第四章 二元关系和函数
第四章 二元关系-4th-zhou-2

16/43
偏序集合与哈斯图
在哈斯图中,用小圈表示每个元素。如果有x, y P , 且x≤y和x≠y ,则把表示x的小圈画在表示y的小圈之 下。如果y盖覆x,则在x和y之间画上一条直线。如 果x≤y和x≠y ,但是y不盖覆x,则不能把x和y直接用 直线连结起来,而是要经过P的一个或多个元素把 它们连结起来。这样,所有的边的方向都是自下朝 上,故可略去边上的全部箭头表示。
24 36
12
6
2
3
19/43
偏序集合与哈斯图
P( X ) 的元素间 P( X ) 是它的幂集。 例:设集合X={a,b}, 的偏序关系≤是包含关系 。试画出 P( X ), 的哈斯 图。
注意:对于给定偏序集合来说,其哈斯图不是唯一 的。由 P, 的哈斯图,可以求得其对偶 P, 的哈 斯图.只需把它的哈斯图反转180◦即可,使得原来 是顶部的结点变成底部上各结点。
ቤተ መጻሕፍቲ ባይዱ
P( X )中的偏 例:设集合X={a,b,c}, P( X )是它的幂集。 序关系≤是包含关系 。试画出 P( X ), 的哈斯图, 并指出 P( X ) 的子集的上界和下界。
第四章 二元关系
1/43
回顾
• 关系的闭包 • 集合的划分和覆盖 • 等价关系
– 等价模数 – 等价类
2/43
四、次序关系
次序关系是集合中的可传递关系,它能提供一种比 较集合各元素的手段。 定义:设R是集合P中的二元关系.如果R是自反的、 反对称的和可传递的,亦即有
(a) (x)( x P xRx) (b) (x)(y)( x P y P xRy yRx x y ) (c) (x)(y)(z )( x P y P z P xRy yRz xRz )
《离散数学》课件-第四章 二元关系

R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}
第四章—二元关系和函数

例4.3:设A, C, B, D为任意集合,判断以下 命题是否为真,并说明理由。
(1) A×B= A×C =>B= C (2) A-(B×C)=( A-B)×(A-C) (3) 存在集合A,使得A A × A.
解: (1) 不一定为真。反例A= φ, B、C为任意不相
等的非空集合。 (2) 不一定为真。反例A= {1}, B={2}, C={3}. (3) 为真。当 A= φ时成立。
A×B={<x,y>xA,yB} 由于有序对<x,y>中x,y的位置是确定的,因此A×B的 记法也是确定的,不能写成B×A。
笛卡儿积也可以多个集合合成 A1×A2×…×An。
笛卡儿积的运算性质。
§4.1 集合的笛卡尔积与二元关系
笛卡儿积的性质: 1、对任意集合A,根据定义有
A × φ = φ × A= φ 2、一般来说,笛卡儿积不满足交换律,即
由前面的定义可知:有序对就是有顺序的数组,如 <x,y>,x,y 的位置是确定的,不能随意放置。
注意:有序对<a,b><b,a>,以a,b为元素的集合 {a,b}={b,a};有序对(a,a)有意义,而集合{a,a}不成 立,因为它只是单元素集合,应记作{a}。
笛卡儿积是一种集合合成的方法,把集合A,B合 成集合A×B,规定
术语“关系”皆指二元关系?
又例:若A={a,b},B={2,5,8},则 B×A= {<2,a>,<2,b>,<5,a>,<5,b>, <8,a> <8,b>}
令 R4={<2,a> ,<2,b>}, R5={<5,a>, <8,a> <8,b>},
离散数学 二元关系(2)

17
计算机科学与技术学院
Discrete Mathematics
② 合成运算成立结合律
定理 设 R,S,T分别是A到B,B到C,C到D的关 系, 则有(R S) T = R (S T)。 证明:略
西南科技大学
18
计算机科学与技术学院
Discrete Mathematics (4)关系的幂 定义 设R是A上的二元关系,n∈N,则关系R的n次 幂Rn定义为: (1). R0 =A是A上的恒等关系,即R0={<x,x>|xA}; (2). R1=R (3). Rn+1=Rn R
西南科技大学
5
计算机科学与技术学院
Discrete Mathematics
定义的有关说明:
1. R与S能进行合成的必要条件是R的后域B一定是 S的前域B,否则就不能合成。 2. <x,z>有合成关系的定义为:至少有一个做中间 桥梁的元素y属于B,使x,y有关系R,y,z有关系S。 例1 设A={1,2,3,4,5},B={3,4,5},C={1,2,3}
R是A到B的关系,且R={<x,y>|x+y=6},
S是B到C的关系,且S={<y,z>y-z=2} 。
求RS
西南科技大学
6
计算机科学与技术学院
Discrete Mathematics 只需从两个关系的二重组中搜索: ∵<1,5>∈R,<5,3>∈S,∴<1,3>∈RS
∵<2,4>R,<4,2>S,∴<2,2>RS
S R= {<d,b> ,<c,b>}
离散数学 二元关系和函数-2

函数复合运算的性质
(2) 假设存在 x1, x2∈A使得 fg(x1) = f g(x2) 由合成定理有 f (g(x1))= f (g(x2)). 因为 f:B→C是单射的, 故 g(x1)=g(x2). 又由 于 g:A→B也是单射的, 所以 x1=x2. 从而证 明 f∘g:A→C是单射的. (3) 由 (1) 和 (2) 得证.
第4章 二元关系和函数
Relation
4.6 函 数 的 定 义 与 性 质
在高等数学中,函数是在实数集合上进行讨论的, 其定义域是连续的。 本章把函数概念予以推广 ⑴定义域为一般的集合,支持离散应用。 ⑵把函数看作是一种特殊的关系:单值二元关系。
函数定义
4.6 函 数 的 定 义 与 性 质 定义 设 F 为二元关系, 若 x∈domF 都存在唯一的 y∈ranF 使 xFy 成立, 则称 F 为函数. 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为 F 在 x 的函数值. 例1 F1={<x1,y1>,<x2,y2>,<x3,y2>} F2={<x1,y1>,<x1,y2>} F1是函数, F2不是函数
常函数、恒等函数、单调函数
1. 设f:A→B, 若存在 c∈B 使得 x∈A 都有 f(x)=c, 则称 f:A→B是常函数. 2. 称 A 上的恒等关系 IA为 A 上的恒等函数, 对所有 的 x∈A 都有 IA(x)=x. 3. 设 f:R→R,如果对任意的 x1, x2∈R,x1<x2, 就 有 f(x1) f(x2), 则称 f 为单调递增的;如果对任意 的 x1, x2∈A, x1< x2, 就有 f(x1) < f(x2), 则称 f 为 严 格单调递增 的. 类似可以定义单调递减 和严格单调递减 的函数.
4-2 二元关系与函数

F(A(a) B(a) C(a) , D(b) E(b))
P53. 5(1)
试给出解释I,便得: x (F(x) G(x)) 与 x (F(x) G(x)) 有不同的真值。
如:对于实数域,F(x): x >5,G(x): x >0
x F(x) G(x) F(x) G(x) F(x) G(x) 0 1 0 1 0 0 1 1
关系的表示
用列举法表示二元关系
例:设A={a,b},B={1,2} A到B的全域关系E为
E = A×B={a,1,a,2,b,1,b,2}
A上的恒等关系: IA={a,a, b,b}
用描述法表示二元关系
例: 设R是实数集,
LR= {x,y | xR∧yR∧x≤y},
F(x): x是人,G(y): y是花, H(x,y): x喜欢y
x(F(x) y(G(y) H(x,y)))
(5) 任何金属都可以溶解在某种液体中
F(x): x是金属,G(y): y是液体,
H(x,y): x溶解于y中
x (F(x) y(G(y) H(x,y)))
这只大红书柜摆满了那些古书。
MR称为二元关系R的关系矩阵。
用矩阵表示从A到B的二元关系
补充题
以甲为例,
“√”:全对 PQ “&”:对一半 ( P Q) ( P Q) “×”:全错 PQ
例:甲全对,乙对一半,丙全错
甲: P Q 乙: P R 丙: P R
设P: 矿样是铁,Q : 矿样是铜, R : 矿样是锡
“√”:全对,“&”:对一半,“×”:全错
x(F(x)(G(x) H(x))) x(F(x)(( G(x) H(x)) (G(x) H(x)) x(F(x)(G(x) H(x)))
4二元关系和函数详解

a与1间存在关系R记aR1 b与1间存在关系R记bR1 c与2间存在关系R记cR2 d与2间存在关系R记dR2 e与3间存在关系R记eR3 e与3间存在关系R记eR3
10/11/2018 10:28 PM
liu qun, northeastern Univ.
10
4.2关系及运算——关系
定理 若 C≠Ø,则 A B (A C B C) (C A C B) 定理 设 A,B,C,D 为四个非空集合, 则 A B C D 的充要条件为 A C,B D。
10/11/2018 10:28 PM liu qun, northeastern Univ. 9
其中、
A 0,1
10/11/2018 10:28 PM
liu qun, northeastern Univ.
8
4.1笛卡儿积与二元关系——笛卡尔积
Sets
集合
定理 设A,B,C为任意三个集合,则有 a) A×(B∪C)=(A×B)∪(A×C); b) A×(B∩C)=(A×B)∩(A×C); c)(A∪B)×C=(A×C)∪(B×C); d)(A∩B)×C=(A×C)∩(B×C)。
例设有六个程序,它们之间有一定的调用关系
R : PRP 1 2, P 3 RP 4, P 4 RP 5, P 5 RP 2, P 2 RP 6, P 3 RP 1
这个关系是集合 p P1 P2 ...P6 上的关系, 有 R P , P , P , P , P , P , P , P , P , P , P , P
A B C 1, a, , 1, a, , 1, b, , 1, b, , 2, a, , 2, a, , 2, b, , 2, b,
《二元关系和函数》课件

VS
详细描述
函数具有多种性质,这些性质描述了函数 的变化规律和特征。有界性表示函数在一 定范围内变化;单调性表示函数值随自变 量的变化趋势;周期性表示函数按照一定 的周期重复变化;奇偶性则描述函数关于 原点对称或关于y轴对称的特性。
函数的表示方法
总结词
函数的表示方法有多种,包括解析法、表格法和图象法等。
3
几何学
二元关系和函数可以描述几何形状的属性和变化 ,例如极坐标函数用于描述圆的形状和大小。
在计算机科学中的应用
数据结构和算法
二元关系和函数在数据结构和算法中用于实现各种数据结构,例 如哈希表、二叉搜索树等。
数据库查询
在数据库查询语言中,二元关系和函数用于过滤、排序和聚合数据 ,提高数据检索的效率和准确性。
速度、加速度、力等物理量的变化规律。
工程学
03
在工程学中,二元关系和函数用于描述机械运动、热传导、流
体动力学等现象,例如牛顿第二定律、热传导方程等。
05 总结
二元关系和函数的重要性和意义
二元关系和函数是数学中基 本的概念,它们在数学、物 理、工程等领域有着广泛的
应用。
二元关系用于描述两个对象 之间的关系,而函数则是一 种特殊的二元关系,用于描 述一个对象与另一个对象之
个子集。
数学符号表示
通常用R表示二元关系,其中 R⊆A×B。
二元关系的性质
自反性
传递性
如果对于集合A中的任意元素x,都有 (x,x)∈R,则称二元关系R是自反的。
如果对于任意元素x,y,z∈A,当 (x,y)∈R且(y,z)∈R时,则有(x,z)∈R ,则称二元关系R是传递的。
对称性
如果对于任意元素x,y∈A,当 (x,y)∈R时,则有(y,x)∈R,则称二元 关系R是对称的。
离散数学课件第四章 关系

关系的性质
例 2 (1) A上的全域关系EA,恒等关系IA及空关系都是A 上的对称关系;IA和 同时也是A上的反对称关系. (2)设A={1,2,3},则 R1={<1,1>,<2,2>}既是A上的对称关系,也是A上 的反对称关系; R2= {<1,1>,<1,2>,<2,1>}是对称的,但不是反对 称的; R3 ={<1,2>,<1,3>}是反对称的,但不是对称的; R4= {<1,2>,<2,1>,<1,3>}既不是对称的也不是 反对称的.
❖ 二、关系的表达方式 1. 集合表达式:列出关系中的所有有序对。 例 1 设A={1,2,3,4},试列出下列关系R的元素。 (1) R={<x,y> | x是y的倍数} (2) R={<x,y> | (x-y)2 A } (3) R={<x,y> | x/y是素数}
Discrete Mathematics
关系
第四章 二元关系
第一节 有序对与笛卡尔积
❖ 定义 1 由两个元素x和y(允许x=y)按顺序排列成 的二元组叫做一个有序对,记为<x, y>。
❖ 有序对的性质: 1.当 x ≠ y时,<x, y> ≠ <y, x>。 2.<x, y>=<u, v>的充分必要条件是 x=u且y=v。
Discrete Mathematics
笛卡尔积
❖ 定义 2 设A, B是集合。由A中元素作为第一元素,B 中元素作为第二元素组成的所有有序对的集合,称 为集合A与B的笛卡尔积(或直积),记为A×B。 即 A×B={<x,y>|x A y B}
离散数学 第四章 关系

若ai Rbj 若ai Rbj
矩阵MR 称为R的关系矩阵。
17
第四章 关系
4.1 二元关系
例:设A={1,2,3,4},A上的关系R={<x,y>|y是x 的整数倍},故R={<1,1>,<1,2>,<1,3>,<1,4>,<2,2>,<2, 4>,<3,3>,<4,4>}.
1 2 3 4
1 1 2 0 MR 3 0 4 0
2
第四章 关系
4.1 二元关系
4.1.1 基本概念
4.1.2 关系的表示
3
第四章 关系
4.1 二元关系
4.1.1 基本概念 1)定义: A×B的子集叫做A到B上的一个二元关系。 A1×A2×A3的子集叫做A1×A2×A3上的一个三元 关系。 A1×A2×…xAn的子集叫做A1×A2×… × An上的 一个n元关系。 A×A×A ×… × A的子集叫做A上的n元关系。
1 1 0 0
1 0 1 0
1 1 0 1
18
第四章 关系
4.1 二元关系
3.关系图表示法
关系图由结点和边组成
若A= {x1, x2, …, xm},R是A上的关系,R的关系图是 GR=<A, R>,其中A为结点集,R为边集。如果<xi,xj> R,在图中就有一条从 xi 到 xj 的有向边;如果<xi,xi> R,在图中就有一条从 xi 到 xi 的有向边。
12
第四章 关系
4.1 二元关系 4)关系的个数: 2,A×A的子集有 2 n 个。 假设|A|=n,|A×A|=n 2n 所以 A上有 个不同的二元关系。
离散数学__函数

解答
f1={<x1, y1>,<x2, y2>,<x2, y3>,<x3, y1>,<x4, y3>}
不是函数。 ∵ x2对应两个不同的像点y2和y3 ∴不满足唯一性。
解答
f2={<x1, y1>,<x2, y1>,<x3, y1>,<x4, y2>}
缩小的举例
X={a1,a2,a3,x4,x5} Y={y1,y2,y3,y4,y5} A={a1,a2,a3} f={<a1,y1>,<a2,y2>,<a3,y5>,
<x4,y4>,<x5,y3>} 求:f/A
解答
f/A={<a1,y1>,<a2,y2>,<a3,y5>}
1、满射函数 2、内射函数 3、单射函数 4、双射函数 5、恒等函数
从左到右 从右到左
定理
函数f: X→Y 函数g: Y→Z g◦f: X→Z是函数 xX (g◦f)(x)=g(f(x))
证明
显然g◦f是从X到Z的关系 (1)任意性: f是函数:对任意的xX 存在yY,使得<x,y>f g是函数:对任意的yY 存在zZ,使得<y,z>g
<x,y>f 由复合关系的定义:
<<0,-1> ,1>,<<0,0> ,0>,<<0,1> ,-1>, <<1,-1> ,2>,<<1,0> ,1>,<<1,1> ,0>}
离散数学第四章课件

无对称的偶对。
表示关系矩阵的主对角线两侧各有一个1且 对称,即有一个对称的偶对。
C1
n(n+1) 2
n(n+1) C 2 n(n+1) 2
表示关系矩阵的主对角线两侧全为1,
C1 + n(n+ +…+ 2
n(n+1) C 2 n(n+1) 2
于是
C0 n(n+1) 2 =
2
n(n+1) 2
四、反对称性 ⒈ 定义: 若xy(x∈A∧y∈A∧xRy∧yRx→x=y), 称R是反对称的。 例:设A={ a , b , c , d } R={ < a , b > , < a , c > , < b , b > , <b,d>,<c,c>,<c,d>, < d , d >}
⒉自反关系的关系矩阵的特征
R的关系矩阵的主对角线上的元素均为
1 ,则该关系就不具有自反性;
主对角线上有一个元素不为1,则该关
系就不具有自反性。
⒊ 自反关系的图的特征 自反关系的关系图中,每个顶点都有 自回路,则该关系具有自反性。
二、反自反性 ⒈ 定义:若x(x∈A xRx)则该关系是 反自反的。 ⒉ 具有反自反性的关系的关系矩阵的主对角
2 t1× t2 × … ×tn
五、关系的表示法-----通常有三种表示方法
⒈ 集合表示法: 因为关系也是集合,所以也可以用集合 的表示方法
例:A={ 2, 3,4,6 ,9,12 }上的整除关系
用特征描述法表示为
R={ < x , y > | x∈A ∧ y∈A ∧ x|y }
用穷举法表示为
R={ < 2 , 2 > , < 2 , 4 > , < 2 , 6 > ,
离散数学第四章二元关系和函数知识点总结

离散数学第四章二元关系和函数知识点总结集合论部分第四章、二元关系和函数集合的笛卡儿积与二元关系有序对定义由两个客体x 和y,按照一定的顺序组成的二元组称为有序对,记作实例:点的直角坐标(3,4)有序对性质有序性(当x y时)与相等的充分必要条件是= x=u y=v例1 = ,求x, y.解 3y 4 = 2, x+5 = y y = 2, x = 3定义一具有序n (n3) 元组是一具有序对,其中第一具元素是一具有序n-1元组,即= , x n>当n=1时, 形式上能够看成有序 1 元组.实例 n 维向量是有序 n元组.笛卡儿积及其性质定义设A,B为集合,A与B 的笛卡儿积记作A B,即A B ={ | x A y B } 例2 A={1,2,3}, B={a,b,c}A B ={,,,,,,,,}B A ={,,,,,,, ,}A={}, P(A)A={, }性质:别适合交换律A B B A (A B, A, B)别适合结合律 (A B)C A(B C) (A, B)关于并或交运算满脚分配律A(B C)=(A B)(A C)(B C)A=(B A)(C A)A(B C)=(A B)(A C)(B C)A=(B A)(C A)若A或B中有一具为空集,则A B算是空集.A=B=若|A|=m, |B|=n, 则 |A B|=mn证明A(B C)=(A B)(A C)证任取∈A×(B∪C)x∈A∧y∈B∪Cx∈A∧(y∈B∨y∈C)(x∈A∧y∈B)∨(x∈A∧y∈C)∈A×B∨∈A×C∈(A×B)∪(A×C)因此有A×(B∪C) = (A×B)∪(A×C).例3 (1) 证明A=B C=D A C=B D(2) A C=B D是否推出A=B C=D 为啥解 (1) 任取A C x A y Cx B y D B D(2) 别一定. 反例如下:A={1},B={2}, C=D=, 则A C=B D 然而A B.二元关系的定义定义设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B时则叫做A上的二元关系.例4 A={0,1}, B={1,2,3}, R1={}, R2=A×B, R3=, R4={}. 这么R1, R2, R3,R4是从A 到B的二元关系, R3和R4并且也是A上的二元关系.计数|A|=n, |A×A|=n2, A×A的子集有个. 因此A上有个别同的二元关系.例如 |A|=3, 则A上有=512个别同的二元关系.设A 为任意集合,是A 上的关系,称为空关系E, I A 分不称为全域关系与恒等关系,定义如下:AE={|x∈A∧y∈A}=A×AAI={|x∈A}A例如, A={1,2}, 则E={,,,}AI={,}A小于等于关系L A, 整除关系D A, 包含关系R定义: L={| x,y∈A∧x≤y}, A R,R为实数集合AD={| x,y∈B∧x整除y},BB Z*, Z*为非0整数集R={| x,y∈A∧x y}, A是集合族.类似的还能够定义大于等于关系, 小于关系, 大于关系, 真包含关系等等.例如A = {1, 2, 3}, B ={a, b}, 则L={,,,,,}AD={,,,,}AA=P(B)={,{a},{b},{a,b}}, 则A上的包含关系是R={,,,,, ,,,}二元关系的表示表示方式:关系的集合表达式、关系矩阵、关系图关系矩阵:若A={a1, a2, …, a m},B={b1, b2, …, b n},R是从A到B 的关系,R 的关系矩阵是布尔矩阵M R = [ r ij ] m n, 其中r ij= 1 R.关系图:若A= {x1, x2, …, x m},R是从A上的关系,R的关系图是G R=, 其中A为结点集,R为边集.假如属于关系R,在图中就有一条从x i到x j 的有向边.注意:A, B为有穷集,关系矩阵适于表示从A到B的关系或者A上的关系,关系图适于表示A上的关系A={1,2,3,4},R={,,,,},R的关系矩阵M和关系图G R如下:R关系的运算基本运算定义:定义域、值域和域dom R = { x | y (R) }ran R = { y | x (R) }fld R = dom R ran R例1 R={,,,}, 则dom R={1, 2, 4}ran R={2, 3, 4}fld R={1, 2, 3, 4}逆与合成R1 = { | R}R°S = | | y (RS) } 例2 R={, , , } S={, , , , }R1={, , , }R°S ={, , }S°R ={, , , }定义 F 在A上的限制F?A = { | xFy x A}A 在F下的像F[A] = ran(F?A)实例R={, , , }R?{1}={,}R[{1}]={2,4}R?=R[{1,2}]={2,3,4}注意:F?A F, F[A] ran F基本运算的性质定理1 设F是任意的关系, 则(1) (F1)1=F(2) dom F1=ran F, ran F1=dom F证 (1) 任取, 由逆的定义有∈(F 1) 1 ∈F 1 ∈F因此有 (F1)1=F(2) 任取x,x∈dom F 1 y(∈F1)y(∈F) x∈ran F因此有dom F1= ran F. 同理可证 ran F1 = dom F.定理2 设F, G, H是任意的关系, 则(1) (F°G)°H=F°(G°H)(2) (F°G)1= G1°F 1证 (1) 任取,(F°G)°H t(∈F°G∧∈H) t (s(∈F∧∈G)∧∈H)t s (∈F∧∈G∧∈H)s (∈F∧t (∈G∧∈H))s (∈F∧∈G°H)∈F°(G°H)因此(F°G)°H = F°(G°H)(2) 任取,∈(F°G)1∈F°Gt (∈F∧(t,x)∈G)t (∈G1∧(t,y)∈F1)∈G1°F1因此(F°G)1 = G1°F1幂运算设R为A上的关系, n为自然数, 则R 的n次幂定义为:(1) R0={ | x∈A }=I A(2) R n+1 = R n°R注意:关于A上的任何关系R1和R2都有R 10 = R20 = IA关于A上的任何关系R 都有R1 = R性质:定理3 设A为n元集, R是A上的关系, 则存在自然数s 和t, 使得R s = R t.证R为A上的关系, 由于|A|=n, A上的别同关系惟独个.当列出R 的各次幂R0, R1, R2, …, , …,必存在自然数s 和t 使得R s=R t.定理4 设R 是A 上的关系, m, n∈N, 则(1) R m°R n=R m+n(2) (R m)n=R mn证用归纳法(1) 关于任意给定的m∈N, 施归纳于n.若n=0, 则有R m°R0=R m°I=R m=R m+0A假设R m°R n=R m+n, 则有R m°R n+1=R m°(R n°R)=(R m°R n)°R=R m+n+1 ,因此对一切m, n∈N有R m°R n=R m+n.(2) 关于任意给定的m∈N, 施归纳于n.若n=0, 则有(R m)0=I A=R0=R m×0假设 (R m)n=R mn, 则有(R m)n+1=(R m)n°R m=(R mn)°R m=R mn+m=R m(n+1) 因此对一切m,n∈N有 (R m)n=R mn.关系的性质自反性反自反性定义设R为A上的关系,(1) 若x(x∈A→R), 则称R在A上是自反的.(2) 若x(x∈A→R), 则称R在A上是反自反的.实例:反关系:A上的全域关系E A, 恒等关系I A小于等于关系L A, 整除关系D A反自反关系:实数集上的小于关系幂集上的真包含关系例1 A={1,2,3}, R1, R2, R3是A上的关系, 其中R={,}1R={,,,}2R={}3R自反,2R反自反,3R既别是自反也别是反自反的1对称性反对称性定义设R为A上的关系,(1) 若x y(x,y∈A∧∈R→∈R), 则称R为A上对称的关系.(2) 若x y(x,y∈A∧∈R∧∈R→x=y), 则称R为A上的反对称关系.实例:对称关系:A上的全域关系E A, 恒等关系I A和空关系反对称关系:恒等关系I A,空关系是A上的反对称关系.例2 设A={1,2,3}, R1, R2, R3和R4基本上A上的关系,其中R={,},R2={,,}1R={,},R4={,,}3R对称、反对称.1R对称,别反对称.2R反对称,别对称.3R别对称、也别反对称.4传递性定义设R为A上的关系, 若x y z(x,y,z∈A∧∈R∧∈R→∈R), 则称R是A上的传递关系.实例:A上的全域关系E,恒等关系I A和空关系A小于等于关系, 小于关系,整除关系,包含关系,真包含关系例3 设A={1,2,3}, R1, R2, R3是A上的关系, 其中R={,}1R={,}2R={}3R和R3 是A上的传递关系1R别是A上的传递关系2关系性质的充要条件设R为A上的关系, 则(1) R在A上自反当且仅当I A R(2) R在A上反自反当且仅当R∩I A=(3) R在A上对称当且仅当R=R 1(4) R在A上反对称当且仅当R∩R1I A(5) R在A上传递当且仅当R R R证明模式证明R在A上自反任取x,第11页/共11页。
离散数学第4章-二元关系

4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
集合论

从关系矩阵上看,若MR是对称矩阵,则R具有 对称性,若MR转置后除主对角线上的元素外,原来 为1的元素都变为了0,则R具有反对称性。 从关系图上看,若不同结点间的有向弧成对出 现,则R具有对称性。若任意两个不同结点间都没有 成对的有向弧,则R具有反对称性。 R −1 , R ∪ S , R ∩ S 若R、S都是A上的对称关系,则 也是A上的对称关系, 若R、S都是A上的反对称关系,则 R −1 , R ∩ S 也 是A上的反对称关系,但 R ∪ S 不一定是A上的反对 称关系。例如,R={<1,2>},S={<2,1>}
−1
[2000年1月证明题18] 设R是集合A上的二元关系,试证明R是自反的当 且仅当 I A ⊆ R 证明:先证明必要性 Q R 具有自反性 ,∴ ∀ a ∈ A, < a , a >∈ R 于是 , {< a , a >| a ∈ A} ⊆ R , 即 I A ⊆ R 再证明充分性 Q ∀ a ∈ A, < a , a >∈ I A , 又 Q I A ⊆ R
例7
设:A={a,b,c,d},B={x,y,z}, R={<a,x>,<a,z>,<b,y>,<c,z>,<d,y>},求关系矩阵MR 解:
1 0 MR = 0 0 x
CH4 二元关系和函数 1 二元关系的基本概念

设A,B为集合,A✕B的任何子集所定义的二元
例:集合A={0,1},B={2,3} A×B={<0,2>, <0,3>, <1,2>, <1,3>}
A×B的子集:R1= {<0,2>, <0,3>} R2={<0,2>, <1,2>, <1,3>} 都是A到B上的二元关系 A×A={<0,0>, <0,1>, <1,0>, <1,1>} A×A的子集: R3={<0,0>, <0,1>} R4={<0,0>, <1,0>, <1,1>} 都是A上的二 <0,1>, <1,0>, <1,1>} 为A上的全域关系 IA = {<0,0>, <1,1>}为A上的恒等关系
其它一些常见关系: 设A为实数集R的某个子集,则A上小于等 于关系定义为: LA={〈x,y〉| x,y ∊ A∧x≤y} 例如: A={-1 ,3, 4},则 A上小于等于关系 LA= {〈-1,-1〉,〈-1,3〉,〈-1,4〉, 〈3,3〉,〈3,4〉,〈4,4〉}
再例如,有甲,乙,丙三个人和四项工作a, b ,c ,d 。 已知甲可以从事工作a和b,乙可以从事工作c, 丙可以从事工作a和d。
那么人和工作之间的对应关系可以记作
R={<甲,a>,<甲,b>,<乙,c>,<丙,a>,<丙,d>}
这是人的集合{甲,乙,丙}到工作的集合{a, b,c,d}之间的关系。
《离散数学》 二元关系

数据结构、情报检索、数据库、算法分析、计算机理论等计算机学科很好的数
学工具。
3
第 4章 二元关系
1
历史人物
学习要求
内容导航
CONTENTS
4.1
二元关系及其表示
4.2
关系的运算
4.3
关系的性质
4.4
关系的闭包
4.5
关系的应用
4.6
作业
4
历史人物
第 4章 二元关系
5
1868-1942,德国数学家,
20
定义4.5 设A,B为两个非空集合,称A×B的任何子集R为从A到B的二元关系,简称
关系(Relation),记作R:A→B;
如A=B,则称R为A上的二元关系,记作R:A→A。
若<x,y>∈R,则记为xRy,读作“x对y有关系R”;
若<x,y>R,则记为xRy,读作“x对y没有关系R”。
解题小贴士—给定集合是否为从A到B的一个关系的判断方法
所以
(1)S1不是A×B的子集,从而S1不是A到B上的一个关系。
(2)S2是A×B的子集,从而S2是A到B上的一个二元关系。
第 4章 二元关系
4.1.2 关系的定义
例4.4 设A = {1,2},试判断下列集合是否为A上的关系。
(1)T1= Φ ;
是,空关系
(2)T2=A×A;
是,全关系
(3)T3={<1,1>,<2,2>};
(2)序偶中的两个元素具有确定的次序。即<a,b>≠<b,a>,但{a,b}={b,a}。
定义4.2 给定序偶<a,b>和<c,d>,
重庆大学《离散数学》课件-第4章函数

∈ ( − )。由的任意性可知 − () ⊆ ( − )成立
4.2 逆函数和复合函数
▪ 例:定义一函数: → 如下:
1、 的定义域不是,而是的子集
2、 不满足函数定义:值的唯一性
所以 是一种二元关系,但不是函数
一个函数的逆函数存在的话,则此函
数一定是双射函数。
▪ 定理:设: X → 是一双射函数,那么 是Y → X的双射函数。
▪ 证明: (1)首先证明 :Y → X的函数。
因为是满射的,对任意的 ∈ 必有 < , >∈ ,且 = ,因此< , >∈
等函数。
定理:设函数: X → ,则 = ∘ = ∘
定理:如果函数: → 有逆函数 −1 : → ,则 −1 ∘ = ,且
∘ −1 =
例:令:{0,1,2} →{a,b,c},其定义如下图所示,求 −1 ∘ 和 ∘ −1
设: X → ,: → 是两个函数,则复合函数 ∘ 是一个从X到的
函数,对于每一个 ∈ 有 ∘ = (())。
例:设 = 1,2,3 , = , , = , ,
= < 1, >, < 2, >, < 3, > , = < , >, < , > , 求 ∘
, = 。又因为是入射,对每一个 ∈ 必有唯一的 ∈ ,使得<
, >∈ ,因此仅有唯一的 ∈ ,使得
< , >∈ 。因此 是一个函数。
(2)证 :Y → X满射的。
= =
离散数学第四章二元关系和函数

例题
• 例题4.8:下列关系都是整数集Z上的关系,分别求出它们的 定义域和值域.
– R1={<x,y>|x,yZxy}; – R2={<x,y>|x,yZx2+y2=1};
• domR1=ranR1=Z. R={<0,1>,<0,-1>,<1,0>,<-1,0>} domR2=ramR2={0,1,-1}
IA={<0,0>,<1,1>,<2,2>}
关系实例
• 设A为实数集R的某个子集,则A上的小于等于关系定义为 LA={<x,y>|x,yA,xy}.
• 例4.4 设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A),xy}, 则有 P(A)={,{a},{b},A}. R={<, >,<,{a}>,<,{b}>,<,A>, <{a},{a}>,<{a},A>,<{b},{b}>,<{b},A>,<A,A>}.
– 例如:A={a,b},B={0,1,2},则 AxB={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}; BxA={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}.
– 如果A中的元素为m个元素,B中的元素为n个元素, 则AxB和BxA中有mn个元素.
0100 1010 . 0001 0000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) (A-B)×(C-D)=(A×C)-(B×D)不成立. 举一反例如下:若A=B={1},C={0,1} ,D={0} 则有: (A-B)×(C-D)=×{1}=, (A×C)-(B×D)={<1,0>,<1,1>}-{<1,0>} ={<1,1>}. (4)(AB)×(CD)=(A×C)(B×D)不成立.反例 同(3), (AB)×(CD)= ×{1}=, (A×C)(B×D) ={<1,0>,<1,1>}-{<1,0>} ={<1,1>}.
【例】有A,B,C三个人和四项工作α,,,,已 知A可以从事工作α,δ,B可以从事工作, C可以从事工作α,。那么人和工作之间的 对应关系可以记作
R={<A,α>,<A,δ>,<B,>,<C,α>,<C,>}。 这是人的集合{A,B,C}到工作的集合{α,,,} 之间的关系。
定义4.5 如果一个集合为空集或者它的元 素都是有序对, 则称这个集合是一个二元 关系,一般记作R。 对于二元关系R, 如果<x,y>∈R,则记作xRy; 如果<x,y>R,则记作xRy
定义4.6 设A,B为集合,A×B的任何子集所定 义的二元关系称作从A到B的二元关系,特别 当A=B时,则叫做A上的二元关系。 • 关系RAB, R is a relation from A to B. • RAA, R is a relation on A. A上有多少个不同的二元关系? |A|=n |A×A|=n2 n2 |P(A×A)|=2 n2个关系. 每一个子集代表一个A上的关系,共2
第4章 二元关系和函数
4.1 集合的笛卡儿积与二元关系
4.2 关系的运算
4.3 关系的性质 4.4 关系的闭包 4.5 等价关系和偏序关系 4.6 函数的定义和性质
4.7 函数的复合和反函数
4.1 集合的笛卡儿积与二元关系
定义4.1 由两个元素x和y(允许x=y)按一定的 顺序排列成的二元组叫做一个有序对(也称 序偶),记作<x,y >,其中x是它的第一元素,y是 它的第二元素。 有序对的特点: 1.当xy时,<x,y><y,x>。 2.两个有序对相等,即 <x,y>=<u, v> 的充分必要条件是x=u且y=v。
从A到B的某些关系R的图解方法(不是R的关系图) 1.用封闭的曲线表示R的定义域(或集合A)和值域 (或集合B). 2.从x到y画一个箭头,如果<x,y>∈R
R2={<x,y>|x,y∈Z∧x2+y2=1} R3={<x,y>|x,y∈Z∧y=2x}
逆、合成、限制和象
定义4.9 设F,G为任意的关系,A为集合,则 (1)F的逆记作F-1 ,F-1={<x,y>|yFx}. (2)F与G的合成记作F◦G, F◦G,={<x,y>|z(xGz∧zFy)} (3)F在A上的限制记作 F A F A={<x,y>|xFy∧x∈A}. (4)A在F下的象记作F[A], F[A]=ran (F A)
1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0
1 2
4
3
4.2
• • • • • •
关系的运算
ห้องสมุดไป่ตู้
关系R的定义域,值域和域 关系F的逆 关系F与G的合成 关系F在集合A上的限制 集合A在关系F下的象 关系R的n次幂
定义4.8 关系R的定义域 domR,值域ranR和 域fldR分别是 domR={x | y(<x,y>∈R)} ranR={y | x(<x,y>∈R)} fldR=domR∪ranR。 domR就是R的所有有序对的第一个元素构 成的集合,ranR就是R的所有有序对的第二 个元素构成的集合. 【例】实数集R上的关系 S={<x,y>|x,y∈R∧x2+y2=1}, domS=ranS=fldS=[-1,1].
二元关系(Binary
Relation)
所谓二元关系就是在集合中两个元素之间的 某种相关性.
例如,甲、乙、丙三个人进行乒乓球比赛,如果 任何两个人之间都要赛一场,那么共要赛三 场。假设三场比赛的结果是乙胜甲、甲胜 丙、乙胜丙,这个结果可以记作 {<乙,甲>,<甲,丙>,<乙,丙>},其中<x,y>表示x 胜y。它表示了集合{甲,乙,丙}中元素之间的 一种胜负关系.
定义4.3 设A,B为集合,用A中元素为第一元 素,B中元素为第二元素,构成有序对,所有这 样的有序对组成的集合叫做A和B的笛卡儿积, 记作A×B。符号化表示为 A×B={<x,y>|x∈A∧y∈B}. 例如,A={a,b},B={0,1,2},则 A×B= {<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}; B×A= {<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}。
如果A中有m个元素,B中有n个元素, 则A×B和B×A中都有多少个元素? mn个 若<x,y>A×B,则有 x∈A和y∈B. 若<x,y>A×B,则有 xA或者y B.
笛卡儿积运算的性质: 1.若A,B中有一个空集,则它们的笛卡儿积是空 集, 即 B=B×= 2.当A≠B且A,B都不是空集时,有 A×B≠B×A。 所以,笛卡儿积运算不适合交换律。 3.当A,B,C都不是空集时,有 (A×B)×C≠A×(B×C). 所以,笛卡儿积运算不适合结合律。
关系矩阵和关系图
有穷集A上的关系R, 可用关系矩阵和关系图给出. 设A={x1,x2,…,xn},R是A上的关系,令
1 若x i Rx j rij 0 若x i Rx j
则R的关系矩阵为
r11 r 21 (rij ) rn1 r12 r22 rn 2
(i, j 1,2,...,n)
对于任何集合A都有3种特殊的关系: 其中之一就是空集,称做空关系。 另外两种就是全域关系EA和恒等关系IA。 定义4.7 对任何集合A, EA={<x,y>|x∈A∧y∈A}=A×A。 IA={<x,x>|x∈A}。 例如:A={0,1,2},则 EA={<0,0>,<0,1>,<0,2>,<1,0>,<1,1>, <1,2>,<2,0>,<2,1>,<2,2>} IA={<0,0>,<1,1>,<2,2)}。
例4.4 设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,y∈P(A)∧xy}, 则有 P(A)={,{a},{b},A}。 R={<,>,<,{a}>,<,{b}>, <,A>,<{a},{a}>,<{a},A>, <{b},{b}>,< {b},A>,<A,A>}.
例4.5 下列关系都是整数集Z上的关系, 分别求出它们的定义域和值域,
(1)R1={<x,y>|x,y∈Z∧x≤y}; (2)R2={<x,y>|x,y∈Z∧x2+y2=1}; (3)R3={<x,y>|x,y∈Z∧y=2x}; (4)R4={<x,y>|x,y∈Z∧x=y=3}。 解 (1) domR1=ranR1=Z. (2) R2={<0,1 >,<0,-1>,<1,0>,<-1,0>} domR2=ranR2={0,1,-1}. (3) domR3=Z ranR3={2z|z∈Z},即偶数集 (4) domR4=ranR4={-3,3}.
定义4.4 设A1,A2, … , An是集合(n≥2),它们的 n阶笛卡儿积,记作A1×A2×…×An,其中 Al×A2×…×An= {<x1,x2,…xn>|x1∈Al∧x2∈A2∧…xn∈An}. 当A1= A2=…= An= A时,n阶笛卡儿积简记为 An 例如: A={a,b},则 A3={<a,a,a>,<a,a,b>,<a,b,a>,<a,b,b>, <b,a,a>,<b,a,b>,<b,b,a>,<b,b,b>}
定义4.2 一个有序n元组(n≥3)是一个有序对,其 中第一个元素是一个有序n-1元组,一个有 序n元组记作<x1,x2,…, xn>,即 <x1,x2,…, xn>= < <x1,x2,…, xn-1>, xn>
例如,空间直角坐标系中点的坐标 <1,-1,3>,<2,4.5,0>等 都是有序3元组。 n维空间中点的坐标或n维向量都是有序n元组。
r1n r2 n rnn
设V是顶点的集合,E是有向边的集合,令 V=A={x1,x2,·· n},如果xiRxj,则有向边 ·,x <xi,xj>∈E.那么 G=<V,E>就是R的关系图。 设A={1,2,3,4}, A上的关系 R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>} 。 则R的关系矩阵和关系图为
例4.3 设A,B,C,D为任意集合,判断以下命题的真 假. (1)若AC且BD,则有A×BC×D。 (2)若A×BC×D,则有AC且BD. 解 (1)命题为真。因为对于任意的<x,y>, <x,y> A×B xA∧yB xC∧yD <x,y>C×D (2)命题为假.当A=B=时,或者A≠且B≠时, 该命题的结论是成立的。但是当A和B之中仅 有一个为时,结论不一定成立,例如,令A=C =D=,B={1},这时A×BC×D,但B D。