第二章 钢筋混凝土结构的基本计算原则分析
混凝土结构设计中的钢筋配筋原则
混凝土结构设计中的钢筋配筋原则一、引言混凝土结构设计中的钢筋配筋原则是指根据力学原理和钢筋的力学性能,钢筋在混凝土结构中的布置、数量和直径的选择,以满足混凝土结构的强度和刚度要求,并保证其可靠性和经济性的设计原则。
本文将从配筋原则、布筋原则、钢筋直径选择和钢筋数量计算四个方面详细介绍混凝土结构设计中的钢筋配筋原则。
二、配筋原则1. 按混凝土受力状态进行配筋混凝土受力状态有受拉、受压和受弯三种状态。
在受拉状态下,应在混凝土中设置纵向钢筋;在受压状态下,应在混凝土中设置箍筋和纵向钢筋;在受弯状态下,应在混凝土中设置受拉钢筋和受压钢筋。
2. 按构件受力状态进行配筋不同构件受力状态不同,其配筋方式也应根据受力状态进行选择。
例如,梁的主要受力状态是弯曲和剪切,因此应设置梁底部的纵向钢筋和箍筋,以增加梁的抗剪能力和抗弯强度。
3. 按钢筋的屈服强度进行配筋钢筋的屈服强度是指钢筋在拉力作用下开始产生塑性变形的最小应力值。
在设计中,应根据混凝土结构的受力状态和要求,选择合适的钢筋屈服强度,并根据其屈服强度确定配筋的数量和直径。
三、布筋原则1. 确定基本布筋基本布筋是指为满足混凝土结构的强度和刚度要求而必须设置的钢筋。
在设计中,应根据混凝土结构的受力状态和要求,确定基本布筋的位置、数量和直径。
2. 适当设置附加布筋附加布筋是指为提高混凝土结构的可靠性和经济性而设置的钢筋。
在设计中,应根据混凝土结构的受力状态和要求,适当设置附加布筋,以提高混凝土结构的抗震能力和抗裂性能。
3. 确定纵向钢筋的间距和箍筋的间距纵向钢筋的间距和箍筋的间距是决定混凝土结构强度和刚度的重要参数。
在设计中,应根据混凝土结构的受力状态和要求,确定纵向钢筋的间距和箍筋的间距,以满足混凝土结构的强度和刚度要求。
四、钢筋直径选择1. 根据受力状态和受力大小选择钢筋直径在混凝土结构中,不同受力状态和受力大小需要不同直径的钢筋。
在设计中,应根据混凝土结构的受力状态和要求,选择合适的钢筋直径。
结构设计原理第2章 结构极限状态计算
规定时间——对结构进行可靠度分析时,结合 结构使用期,考虑各种基本变量与时间关系所 取用的基准时间参数,即设计基准期。我国公 路桥梁结构的设计基准期为100年。 设计基准期≠使用寿命,当结构的使用年限超 过设计基准期时,表明它的失效概率可能增大, 不能保证其目标可靠度,但不等于结构丧失功 能甚至报废。通常使用寿命长,则设计基准期 就长,设计基准期小于寿命期。
R-抗力方面的基本变量组成的综合抗力;
S-作用效应方面的基本变量组成的综合效应。
2.
结构功能函数与可靠、失效、极限状态的对 应关系
Z=R–S>0:结构可靠 Z=R–S<0:结构失效
Z=R–S=0:结构处于极限状态
结构可靠度设计的目的用功能函数表示,应满足
Z=g(X1,X2,…,Xn)≥0或Z=R-S ≥0
f
( )
。
-无量纲系数,称为结构可靠指标。 与
失效概率 Pf 有一一对应关系, 越大, Pf 越 小 ,结构越可靠。(表2-1)
2.1.5 目标可靠指标
定义:用作公路桥梁结构设计依据的可靠 指标。 确定方法:采用“校准法”并结合工程经 验和经济优化原则加以确定。 校准法——根据各基本变量的统计参数和 概率分布类型,运用可靠度的计算方法, 揭示以往规范隐含的可靠度,以此作为确 定目标可靠指标的依据。
采用近似概率极限状态设计法,设 计计算应满足承载能力和正常使用两类 极限状态的各项要求。
2.2.1 三种设计状况
持久状况
桥涵建成后承受自重、车辆荷载等 作用持续时间很长的状况。对应于桥梁 的使用阶段,必须进行承载能力极限状 态和正常使用极限状态的设计。
短暂状况
桥涵施工过程中承受临时性作用 (或荷载)的状况。对应于桥梁的施工 阶段,一般只进行承载能力极限状态计 算(以计算构件截面应力表达),必维护条件下,在规定 时间内,具有足够的耐久性,如不出现 过大的裂缝宽度,钢筋不锈蚀。(耐久 性)
中南大学混凝土结构设计基本原理课后答案总结
混凝土结构设计原理第一章 钢筋混凝土的力学性能1、 钢和硬钢的应力—应变曲线有什么不同,其抗拉设计值fy 各取曲线上何处的应力值作为依据?答:软钢即有明显屈服点的钢筋,其应力—应变曲线上有明显的屈服点,应取屈服强度作为钢筋抗拉设计值fy 的依据。
硬钢即没有明显屈服点的钢筋,其应力—应变曲线上无明显的屈服点,应取残余应变为0.2%时所对应的应力σ0.2作为钢筋抗拉设计值fy 的依据。
2、 钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响? 答:冷加工的目的是提高钢筋的强度,减少钢筋用量。
冷加工的方法有冷拉、冷拔、冷弯、冷轧、冷轧扭加工等。
这几种方法对钢筋的强度都有一定的提高,4、 试述钢筋混凝土结构对钢筋的性能有哪些要求? 答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土黏结良好;(3)可焊性好;(4)有足够的塑性。
5、 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?用什么符号表示? 答:我国用于钢筋混凝土结构的钢筋有4种:热轧钢筋、钢铰丝、消除预应力钢丝、热处理钢筋。
我国的热轧钢筋分为HPB235、HRB335、HRB400和RRB400三个等级,即I 、II 、III 三个等级,符号分别为 ( R) 。
6、 除凝土立方体抗压强度外,为什么还有轴心抗压强度?答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。
所以除立方体抗压强度外,还有轴心抗压强度。
7、 混凝土的抗拉强度是如何测试的?答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。
由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。
8、 什么是混凝土的弹性模量、割线模量和切线模量?弹性模量与割线模量有什么关系?答:混凝土棱柱体受压时,过应力—应变曲线原点O 作一切线,其斜率称为混凝土的弹性模量,以E C 表示。
桥梁结构设计原理第2章
钢筋混凝土结构设计理论的三个发展阶段
1、容许应力计算法 以弹性理论为基础的一种计算方法,不能如实 的反应构件截面的应力状态,不能正确的计算出结 构的承载能力。 2、破坏阶段计算法 20世纪30年代所提出,以弹塑性理论为基础的 一种计算方法,比容许应力计算法有了很大的进 步。 3、极限状态计算法 20世纪50年代所提出,是破坏阶段计算法的发 展。
影响正常使用或耐久性能的局部损坏
影响正常使用的振动
影响正常使用的其它特定状态
正 常 使 用 极 限 状 态
(承):刚体失去平衡,材料强度不足,结
极限状态的 表现形式:
构转变为机构,失稳
(正):过大的变形,影响正常使用或耐久 性能的局部损坏,过大的振动
注意
结构或构件能否完成预定功能与结构的作用效应S与结 构的抗力R有关。 由此可采用结构的功能函数 Z = R – S 来描述结构完成 预定功能的状况。因抗力R和S均具有随机性,所以只能用功
三、混凝土结构的耐久性设计
1、耐久性问题 (1)混凝土损伤 (2)钢筋的锈蚀、脆化、疲劳、应力腐蚀等 (3)钢筋与混凝土之间黏结锚固作用的削弱 2、影响耐久性的因素 (1)混凝土碳化 (2)化学侵蚀 (3)碱集料反应 (4)冻融破坏 (5)温度变化的影响
(2)作用长期效应组合
M QiK 459.7 /(1 ) 385.98kN m
• 作用长期效应组合设计值为:
M ld M Gik 2 j M Qjk
i 1 j 1 m n
M Gk 21M Q1k 22 M Q 2 k 552 0.4 385.98 0.4 40.6 722.63kN .m
第二章
钢筋混凝土结构设计基 本原理
钢筋混凝土结构设计计算基本原则
第二节 结构按概率极限状态设计的基本概念
钢筋砼结构设计采用以概率理论为基础的极限状态设计法。
设计时主要考虑的两个变量:
荷载效应( S ) :荷载在结构构件上引起的内力和变形。
如弯矩M、轴力N、剪力V、扭矩T、挠度 f、裂缝宽度 w 等。
结构抗力( R ):结构构件的抵抗荷载效应的能力。如受
弯承载力Mu、受剪承载力Vu、容许挠度[f]、容许裂缝宽度[w]。
第一节 结构设计的极限状态
一.结构的极限状态的定义 结构或结构的一部分超过某一特定状态就不能满足设 计规定的某一功能要求,此特定状态称为该功能的极限状 态。一旦超过这种状态,结构就进入失效状态。 二.结构极限状态的分类 根据功能要求,国际上通常把极限状态分为两大类: 承载能力极限状态:超过这一极限状态时结构将发生 破坏、倒塌或失稳等现象。 正常使用极限状态:超过这一极限状态时结构将出现 过大的变形,开裂或过宽的裂缝,钢筋严重锈蚀,混凝土 腐蚀、风化、剥落等现象。
二、结构的极限状态的分类
(二)正常使用极限状态
超过该极限状态,结构就不满足预定的适用性和耐久性要求。
产生过大的变形,影响正常使用和外观;
(不安全感、不能正常使用等)
产生过宽的裂缝,对耐久性有影响或者产生人们心理上不能接
受的感觉;
(钢筋锈蚀、不安全感、漏水等)
产生过大的振动影响使用。
二、 结构的极限状态的分类
(一)承载能力极限状态
承载能力极限状态时关于安全性功能要求的,所以满 足承载能力极限状态的要求,是结构设计的首要任务,因 为这关系到结构能否安全的问题,一旦失效,后果严重, 所以应具有较高的可靠度水平。
规范规定,所有结构构件均应进行承载力计算,必要 时尚应进行结构的抗倾、抗滑、抗浮验算;对需要抗震设 防的结构,尚应进行结构的抗震承载力计算。
钢筋 混凝土结构设计的基本原理
(1) 作用短期效应组合。永久作用标准值效应与可变 作用频遇值效应相组合。
(2) 作用长期效应组合。永久作用标准值效应与可变 作用准永久值效应相组合。
3、在进行作用效应组合时需注意的问题:
(1)只有在结构上可能同时出现的作用,才 进行其效应的组合。
1.永久作用 在结构设计使用期内,其量值不 随时间而变化,或其变化与平均值相比可以忽 略不计的作用
2.可变作用 在结构设计使用期内,其量值随 时间而变化,其变化与平均值比较不可忽略的 作用。
3.偶然作用 在结构设计使用期内,出现的概 率很小,但一旦出现,其值很大且作用时间很 短的作用。
➢ 二、作用代表值
度作用效应为0.8,其他作用效应为1.0
正常使用极限状态采用作用的短期效应组合、 长期效应组合或短期效应组合并考虑长期 效应组合的影响,计算主要进行下列三个 方面的验算:
➢ 1.抗裂验算
d L
➢ 2.裂缝宽度验算 Wtk WL
➢ 3.挠度验算
fd fc
三、工程实例
➢ 例1-1:某一钢筋混凝土简支梁,跨中截面恒载弯矩标 准M试Q值分1=别M6G2计=08k算N5梁0.mk跨N,.中m人,截群汽面荷车弯载荷矩弯载的矩弯基标矩本准标效值准应M值组Q2合=8、0k短N.期m效, 应组合和长期效应组合值(结构安全等级为二级)。
2、正常使用极限状态
这种极限状态对应于结构或结构构件达到正常使用 或耐久性能的某项规定值。当结构或构件出现下列 状态之一时,即认为超过了正常使用极限状态:
➢ ①影响正常使用或外观的变形;
➢ ②影响正常使用或耐久性能的局部损坏 (如过大的裂缝宽度);
第2章 钢筋混凝土结构的基本计算原理
2.2作用效应、结构抗力
2.2.2.3 材料强度标准值、设计值、材料分项系数
1、材料强度标准值 材料强度标准值是按标准试验方法测得的具有不小于95%保证率的材料强度值, 即 f k f m 1.645 实质:以确定值(标准值)表达不确定值,便于应用。
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 22
11
2.2作用效应、结构抗力2.2.2
(1)荷载标准值
分为永久荷载标准值和可变荷载标准值。 荷载标准值应根据设计基准期内最大荷载概率分布的某一分位值确定。
设计基准期:是为统一确定荷载和材料的标准值而规定的年限。
我国荷载规范采用的设计基准期为50年。
f (Q)
95% 50% 5%
图:2-1荷载的标准值QK
c 偶然荷载——设计基准期内不一定出现,一旦出现,其值很大且持续时间很短 的荷载。如爆炸力、撞击力等。
6
2.2作用效应、结构抗力2.2.2 2、按作用方向分类 a 竖向荷载——如自重、雪载、吊车竖向荷载等。 b 水平荷载——风荷载、吊车水平荷载。
3、按结构的动力效应分类
a 静荷载——对结构不产生动力效应,或小的可以忽略;如恒载、活载。 b 动荷载——对结构产生动力效应,且不可以忽略。 如吊车荷载、高层结构风荷载。
一、作用效应S是由各种结构上的作用引起的结构或构件的内力(轴向力、剪力、 弯矩、扭矩)和变形(如挠度、侧移、裂缝等)。
取值原则:根据荷载概率分布特征, 控制保证率。
荷载规范中给出4种代表值:标准值、组合值、频遇值、准永久值。 永久荷载代表值:应该用标准值作为代表值, 可变荷载代表值:应根据设计要求用标准值、组合值、频遇值、准
永久值作为代表值。
结构按极限状态法设计计算的原则
R( )——结构构件的承载力函数; fd ——分别为混凝土、钢筋的强度设计值; d ——几何参数标准值,当几何参数的变异性对结构性能有明
显不利的影响时,可另增减一个附加值。
整理ppt
二、持久状况正常使用极限状态设计表达式 按正常使用极限状态设计时,应验算结构构件的应力、变
实际上是考虑可变作用的长期效应而对标准值的折减。
整理ppt
三、作用效应组合(Combintion for ction Effects) 1、承载能力极限状态计算时作用效应组合 此时结构应按作用效应的基本组合进行计算,必要时还要 考虑到偶然作用。
整理ppt
1、不考虑偶然作用的称为“基本组合”(Fundermentl Combintion for ction EffeZ=R-S>0,结构抗力大于作用效应,即结构可靠; (2)Z=R-S<0,结构抗力小于作用效应,即结构失效; (3)Z=R-S=0,结构抗力等于作用效应,即处于极限状态 。
因此可以看出,结构安全可靠的基本条件是:Z≥0或 R≥S。
整理ppt
第二节 我国现行公路桥规的计算原则
汽车制动力 风力
流水压力
冰压力
温度作用 (均匀温度和梯度温度)
整理ppt
支座摩阻力
19
地震作用
20
偶然作用 船舶或漂流物的撞击作用 AL
21
汽车撞击作用
整理ppt
二、作用的代表值 “作用代表值”是在实用的极限状态设计表达式中所采用
的荷载规定值。 公路桥规中规定设计须考虑的最常见的三种作用代表值:
整理ppt
2、正常使用极限状态: 结构或构件达到正常使用或耐久性能的某项规定限值。
第二章 钢筋和混凝土的力学性能
(2.3)
锚固钢筋的外形系数及受拉最小锚固长度( mm) 月牙肋钢筋 0.14 25d
注:1、光面钢筋末端应做 180°标准弯钩,但在焊接骨架、焊接网及轴心 受压构件中的光面钢筋可不做弯钩; 2、当月牙肋钢筋的直径大于 25mm 时,钢筋外形系数应再乘以修正系 数 1.1; 3、环氧树脂涂层钢筋的外形系数尚应乘以修正系数 1.25。
弹性系数约为0.5
s
ft
e tu
ft ft 2 ft et0 0.5Ec Ec Ec
e tu 500 ~ 270 e
et0
e
2.混凝土在长期荷载作用下的变形-收缩和徐变
混凝土的收缩和徐变 Shrinkage and Creep
混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩, 收缩是混凝土在不受外力情况下体积变化产生的变形。
小尺寸构件收缩大,大尺寸构件收缩小; 高强混凝土收缩大。
影响收缩的因素多且复杂,要精确计算尚有一定的困难。在实际工程中,
要采取一定措施减小收缩应力的不利影响。
混凝土的徐变
e eel ’ eel’
’
瞬时恢复
弹性后效
ecr eel
徐变应变
ecr’
eel esh 徐变会使结构(构件)的(挠度)变形增大,引起预应力损失,在长期 收缩应变 t0 t 高应力作用下,甚至会导致破坏。
瞬时应变
残余应变
随荷载作用时间的延续,变形不断增长,前4个月徐变增长较快,6个月 可达最终徐变的(70~80)%,以后增长逐渐缓慢,2~3年后趋于稳定。
混凝土徐变的影响因素
徐变与混凝土持续应力大小有密切关系,应力越大徐变
也越大;
混凝土加载龄期越长,徐变越小;
钢筋混凝土拱形结构的计算与分析
钢筋混凝土拱形结构的计算与分析钢筋混凝土拱形结构是一种广泛应用于建筑和桥梁工程中的结构形式。
它以优异的承载能力和稳定性,被广泛地运用在工程实践中。
然而,钢筋混凝土拱形结构的设计与计算也是一项十分复杂的工作,需要精密的数学计算和结构分析。
本文主要介绍钢筋混凝土拱形结构的计算与分析,分别从设计原理、构造特点以及计算方法等方面进行讨论。
一、设计原理钢筋混凝土拱形结构是一种具有较高介质刚度和强度的结构形式。
它的设计原理基本上是传统的弧形力学原理,也称之为弧形理论。
具体来说,其弧形力学基础是将结构各部件与弯曲半径的比例关系之间的函数关系进行研究,进而做出各种钢筋混凝土拱形结构的设计与计算。
在进行钢筋混凝土拱形结构的设计中,需要对弧形理论进行深入的了解。
这需要我们了解弧形理论的基本原理,尤其是重要的变形模式和弯曲响应,这对于结构的设计和计算非常重要。
同时,还需要结合材料力学知识对设计进行分析和应用,以确保结构的稳定性、安全可靠性和经济性。
二、构造特点钢筋混凝土拱形结构由于其很好的承载力和稳定性,现在广泛应用于各种建筑和桥梁工程中。
其主要构造特点包括以下几个方面:1、拱形斜撑钢筋混凝土拱形结构的一端由一个挂梁连接固定,在另一端则用斜撑来解决就地支撑的问题。
斜撑的初始长度可以直接根据设计要求计算,从而使整个结构达到理想的稳定状态。
同时,结构的斜杠支撑还可以通过调整其斜度,进一步提高结构的稳定性。
2、拱顶构造钢筋混凝土拱形结构顶部通常采用锥形结构,选择合适的缓坡角度,从而实现结构的稳定设计,减少施工难度。
锥形结构可以随着结构的曲率变化而变化,使得整个结构稳定可靠。
3、多边形拱形结构多边形拱形结构是一种能够适应多种不同设计要求的常见结构形式。
它可以直接适应各种不同的外部荷载和内部各部件构造的情况,同时也使得整个结构在外形上更加美观大方。
三、计算方法1、荷载分析在进行钢筋混凝土拱形结构的计算分析时,需要首先进行荷载分析。
混凝土计算原则
常称为荷载效应。
三、荷载代表值 《荷载规范》将荷载分为三类:
永久荷载 可变荷载 偶然荷载
一 荷载分类
按随时间的变异,结构上的荷载可分为以下三类:
1.永久荷载:永久荷载亦称恒荷载,是指在结构使用期间, 其值不随时间变化。如结构自重、土压力、预应力等。
第二节 结构上的作用与作用效应S
一、结构上的作用与荷载 荷载的分类和荷载效应
1、按随时间的变异分类
可变荷载
永久荷载 偶然荷载
2、按随空间位置的变异分类
固定荷载
3、按结构的反应特点分类
自由荷载
静态荷载 动态荷载
第二节 结构上的作用与作用效应S 二、结构上的荷载效应S
作用效应—— 结构上的各种作用,在结构内产生的内 力(轴力、弯矩、剪力、扭矩等)和变形(如挠度、转角、
三、荷载的代表值 《荷载规范》对不同的荷载给予了相应的
规定量值,这种量值,称为荷载的代表值。 几种荷载的代表值
标 准 值 —— 由《荷载规范》给出
可变荷载准永久值 = 可变荷载标准值×ψq 可变荷载频遇值 = 可变荷载标准值×ψf 可变荷载组合值 =可变荷载标准值×ψc
第三节 结构抗力
一、结构抗力概念 表示结构或结构构件承受和抵抗 荷载效应的能力,用R表示。
n
S S G SG k Q1 S L1 Q1k ci i2
Qi
Li
Qik
荷载效应S
荷载效应是指由荷 载在结构上产生的 各种内力(弯矩、 剪力等)和变形 (挠度、裂缝等) 的统称。
[例]简支梁承受均布荷载q作用,计算 跨度为l,由力学计算可知其跨中弯矩
M = 1 ql 2,支座剪力V = 1 ql 。
第二章 结构设计基本原则
第二章
结构设计基本原则
3)耐久性 建筑结构在正常维护条件下应具有足够的耐久性 能,不致因混凝土的劣化、腐蚀或钢筋的锈蚀等影响 结构正常使用到规定的设计使用年限。
安全性、适用性和耐久性可概括为结构的可靠性。
即结构在规定的设计使用年限内,在正常设计、正常 施工、正常使用和正常维护条件下,完成预定功能的 能力。结构的可靠性可用概率来度量,即结构完成预 定功能的概率,称为结构的可靠度。
19
第二章
结构设计基本原则
第三节 极限状态设计法
一、结构极限状态的定义和分类
1.定义
结构能完成预定功能的可靠状态与其不能完成预
定功能的失效状态的界限,称为极限状态。或者说,
整个结构或结构的一部分超过某一特定状态就不能满
足设计规定的某一功能要求,则此特定状态称为该功 能的极限状态。
20
第二章
结构设计基本原则
用于结构使用时的正常情况。 2. 短暂设计状况 指在结构施工和使用过程中出现概率较大,而与设计使用 年限相比持续期很短的设计状况。短暂设计状况适用于结构出 现的临时情况,包括结构施工和维修时的情况等。
23
第二章
结构设计基本原则
3. 偶然设计状况
指在结构使用过程中出现概率很小,且持续期很短的设计 状况。偶然设计状况适用于结构出现的异常情况,包括结构遭 受火灾、爆炸、撞击时的情况等。 4. 地震设计状况 指结构遭受地震时的设计状况。地震设计状况适用于结构 遭受地震时的情况,在抗震设防地区必须考虑地震设计状况。
12
第二章
结构设计基本原则
二、结构的可靠概率和失效概率 结构完成预定功能的工作状态用结构的功能函数 Z 来描述,即 Z = R -S 当Z>0时,即结构抗力R大于作用效应S时,则结构 能完成预定的功能,处于可靠状态; 当Z<0时,即结构抗力R小于作用效应S时,结构不 能完成预定的功能,处于失效状态; 当 Z=0 时,即结构抗力 R 等于作用效应 S 时,则结构 处于极限状态。 因此,结构可靠工作的基本条件为: Z ≥0 或R≥S 13
《钢筋混凝土结构设计原理》复习资料2复习重点习题及答案
《结构设计原理》复习资料第一篇钢筋混凝土结构第一章钢筋混凝土结构的基本概念及材料的物理力学性能二、学习重点在本章的学习中应注意以下几个方面的问题:(1)混凝土的强度指标有哪些,以及获得它们的方法;(2)混凝土的应力应变关系曲线,弹性模量的取值方法;(3)混凝土收缩、徐变的概念及特性;(4)两类钢材的变形及强度特征;(5)锚固长度的意义;(6)钢筋混凝土结构对混凝土与钢筋的基本要求。
三、复习题(一)填空题1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压。
2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是:钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用。
7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形。
其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。
(二)判断题1、素混凝土的承载能力是由混凝土的抗压强度控制的。
………………………………【×】2、混凝土强度愈高,应力应变曲线下降愈剧烈,延性就愈好。
………………………【×】3、线性徐变在加荷初期增长很快,一般在两年左右趋以稳定,三年左右徐变即告基本终止。
………………………………………………………………………………………………【√】4、水泥的用量愈多,水灰比较大,收缩就越小。
………………………………………【×】5、钢筋中含碳量愈高,钢筋的强度愈高,但钢筋的塑性和可焊性就愈差。
工程施工钢筋计算
工程施工钢筋计算一、工程施工钢筋计算的基本原则1. 根据工程设计要求选择合适的钢筋种类和规格,保证设计要求的强度和稳定性。
2. 按照设计荷载要求计算钢筋的受力情况,保证结构的承载能力。
3. 根据结构形式合理布置钢筋,保证结构的稳定性和耐久性。
4. 合理控制钢筋的用量和成本,避免浪费和过度使用。
5. 在施工中严格按照钢筋设计图纸要求施工,保证钢筋的安全性和稳定性。
二、工程施工钢筋计算的步骤1. 确定工程设计要求:首先需要仔细研读工程设计图纸,了解结构形式、荷载要求等设计要求。
2. 确定钢筋种类和规格:根据设计要求选择合适的钢筋种类和规格,如普通碳素结构钢筋、螺纹钢筋等。
3. 计算受力情况:根据设计荷载要求计算钢筋的受力情况,包括受拉钢筋和受压钢筋。
4. 布置钢筋:根据结构形式合理布置钢筋,包括主筋、箍筋、挂耳筋等,保证结构的稳定性和耐久性。
5. 计算钢筋用量:根据结构计算结果确定钢筋的用量,合理控制钢筋的用量和成本。
6. 编制钢筋加工图:根据设计要求绘制钢筋加工图,规定钢筋的尺寸、弯曲角度等要求。
7. 施工监理:在施工中要严格按照钢筋设计要求进行施工,保证钢筋的安全性和稳定性。
三、工程施工钢筋计算的注意事项1. 考虑结构的整体受力情况,合理选择钢筋种类和规格。
2. 考虑结构的变形和开裂情况,合理布置钢筋,确保结构的稳定性和耐久性。
3. 在施工中要注意钢筋的加工和安装质量,保证钢筋的受力性能。
4. 在施工过程中要及时调整钢筋的加工和安装方法,确保施工进度和质量。
5. 在施工中要合理控制钢筋的用量和成本,避免浪费和过度使用。
综上所述,工程施工钢筋计算是工程建设中非常重要的一环,只有合理计算和布置钢筋,才能保证工程的质量和安全。
在进行施工钢筋计算时,需要考虑到许多因素,包括工程设计要求、荷载要求、结构形式等。
通过以上介绍,相信读者对工程施工钢筋计算有了更清晰的认识,希望能够对工程施工实践有所帮助。
混凝土及钢筋混凝土工程量计算规则
混凝土及钢筋混凝土工程量计算规则混凝土及钢筋混凝土工程量计算规则是指在建筑工程中,根据设计图纸和施工方案,计算混凝土及钢筋混凝土的用量及配比的一项技术活动。
准确的工程量计算可以保证施工过程中的材料供应及施工进度的控制,保证工程的质量和安全。
混凝土工程量计算规则:1.根据设计图纸确定工程结构的尺寸,计算混凝土的体积。
一般计算公式如下:V=S×h,其中V为混凝土的体积,S为截面积,h为高度。
2.根据工程要求及设计标准,确定混凝土配合比。
配合比一般包括水泥、砂、石子和水的比例。
3.根据混凝土的体积及配合比,计算所需要的材料用量。
例如,计算水泥用量,可以根据配合比中水泥的比例和混凝土体积计算得出。
4.在计算材料用量时,一般要考虑到浪费和损耗。
浪费一般是按照一定比例进行计算,通常为5%-10%。
损耗则根据工程的实际情况进行估算。
5.根据计算的材料用量,确定混凝土的总成本,包括人工、机械等直接费用及间接费用。
钢筋混凝土工程量计算规则:1.根据设计图纸和工程要求,计算钢筋混凝土结构的体积。
计算方法和混凝土工程量计算类似。
2.根据设计要求和规范,确定钢筋的配筋率。
配筋率一般以百分比表示,是指钢筋截面面积与混凝土截面积的比值。
3.根据钢筋的配筋率,计算所需要的钢筋用量。
钢筋的计算一般按照长度进行,根据配筋率和结构的长度计算得出。
4.在计算钢筋用量时,同样需要考虑到浪费和损耗。
浪费和损耗的计算方法与混凝土工程量计算一致。
5.根据计算的钢筋用量,确定钢筋的总成本和加工费用。
总结起来,混凝土及钢筋混凝土工程量计算规则是根据设计要求和规范,通过计算来确定混凝土和钢筋的用量及配比,以保证施工过程中的材料供应和施工进度的控制,从而保证工程的质量和安全。
这种计算工作需要进行详细的施工方案和图纸的分析,并且需要对各种材料的性质和性能有一定的了解,才能进行准确的计算。
钢筋混凝土结构的基本设计原则
钢筋混凝土结构的基本设计原则1.强度原则:钢筋混凝土结构设计首要考虑的是结构的强度,即结构能够承受外部荷载和其他作用力的能力。
强度原则要求根据设计荷载和结构材料的特性计算结构的承载能力,并确保该能力大于或等于设计荷载,在结构发生破坏之前保证结构的安全性。
2.稳定性原则:钢筋混凝土结构的稳定性是指结构在不坍塌、不失稳的情况下维持自身的平衡状态。
稳定性原则要求在结构设计中考虑结构的整体平衡能力,并确定适当的结构形式和尺寸,以确保结构的稳定性。
3.柔性原则:钢筋混凝土结构的柔性是指结构在承受外部荷载时能够有一定程度的变形和适应能力。
柔性原则要求结构在设计时考虑到结构的变形和适应性能,使结构能够在一定的变形范围内完成荷载的传递,并通过使用抗裂措施和控制变形来保证结构的安全和耐久性。
4.经济性原则:钢筋混凝土结构设计应该追求经济性,即以最小的成本实现结构的安全和功能需求。
经济性原则要求在结构设计中综合考虑结构的投资、运行和维护成本,并进行合理的结构优化,以获得较低的总成本。
5.可施工性原则:钢筋混凝土结构的设计必须考虑到结构的施工可行性,即结构的施工是否符合现行的施工规范和标准要求,并能够方便和高效地进行施工。
可施工性原则要求结构设计考虑到结构的拼装和施工顺序,以满足实际施工的需求。
6.耐久性原则:钢筋混凝土结构的设计必须考虑到结构的耐久性,即要求结构在设计使用寿命内具有足够的防护能力,以抵抗环境、湿度和其他因素的侵蚀和损害。
耐久性原则要求采取适当的防护措施,包括使用耐久性好的材料、正确施工和维护等,以延长结构的使用寿命。
7.美观性原则:钢筋混凝土结构作为建筑物的一部分,还需要考虑结构的美观性。
美观性原则要求在设计过程中考虑到结构的外观和形象,使结构与周围环境相协调,给人一种良好的视觉效果。
总之,钢筋混凝土结构的基本设计原则是强度、稳定性、柔性、经济性、可施工性、耐久性和美观性。
通过遵循这些原则,设计人员可以进行合理的结构设计,以确保结构的安全、稳定和可持续发展。
钢筋混凝土结构计算方法
钢筋混凝土结构计算方法钢筋混凝土结构计算方法是建筑工程中非常重要的一环,它涉及到结构的稳定性、安全性和承载能力等方面。
本文将介绍钢筋混凝土结构计算的基本原理和方法,并重点探讨应力计算、变形计算和承载力计算等方面的内容。
一、应力计算在钢筋混凝土结构计算中,应力计算是其中的核心环节之一。
它通常包括了轴力与弯矩的相互作用计算、截面受拉区受拉应力计算、截面受压区受压应力计算等。
以下将对这些计算方法进行详细阐述。
1. 轴力与弯矩的相互作用计算轴力与弯矩的相互作用计算是指在受到同时作用的轴力和弯矩时,计算构件的应力分布和变形情况。
根据材料力学原理,可以得到不同受力状态下的截面内应力的分布规律,并通过相关公式进行计算。
2. 截面受拉区受拉应力计算在钢筋混凝土梁柱等构件中,受拉区的受拉应力是一个重要的参数。
它的计算主要依据基本的应力平衡条件和材料弹性模量的概念,通过计算得出。
3. 截面受压区受压应力计算与受拉应力类似,截面受压区的受压应力也是一个关键的参数。
通过计算截面受拉区受拉应力和截面的抗弯承载力,可以进一步计算出截面受压区的受压应力值。
二、变形计算钢筋混凝土结构在受力作用下会发生变形,因此变形计算也是结构计算中的一个重要环节。
变形计算通常包括了构件的截面变形计算、整体变形计算等内容。
1. 构件的截面变形计算构件的截面变形主要包括弯曲变形和剪切变形两种形式。
通过计算构件受力后的变形情况,可以判断结构的变形是否满足规范要求。
2. 整体变形计算整体变形计算是指在考虑了构件刚度影响后的结构整体变形计算。
它一般采用有限元分析等方法,通过计算结构的位移、角度和变形程度等参数,从而对结构的稳定性和安全性进行评估。
三、承载力计算承载力计算是钢筋混凝土结构设计中最为关键的一步。
通过计算结构的承载能力,可以确定结构是否能满足使用要求,并进行合理的构造调整。
1. 构件的承载能力计算构件的承载能力计算是指对构件在规定荷载作用下的最大承载力进行计算。
钢筋混凝土结构计算
钢筋混凝土结构计算1.结构形式确定:首先确定楼板的结构形式,如采用板梁结构、薄板结构或双向板结构等。
2.荷载计算:进行楼板的荷载计算,包括楼板自重、活荷载和附加荷载等。
根据建筑规范和设计要求,计算得出楼板上的荷载。
3.结构分析:进行楼板的结构分析,主要包括静力分析和动力分析。
-静力分析:根据荷载计算结果,进行静力平衡方程求解,确定楼板内力、弯矩和剪力大小及位置。
-动力分析:如果楼房位于地震区域,需要进行动力分析,考虑地震作用对楼板的影响。
4.梁与板的计算:根据楼板的结构形式,进行梁与板的计算。
-梁的计算:根据梁的自重、楼板荷载和梁自身承载力等参数,计算梁的截面尺寸和配筋。
-板的计算:根据楼板的自重、活荷载和板自身承载力等参数,计算板的截面尺寸和配筋。
5.钢筋配筋:根据楼板的受力情况和截面尺寸,进行钢筋的配筋计算。
-弯曲受力区域:通过计算得出楼板的截面尺寸和弯矩大小,确定弯曲受力区域,然后计算该区域所需的主筋和箍筋的截面尺寸和配筋率。
-剪切受力区域:通过计算得出楼板的截面尺寸和剪力大小,确定剪切受力区域,然后计算该区域所需的剪力筋的截面尺寸和配筋率。
6.构件设计:根据梁和板的计算结果,进行构件的设计。
-梁设计:根据梁的截面尺寸和配筋率,设计梁的构造和受力情况。
-板设计:根据板的截面尺寸和配筋率,设计板的构造和受力情况。
7.变形计算:对楼板结构的变形进行计算,包括挠度、位移等。
-挠度计算:根据楼板截面刚度、荷载大小和材料力学性质,计算楼板的弯曲挠度。
-位移计算:根据楼板的受力情况和结构形式,计算楼板的位移。
8.安全评估:根据梁和板的计算结果,进行结构的安全评估。
-承载力:通过计算得出楼板的承载力,与设计要求进行对比,判断结构是否满足要求。
-变形:根据变形计算结果,进行结构的变形评估,判断结构变形是否满足规范要求。
这些步骤是钢筋混凝土结构计算的基本流程,具体计算过程会根据设计要求和规范进行调整。
同时,计算中需使用专业软件进行力学计算和结构设计,以提高计算精度和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构设计原理
第二章 钢筋混凝土的基本计算原则
3.1 结构的功能 Functions of Structure 1. 安全性 Safety
◎ 如(M≤Mu) ◎ 结构在预定的使用期间内(design life 一般为50年),
性问题,取得安全可靠与经济合理之间的应力设计方法 allowable stress
[
]
材料强度 安全系数
f K
◆ 安全系数 K 是一个大于1.0的数值 ◆ K 越大,结构安全度就越高,同时结构材料用量也越多
◆ 为取得安全可靠与经济合理的均衡, 在综合考虑各种不 确定性因素影响后,可选取一个合适的安全系数。
应能承受在正常施工、正常使用情况下可能出现的各种 荷载、外加变形(如超静定结构的支座不均匀沉降)、 约束变形(如温度和收缩变形受到约束时)等的作用。 ◎ 在偶然事件(如地震、爆炸)发生时和发生后,结构应 能保持整体稳定性,不应发生倒塌或连续破坏而造成生 命财产的严重损失。
结构设计原理
第二章 钢筋混凝土的基本计算原则
Safety grade Grade I Grade II Grade III
Consequence of Failure
Very Serious
Serious Not Serious
Sorts of Building
Important Industrial and Civil Buildings
Normal Industrial and Civil Buildings
■ 设计人员可以根据具体工程的重要程度、使用环境和情 况,以及业主的要求,提高设计水准,增加结构的可靠 度。
■ 经济的概念不仅包括第一次建设费用,还应考虑 维修,损失及修复的费用,乃至可能对社会和经 济所造成的影响
结构设计原理
第二章 钢筋混凝土的基本计算原则
5.结构的可靠性与安全等级(Safety Grade)
◆ 区分结构“可靠”与“失效”的临界工作状态称为“极限 状态”
A limit state is that loading condition which, if exceeded, will render the structure unserviceable.
结构设计原理
第二章 钢筋混凝土的基本计算原则
结构设计原理
第二章 钢筋混凝土的基本计算原则
◆ 因此,首先根据工程结构需要满足实际使用的各种 要求(结构的功能)对安全可靠有更具体的科学定义
◆ 另一方面,需要尽可能详细了解结构在不同情况下 (施工、使用、破坏)可能受到的各种外界影响 的大小和变化情况
◆ 外界影响:各种荷载、温度变化、沉降、收缩徐 变、地震、侵蚀、冻融等
■ 结构可靠性越高,建设造价投资越大。
■ 如何在结构可靠与经济之间取得均衡,就是设计方
法要解决的问题。
结构设计原理
第二章 钢筋混凝土的基本计算原则
■ 显然这种可靠与经济的均衡受到多方面的影响,如国家 经济实力、设计工作寿命(design life)、维护和修复等。
■ 规范规定的设计方法,是这种均衡的最低限度,也是国 家法律。
your design? 3 What factors must be considered to ensure the
safety and serviceability?
结构设计原理
第二章 钢筋混凝土的基本计算原则
◆ 工程结构的设计需要保证安全可靠、经济合理 ◆ 由于实际工程结构中存在多种不确定性 ◆ 结构设计方法就是研究工程设计中的各种不确定
3.2 极限状态 Limit State
一、极限状态的概念
◆ 结构能够满足功能要求而良好地工作,则称结构是“可靠” 的或“有效”的。反之,则结构为“不可靠”或“失效”。
第二章 钢筋混凝土的基本计算原则
第二章 混凝土结构基本设计原则
Basic Design Approach of RC Structure
结构设计原理
第二章 钢筋混凝土的基本计算原则
Questions 1 What working states should be considered for
practical structures? 2 How to ensure the safety and serviceability of
Secondary Buildings
结构设计原理
第二章 钢筋混凝土的基本计算原则
安全等级
桥涵类型
一级 二级 三级
特大桥、重要 大桥
大桥、中桥、 重要小桥
小桥、涵洞
结构设计原理
第二章 钢筋混凝土的基本计算原则
3.2 极限状态 Limit State
◆ 结构能够满足功能要求而良好地工作,则称结构是“可靠” 的或“有效”的。反之,则结构为“不可靠”或“失效”。
即在各种因素的影响下(混凝土碳化、钢筋锈蚀),结构 的承载力和刚度不应随时间有过大的降低,而导致结构在 其预定使用期间内丧失安全性和适用性,降低使用寿命。
结构设计原理
第二章 钢筋混凝土的基本计算原则
4. 结构的可靠性 reliability ■ 可靠性——安全性、适用性和耐久性的总称
■ 就是指结构在规定的使用期限内(design life=50年), 在规定的条件下(正常设计、正常施工、正常使用和维 护),完成预定结构功能的能力。
结构设计原理
第二章 钢筋混凝土的基本计算原则
◆ 材料力学研究的是:单一材料、线弹性、简单结构 ◆ 实际工程结构远比它复杂 ◆ 如钢筋混凝土梁的受弯,从安全角度考虑,需要确
定其极限受弯承载力; ◆ 而为控制正常使用阶段的裂缝和挠度变形,需要确
定带裂缝工作阶段的受力情况。 ◆ 采用容许应力设计方法,无法统一这两方面的要求
2. 适用性 Serviceability
◎ 如(f ≤[ f ]) ◎ 结构在正常使用期间,具有良好的工作性能。如不发生影
响正常使用的过大的变形(挠度、侧移)、振动(频率、 振幅),或产生让使用者感到不安的过大的裂缝宽度。
3. 耐久性 Durability
◎ 如(wmax≤[ wmax]) ◎ 结构在正常使用和正常维护条件下,应具有足够的耐久性。