范围问题
初二数学取值范围练习题

初二数学取值范围练习题题目一:方程的解集表示范围1. 解方程:2x + 5 = 13,并写出解集的表示范围。
解析:将方程2x + 5 = 13移项,得到2x = 13 - 5,即2x = 8。
进一步计算得到x = 4。
解集的表示范围为{x | x = 4}。
题目二:不等式的解集表示范围1. 求解不等式2x - 3 > 7,并写出解集的表示范围。
解析:将不等式2x - 3 > 7移项,得到2x > 7 + 3,即2x > 10。
进一步计算得到x > 5。
解集的表示范围为{x | x > 5}。
题目三:复合不等式的解集表示范围1. 求解复合不等式-2 < x - 3 ≤ 5,并写出解集的表示范围。
解析:首先,解第一个不等式-2 < x - 3,移项得到x - 3 > -2,即x > 1。
再解第二个不等式x - 3 ≤ 5,移项得到x ≤ 5 + 3,即x ≤ 8。
综合以上两个不等式的解集,得到1 < x ≤ 8。
解集的表示范围为{x | 1 < x ≤ 8}。
题目四:绝对值不等式的解集表示范围1. 求解绝对值不等式|3x - 5| < 7,并写出解集的表示范围。
解析:首先,解不等式3x - 5 < 7,移项得到3x < 7 + 5,即3x < 12。
进一步计算得到x < 4。
然后,再解不等式3x - 5 > -7,移项得到3x > -7 + 5,即3x > -2。
进一步计算得到x > -2/3。
综合以上两个不等式的解集,得到-2/3 < x < 4。
解集的表示范围为{x | -2/3 < x < 4}。
结语:通过解题,我们学习了方程和不等式的解集表示范围。
在数学中,准确表示解集能够帮助我们更好地理解和应用数学知识。
加强对取值范围的理解,将有助于我们解决实际问题和提高数学能力。
高二数学直线与圆中的范围,最值问题

高二数学直线与圆中的范围,最值问题全文共四篇示例,供读者参考第一篇示例:高二数学是学生学习数学的重要阶段,其中直线与圆的范围、最值问题是一个重要的知识点。
直线与圆是几何学中常见的基本图形,通过研究它们的范围和最值问题,可以帮助我们更好地理解几何学知识和提高数学解题能力。
一、直线与圆的范围问题在高二数学中,直线与圆的范围问题是一个常见的题型。
在这类问题中,我们需要根据给定的条件,求解直线和圆的交点、直线与圆的位置关系等。
通过分析这些问题,可以帮助我们锻炼逻辑思维能力和几何推理能力。
我们常见的一个问题是求解一条直线与一个圆的交点。
在这种情况下,我们可以通过联立直线方程和圆方程,求解得到交点的坐标。
我们也可以通过图形的几何性质,利用角度和面积关系来求解交点的坐标。
这种方法不仅可以帮助我们更直观地理解直线与圆的位置关系,同时也可以提高我们的几何思维能力。
除了交点问题,直线与圆的位置关系问题也是直线与圆范围问题的重要内容。
在这种情况下,我们需要判断一条直线与一个圆的位置关系,例如直线是否相交、相切或相离等。
通过分析直线与圆的几何性质,我们可以利用距离公式或者向量运算等方法,快速求解出直线与圆的位置关系,从而解决相应的问题。
我们常见的一个问题是求解一个圆与一条直线的最大交点数。
在这种情况下,我们可以通过分析直线与圆的几何性质,确定交点的位置关系,进而求解出最大交点数。
我们也可以利用微积分法,对交点函数进行求导,求得最大值或最小值,从而得出最大交点数。
在实际问题中,直线与圆的最值问题也具有广泛的应用。
在工程设计中,我们常常需要通过求解直线与圆的最值问题,确定构建物体的最优位置、最短路径等。
通过研究直线与圆的最值问题,我们可以应用数学原理,解决实际问题,提高实际工作效率。
第二篇示例:高中数学中,直线与圆是一个重要的内容,其中涉及到了许多范围和最值的问题。
在解决这些问题时,我们需要深入理解直线与圆的性质,并灵活运用数学知识来解决这些问题。
三角形中的范围问题

三角形中的范围问题
在三角形中,范围问题通常涉及到角度、边长、高、中线等元素的取值范围。
以下是一些常见的三角形中的范围问题:
1.角度范围:根据三角形的性质,一个三角形的三个内角之和为180度。
因此,
三角形的每个角都有一个范围,例如一个角最小为30度,那么其余两个角的和最大为150度。
2.
3.边长范围:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
因此,可以根据已知的两边长来计算第三边的可能范围。
4.
5.高范围:三角形的高是从顶点垂直到对应的底边的线段。
根据三角形的形状
和大小,高可以有一个范围。
例如,在直角三角形中,斜边上的高可以通过毕达哥拉斯定理计算出来,并有一个特定的范围。
6.
7.中线范围:三角形的中线是从顶点垂直到对应的底边的中点的线段。
中线的
长度也有一个范围,可以使用中线的性质来计算。
8.
解决三角形中的范围问题时,通常需要结合三角形的基本性质和几何知识,通过逻辑推理和数学计算来确定元素的取值范围。
解三角形的范围与最值问题

解三角形的范围与最值问题解三角形的范围与最值问题三角形是我们初中数学中常见的几何图形,解决三角形的范围和最值问题是三角函数的重要内容。
本文将从范围和最值两个方面进行探讨。
一、解三角形的范围问题解三角形的范围问题主要是要找到三角函数定义域中的解集,也就是角的取值范围。
1. 正弦函数正弦函数的定义域为全集R,一个完整的正弦函数周期为360度,即sinθ=sin(θ+360°)。
因此,对于任意θ∈R,正弦函数的值总是在[-1,1]之间取值。
2. 余弦函数余弦函数的定义域为全集R,一个完整的余弦函数周期为360度,即cosθ=cos(θ+360°)。
因此,对于任意θ∈R,余弦函数的值总是在[-1,1]之间取值。
3. 正切函数正切函数的定义域由其分母不为零的限定,即tanθ存在当且仅当cosθ≠0,即θ∈R\{nπ+π/2|n∈N}。
对于任意θ∈R,正切函数没有上下界,其取值范围为全集R。
4. 余切函数余切函数的定义域由其分母不为零的限定,即cotθ存在当且仅当sinθ≠0,即θ∈R\{nπ|n∈N}。
对于任意θ∈R,余切函数没有上下界,其取值范围为全集R。
以上是几个常见三角函数的定义域和取值范围,要求掌握它们的基本特征和计算方法。
二、解三角形的最值问题解三角形的最值问题主要是要找到三角函数在定义域中的最大值和最小值,其思路一般是利用极值点或者函数的单调性来进行分析。
1. 正弦函数和余弦函数的最值正弦函数和余弦函数的最值为1和-1,当且仅当θ=nπ(n∈N)时取到。
当θ非整数倍π时,正弦函数和余弦函数的值位于-1和1之间。
2. 正切函数和余切函数的最值正切函数和余切函数都没有最值,但它们在某些点上趋近于无穷或者负无穷,这些点称为函数的特殊点。
正切函数的特殊点为θ=nπ+π/2(n∈Z),此时tanθ趋近于正无穷或负无穷,取决于极限方向。
余切函数的特殊点为θ=nπ(n∈Z),此时cotθ趋近于正无穷或负无穷,取决于极限方向。
求参数范围问题—常见解题方法

求参数范围问题—常见解题方法一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量例2.若对于任意角总有成立,求的范围.分析与解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立.根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值.因为即时,有最小值为0,故.评析:一般地,分离变量后有下列几种情形:①f(x)≥g(k) [f(x)]min≥g(k)②f(x)> g(k) g(k) < [f(x)] min③f(x)≤g(k) [f(x)] max≤g(k)④f(x)<g(k) [f(x)] max < g(k)三、数形结合对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则,其图象为上半圆.设函数,其图象为直线.在同一坐标系内作出函数图象如图,依题意要使半圆恒在直线下方,只有圆心到直线的距离且时成立,即a的取值范围为.四、分类讨论当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。
三角函数范围问题解法

三角函数范围问题解法1. 引言在解决三角函数范围问题时,我们常常需要确定三角函数的定义域、值域以及对应关系。
这些信息对于我们理解和应用三角函数至关重要。
本篇文章将详细解释三角函数范围问题解法中的特定函数,包括函数的定义、用途和工作方式等。
2. 三角函数的定义三角函数是以角度或弧度作为自变量,返回一个实数值的函数。
常见的三角函数包括正弦函数(Sine Function),余弦函数(Cosine Function),正切函数(Tangent Function),割函数(Secant Function),余切函数(Cotangent Function)和余割函数(Cosecant Function)。
这些函数在数学、物理学、工程学等领域都有广泛的应用。
2.1 正弦函数(Sine Function)正弦函数通常用sin表示,定义域是所有实数,值域是[-1, 1]。
其工作方式是通过三角形的边长比值来确定一个角的正弦值。
具体而言,正弦函数是以一个锐角三角形的斜边与斜边上的某一点(记作P)的高的比值来定义的。
正弦函数的图像是一条连续的波浪线,周期为360°或2π。
2.2 余弦函数(Cosine Function)余弦函数通常用cos表示,定义域是所有实数,值域是[-1, 1]。
余弦函数可以看作是正弦函数在横轴方向上的平移得到的函数。
具体而言,余弦函数是以一个锐角三角形的斜边与斜边上的某一点(记作P)的底边的比值来定义的。
余弦函数的图像也是一条连续的波浪线,与正弦函数的图像形状相似,但相位不同。
2.3 正切函数(Tangent Function)正切函数通常用tan表示,定义域是所有实数,但在某些情况下会有例外,后面会详细解释,值域是整个实数集。
正切函数可以看作是正弦函数与余弦函数的商。
具体而言,正切函数是以一个锐角三角形的斜边与斜边上的某一点(记作P)的高与底边的比值来定义的。
正切函数的图像是一条连续的曲线,其切线在每个周期内都与横轴相切。
直线和圆的范围问题汇总

前言直线和圆的最值是圆这一章节的重点内容,也属于拔高题型。
中等及以下学生很多学生都是有问题的,为此任老师搜集了五十多道题目,我们只能集中做这些题目,不断的总结相关方法。
直线和圆的范围问题汇总1.在平面直角坐标系xOy中,已知圆O:x2+y2=1,圆M:(x+a+3)2+(y-2a)2=1(a为实数).若圆O与圆M上分别存在点P,Q,使得∠OQP=30°,则a的取值范围为________.2.(2015·苏州期末)已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点,若圆M上存在两=60°,则点A的横坐标的取值范围是.点B,C,使得∠BAC3.已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T使得∠MAT=45°,则实数a 的取值范围是.4.(2015·南京三模)在平面直角坐标系x O y中,圆C的方程为(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A,B两点,M为弦AB上一动点,若以M为圆心、2为半径的圆与圆C总有公共点,则实数k的取值范围为.5.(2015·苏州调研)已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=3x相交于P,Q两点,则当△CPQ的面积最大时,实数a的值为.6.在平面直角坐标系x O y中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为.7.点P(x,y)是圆x2+(y-1)2=1上任意一点,若点P的坐标满足不等式x+y+m≥0,则实数m的取值范围是________.8.已知点P(x,y)在圆x2+(y-1)2=1上运动.(1)求y-1x-2的最大值与最小值;(2)求2x+y的最大值与最小值.9.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,2).若圆C上存在点M,满足MA2+MO2=10,则实数a的取值范围是________.10.在平面直角坐标系xOy中,点A(1,0),B(4,0).若直线x-y+m=0上存在点P使得PA=1PB,2则实数m的取值范围是________.11.在平面直角坐标系xOy中,圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为________.12.在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是________.13.已知圆O:x2+y2=1,圆M:(x-a)2+(y-a+4)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围是________.14.已知点A(1,1),B(1,3),圆C:(x-a)2+(y+a-2)2=4上存在点P,使PB2-PA2=32,则圆心横坐标a的取值范围为________.15.在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,2).若圆C上存在点M,满足MA2+MO2=10,则实数a的取值范围是________.16.(2017·南京二模)在平面直角坐标系xOy中,圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M 上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为________.17.(2017·南京学情调研)在平面直角坐标系xOy中,若直线ax+y-2=0与圆心为C的圆(x-1)2+(y -a)2=16相交于A,B两点,且△ABC为直角三角形,则实数a的值为________.18.(2017·南京三模)在平面直角坐标系xOy中,已知圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M上任意一点.若以N为圆心、ON为半径的圆与圆M至多有一个公共点,则a的最小值为________.19.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.20.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB =90°,则m的最大值为________.21.(2017南通第三次调研考试)在平面直角坐标系xOy中,圆C1:(x-1)2+y2=2,圆C2:(x-m)2+(y+m)2=m2,若圆C2上存在一点P满足:过点P向圆C1作两条切线PA,PB,切点分别为A,B,△ABP的面积为1,则正数m的取值范围是.22.(2015·南京模拟)在平面直角坐标系xOy中,圆C的方程为(x-1)2+y2=4,P为圆C上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,则圆M的方程为________.23.(2015·苏、锡、常、镇四市调研)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx -4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围为________.24在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为________.25已知点A(0,2)为圆M:x2+y2-2ax-2ay=0(a>0)外一点,圆M上存在点T使得∠MAT=45°,则实数a的取值范围是________________.26在直角坐标系xOy中,圆M:( − )2+( + −3)2=1( >0),点N为圆M上任意一点,若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的最小值为______.27已知圆C:(x-3)2+(y-2)2=r2,若直线3x+y=3上存在点P,在圆C上总存在不同的两点M,N 使得点M是线段PN的中点,则圆C的半径的r的取值范围28已知MN圆C:(x-1)2+(y-2)2=2的一条弦,且C M C N,点P是MN的中点,当弦MN在圆C上运动时,直线x-3y-5=0上总存在两点A,B,使得∠APB≥π2恒成立。
解三角形中的最值(范围)问题

解三角形中的最值(范围)问题解三角形中的最值问题1.锐角三角形ABC满足$2B=A+C$,设最大边与最小边之比为$m$,求$m$的取值范围。
分析:由题意可知$\angle B=60^\circ$,且$A\leq B\leqC<90^\circ$。
不妨令$m=\dfrac{c}{a}$,则有:m=\dfrac{c}{a}=\dfrac{\sin C}{\sin A}\leq\dfrac{\sinC}{\sin B}\leq\dfrac{\sin C}{\sin(\pi/3)}=2\sin C$$又因为$\sin A\geq\dfrac{1}{2}$,$\tanA\geq\dfrac{\sqrt{3}}{3}$,所以:dfrac{1}{2}\leq\sin A\leq 1,\quad \dfrac{\sqrt{3}}{3}\leq\tan A\leq\sqrt{3}$$从而有:1\leq m=\dfrac{c}{a}\leq 2$$2.锐角三角形ABC的面积为$S$,角C既不是最大角,也不是最小角。
若$k=\dfrac{a+b}{c}$,求$k$的取值范围。
分析:由正弦定理得:dfrac{c^2-a^2-b^2+2ab\cos C}{2ab}= \dfrac{\sin C}{\sinA\sin B}=\dfrac{2S}{ab\sin C}$$又因为$\cos C<1$,所以:dfrac{2S}{ab\sin C}<\dfrac{c^2-a^2-b^2+2ab}{2ab}=\dfrac{(c-a+b)(c+a-b)}{2ab}=\dfrac{(c-a+b)}{2}\cdot\dfrac{(c+a-b)}{2ab}\leq\dfrac{1}{4}$$又因为$\sin C\geq\dfrac{1}{2}$,所以:k=\dfrac{a+b}{c}\geq\dfrac{2\sqrt{ab}}{c}\geq 2\sqrt{\sinA\sin B}\geq\sqrt{2\sin A}\geq\sqrt{2}\sin\dfrac{A}{2}$$ 又因为$A0$,所以$k>0$。
范围管理容易出现的问题

范围管理容易出现的问题范围管理是项目管理中至关重要的一项任务,它涉及确定项目的目标、范围和可交付成果。
然而,在执行范围管理过程中,常常会遇到一些问题。
下面是一些范围管理容易出现的问题以及对应的解决方法。
1. 范围蔓延:范围蔓延指的是项目范围不断扩大,超出最初的计划和目标。
这可能是由于项目团队和利益相关者的需求不断增加,或者是由于范围定义不够明确所导致的。
解决方法:在项目启动阶段,确保充分沟通和理解所有利益相关者的需求,并将其明确记录在范围说明书中。
同时,制定变更控制过程,确保任何范围变化都经过审批和评估,以避免范围蔓延。
2. 范围冲突:范围冲突可能发生在不同利益相关者对项目范围和目标有不同理解的情况下。
这可能导致项目团队和利益相关者之间的沟通和决策困难。
解决方法:定期与利益相关者进行沟通,明确项目的范围和目标,并确保他们对这些内容有清晰的理解。
如果发现范围冲突,及时召开会议解决,并重新确认范围说明书。
3. 未充分考虑风险:范围管理过程中未充分考虑风险可能导致项目范围变更或项目延期。
这可能由于项目团队对潜在风险缺乏意识或范围管理计划不完善所导致。
解决方法:在范围管理计划中包括风险管理计划,并对可能影响项目范围的风险进行评估和应对策略的制定。
项目团队应该定期审查和更新风险管理计划,并在项目执行过程中及时应对风险。
4. 范围变更控制不力:范围变更是项目管理中的常见现象。
然而,如果范围变更控制不力,将给项目进度、成本和质量带来负面影响。
解决方法:建立变更控制过程,确保所有的范围变更都经过审批和评估,并及时更新相关的项目文档。
同时,项目团队应该与利益相关者保持良好的沟通,明确范围变更对项目的影响,并共同决策是否接受变更。
总的来说,范围管理容易出现的问题可以通过明确沟通、制定变更控制过程以及充分考虑风险来解决。
通过有效的范围管理,可以确保项目按时、按预算并符合质量要求完成。
高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
《欧姆定律应用之五种极值范围问题》

欧姆定律应用之五种极值范围问题 一、要点解读 1.极值范围问题: 这类问题,又称电路安全问题。
在电路中,需要保护用电器和电表两类元件的安全。
用电器安全:灯泡L 1标有“6V 0.5A ”,意思是说:两端电压不能超过6V ,电流不能超过0.5A ;滑动变阻器标有“20Ω 1A ”,意思是说:允许流过的电流不能超过1A 。
电表安全:电流表和电压表均不能超过量程最大值。
2.解题原则:保护弱小。
此电路中允许的最大电流:I max =0.5A3.三种范围:⎧⎪⎨⎪⎩电流表示数范围电压表示数范围滑变接入阻值范围求解范围,即求解电路中允许的最大值和最小值,一般初学者宜先从电流的最大值和最小值出发!二、常考题型1.串联电路A.电压表并滑变如图所示,电源电压为6V ,电压表量程0~3V ,电流表量程0~0.6A ,滑动变阻器规格为“20Ω 1A ”,小灯泡L 上标有“5V 0.5A ”的字样(灯丝阻值不变),在保证电路安全下,移动滑片,则电流表示数变化范围__________,电压表示数范围___________,滑动变阻器接入阻值范围__________。
解析:题目中可能只要求一种范围。
为了保证思路的连贯性,解答这类题目初期宜将这三种范围都求出来,且这三种范围间存在着对应关系。
先这样写出来:I max =0.5A —→min 6V 1020.5AR =-Ω=Ω—→U min =0.5A ×2Ω=1V min 6V 3V 0.3A 10I -==Ω—→max 3V 100.3AR ==Ω—→U max =3V 5V 100.5AL L L U R I ===Ω答案:0.3~0.5A;1~3V;2~10Ω。
警醒:这种情况先确定最大电流为0.5A(保护弱小),电阻最小,滑变分压最小,均安全。
当电流最小时,滑变电阻最大,分压最大(一般滑变移不到最大,电压表就已达最大值了)。
所以,可以先确定电压表最大值,即量程最大值,再利用用电器(灯泡)计算。
第九章 9课时2 范围、最值问题

课时2 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ).由已知,有⎝⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |= (c +c )2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =y x +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立. ⎩⎪⎨⎪⎧y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t = 6-2x 23(x +1)2>2, 解得-32<x <-1,或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m = 2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0.因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),求实数m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0). 由已知得:a =3,c =2,又a 2+b 2=c 2,得b 2=1,∴双曲线C 的方程为x 23-y 2=1. (2)联立⎩⎪⎨⎪⎧ y =kx +m ,x 23-y 2=1,整理得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0, 可得m 2>3k 2-1且k 2≠13,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0),则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km 1-3k 2,∴y 0=kx 0+m =m 1-3k 2. 由题意,AB ⊥MN , ∴k AB =m 1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0). 整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4.又3k 2=4m +1>0(k ≠0),即m >-14. ∴m 的取值范围是⎝⎛⎭⎫-14,0∪(4,+∞). 题型二 最值问题命题点1 利用三角函数有界性求最值例2 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( )A.2B. 2C.4D.2 2答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4.命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________________________.答案 22 解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+(-1)2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用均值不等式或二次函数求最值例4 (2014·湖南)如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左,右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,m m 2+2), 故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x , 即mx +2y =0.由⎩⎨⎧ y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2, 从而|PQ |=2x 2+y 2=2m 2+42-m 2. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4. 因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4. 又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4. 故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2. 而0<2-m 2≤2,故当m =0时,S 取得最小值2.综上所述,四边形APBQ 面积的最小值为2.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(1)已知焦点为F 的抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________.答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,又|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取得最大值6.(2)(2014·北京)已知椭圆C :x 2+2y 2=4.①求椭圆C 的离心率;②设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 ①由题意,椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. ②设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0. 又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2 =x 20+y 20+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4 =x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为2 2.[方法与技巧]1.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.2.圆锥曲线中常见最值问题及解题方法(1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之相关的一些问题.(2)两种常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用均值不等式法、配方法及导数法求解.[失误与防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.A 组 专项基础训练(时间:40分钟)1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎡⎦⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]答案 C解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0, 由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1.2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( )A.95B.125C.4D.5 答案 B解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.3.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( )A.[3,+∞)B.(3,+∞)C.(1,3]D.(1,3) 答案 A解析 依题意可知双曲线渐近线方程为y =±b a x ,与抛物线方程联立消去y 得x 2±b ax +2=0. ∵渐近线与抛物线有交点,∴Δ=b 2a 2-8≥0,求得b 2≥8a 2, ∴c =a 2+b 2≥3a ,∴e =c a≥3. 4.(2015·绵阳模拟)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________.答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤22536,∴6≤19·⎝⎛⎭⎫x +922+234≤12,即6≤OP →·FP →≤12.故最小值为6. 5.已知椭圆C 1:x 2m +2-y 2n=1与双曲线C 2:x 2m +y 2n =1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________.答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1, ∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2.∵双曲线C 2:x 2m +y 2n =1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件有m +2+n =m -n ,则n =-1,∴e 21=1-1m +2.由m >0得m +2>2,1m +2<12,-1m +2>-12,∴1-1m +2>12,即e 21>12,而0<e 1<1,∴22<e 1<1. 6.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上相异两点,且满足x 1+x 2=2.(1)若AB 的中垂线经过点P (0,2),求直线AB 的方程;(2)若AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程.解 (1)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y =kx +b ,代入方程y 2=4x ,得:k 2x 2+(2kb -4)x +b 2=0,∴x 1+x 2=4-2kb k 2=2,得b =2k-k , ∴直线AB 的方程为y =k (x -1)+2k, ∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎫1,2k , ∴AB 的中垂线方程为y =-1k (x -1)+2k =-1k x +3k. ∵AB 的中垂线经过点P (0,2),故3k =2,得k =32, ∴直线AB 的方程为y =32x -16. (2)由(1)可知AB 的中垂线方程为y =-1k x +3k, ∴点M 的坐标为(3,0),∵直线AB 的方程为k 2x -ky +2-k 2=0,∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k 2=2k 2+1|k |,由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x 得k 24y 2-ky +2-k 2=0, y 1+y 2=4k ,y 1·y 2=8-4k 2k 2, |AB |= 1+1k 2|y 1-y 2|=41+k 2k 2-1k 2. ∴S △MAB =4⎝⎛⎭⎫1+1k 2 1-1k 2, 设 1-1k2=t ,则0<t <1, S =4t (2-t 2)=-4t 3+8t ,S ′=-12t 2+8,由S ′=0,得t =63, 即k =±3时,S max =1669, 此时直线AB 的方程为3x ±3y -1=0.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e . (1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF 2→·BF 2→=0,且22<e ≤32,求k 的取值范围. 解 (1)由焦点F 2(3,0),知c =3,又e =32=c a,所以a =2 3. 又由a 2=b 2+c 2,解得b 2=3.所以椭圆的方程为x 212+y 23=1. (2)由⎩⎪⎨⎪⎧y =kx ,x 2a 2+y 2b 2=1,得(b 2+a 2k 2)x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知,x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k2. 又AF 2→=(3-x 1,-y 1),BF 2→=(3-x 2,-y 2),所以AF 2→·BF 2→=(3-x 1)(3-x 2)+y 1y 2=(1+k 2)x 1x 2+9=0,即-a 2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,整理得k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 由22<e ≤32及c =3, 知23≤a <32,12≤a 2<18.所以a 4-18a 2=(a 2-9)2-81∈[-72,0),所以k 2≥18,则k ≥24或k ≤-24, 因此实数k 的取值范围为⎝⎛⎦⎤-∞,-24∪⎣⎡⎭⎫24,+∞. B 组 专项能力提升(时间:30分钟)8.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x轴的垂线交椭圆于A 、A ′两点,|AA ′|=4.(1)求该椭圆的标准方程; (2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上,则(-c )2a 2+22b2=1. 从而e 2+4b 2=1.由e =22得b 2=41-e 2=8, 从而a 2=b 21-e 2=16. 故该椭圆的标准方程为x 216+y 28=1. (2)由题意,可设Q (x 0,0).又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216 =12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意知,P 点是椭圆上到点Q 的距离最小的点,因此,上式当x =x 1时取最小值, 又因为x 1∈(-4,4),且上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 20.由对称性知P ′(x 1,-y 1),故|PP ′|=|2y 1|,所以S =12|2y 1||x 1-x 0|=12×28⎝⎛⎭⎫1-x 2116|x 0| = 2 (4-x 20)x 20= 2 -(x 20-2)2+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2. 此时对应的圆Q 的圆心坐标为Q (±2,0),半径|QP |=8-x 20=6, 因此,这样的圆有两个,其标准方程分别为(x +2)2+y 2=6,(x -2)2+y 2=6.9.如图所示,在直角坐标系xOy 中,点P (1,12)到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线OM 上.(1)求曲线C 的方程及t 的值;(2)记d =|AB |1+4m 2,求d 的最大值.解 (1)y 2=2px (p >0)的准线为x =-p2,∴1-(-p2)=54,p =12,∴抛物线C 的方程为y 2=x .又点M (t,1)在曲线C 上,∴t =1.(2)由(1)知,点M (1,1),从而n =m ,即点Q (m ,m ), 依题意,直线AB 的斜率存在,且不为0,设直线AB 的斜率为k (k ≠0),且A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2,故k ·2m =1,∴直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧ x -2my +2m 2-m =0,y 2=x消去x , 整理得y 2-2my +2m 2-m =0,∴Δ=4m -4m 2>0,y 1+y 2=2m ,y 1y 2=2m 2-m .从而|AB |= 1+1k 2·|y 1-y 2|=1+4m 2·4m -4m 2=2(1+4m 2)(m -m 2).∴d =|AB |1+4m 2=2m (1-m )≤m +(1-m )=1,当且仅当m =1-m ,即m =12时,上式等号成立, 又m =12满足Δ=4m -4m 2>0.∴d 的最大值为1.。
解三角形中的最值与范围问题(解析版)

专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
三角形中的最值和范围问题方法总结

三角形中的最值和范围问题方法总结总结和探讨在三角形中解决最值和范围问题的方法。
首先,我们可以利用三角函数的特性,因为在三角形中,正弦函数与余弦函数的值都在0到1之间,而正切函数的值则在-1到1之间。
因此,通过分析这些函数的性质,我们可以得出一些结论和结论:(1)三角形中最大值和最小值的计算方法:在三角形中,可以通过最大值最小值公式来求解最大值和最小值,具体公式为A = (b*s*s + c*c*s - a*a*s) / (2*b*s)和B = (c*s*s + a*a*s - b*b*s) / (2*a*s)。
这一方法主要适用于正弦函数和余弦函数的最大值和最小值问题。
例如,在一个三角形中,已知a和b 的长度,我们可以使用正弦函数的性质,通过b/sinB=a/sinA来求出角B的最大值和最小值。
(2)三角形中范围问题的解决方法:在解决三角形中范围问题时,可以使用正弦定理和余弦定理来推导出相关条件。
例如,在求解三角形面积的取值范围时,可以采用作图法、余弦定理法或正弦定理法等方法。
若已知一角和邻边长,则无法求得面积的取值范围,因为邻边长可无限接近于0,所以面积的取值范围为0到正无穷。
此外,在处理中线问题时,可以采用向量加法加平方或利用中线与对边所成两角互补,余弦值相加等于零的思路。
(3)关于余弦定理的应用:余弦定理可以在求解三角形中的范围问题时使用,其公式为c^2 = a^2 + b^2 - 2*a*b*cosC,其中C为三角形的一个角。
通过将此公式变形为cosC = (a^2 + b^2 - c^2) / (2*a*b),我们可以推导出C的范围。
例如,在求解一个角的范围时,我们可以将cosC的值作为条件,然后利用反正弦函数求解其取值范围。
(4)关于三角形的最大值和最小值问题:在求解三角形的最大值和最小值问题时,可以利用三角形内角和定理和正弦函数的性质。
例如,对于一个三角形,我们可以根据内角和定理,计算出最大的角度,然后根据正弦函数的性质,求解出该角度对应的最大值或最小值。
2025年高考数学一轮复习-重难专攻(八)圆锥曲线中的最值(范围)问题【课件】

量表示该参数,建立函数关系,利用函数单调性求最值(范围).
高中总复习·数学(提升版)
利用不等关系求最值(范围)
【例1】 (2024·全国甲卷20题)已知直线 x -2 y +1=0与抛物线
C : y 2=2 px ( p >0)交于 A , B 两点,| AB |=4 15 .
(1)求 p ;
高中总复习·数学(提升版)
6
,短轴一个端点到右焦点的距离为
3
3.
(1)求椭圆 C 的方程;
6
= ,
3
解:设椭圆的半焦距为 c ,依题意知ቐ
= 3,
∴c=
2
2 , b =1,∴椭圆 C 的方程为 + y 2=1.
1 +2
4
所以 x 0=
=- 2 , y 0= kx 0+ m = 2 .
2
4 +1
4 +1
高中总复习·数学(提升版)
0 +1
+1+4 2
所以 kAP =
=-
.
0
4
又| AM |=| AN |,所以 AP ⊥ MN ,
+1+4 2
1
则-
=- ,即3 m =4 k 2+1.
=+,
2+1) x 2+8 kmx +4( m 2-1)=0.
联立ቐ 2
得(4
k
+ 2 = 1,
4
Δ=(8 km )2-16(4 k 2+1)( m 2-1)>0,
所以 m 2<1+4 k 2. ①
−8
4(2 −1)
则 x 1+ x 2= 2 , x 1 x 2=
.
2
4 +1
三角形中的最值与范围问题解析版

三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。
三角形中的范围(最值)问题专题

(2)由正弦定理得c=2RsinC= .
由余弦定理得c2=a2+b2-2abcosC,故a2+b2= +ab.
因为a>0,b>0,所以a2+b2> .又ab≤ ,故a2+b2≤ + ,得a2+b2≤ .因此, <a2+b2≤ .则a2+b2的取值范围为 .
7.答案:(1) ;(2) .
解析:(1)由sin(2A- )=1,得2A- =2kπ+ (k∈Z),即A=kπ+ (k∈Z),又A∈(0,π),所以A= .
(2)由正弦定理得
= =
=
=
=
2sin(B+ ),又△ABC是锐角三角形,所以
解得 <B< , <B+ < ,故有 <2sin(B+ )≤2,所以 < ≤2.即 的取值范围为 .
三角形中的范围
1.在△ABC中,角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,则角B的取值范围是________.
2.在锐角△ABC中,BC=1,B=2A,则AC的取值范围是________.
3.若a1x≤sinx≤a2x对任意的x∈ 都成立,则a2-a1的最小值为________.
4.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0,当A为锐角时,则m的取值范围是________.
4.答案: .
解析:由正弦定理及sinB+sinC=msinA得,b+c=ma,又cosA= = = =2m2-3,因为A为锐角,所以cosA=2m2-3∈(0,1),所以 <m2<2,又由b+c=ma得m>0,所以 <m< .
5.答案:(3,2 ].
三角函数中的变量x的范围问题

三角函数中的变量x的范围问题三角函数是数学中常见的函数之一,它们在描述各种周期性现象中起到重要作用。
在计算三角函数时,我们需要确定变量x的范围,以确保我们得到正确的结果。
正弦函数sin(x)正弦函数是最基本的三角函数之一,在数学和物理中都有广泛的应用。
sin(x)的取值范围是从-1到1,即 -1 ≤ sin(x) ≤ 1。
余弦函数cos(x)余弦函数也是常见的三角函数,与正弦函数非常相似。
cos(x)的取值范围也是从-1到1,即 -1 ≤ cos(x) ≤ 1。
正切函数tan(x)正切函数是另一个重要的三角函数,它可以用来描述角度的斜率。
tan(x)的取值范围是从负无穷到正无穷,即 tan(x) ∈ (-∞, +∞)。
反正弦函数arcsin(x)反正弦函数是正弦函数的反函数,它可以用来求得给定正弦值的角度。
arcsin(x)的取值范围是从-π/2到π/2,即 -π/2 ≤ arcsin(x) ≤ π/2。
反余弦函数arccos(x)反余弦函数是余弦函数的反函数,它可以用来求得给定余弦值的角度。
arccos(x)的取值范围是从0到π,即0 ≤ arccos(x) ≤ π。
反正切函数arctan(x)反正切函数是正切函数的反函数,它可以用来求得给定正切值的角度。
arctan(x)的取值范围是从-π/2到π/2,即 -π/2 ≤ arctan(x) ≤ π/2。
综上所述,三角函数中变量x的范围取决于具体的函数类型。
对于正弦函数和余弦函数,x可以取任意实数;对于正切函数,x可以取任意实数;而对于反正弦函数、反余弦函数和反正切函数,x的取值范围有限,并受到特定角度范围的限制。
求解椭圆范围问题+专题课件

y0
kx0
m
m 4k 2
1
.∴
kAP
y0 1 m 1 4k2
x0
4km
,
又 AM AN ,∴ AP MN ,则 m 1 4k 2 1 ,即3m 4k2 1,②
4km
k
把②代入①得 m2<3m ,解得 0<m<3 ,由②得 k 2 3m 1 0 ,解得 m 1 .
4
3
综上可知
m
2k2 1 m2 ,化简,得 2m2k4 7m2k2 3m2 2k4 3k2 1 ,
2k2 1
整理得
m2
k2 k2
1 3
,而 g k
k2 k2
1 3
1
2 k2 3
1
2 3
1 3
(当且仅当 k
0 时等号成立)
所以 m2 1 ,由 m 0 ,得 0 m 3 ,综上, m 的取值范围是 0 m 3 .
1 PF2
8 mn
1 2
.
2 3
.
故选:A.
【例 4】已知椭圆 C:x2 y2 1 ,设经过其右焦点 F 的直线交椭圆 C 于 M ,N 两点,线段 MN
43
的垂直平分线交 y 轴于点 P0, y0 ,求 y0 的取值范围.
【例 4】解:当 MN x 轴时,显然 y0 0 .
当 MN 与 x 轴不垂直时,可设直线 MN 的方程为 y k(x 1)(k 0) .
0
,或 0
y0
3 12
.
综上:
y0
的取值范围是
3 12
,
3 12
.
【训练
2】如图,椭圆
x2 a2
y2 b2
1(a>b>0)的左焦点为
三角函数中的角度α的范围问题

三角函数中的角度α的范围问题1. 背景介绍三角函数是数学中常用的一类函数,其中角度α的范围决定了三角函数的取值范围。
在本文档中,我们将讨论一些常见的三角函数及其对应的角度范围。
2. 正弦函数正弦函数是三角函数中的一种基本函数,通常记作sin(x)。
在正弦函数中,角度α的范围通常是从-90°到+90°,即[-90°, +90°]。
这是因为正弦函数在这个范围内的取值介于-1到+1之间。
3. 余弦函数余弦函数是另一种常见的三角函数,通常记作cos(x)。
在余弦函数中,角度α的范围通常是从0°到180°,即[0°, 180°]。
余弦函数在这个范围内的取值也介于-1到+1之间。
4. 正切函数正切函数是三角函数中的另一种常用函数,通常记作tan(x)。
在正切函数中,角度α的范围通常是从-90°到+90°,但需要排除一些特殊点。
具体来说,当α等于-90°、+90°以及180°的整数倍时,正切函数是不定义的。
所以,正切函数的范围可以表示为(-90°, -90°)并排除特殊点。
5. 总结在三角函数中,角度α的范围决定了函数的取值范围。
正弦函数的范围是[-90°, +90°],余弦函数的范围是[0°, 180°],正切函数的范围是(-90°, -90°)并排除特殊点。
在计算三角函数时,需要注意角度范围的限制,以避免错误的计算结果。
以上是关于三角函数中角度α的范围问题的简要介绍。
6. 参考文献> [1] 罗杰斯, E., & 丘, G. (2010). 高等数学: 极限、微分、积分、级数 (第4版). 高等教育出版社.> [2] Stewart, J. (2015). 单变量微积分: 早恋数学的教程 (第8版). 广西师范大学出版社.。