合物分解为产物的分解速率c.用热力学方法可以记算出速率常数d.活化络合物和产物间可建立平衡10气体反应相撞理论的要点就是()a.全体分子可看作是刚球,一经碰撞便起反应b.在一定方向上发生了碰撞,才能引起反应c.分子迎面碰撞,便能引起反应d.一对反应分子具备足够多能量的相撞,就可以引发反应11在碰撞理论中,有效碰撞分数q为()a.q=exp(-ea/rt)b.q=exp(-ec/rt)c.q=exp(-εc/rt)d.q=pexp(-ea/rt)12按相撞理论,气相双分子反应的温度增高能够并使反应速率减少的主要原因就是()a.碰撞频率减小b.活化分子数减少c.碰撞数增加d.活化能降低13如有一反应活化能就是100kjmol-1,当反应温度由313k跌至353k,此反应速率常数约是原来的()a.77.8倍b.4.5倍c.2倍d.22617倍14根据过渡态理论,液相双分子反应之实验活化能与活化焓之间的关系为()b(a)(b)(c)(d)15设单原子气体a和b出现化合反应,即a(g)+b(g)=c(g),设立一维对应状态配分函数ft=108,一维旋转配分函数fr=10,按过渡态理论,在温度t时,反应的概率因子为()a(a)10-22(b)10-21(c)10-23(d)10-1316某一反应在一定条件下的均衡转化率为25%,当重新加入最合适的催化剂后,反应速率提升10倍,其均衡转化率将()c(a)大于25%(b)小于25%(c)不变(d)不确定17设某种基元反应在500k时的实验活化能为83.14kjmol-1,则此反应的阈能ec为()d(a)2.145kjmol-1(b)162.1kjmol-1(c)83.14kjmol-1(d)81.06kjmol-118有一叶唇柱溶液反应,根据原盐效应,当溶液总的离子强度增加时,反应速率常数值k将()c(a)变大(b)变小(c)不变(d)无确定关系19已知hi是光分解反应机理是则该反应的反应物消耗的量子效率为()b(a)1(b)2(c)4(d)10620在简单硬球碰撞理论中,有效碰撞的定义是(c)(a)互撞分子的总动能超过ec(b)互撞分子的相对动能超过ec(c)于品卿分子的相对平动能在连心线上的分量少于ec(d)互撞分子的内部动能超过ec21某双原子分子水解反应的阈能ec=83.68kjmol-1,则在300k时活化分子所占到的分数就是()d(a)3.719×1014(b)6.17×10-15(c)2.69×1011(d)2.69×10-1522.在碰撞理论中校正因子p小于1的主要因素是:()ba.反应体系不为理想的b.空间的电负性效应c.分子碰撞的激烈程度不够d.分子间的作用力23.对于气相基元反应,以下条件:(1)温度减少;(2)活化熵越正数;(3)活化焓越正数;(4)分子有效率相撞直径越大。
第02章 质点动力学习题

dt v0 = 3(m / s ), v 4 = 19(m / s)
1 1 2 2 根据动能定律,有: A = mv 4 − mv 0 = 176( J ) 2 2 dv = 6t − 8 或: a =
A=∫
( 2)
4
(1)
0
dt ( 2) Fdx = ∫ madx
(1)
= ∫ (6t − 8) d (3t − 4t 2 + t 3 ) = 176 ( J )
dv 解:(1) f = − kv = m , dt vm
2
∴ 得: v =
v 1 k ∫0 m dt = ∫v0 v 2 dv t
0
(2)∵ dx = vdt ∴
m + kv0t
∫
x
k dv dv dv 2 ∴− dx = = mv = − Kv , (3) f = m m v dt dx k − x v0 k 积分可得: x = ln , v = v0 e m m v
m kv0 得x = ln( dt 0 m + kv t 0
t
11
7
3.已知氢原子中电子的质量为 已知氢原子中电子的质量为9.11×10-31 kg,它绕原子核 已知氢原子中电子的质量为 × 它绕原子核 运动的平均半径为5.29×10-11 m,角速度为 ,角速度为4.13×1016 × 运动的平均半径为 × × rad/s,则它绕原子核运动的角动量为 1.05×10-34 kg·m2/s 。 , 分析:
dv dv dx 2 1) F = ma = m =m ⋅ = mkv = mk x dt dx dt
dx dx dx , dt = = 2)根据 v = dt v kx t2 x1 dx 1 x1 两边积分得:∆t = dt = ∫ = ln ∫t1 x0 kx k x0
02药 物 效 应 动 力

-logC
x
y
z
2)两药内在活 性相等时,效价 强度取决于亲和 力。
50
-logC pD2x pD2x pD2x
激动药与拮抗药的概念
• 激动药(agonist)为既有亲和力又有内 在活性的药物,它们能与受体结合并激 动受体而产生效应。可分为完全激动药 (full agonist)和部分激动药(partial agonist)。
• 拮抗药(antagonist)有较强的亲和力, 而无内在活性(α= 0)的药物。
竞争性拮抗药 (competitive antagonists)
• 当竞争性拮抗药的浓度逐渐增加时,激 动药量效曲线逐渐平行右移,但最大效 应不变。 • 竞争性拮抗药与受体的亲和力通常用 pA2表示,
• pA2值的大小反映竞争性拮抗药对相应激 动药的拮抗程度。 在实验系统中加入拮抗药后,若2倍浓度 的激动药所产生的效应恰好等于未加入拮 抗药时激动药引起的效应,则所加入拮抗 药的摩尔浓度(mol/L)的负对数称为pA2值。
累加量 效曲线
频数分 布曲线
E(%) 100
Emax
50
logC C
最大效应(效能) Maximal Effect
50%
效价强度 Potency 阈值
ED50
• 最小有效量(minimal effective dose)或最小有 效浓度(minimal effective concentration) 亦 称阈剂量或阈浓度(threshold dose or concentration)。 • 半数有效量(50% effective dose, ED50) 或半 数致死量(50% lethal dose, LD50)。
有机化学中动力学同位素效应

讨论
讨论
异头效应在有机化学中具有广泛的应用价值。首先,异头效应可以影响有机 化合物的稳定性,如季碳异头效应使得化合物更稳定。其次,异头效应可以用于 有机化合物的合成,如通过异头反应构建季碳中心或叔碳中心。此外,异头效应 还可以用于研究有机化合物的反应机理,如通过对比季碳和叔碳异头效应的反应 速率常数可以了解反应的立体化学因素。
二、过渡金属催化机理研究
2、优化催化剂设计:了解催化反应的机理后,我们可以根据这些知识设计出 更高效的催化剂。例如,我们可以通过调整催化剂的结构、组成等方式,以提高 催化剂的活性或选择性。
三、结论
三、结论
动力学同位素效应作为一种有效的研究工具,对于理解过渡金属催化反应的 机理具有重要作用。通过研究这种效应,我们可以更深入地了解催化反应的本质, 从而优化催化剂的设计和反应过程,提高催化剂的效率和产物的质量。
方法与技巧
3、模型构建:为了更好地理解动力学同位素效应的本质,需要建立数学模型 进行模拟和预测。这可以采用量子化学计算、分子动力学模拟等方法。
方法与技巧
4、理论分析:对于实验结果进行理论分析,可以揭示动力学同位素效应的内 在机制和影响因素,有助于深入理解这一现象的本质。
结论
结论
有机化学中的动力学同位素效应是一种重要的现象,对于理解有机化学反应 的机理、优化有机化合物的合成路线以及解决相关科学问题具有重要意义。本次 演示介绍了动力学同位素效应的基本概念、原理及其在有机化学中的应用现状和 未来展望,并讨论了相关的研究方法和技巧。随着科学技术的发展和新方法的不 断出现,动力学同位素效应的研究将进一步深入,为有机化学、环境科学、材料 科学等领域的发展提供更多有价值的成果。
一、动力学同位素效应概述
动力学习题02(1)

第十一章 化学动力学一、填空1. 某化合物与水反应时,该化合物初始浓度为13-⋅mol dm ,1h 后其浓度为0.83-⋅mol dm ,2h 后其浓度为0.63-⋅mol dm ,则此反应的级数为 ,此反应的反应速率系数k = 。
零级,0.0231h --⋅⋅mol dm ;速率为一定值,故为零级反应2. 质量数为 210的钚同位素进行β放射,经14天后,同位素活性降低6.85%。
此同位素的半衰期为 。
135.9天.此反应为一级反应,先求速率常数,进而可求出半衰期。
3. 质量作用定律适用于 。
基元反应4. 某反应, 无论反应物初始浓度为多少, 在相同时间和温度时, 反应物消耗的浓度为定值, 此反应是 。
零级反应5. 某反应速率常数k=0.0231s -1 dm 3 mol -1,其初始浓度为1mol dm-3,则其反应的半衰期为 。
43.29s6. 某反应的反应物反应了5/9所需的时间是它反应1/3所需时间的2倍,这个反应是 级反应。
1级7. 某反应的反应速率方程为cb a a a C C C k dt dC =-,则该反应的总级数为 级,若所有单位均选择国际单位,则a k 的单位是 。
一级,s -18. 在光化学初级过程,吸收一个光子能使 个分子活化。
1个9. 固体催化剂一般由 , 和 三部分组成。
催化剂,助催化剂,载体10. 光合作用时,叶绿素是该反应的 剂。
催化11. 波长为85nm 的光的1爱因斯坦为 。
1.407*106焦耳12. 溶液中的反应,通常可分为 控制反应和 控制反应。
反应,扩散13. 过渡态理论认为反应物首先形成 ,反应速率等于 。
活化络合物(过渡态),反应物分子通过过渡态的速率14.气相反应2522122N O NO O →+的反应机理如下: 12132523232232;;2k k k k N O NO NO NO NO NO O NO NO NO NO -++−−→+++−−→ 设3NO 和NO 处于稳态,则反应物25N O 的消耗速率25N O dc dt -= 。
大学物理02章试题库质点动力学

《大学物理》试题库管理系统内容第二章 质点动力学1 题号:02001 第02章 题型:选择题 难易程度:适中试题: 如题图所示,质量分别为m 和M 的A 、B 两物块叠放在一起,置于光滑水平面上.A 、B 间的静摩擦系数为s μ,滑动摩擦系数为k μ,今用一水平力F作用于A 块上,要使A 、B 不发生相对滑动,则应有( ).A.mg MMm F s+≤μ B.mg F s μ≤ C.g M m F s )(+≤μ D.mg MMm F k+≤μ 答案: A2 题号:02002 第02章 题型:选择题 难易程度:容易试题: 质量为20g 的子弹沿x 轴正方向以1s m 500-⋅ 的速率射入一木块后,与木块一起仍沿x 轴正方向以1s m 50-⋅的速率前进,在此过程中木块所受的冲量为( ).A.s N 9⋅B.s N 9⋅-C.s N 10⋅D.s N 10⋅- 答案: A3 题号:02003 第02章 题型:选择题 难易程度:适中试题: 一质量为10kg 的物体在力)SI ()40120(i t f+=作用下, 沿x 轴运动.0=t 时,其速度10s m 6-⋅=i v ,则s t 3=时,其速度为( ). A.1s m 72-⋅i B.1s m 66-⋅i C. 1s m 10-⋅i D.1s m 4-⋅i答案: A4 题号:02004 第02章 题型:选择题 难易程度:适中试题: 有一质点同时受到了三个处于同一平面上的力1f 、2f 和3f的作用.其中)SI (22,57,75321j t i f j t i f j t i f+=+-=-=,设0=t 时,质点的速度00=v ,则质点将( ).A.处于静止状态B.作加速运动C.作减速运动D.作匀速直线运动 答案: A5 题号:02005 第02章 题型:选择题 难易程度:容易试题: 一个不稳定的原子核 ,其质量为M ,开始时是静止的.当它分裂出一个质量为m 、速度为0v 的粒子后, 原子核的其余部分沿相反方向反冲,则反冲速度的大小为( ).A.0v m M m - B.0v M mC.0v mm M + D.0v M m m + 答案: A6 题号:02006 第02章 题型:选择题 难易程度:较难试题: 一长为l 、质量均匀的链条,放在光滑的水平桌面上.若使其长度的1/2悬于桌边下,由静止释放,任其自由滑动,则刚好链条全部离开桌面时的速率为( ).A.gl 321B.gl 2C.gl 3D.gl 22 答案: A7 题号:02007 第02章 题型:选择题 难易程度:较难试题: 一弹簧原长为0.5m, 劲度系数为k ,上端固定在天花板上,当下端悬挂一盘子时,其长度为0.6m ,然后在盘中放一物体,弹簧长度变为0.8m ,则盘中放入物体后,在弹簧伸长过程中弹性力做的功为( ).A.⎰-3.01.0kxdx B.⎰-8.06.0kxdx C. ⎰8.06.0kxdx D.⎰3.01.0kxdx答案: A8 题号:02008 第02章 题型:选择题 难易程度:较难 试题: 下列叙述中正确的是( ).A.若质点自静止开始,所受合力恒定,则质点一定作匀加速直线运动B.若质点所受合力的大小不变,则质点一定作匀加速直线运动C.若质点所受合力恒定,则质点一定作直线运动D.若质点所受合力的方向不变,则质点一定作直线运动 答案: A9 题号:02009 第02章 题型:选择题 难易程度:适中 试题: 下列叙述中正确的是( ).A.质点受到不为零的合力是质点运动状态发生变化的原因B.质点受到不为零的合力是质点运动的原因C.质点受到的静摩擦力总是与质点运动方向相反D.物体受到的静摩擦力的大小总是等于物体的质量与摩擦因数的乘积 答案: A10 题号:02010 第02章 题型:选择题 难易程度:容易试题: 质量为m 的质点沿x 轴方向运动,其运动方程为t A x ωcos =.式中A 、ω均为正的常数,t 为时间变量,则该质点所受的合外力F 为( ).A.x m F 2ω-=B.x m F 2ω=C.x F 2ω=D.x F 2ω-= 答案: A11 题号:02011 第02章 题型:选择题 难易程度:难 试题: 质量为kg 10的物体沿x 轴作直线运动,受一力F 作用,力随坐标x 变化的关系如图所示.若物体从坐标原点出发时的速率为11-⋅s m ,则物体运动到16m 处的速率为( ).A.13-⋅s mB.122-⋅s m C.14-⋅s m D.117-⋅s m答案: A12 题号:02012 第02章 题型:选择题 难易程度:适中试题: 质量为M 的木块静止在水平面上,一质量为m 的子弹水平地射入木块后又穿出木块,若不计木块与地面间的摩擦,则在子弹射穿木块的过程( ).A.若将子弹和木块视为一个系统,则系统的动量守恒B.若将子弹和木块视为一个系统,则系统的动量和机械能均守恒C.子弹的动量守恒D.若将子弹和木块视为一个系统,则系统的机械能守恒 答案: A13 题号:02013 第02章 题型:选择题 难易程度:适中 试题: 下列说法中错误的是( ).A.质点在始末位置的动量相等,表明动量一定守恒B.动量守恒是指运动过程中的动量时时(处处)都相等C.系统的内力无论为多大,只要合外力为零,则系统的动量守恒D.内力虽不影响系统的总动量,但可以在系统内部传递动量 答案: A14 题号:02014 第02章 题型:选择题 难易程度:适中试题: 质量为kg 10的物体在力40120+=t F (SI )作用下沿直线运动,0=t 时,106-⋅=s m v ,则s 3=t 时其速率为( ).A. 172-⋅s mB.1120-⋅s mC.1-⋅s 126mD.166-⋅s m 答案: A15 题号:02015 第02章 题型:选择题 难易程度:适中 试题: 如图所示,用水平力F 把木块压在竖直墙面上保持静止,当F 逐渐增大时,木块所受的摩擦力为( ).A.不为零但保持不变B.开始时随F 增大,达到某一最大值后,就保持不变C.随F 成正比地增大D.恒为零 答案: A16 题号:02016 第02章 题型:选择题 难易程度:适中试题: 如图所示,一轻绳跨过一个定滑轮,两端各系一个质量分别为1m 和2m 的重物,且21m m >,滑轮质量及一切摩擦均不计,此时重物的加速度为a .今用一竖直向下的恒力g m F 1=代替质量为1m 的重物,质量为2m 的重物的加速度为a ',则( ).A. a a >'B. a a <'C. a a ='D. 不能确定 答案: A17 题号:02017 第02章 题型:选择题 难易程度:较难试题: 跨过两个质量忽略不计的定滑轮的轻绳,一端挂重物1m ,另一端挂重物2m 和3m ,且321m m m +=,如图所示.当2m 和3m 绕着铅直轴旋转时,有( ).A.1m 与2m 和3m 保持平衡B.1m 下降C.1m 上升D.当2m 和3m 不旋转,而1m 在水平面上作圆周运动时,两边保持平衡 答案: A18 题号:02018 第02章 题型:选择题 难易程度:适中 试题: 三个质量相等的物体A 、B 、C 紧靠在一起,置于一光滑水平面上,如图所示.若A 、C 分别受到水平力1F 、2F(21F F >)的作用,则A 对B 的作用力大小为( ).A.213132F F +B.213132F F - C.213231F F - D.213231F F + 答案: A19 题号:02019 第02章 题型:选择题 难易程度:较难试题: 如图所示两个质量分别为A m 和B m 的物体A 、B ,一起在水平面上沿x 轴作匀减速直线运动,加速度的大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力的大小和方向分别为( ).A.a m B ,与x 轴正向相反B.a m B ,与x 轴正向相同C.g m B μ,与x 轴正向相反D.g m B μ,与x 轴正向相同 答案: A20 题号:02020 第02章 题型:选择题 难易程度:难3v试题: 质量为m 的物体,放在纬度为ϕ处的地面上,设地球质量为e M 、半径为R 、自转角速度为ω.若考虑到地球自转的影响,则该物体受到的重力近似为( ).A.ϕω222cos e e R m Rm M G- B.ϕωcos 2e R m C.ϕωcos 22e e R m R m M G + D.2Rm M G e 答案: A21 题号:02021 第02章 题型:选择题 难易程度:较难 试题: 如图所示,轻绳一端挂有一物体,另一端跨过定滑轮挂有一载人的梯子,且二者平衡.设滑轮的质量忽略不计,滑轮与轴承之间的摩擦忽略不计.今欲使滑轮对轴承的压力为零,则( ).A.人相对梯子应向下匀加速运动B.人相对梯子应向上匀加速运动C.人相对梯子应向下匀速运动D.人相对梯子应向上匀速运动 答案: A22 题号:02022 第02章 题型:选择题 难易程度:适中试题: 宇宙飞船关闭发动机返回地球的过程,可认为是仅在地球万有引力作用下运动.若用m 表示飞船的质量、e M 表示地球的质量,G 表示引力常数,则飞船从距地球中心1r 处下降到2r 处的过程中,动能的增量为( ).A.12r m M G r m M Ge e - B.21r mM G r m M G e e - C.2221r m M G r m M G e e - D.2122r mM G r m M G e e - 答案: A23 题号:02023 第02章 题型:选择题 难易程度:适中试题: 把一质量为m 、各边长均为2a 的匀质货箱,由如图所示的位置[I]翻转到位置[II],则人所做的功为( ).A.()mga 12- B.mga 2C.0D.mga 答案: A24 题号:02024 第02章 题型:选择题 难易程度:适中试题: 关于质点组内各质点之间相互作用的内力做功的问题,以下说法中正确的是( ).A.一对内力做功的代数和一般不为零,但不排除为零的情况B.一对内力做功的代数和一定不为零C.一对内力做功的代数和是否为零,取决于参考系的选择D.一对内力做功的代数和一定为零 答案: A25 题号:02025 第02章 题型:选择题 难易程度:较难试题: 质点P 与一固定的轻弹簧相连,并沿椭圆轨道运动,如图所示.已知椭圆的长、短半轴分别为a 、b ,弹簧原长为)(00b l a l >>,弹簧的劲度系数为k ,则质点从A 运动到B 的过程中,弹性力所做的功为( ).A.()()20202121b l k l a k ---B.()()20202121l a k b l k ---C.()221b a k - D.222121kb ka - 答案: A26 题号:02026 第02章 题型:选择题 难易程度:难试题: 一劲度系数为k 的弹簧振子,一端固定,并置于水平面上,弹簧的伸长量为l ,如图所示.若选距离弹簧原长时自由端O 点的距离为2l的O '点为弹性势能零点,则弹簧的弹性势能为( ).A.283klB.221kl C.241kl D. 281kl 答案: A27 题号:02027 第02章 题型:选择题 难易程度:较难试题: 对于质点组的说法有(1)质点组总动量的改变与内力无关;(2)质点组总动能的改变与内力无关;(3)质点组总机械能的改变与保守内力无关;(4)质点组总势能的改变与保守内力无关.下列判断正确的是( ).A.只有(1)和(3)正确B.只有(2)和(3)正确C.只有(1)和(2)正确D.只有(1)和(4)正确 答案: A28 题号:02028 第02章 题型:选择题 难易程度:适中试题: 一斜劈置于光滑水平面上,如图所示.一小球沿水平方向射来,与斜面作完全弹性碰撞后,沿竖直方向弹起.若把小球与斜面看作一个系统,则在碰撞过程中( ).A.沿水平方向动量守恒B.动量守恒是否无法判断C.沿竖直方向动量守恒D.动量守恒 答案: A29 题号:02029 第02章 题型:选择题 难易程度:较难试题: 质点在恒力F作用下由静止开始作直线运动,如图所示.已知在时间1t ∆内,速率由0增加到v ;在时间2t ∆内,速率由v 增加到2v .设该力在1t ∆内,冲量大小为1I ,所做的功为1W ;在2t ∆内,冲量大小为2I ,所做的功为2W .则( ).A.21W W <,21I I =B.21W W >,21I I =C.21W W =,21I I <D.21W W =,21I I > 答案: A30 题号:02030 第02章 题型:选择题 难易程度:较难 试题: 一轻弹簧竖直固定在水平桌面上,如图所示.弹簧正上方离桌面高度为h 的P 点的一小球以初速度为0v 竖直下落,小球与弹簧碰撞后又跳回到P 点时,速度大小仍为0v .以小球为系统,则小球从P 点落下到又跳回到P 点的整个过程中,系统的( ).A.动能不守恒,动量不守恒B.动能守恒,动量守恒C.机械能守恒,动量守恒D.机械能不守恒,动量不守恒 答案: A31 题号:02031 第02章 题型:选择题 难易程度:较难试题: 质量分别为1m 和2m 的两个小球,连接在劲度系数为k 的轻弹簧两端,并置于光滑的水平面上,如图所示.今以等值反向的水平力1F 和2F分别作用于两个小球上,若把两个小球和弹簧看作一个系统,则系统在运动过程中( ).A.动量守恒,机械能不守恒B.动量不守恒,机械能不守恒 C 动能不守恒,机械能守恒 D.动能守恒,机械能守恒 答案: A32 题号:02032 第02章 题型:选择题 难易程度:适中试题: 力)(12SI i t F=作用在质量kg 2=m 的物体上,使物体由静止开始运动,则在3s 末的动量应为( ).A.154-⋅⋅s m kg iB.154-⋅⋅-s m kg iC.127-⋅⋅s m kg i D.127-⋅⋅-s m kg i1m 2m答案: A33 题号:02033 第02章 题型:选择题 难易程度:适中试题: 力)(12SI i t F=作用在质量kg 2=m 的物体上,使物体由静止开始运动,则在3s 末的速度应为( ).A.127-⋅s m iB.127-⋅-s m iC.154-⋅s m i D.154-⋅-s m i答案: A34 题号:02034 第02章 题型:选择题 难易程度:较难试题: A 、B 两木块质量分别为A m 和B m ,且A B m m 2=,两者用一轻弹簧连接后静止于光滑水平面上,如图所示.若用外力将两木块压紧而使弹簧压缩,然后将外力撤去,则此后两木块动能之比,即=kB kA E E /( ).A. 2B. 2/1C. 2D. 2/2 答案: A35 题号:02035 第02章 题型:选择题 难易程度:适中试题: 力)(32SI i x F =作用在质量kg 1=m 的物体上,使物体由静止开始沿x 轴运动,则从m 0=x 运动到m 2=x 的过程中,力F所做的功为( ).A.J 8B.J 12C.J 16D.24J 答案: A36 题号:02036 第02章 题型:选择题 难易程度:适中试题: 力)(32SI i x F =作用在质量kg 1=m 的物体上,使物体由静止开始沿x 轴运动,则从m 0=x 运动到m 2=x 的过程时,物体的速度为( ).A. 14-⋅s m iB. 14-⋅-s m iC. 18-⋅s m i D. 18-⋅-s m i答案: A37 题号:02037 第02章 题型:选择题 难易程度:较难试题: 对功的理解有(1)保守力做正功时,系统相应的势能增加;(2)质点运动经一闭和回路回到起点,保守力对质点做的功为零;(3)作用力与反作用力大小相等、方向相反,所以两者所做功的代数和必为零.关于上述叙述的下列判断中正确的是( ).A.只有(2)正确B.只有(1)和(2)正确C.只有(1)和(3)正确D.只有(2)和(3)正确 答案: A38 题号:02038 第02章 题型:选择题 难易程度:难 试题: 一质点在外力作用下运动时,下列说法中正确的是( ).A.外力的冲量为零时,外力做的功一定为零B.外力做的功为零时,外力的冲量一定为零C.质点的动量改变时,质点的动能一定改变D.质点的动能不变时,质点的动量一定不变 答案: A39 题号:02039 第02章 题型:选择题 难易程度:较难试题: 质量为kg 5.0=m 的质点,在XOY 坐标平面内运动,国际单位制(SI )中其运动方程为()()j t i t t r25.05)(+=,从s 2=t 到s 4=t 这段时间内,外力对质点做的功为( ).A.J 3B.J 3-C.J 5.1D.J 5.1- 答案: A40 题号:02040 第02章 题型:选择题 难易程度:较难试题: 质量为kg 5.0=m 的质点,在XOY 坐标平面内运动,国际单位制(SI )中其运动方程为()()j t i t t r 2505.)(+=,从s 2=t 到s 4=t 这段时间内,外力的冲量为( ).A.s N ⋅j 1B.s N ⋅-j 1C.s N ⋅j 2D.s N 2⋅-j答案: A41 题号:02041 第02章 题型:选择题 难易程度:较难试题: 如图所示,在光滑平面上有一个运动物体P ,在P 的正前方有一个连有弹簧和挡板M 的静止物体Q ,弹簧和挡板M 的质量均不计,P 和Q 的质量相等,物体P 与Q 碰撞后停止,Q 以碰撞前P 的速度运动,在此碰撞过程中,弹簧压缩量最大的时刻为( ).A.P 与Q 速度相等时B.Q 正好开始运动时C.P 的速度正好为零时D.Q 正好达到原来P 的速度时 答案: A42 题号:02042 第02章 题型:选择题 难易程度:较难试题: 如图所示,1F 、2F等大反向,同时作用与静止在光滑平面上的A 、B 两物体上,已知B A M M >,经过相同的时间后撤去两力,以后两物体相碰撞而粘在一起,这时A 、B 将( ).A.停止运动B.仍运动但方向不能确定C.向右运动D.向左运动 答案: A43 题号:02043 第02章 题型:选择题 难易程度:难试题: 一个力作用在A 物体上,在t ∆时间内,A 物体的速度增量为16-⋅s m ;而这个力作用在B 物体上,在t ∆时间内,B 物体的速度增量为19-⋅s m ;若把A 、B 两物体固定在一起,再用此力作用t ∆的时间,则A 、B 整体的速度增量为( ).A.16.3-⋅s mB.10.3-⋅s mC.128.0-⋅s mD.115-⋅s m 答案: A44 题号:02044 第02章 题型:选择题 难易程度:适中试题: 如图所示为一圆锥摆,摆球在一水平面内作速率为v 的圆周运动.细悬线长为l ,与竖直方向夹角为θ,线的张力为T ,小球的质量为m ,若忽略空气的阻力,则下述结论中正确的是( ).A.mg T =θcosB.l v m T 2=C.lv m T 2sin =θD.小球动量不变 答案: A45 题号:02045 第02章 题型:选择题 难易程度:容易 试题: 答案:46 题号:02046 第02章 题型:填空题 难易程度:较难试题: 以牛顿运动定律为基础,研究物体运动状态发生改变时所遵守的规律的学科称为 . 答案: 动力学47 题号:02047 第02章 题型:填空题 难易程度:较难试题: 在牛顿第二运动定律a m F 中,F 是物体所受的合外力,但a m不是力,而是力的 . 答案: 作用效果48 题号:02048 第02章 题型:填空题 难易程度:难 试题: 力对物体的瞬时作用效果说明,给物体施一瞬时力时,物体将产生一 . 答案: 瞬时加速度49 题号:02049 第02章 题型:填空题 难易程度:较难 试题: 牛顿运动三定律是牛顿在经典的范围内总结出来的,所以它的适用条件为_________.答案: 相对于惯性参考系做低速运动的宏观质点50 题号:02050 第02章 题型:填空题 难易程度:适中 试题: 冲量是描述作用在物体上的力对 的持续作用效果. 答案: 时间51 题号:02051 第02章 题型:填空题 难易程度:适中 试题: 功是描述作用在物体上的力对 的持续作用效果. 答案: 空间试题: 系统的总动量随时间的变化率等于该系统所受的合外力,内力对系统的总动量却没有影响,那么内力在系统中所起的作用是__________________.答案: 传递动量53 题号:02053 第02章题型:填空题难易程度:容易试题: 系统动量守恒的条件是.答案: 系统所受的合外力为零54 题号:02054 第02章题型:填空题难易程度:较难试题: 在使用系统动量守恒定律时,系统中各个物体的速度必须是相对于.答案: 同一惯性参照系55 题号:02055 第02章题型:填空题难易程度:适中试题:是能量转换的量度,它是一个过程量.答案: 功56 题号:02056 第02章题型:填空题难易程度:适中试题:描述了能量从一种形式转换为另一种形式的快慢.答案: 功率57 题号:02057 第02章题型:填空题难易程度:较难试题: 系统内质点之间相互作用的内力不做功的条件是.答案: 质点之间没有相对位移58 题号:02058 第02章题型:填空题难易程度:适中试题: 做功与路经无关的力称为.答案: 保守力59 题号:02059 第02章题型:填空题难易程度:适中试题: 保守力做功所改变的能量称为.答案: 势能试题: 万有引力势能的表达式为rMmGE p -=引力,由于势能是一相对量,其值与参考点的选择有关,万有引力势能的零势能参考点选在 . 答案: 无穷远处61 题号:02061 第02章 题型:填空题 难易程度:适中试题: 所有外力功与所有非保守内力功的代数和等于质点组机械能的增量,把此内容称为________________. 答案: 功能原理62 题号:02062 第02章 题型:填空题 难易程度:适中 试题: 若一个系统仅受保守力的作用,则该系统的 . 答案: 机械能守恒63 题号:02063 第02章 题型:填空题 难易程度:难试题: 质量为0.25kg 的质点,受力)SI (i t F =的作用,式中t 为时间.0=t 时,该质点以10s m 2-⋅=j v的速度通过坐标原点,则该质点任意时刻的位置矢量是 . 答案: j t i t r2323+=64 题号:02064 第02章 题型:填空题 难易程度:较难试题: 一质量为5kg 的质点,在平面上运动,其运动方程为)SI (362j t i r -=,则物体所受合外力f为 .答案: N j30-65 题号:02065 第02章 题型:填空题 难易程度:适中试题: 一物体质量为10kg ,受到方向不变的力F =30+40t (SI) 的作用,在开始的两秒内,此力的冲量大小等于 . 答案: s N ⋅14066 题号:02066 第02章 题型:填空题 难易程度:较难试题: 一物体质量为10kg ,受到方向不变的力F =30+40t (SI) 的作用,,若物体的初速度大小为1s m 10-⋅, 方向与F 同向, 则在2s 末物体速度的大小等于 . 答案: 1s m 24-⋅试题: 粒子B 的质量是粒子A 质量的4倍,开始时粒子A 的速度为()1043-⋅+=s m j i v A ,粒子B 的速度为()1072-⋅-=s m j i v B ;在无外力作用的情况下两者发生碰撞,碰撞后粒子A 的速度为()147-⋅-=s m j i v A,则碰撞后粒子B 的速度为 .答案: ()105-⋅-=s m j i v A68 题号:02068 第02章 题型:填空题 难易程度:适中试题: 若物体在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力的大小为x f 23+=(SI ),则物体开始运动的3m 内,合力所做的功为 . 答案: 18J69 题号:02069 第02章 题型:填空题 难易程度:较难试题: 质量为1kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力的大小为x f 23+=(SI ),则物体开始运动到m 3=x 处时,物体的运动速率为 .答案: 16-⋅s m70 题号:02070 第02章 题型:填空题 难易程度:容易试题: 质量为m 的质点,在变力()kt f f -=10(其中0f 和k 均为常量)作用下沿x 轴作直线运动,则质点运动的微分方程为 . 答案: ()kt f dtdvm-=10 71 题号:02071 第02章 题型:填空题 难易程度:适中试题: 质量为m 的质点,在变力()kt f f -=10(其中0f 和k 均为常量)作用下沿x 轴作直线运动,若0=t 时,速度为0v ,且力的方向与初速度的方向一致,则质点速度随时间变化的规律为 . 答案: ⎪⎭⎫ ⎝⎛-+=2021kt t m f v v 72 题号:02072 第02章 题型:填空题 难易程度:难试题: 质量为m 的质点,在变力()kt f f -=10(其中0f 和k 均为常量)作用下沿x 轴作直线运动,若0=t 时,质点位置为00=x ,速度为0v ,且力的方向与初速度的方向一致,则质点的运动方程为 . 答案: ⎪⎭⎫ ⎝⎛-+=3200312kt t m f t v x 73 题号:02073 第02章 题型:填空题 难易程度:适中试题: 在光滑的水平桌面上,有一自然长度为0l 、劲度系数为k 的轻弹簧,一端固定,另一端系一质量为m 的质点.若质点在桌面上以角速度ω绕固定端作匀速圆周运动,则该圆周的半径为 . 答案: 2ωm k kl R -=74 题号:02074 第02章 题型:填空题 难易程度:较难试题: 在光滑的水平桌面上,有一自然长度为0l 、劲度系数为k 的轻弹簧,一端固定,另一端系一质量为m 的质点.若质点在桌面上以角速度ω绕固定端作匀速圆周运动,则弹簧作用于质点的拉力 .答案: 220ωωm k m kl f -= 75 题号:02075 第02章 题型:填空题 难易程度:适中试题: 质量为m 的小圆环,套在位于竖直平面内半径为R 的光滑大圆环上,如图所示.若大圆环绕通过其中心的竖直轴以恒定角速度ω转动,而小圆环相对于大圆环静止,则大圆环作用与小圆环的力的大小为 . 答案: R m N 2ω=76 题号:02076 第02章 题型:填空题 难易程度:较难 试题: 质量为m 的小圆环,套在位于竖直平面内半径为R 的光滑大圆环上,如图所示.若大圆环绕通过其中心的竖直轴以恒定角速度ω转动,而小圆环相对于大圆环静止,则小圆环相对静止时的位置角为 . 答案: Rg2arccosωθ=77 题号:02077 第02章 题型:填空题 难易程度:较难试题: 质量为m 、长度为l 的匀质柔软链条,挂在光滑水平细杆上,若链条因受扰动而滑下,则当链条一端刚脱离细杆的瞬时,链条的速度为 . 答案:2gl 78 题号:02078 第02章 题型:填空题 难易程度:较难 试题: 如图所示,劲度系数为k 、原长为0l 的轻弹簧,一端固定于O 点,另一端系一质量为m 的物体,现将弹簧置于水平位置并保持原长,然后无初速释放.若物体在竖直面内摆动至最低位置时,弹簧伸长量为原长的n1,则此时物体速度的大小为 . 答案:()⎥⎦⎤⎢⎣⎡-+nm kl g n nl 0012 79 题号:02079 第02章 题型:填空题 难易程度:适中 试题: 质量为m 的质点,自A 点无初速的沿图示轨道滑到B 点而停止.图中1h 与2h 分别表示A 、B 两点离水平面的高度,则质点在滑动的过程中,摩擦力所做的功为 . 答案: ()21h h mg --80 题号:02080 第02章 题型:填空题 难易程度:适中试题: 若质点受到合力N i t f6=的作用,沿Ox 轴作直线运动,则从0=t 到s 3=t 这段时间内,合力f的冲量为 .答案: s N ⋅i2781 题号:02081 第02章 题型:填空题 难易程度:较难试题: 质量为kg 10=m 的质点,受到合力N i t f8=的作用,沿Ox 轴作直线运动,若0=t 时00=v ,则质点从0=t 运动到s 3=t 时,质点的速度为 .答案: 1s m -⋅i6.382 题号:02082 第02章 题型:填空题 难易程度:适中试题: 质量为m 的小球,以水平速度v与竖直放置的钢板发生碰撞后,以同样的速度反向弹回.若选水平向右为x 轴,则在碰撞过程中,钢板受到的冲量为 . 答案: i mv283 题号:02083 第02章 题型:填空题 难易程度:适中试题: 质量为kg 0.1=m 的质点,以速度12cos 32sin 3-⋅⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=s m j t i t v ππ运动,该质点在从0=t 到s 4=t 这段时间内所受到的合力的冲量大小为 .答案: 084 题号:02084 第02章 题型:填空题 难易程度:较难 试题: 质量为kg 0.1=m 的质点,以速度12cos 32sin 3-⋅⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-=s m j t i t v ππ运动,该质点在从s 1=t 到s 2=t 这一运动过程中,动量增量的大小为 . 答案: s N ⋅2385 题号:02085 第02章 题型:填空题 难易程度:适中 试题: 质量为kg 50=m 的物体,静止在光滑的水平桌面上,今有一水平力f作用在物体上,力f的大小随时间变化的规律如图所示.在s 60=t 的瞬时,物体的速度大小为 .答案: 1s m -⋅686 题号:02086 第02章 题型:计算题 难易程度:适中试题: 一个滑轮组如图所示,其中A 为定滑轮.一根不能伸长的绳子绕过两个滑轮,上端固定于梁上,下端挂一重物,其质量为kg m 5.11=;动滑轮B 的轴上悬挂着另一重物,其质量为kg m 22=,滑轮的质量、轴的摩擦及绳的质量均忽略不计.求:(1)两重物的加速度和绳子中的张力.(2)定滑轮A 的固定轴上受到的压力.答案: 分别就两重物1m 和2m (2m 和动滑轮连结在一起)进行分析.设其加速度分别为1a 和2a,它们受力的情况如图所示.由于滑轮和绳的质量以及轴上的摩擦均忽略不计,所以绳子中各处的张力相等,设其为T.f(1)分别对1m 和2m 应用牛顿第二运动定律,得竖直方向的分量表达式为⎩⎨⎧=-=-22222111112::a m g m T m a m T g m m 对对 在绳子不伸长的条件下,两重物的加速度应有下列关系212a a =(因为212s s =,所以212s s =)而张力的关系式为T T T ==21联立以上四个方程可以得出121211s m 45.2422-⋅=+-=g m m m m a ,121212s m 23.142-⋅=+-=g m m m m a ,N 0.11432121=+=g m m m m T(2)滑轮A 的受力情况如图所示,其中N为固定轴对滑轮的作用力.由于滑轮的质量忽略不计,所以对它应用牛顿第二运动定律,得021=-'+'N T T而 T T T ='='21 因此,得 N 1.224622121=+==g m m m m T N再根据牛顿第三运动定律可得轴所受的压力为 N 1.22=='N N 其方向向下.87 题号:02087 第02章 题型:计算题 难易程度:较难1m 11a2G2T2T m B2aN1T '2T 'A试题: 一个可以水平运动的斜面,倾角为α.斜面上放一物体,质量为m ,物体与斜面间的静摩擦系数为s μ,斜面与水平面之间无摩擦.如果要使物体在斜面上保持静止,斜面的水平加速度如何?答案: 认定斜面上的物体m 为研究对象,由于它在斜面上保持静止,因而具有和斜面相同的加速度a.可以直观地看出,如果斜面的加速度太小,则物体将向下滑;如果斜面的加速度太大,则物体将向上滑.先假定物体在斜面上,但有向下滑的趋势,它的受力情况如图所示,静摩擦力sf沿斜面向上.选直角坐标系如图所示,则对物体m 由牛顿第二运动定律,得⎩⎨⎧=-+-=-0cos sin :)(sin cos :mg N f y a m N f x s s αααα因为 N f s s μ≤ 联立以上三个方程,解得 g a s s αμααμαsin cos cos sin +-≥再假定物体在斜面上有向上滑的趋势,它的受力情况如图所示,静摩擦力s f沿斜面向下.选直角坐标系如图所示,则对物体m 由牛顿第二运动定律,得 ⎩⎨⎧=-+--=--0cos sin :)(sin cos :mg N f y a m N f x s s αααα又因为 N f s s μ≤ 联立以上三个方程,解得g a s s αμααμαsin cos cos sin -+≤把以上两个解联立起来可得出:要使物体在斜面上静止,斜面的水平加速度应满足(a(b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义坐标,则有
三、静动法-原理的应用
静动法Method of stato-dynamics
用虚位移原理解决静力平衡问题的方法 或用动力学理论解决静力学问题的方法
应用:1不考虑反力, 解题方便. 非理想约束, 将摩擦力视为主动力. 2解决复杂机构或结构的静力平衡问题. 在弹性力学、结构力学 中应用广泛. 3确定平衡条件(平衡位置、主动力关系)e.g.14-2,3 4求反力解除对应约束, 代之以反力, 视为主动力e.g.14-4 e.g.14-5 5解题步骤: ①取研究对象 ②分析:画清主动力(含解除约束的反力) 表述虚位移关系(图示)或广义力 ③写出虚功方程(其数目=自由度数),求解
例14-6 汽门系统.3OA=OB.求图示平衡位置P和Q间的关系. δrC 解: 系统: AE瞬时平动, δxB=3δxA= 3δxE
BC平面运动
δxB B O δxA A
速度投影定理
δ x B = δ rC
给各质点一组虚位移δri
*3.广义力表示的虚位移原理
广义坐标表示虚位移, 相互独立, 方程表达简捷.不必建立虚位移间关系 虚位移可由广义坐标表示
v v n v k k k n v ∂ri v v ∂ri ∑ Fi ⋅ δ ri = ∑ Fi ⋅ ∑ ∂q δq j = ∑ ∑ Fi ⋅ ∂q δq j = ∑ Q j δq j = 0 j =1 j =1 i =1 i =1 i =1 j =1 j j 式中 v n v n 广义力Generalized forces ∂ri ∂WFi Q j = ∑ Fi ⋅ =∑ 与广义坐标qj相对应, 虚位移为线位 ∂q j i =1 ∂q j i =1
∑
∑
∑
三虚位移相互独立,则上式欲成立,须有
∑X =0, ∑Y =0,
v ∑mO(F) =0
即,虚位移原理与静力学平衡方程是等效的 虚位移方程实际是个方程组,独立方程的个数等于质点系的自由 度数或广义坐标数.
例14-2 椭圆轨机构,摩擦与杆重不计.求平衡时P和Q关系. y 解: 系统:I为AB的速度瞬心,由瞬心法 P δxB = δφ lsinφ, δyA = δφ lcosφ 则 A I δxB = δyA tanφ l 注:确定虚位移间关系的方法是多样的, δyA 此处,还可如P431;也可通过建立A,B O φ Q B 的运动方程,变分而得。请大家自行练习 δxB x 虚功方程 − QδxB + Pδy A = 0 代入分析结果,解得
虚功方程或静力学普遍方程 Equation of virtual work or δWF = ∑ ( Xδx + Yδy + Zδz) = 0General equation of statics ∑ 第二牛顿定律 v v v v v 2.证明 反证法设质点系不平衡 ∑ ( F + N ) ⋅ δr = ∑ ma ⋅ δr
其位置., 则约束方 程写为 xO = 0, yO
2 2 2 = 0, xA + y A = r 2 , (xB − xA ) 2 + y A = l 2 , yB = 0
xi = xi (q1, q2 ,L, qk ), yi = yi (q1, q2 ,L, qk ), zi = zi (q1, q2 ,L, qk )
区别于元功 任何虚位移的过程中反力虚 功和等于零的约束,记为
静力学中所介绍的凡没有摩擦的约束都属于这类约束
§14-2 虚位移原理 14一、虚位移原理
Principle of virtual 1.原理 理想约束的质点系平衡⇌所有主动力 displacement or 某位置的任何虚位移上虚功和等于零 Principle of virtual work
or
v v ∑N ⋅δr = 0
v v ∑δWF = ∑ F ⋅ δr = 0
v v v v F ⋅ δr = ∑ ma ⋅ δr > 0 与条件矛盾 条件成立, 必 ∑
各质点 平衡
质点系 平衡
v v Fi + Ni = 0
平衡, 充分
v v v v v v v v v ∑ ( F + N ) ⋅ δr = ∑ F ⋅ δr + ∑ N ⋅ δr = ∑ F ⋅ δr = 0 条件必要
Chap.15 动力学普遍方程
§15-1 动力学普遍方程 1515§15-2 第二类拉格朗日方程
Chap.14 虚位移原理
静力学用平衡方程解决平衡问题, 对有些复杂系统, 常需求解许多反力, 繁琐. 虚位移原理求解用功的概念, 方程不含理想反力, 未知量减少, 求解简捷. 例欲求曲柄连杆机构中,曲柄上力偶M 与滑块上力P之间的平衡关系. 静力学 至少需2研究对象和解2平衡方程 A 整体:∑MO=0 →M=f(P) r δφ l B:1方程→NB; M 虚位移原理 1研究对象和解1方程即可 O 由速度投影定理 φ α B P v cos(90° − ϕ − α ) δsB = vB dt = A dt cos α δsB & = rϕdt (sin ϕ + cos ϕ tan α ) 由虚位移原理,有Pδs B − Mδϕ = 0 r cos ϕ sin ϕ = rδϕ 1 + r cos ϕ sin ϕ M = rP1 + l 2 − r 2 sin 2 ϕ 2 2 2 l −r sin ϕ
x φ a
M1(x1,y1) (x2,y2) b M2 Q yP1 ψ δy1 = −a sinϕδϕ 虚位移 δx2 = a cosϕδϕ + b cosψδψ, δy2 = −a sinϕδϕ − b sinψδψ P2 虚功方程 Qδx 2 + P2δy 2 + P δy1 = 0 代入分析结果,得 1 (Qa cosϕ − P2 a sin ϕ − P1a sin ϕ )δϕ + (Qb cosψ − P2 b sinψ )δψ = 0 广义力表示的虚位移原理
Dynamics II Index
Chap.14 虚位移原理
§14-1虚位移原理的有关概念 14§14-2虚位移原理 14静动法的应用 *§14-3 保守系统平衡的稳定性 14-
Chap.16 碰 撞
§16-1 碰撞与碰撞力 16§16-2 对心正碰撞 16恢复系数与能量损失 §16-3 转动刚体的碰撞 16撞击中心 §16-4 平面运动刚体 16的碰撞
Qa cos ϕ − P2 a sin ϕ − P1a sin ϕ = 0, Q tan ϕ = , 解得 P1 + P2 Qb cosψ − P2 b sinψ = 0 Q tan ψ = P2
y1 = a cos ϕ x2 = a sin ϕ + b sinψ , y2 = a cos ϕ + b cosψ
P F E C θ θ B
→ δy F = 3l cosθδθ D δxB = −2l sin θδθ
虚功方程
− X BδxB − Pδy F = 0 A
代入分析结果,解得
3 XB = P 2 tan θ
e.x.14-3,7,10(1) e.x.14-3,7,10(1) 14 例14-5 双锤摆, 摆锤M1与M2重分别为P1与P2, M2上加一水平 力Q以维持系统平衡.不计杆重. 求角φ及ψ. 解: 系统:M1与M24坐标表示系统位置, 2杆长不 O 变的约束条件,2自由度,取φ及ψ为广
P = Q tan ϕ
例14-3 曲柄连杆机构 (见21片)
例14-4 图示各杆均光滑铰接, AC=CE=BC=CD=DF=FE=l, 在F点作用有铅垂力P, 求支座B的水平约束反力XB. 解: 系统:
Q yF = 3l sinθ , xB = 2l cosθ
y
P F δyF E C θ θ B δxB XB A x D
n
移,为力; 虚位移为角位移, 为力偶
广义坐标相互独立, 广义虚位移任意, 上式成立, 须有
原理
Qj = 0,
( j = 1,2, L , k )
质点系平衡条件:所有广义力等于零
讨论 一个方程组,方程个数=自由度数 应用关键是广义力的计算
例14-1 试用虚位移原理推导刚体上平面力系的平衡方程. F2 y F1 虚位移=随基点O平动的虚位移分量 解:刚体 +绕基点O转动的虚位移 δy x v O δx δϕ ∑ mO ( F ) 虚功 δx∑ X + δy ∑ Y , δφ Fn v 虚位移原理 δx X + δy Y + δϕ mO ( F ) = 0
2
不含坐标导数或经积分可之消除的约束 xA − xA0 = r(ϕ −ϕ0) x + y = l
几何约束方程
2.自由度与广义坐标的概念 自由度Degree of freedom 可以确定一个质点系空间位置的独立坐标数目 n个质点的自由质点系位置可由3n个相互独立坐标确定 其为受s个约束的非自由质点系 k=3n-s个独立坐标 例曲柄连杆机构若简化为 y A 其余坐标可由s个约束条件求得 O,A,B三个质点构成的质 l 系统为(6-5=)1自由度 M r 点系, 可用六个坐标和 O φ α 五个约束方程表示 B P x 广义坐标Generalized coordinates 表示质点系位置的独立参变量 意义 质点和约束数目较多而自由度数较少质点系, 适当选择k个独 立参变量比用3n个直角坐标和s个约束方程表示位置要方便 质点系各质点直角坐标可由广义坐标表示 (i = 1,2,L, n)
该原理→用动力学理论研究静力学问题, 对应动静法不妨称之为静动法 另外,结合达朗伯原理还可解决非自由质点系动力学问题
§14-1虚位移原理的有关概念 141.约束的概念 约束Constraint 限制物体运动的各种条件 静力学仅强调限制“作用” 约束方程Constraint equation 约束的数学表达式 几何约束Geometric constraint 对于物体运动几何位置的限制条件 运动约束Kinematic constraint 限制物体运动的运动学条件 非定常约束或不稳定约束Un-constant y A O x constraint or Unstable constraint r x l 约束条件随时间变化的约束,否则称为 定常 & & xA = rϕ(纯滚) 约束 定常约束或稳定约束Constant constraint or Stable constraint 运动约束方程 v y yA = r 完整约束Integrated constraint 约束方程 几何约束方程 2 2 2 非完整约束Un-integrated constraint 柔绳 x + y2 = (l0 − vt)2 单面约束Single-sided constraint 约束方程为不等式 非定常约束 双面约束Two-sided constraint 约束方程为等式 细刚杆 x2 + y2 ≤ l 2 本章仅限于研究定常双面几何约束情况