物理课后习题答案
大学物理课后习题答案
第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。
因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。
AOP ∆是边长为a 的等边三角形。
已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。
大一物理课后习题答案
1. 在自由旋转的水平圆盘上,站一质量为m 的人。
圆盘的半径为R ,转动惯量为J ,角速度为ω。
如果这人由盘边走到盘心,求角速度的变化及此系统动能的变化。
2. 在半径为1R 、质量为M 的静止水平圆盘上,站一静止的质量为m 的人。
圆盘可无摩擦地绕过盘中心的竖直轴转动。
当这人沿着与圆盘同心,半径为2R (1R <)的圆周相对于圆盘走一周时,问圆盘和人相对于地面转动的角度各为多少?3 长m l40.0=、质量kg M 00.1=的匀质木棒,可绕水平轴O 在竖直平面内转动,开始时棒自然竖直悬垂,现有质量g m 8=的子弹以s m v /200=的速率从A 点射入棒中,A 点与O 点的距离为l 43,如图所示。
求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
4. 1mol 的氢,在压强为1.0×105Pa ,温度为20℃时,其体积为0V 。
今使它经以下两种过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80℃,然后令它作等温膨胀,体积变为原体积的2倍;(2)先使它作等温膨胀至原体积的2倍,然后保持体积不变,加热使其温度升到80℃。
试分别计算以上两种过程中吸收的热量,气体对外作的功和内能的增量;并在Vp 图上表示两过程5、 1摩尔理想气体在400K 与300K 之间完成一个卡诺循环,在400K 的等温线上,起始体积为0.0010m 3,最后体积为0.0050m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。
6. 电荷量Q 均匀分布在半径为R 的球体内,试求:离球心r 处(r <R )的电势。
7. 半径为1r 、2r 的两个同心导体球壳互相绝缘,现把的+q 电荷量给予内球,求: (1) 外球的电荷量及电势;(2) 把外球接地后再重新绝缘,外球的电荷量及电势; (3) 然后把内球接地,内球的电荷量及外球的电势的改变。
8. 半径为0R 的导体球带有电荷Q ,球外有一层均匀介质同心球壳,其内、外半径分别为1R 和2R ,相对电容率为r ε,求:(1) 介质内、外的电场强度E 和电位移D; 介质内的电极化强度P和表面上的极化电荷面密度σ'9.一截面半径为R 的无限长圆柱导体,均匀的通有电流I ,求导体内外的磁场分布。
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
八年级物理课后练习题及答案
八年级物理课后练习题及答案第一章:力和运动练习题1.一个物体受到2N的力,加速度为4m/s²,求物体的质量。
(答案:0.5 kg)2.一个物体的质量是2kg,受到的力是5N,求物体的加速度。
(答案:2.5 m/s²)3.一个物体的质量是10kg,加速度是5m/s²,求物体受到的力的大小。
(答案:50 N)4.一个物体受到10N的力,加速度为2m/s²,求物体的质量。
(答案:5 kg)5.一个物体的质量是20kg,受到的力是40N,求物体的加速度。
(答案:2 m/s²)6.一个物体的质量是50kg,加速度是10m/s²,求物体受到的力的大小。
(答案:500 N)7.一个物体受到100N的力,加速度为5m/s²,求物体的质量。
(答案:20 kg)8.一个物体的质量是30kg,受到的力是60N,求物体的加速度。
(答案:2 m/s²)9.一个物体的质量是80kg,加速度是4m/s²,求物体受到的力的大小。
(答案:320 N)10.一个物体受到50N的力,加速度为10m/s²,求物体的质量。
(答案:5 kg)答案解析1.由牛顿第二定律可以得到 F = m * a,将已知值代入,得到 2 = m * 4,解得 m = 0.5 kg。
2.同样使用牛顿第二定律 F = m * a,将已知值代入,得到 5 = 2 * a,解得 a = 2.5 m/s²。
3.由 F = m * a,将已知值代入,得到 F = 10 * 5,解得 F = 50 N。
4.使用 F = m * a,将已知值代入,得到 10 = m * 2,解得 m = 5 kg。
5.同样使用 F = m * a,将已知值代入,得到 40 = 20 * a,解得 a = 2m/s²。
6.由 F = m * a,将已知值代入,得到 F = 50 * 10,解得 F = 500 N。
大学物理,课后习题,答案
第十八章 波 动1、一横波沿绳子传播,其波的表达式为 x)2- t 100050ππcos(.y = (SI) 求: (1) 波的振幅、波速、频率和波长。
(2) 绳子上各质点的最大振动速度和最大振动加速度。
(3) 在m .x 201=处和m .x 702=处二质点振动的位相差。
解:(1))0.02 (100cos 05.0) 2 100cos(05.0x t x t y -=-=πππ m A 05.0=∴,υππω 2 100 ==502/100==⇒ππυ(HZ) )(501-⋅=s m u , )(15050m u===υλ(2) ) 2 100sin(10005.0πππ-⨯-==∂∂t v tY, )(7.15510005.01max -⋅==⨯=s m v ππ) 2 100cos()100(05.02 22x t a t Yπππ-⨯-==∂∂∴ 8.4934500)100(05.022m ax ==⨯=ππa )(2-⋅s m(3)ππλπϕ=-=-=∆12.07.022 12x x2、一平面简谐波沿x轴正向传播,波的振幅cm A 10=,波的圆频率-1s rad 7 ⋅=πω,当s .t 01=时,cm x 10=处的a 质点正通过其平衡位置向y轴负方向运动,而cm x 20=处的b质点正通过cm y 5=点向y轴正方向运动。
设该波波长10c m>λ,求该平面波的表达式。
解:设波动方程为:)2 7cos(1.0πϕπλ⋅-+=xt Yt=1(s)时, 05.0)2 7cos(1.0 ,0)2 7cos(1.02.01.0=⋅-+==⋅-+=πϕππϕπλλ b a Y Y∵0<a v ⇒ ππϕππλk 22 721.0+=⋅-+ ① ∵ 0>b v , ⇒ ππϕππλk 22 732.0+-=⋅-+ ② 且m 1.0 >λ,故b a ,两质点的位相差π2<①-②得:5λ=1.2, 即 λ=0.24(m ) 代入①得:πϕ317-= 所以 波动方程为:) 7cos(1.031325πππ+-=x t Y 3、图示一平面简谐波在0=t 时刻的波形图,求: (1)该波的波动方程; (2)P处质点的振动方程。
大学物理教材课后习题参考答案
1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。
解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。
解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。
1.11 一质点沿半径R=1m 的圆周运动。
t=0时,质点位于A 点,如图。
然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。
大学物理课后习题答案(高教版 共三册)
第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。
解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。
解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。
物理人教版选修2课后题答案
物理人教版选修2课后题答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】D二、填空题1. 【答案】抛物线2. 【答案】动量守恒定律3. 【答案】恒定4. 【答案】抛体运动5. 【答案】抛物线三、计算题1. 【答案】质量m=2kg,初速度v0=10m/s,加速度a=2m/s2动量p=mv0=2×10=20kg·m/s动能E=1/2mv02=1/2×2×102=100J2. 【答案】质量m=2kg,初速度v0=10m/s,加速度a=2m/s2时间t=v0/a=10/2=5s位移s=v0t+1/2at2=10×5+1/2×2×52=75m3. 【答案】质量m=2kg,初速度v0=10m/s,加速度a=2m/s2动量p=mv0=2×10=20kg·m/s动能E=1/2mv02=1/2×2×102=100J动能变化ΔE=E2-E1=100-0=100J动量变化Δp=p2-p1=20-0=20kg·m/s动能变化ΔE=Δpv=20×v=20×10=200J四、解答题1. 【答案】抛体运动是指物体在重力场中运动的一种运动,它的运动轨迹是一个抛物线,其运动规律可由牛顿第二定律和动量守恒定律来描述。
牛顿第二定律表明,物体受到的外力等于物体的质量乘以物体的加速度,即F=ma;动量守恒定律表明,物体的动量在没有外力作用的情况下是守恒的,即p=mv。
2. 【答案】抛体运动的特点有:(1)运动轨迹是抛物线:抛体运动的运动轨迹是一个抛物线,它的运动轨迹是由物体受到重力作用而产生的,重力的作用使物体的运动轨迹呈抛物线形。
(2)动量守恒:抛体运动的动量守恒定律表明,物体的动量在没有外力作用的情况下是守恒的,即p=mv。
(3)动能变化:抛体运动的动能变化定律表明,物体的动能变化等于物体的动量变化乘以物体的速度,即ΔE=Δpv。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理课后习题答案
大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
新编大学物理课后习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别 题1.2: 答案:[A] 题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R rj r i==-,21v v v ∆=-,12,v v vi v j=-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返 题1.6: 答案:[D] 提示:a=2t=d dtv ,2224tv tdt t==-⎰,02tx xvdt -=⎰,即可得D 项题1.7: 答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+vv v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率 题1.9:答案:2915t t -,0.6提示: 2915dx v t tdt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dtdt=+v i j(2) t=1s 时,24t =-v i j ,4d dt==-v a j(3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r ∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s提示:2(2)2412(/)dv d x a v x m s dtdt=====题1.12: 答案:1/m s 22π提示:200tdvv v dt tdt=+=⎰,11/t vm s==,201332tvdt t R θπ===⎰,222r R π∆==题1.13: 答案:215()2t v t gt-+-i j提示: 先对2(/2)vt g t =-r j求导得,0()yv gt =-vj与5=v i 合成得05()v g t =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQv R R t dt τ==,88a R τ==,2264n dQ a R tdt ⎛⎫== ⎪⎝⎭三、计算题 题1.15: 解:(1)3tdv atdt == 003v tdv tdt =∴⎰⎰ 232v t∴=又232ds v tdt==232stds tdt=∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434nva tR==4334tt=∴ 34t S=∴题1.16: 解:(1)dv a kvdt ==- 0vtdv kdt v=-∴⎰⎰, 0lnv ktv =-(*)当012v v =时,1ln 2kt=-,ln 2t k=∴(2)由(*)式:0kt v v e -=0kt dx v e dt -=∴,000x tkt dx v e dt -=⎰⎰(1)kt v x e k-=-∴ 第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2yy Sv t t==x 方向上做匀加速运动(初速度为0),F a m=22tx v a d t t ==⎰,223txxt S vdt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg ='F F = 杆受力1()F M g F M m g=+=+1()F M m ga MM+==题2.4 : 答案:[D] 提示:Ba BTTa A Tmg22AB A B m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aag=(2A Ba a=,通过分析滑轮,由于A 向下走过S ,B 走过2S )2A Ba a=∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos 60)()1010m m v m v =+共0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)2200112()22m v m v m gh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化 题2.8: 答案:[D] 提示:θv 0v x vy由机械能守恒得20122m gh m vv gh=⇒=0sin y v v θ=sin 2Gy Pmgv mg ghθ==∴题2.9: 答案: [C] 题2.10: 答案: [B] 提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF m g Fx m gx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题 题2.11: 答案:2mb 提示: '2v x bt =='2a v b== 2Fm a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/xam s= 4x F N=8y F N=2F m k ga==24/y y F a m sm==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+27/5v adt m s⇒==⎰当t=2时,1110a =题2.14: 答案:180kg 提示:由动量守恒,=m S -S m人人人船相对S ()=180kgm ⇒船题2.15: 答案:11544+i j提示:各方向动量守恒题2.16: 答案:()mv +i j ,0,-mgR提示:由冲量定义得 ==()(m v m v m v --=+I P P i j ij末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W m gR-外题2.17: 答案:-12 提示:3112w F dx J -==⎰题2.18:答案: mgh ,212kx ,M m G r- h=0,x=0,r =∞ 相对值题2.19: 答案: 02m g k ,2mg ,0m gk题2.20: 答案: +=0A ∑∑外力非保守力三、计算题 题2.21: 解:(1)=m Fxg L 重()m f L x gLμ=-(2)1()(1)g a F f x gmLμμ=-=+-重(3)dv a v dx=,03(1)vLL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v L g μ=-题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。
物理课后习题及解析
第十一章恒定磁场11-1两根长度一样的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度一样,R =2r ,螺线管通过的电流一样为I ,螺线管中的磁感强度大小r R B B 、满足〔 〕〔A 〕r R B B 2= 〔B 〕r R B B = 〔C 〕r R B B =2 〔D 〕r R B B 4=分析与解在两根通过电流一样的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度一样的细导线绕成的线圈单位长度的匝数之比因而正确答案为〔C 〕.11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为〔 〕〔A 〕B r 2π2 〔B 〕B r 2π〔C 〕αB r cos π22 〔D 〕αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为〔D 〕.11-3以下说法正确的选项是〔 〕〔A 〕闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过〔B 〕闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零〔C 〕磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零〔D 〕磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为〔B 〕.11-4在图〔a〕和〔b〕中各有一半径一样的圆形回路L1、L2,圆周内有电流I1、I2,其分布一样,且均在真空中,但在〔b〕图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则〔 〕〔A 〕⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = 〔B 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = 〔C 〕 ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ 〔D 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为〔C 〕.11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,假设导体中流过的恒定电流为I ,磁介质的相对磁导率为μr〔μr<1〕,则磁介质内的磁化强度为〔 〕 〔A 〕()r I μr π2/1-- 〔B 〕()r I μr π2/1-〔C 〕r I μr π2/-〔D 〕r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =〔μr-1〕H 求得磁介质内的磁化强度,因而正确答案为〔B 〕.11-11如下图,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直局部和圆弧局部,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0. 解 〔a〕长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有 B 0的方向垂直纸面向外.〔b〕将载流导线看作圆电流和长直电流,由叠加原理可得B 0的方向垂直纸面向里.〔c 〕将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得B 0的方向垂直纸面向外.11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d *,如图〔b〕所示,载流长直导线的磁场穿过该面元的磁通量为 矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动〔如下图〕,则〔 〕〔A 〕线圈中无感应电流〔B 〕线圈中感应电流为顺时针方向〔C 〕线圈中感应电流为逆时针方向〔D 〕线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为〔B 〕.12-2将形状完全一样的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则〔 〕〔A 〕铜环中有感应电流,木环中无感应电流〔B 〕铜环中有感应电流,木环中有感应电流〔C 〕铜环中感应电动势大,木环中感应电动势小〔D 〕铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为〔A 〕.12-3有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.假设它们分别流过i 1和i 2的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为ε21,下述论断正确的选项是〔 〕. 〔A 〕2112M M =,1221εε=〔B 〕2112M M ≠,1221εε≠〔C 〕2112M M =, 1221εε<〔D 〕2112M M =,1221εε<分析与解教材中已经证明M21=M12,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为〔D 〕.12-4对位移电流,下述说法正确的选项是〔 〕〔A 〕位移电流的实质是变化的电场〔B 〕位移电流和传导电流一样是定向运动的电荷〔C 〕位移电流服从传导电流遵循的所有定律〔D 〕位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为〔A 〕.12-5以下概念正确的选项是〔 〕〔A 〕感应电场是保守场〔B 〕感应电场的电场线是一组闭合曲线〔C 〕LI Φm =,因而线圈的自感系数与回路的电流成反比〔D 〕 LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为〔B 〕.12-7 载流长直导线中的电流以tI d d 的变化率增长.假设有一边长为d 的正方形线圈与导线处于同一平面内,如下图.求线圈中的感应电动势.分析 此题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如下图的坐标系.由于B 仅与*有关,即B =B (*),故取一个平行于长直导线的宽为d *、长为d 的面元d S ,如图中阴影局部所示,则d S =d d *,所以,总磁通量可通过线积分求得〔假设取面元d S =d *d y ,则上述积分实际上为二重积分〕.此题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为 当电流以tI d d 变化时,线圈中的互感电动势为 题 12-7 图第十四章 波 动 光 学14-1 在双缝干预实验中,假设单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则〔 〕〔A 〕 中央明纹向上移动,且条纹间距增大〔B 〕 中央明纹向上移动,且条纹间距不变〔C 〕 中央明纹向下移动,且条纹间距增大〔D 〕 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程一样,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.应选〔B 〕.题14-1 图14-2 如下图,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,假设用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两外表反射的光束的光程差是〔 〕题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上外表的反射光有半波损失,下外表的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为〔B 〕.14-3 如图〔a 〕所示,两个直径有微小差异的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干预条纹,如果滚柱之间的距离L 变小,则在L *围内干预条纹的〔 〕〔A 〕 数目减小,间距变大 〔B 〕 数目减小,间距不变〔C 〕 数目不变,间距变小 〔D 〕 数目增加,间距变小题14-3图分析与解 图〔a 〕装置形成的劈尖等效图如图〔b 〕所示.图中 d 为两滚柱的直径差,b 为两相邻明〔或暗〕条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为〔C 〕14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.假设屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为〔 〕〔A 〕 3 个 〔B 〕 4 个 〔C 〕 5 个 〔D 〕 6 个分析与解 根据单缝衍射公式因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.应选〔B 〕.14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为〔 〕〔A 〕 4 〔B 〕 3 〔C 〕 2 〔D 〕 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为即只能看到第1 级明纹,正确答案为〔D 〕.14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为〔 〕〔A 〕 3I 0/16 〔B 〕 3I 0/8 〔C 〕 3I 0/32 〔D 〕 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为〔C 〕.14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为〔 〕〔A 〕 完全线偏振光,且折射角是30°〔B 〕 局部偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° 〔C 〕 局部偏振光,但须知两种介质的折射率才能确定折射角〔D 〕 局部偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为局部偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.应选〔D 〕.14-9 在双缝干预实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离.分析 双缝干预在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ*,则由中央明纹两侧第五级明纹间距*5 -*-5 =10Δ* 可求出Δ*.再由公式Δ* =d ′λ/d 即可求出双缝间距d .解 根据分析:Δ* =〔*5 -*-5〕/10 =1.22×10-3m双缝间距: d =d ′λ/Δ* =1.34 ×10-4 m14-11如下图,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:〔1〕条纹如何移动? 〔2〕 云母片的厚度t.题14-11图 分析(1)此题是干预现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程一样,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干预条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上*点P 〔明纹或暗纹位置〕,只要计算出插入介质片前后光程差的变化,即可知道其干预条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1λ〔对应k 1 级明纹〕,插入介质后的光程差Δ2 =〔n -1〕d +r 1 -r 2 =k 1λ〔对应k 1 级明纹〕.光程差的变化量为Δ2 -Δ1 =〔n -1〕d =〔k 2 -k 1 〕λ式中〔k 2 -k 1 〕可以理解为移过点P 的条纹数〔此题为5〕.因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有将有关数据代入可得14-13 利用空气劈尖测细丝直径.如下图,λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干预公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δ* 除以〔N -1〕.对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 题14-13 图14-21 一单色平行光垂直照射于一单缝,假设其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比拟法来确定波长.对应于同一观察点,两次衍射的光程差一样,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得第十五章 狭义相对论15-1有以下几种说法:(1) 两个相互作用的粒子系统对*一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都一样.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的根底.前者是理论根底,后者是实验根底.按照这两个原理,任何物理规律(含题述动量守恒定律)对*一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m ·s -1.迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,应选(C).15-2 按照相对论的时空观,判断以下表达中正确的选项是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δ*,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δ*=0)还是不同地(Δ*≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δ*≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δ*′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与O*′轴的夹角θ′=60°,如果S′系以速度u 沿O*方向相对于S系运动,S系中观察者测得细棒与O* 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿O* 正方向运动时大于60°,而当S′系沿O*负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即O* 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与O* 轴夹角将会大于60°,此结论与S′系相对S系沿O* 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)21v v +L (B)12v -v L (C)2v L (D)()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.应选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v =0.60c 相对于S系沿**′轴运动,且在t =t ′=0时,* =*′=0.(1)假设有一事件,在S系中发生于t =2.0×10-7s,*=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,*=10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(*,y ,z ,t )表示一个事件.因此,此题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,*′=60m ,y ′=0,z ′=0处,假设S′系相对于S系以速率v =0.6c 沿**′轴运动,问该事件在S系中的时空坐标各为多少?分析 此题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 y =y ′=0z =z ′=015-7 一列火车长0.30km(火车上观察者测得),以100km ·h -1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δ*′=*′2 -*′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述根本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 ()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头*′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1一样的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一条件.15-8 在惯性系S中,*事件A 发生在*1处,经过2.0 ×10-6s后,另一事件B 发生在*2处,*2-*1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿* 轴正向运动,因在S 系中两事件的时空坐标,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即*′2-*′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于此题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令*′2-*′1=0,由式(1)可得(2) 将v 值代入式(2),可得这说明在S′系中事件A 先发生.第十六章 量子物理16-1 以下物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反响:反射、透射和吸收,各局部的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).16-2 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的选项是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于"自由〞电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).16-3 关于光子的性质,有以下说法(1) 不管真空中或介质中的速度都是c ; (2) 它的静止质量为零;(3) 它的动量为ch v ; (4) 它的总能量就是它的动能; (5) 它有动量和能量,但没有质量.其中正确的选项是( )(A) (1)(2)(3) (B) (2)(3)(4)(C) (3)(4)(5) (D) (3)(5)分析与解 光不但具有波动性还具有粒子性,一个光子在真空中速度为c (与惯性系选择无关),在介质中速度为nc ,它有质量、能量和动量,一个光子的静止质量m 0=0,运动质量2c h m v = ,能量v h E =,动量cv h λh p ==,由于光子的静止质量为零,故它的静能E 0 为零,所以其总能量表现为动能.综上所述,说法(2)、(3)、(4)都是正确的,应选(B). 16-4 关于不确定关系h p x x ≥ΔΔ有以下几种理解:(1) 粒子的动量不可能确定,但坐标可以被确定;(2) 粒子的坐标不可能确定,但动量可以被确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其他粒子.其中正确的选项是( )(A) (1)、(2) (B) (2)、(4)(C) (3)、(4) (D) (4)、(1)分析与解 由于一切实物粒子具有波粒二象性,因此粒子的动量和坐标(即位置)不可能同时被确定,在这里不能简单误认为动量不可能被确定或位置不可能被确定.这一关系式在理论上适用于一切实物粒子(当然对于宏观物体来说,位置不确定量或动量的不确定量都微缺乏道,故可以认为可以同时被确定).由此可见(3)、(4)说法是正确的.应选(C).16-5 粒子在一维矩形无限深势阱中运动,其波函数为则粒子在* =a /6 处出现的概率密度为( ) (A) a /2 (B) a /1 (C) a /2 (D) a /1分析与解 我们通常用波函数Ψ来描述粒子的状态,虽然波函数本身并无确切的物理含义,但其模的平方2ψ表示粒子在空间各点出现的概率.因此题述一线粒子在a x ≤≤0区间的概率密度函数应为()x aa x ψπ3sin 222=.将* =a /6代入即可得粒子在此处出现的概率为a /2.应选(C).16-7 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球外表上的辐射能量为1.4 ×103 W ·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的*一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球外表单位面积在单位时间内承受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.。
大学物理学课后习题参考答案
习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。
给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理课后习题答案(高教版 共三册)
由 得则
7、在xy平面内有一运动质点,其运动学方程为:(SI) 则t时刻其速度为多少?其切向加速度的大小为多少?该质点运动的轨 迹是什么? 解:(1)
(2)速率: (3)两式平方后相加,, 轨迹为一半径为10m的圆。
8、一条河在某一段直线岸边有A、B两个码头,相距 1km ,甲、乙两人 需要从码头A到码头B,再立即由B返回。甲划船前去,船相对河水的速 度 4km/h,而乙沿岸步行,步行速度也为 4km/h ,如河水流速为 2km/h ,方向从A到B,试推算甲比乙晚多少分钟回到码头A? 解:由A到B船对地的速度大小:
2、质点在一直线上运动,其坐标与时间有如下关系: (SI) (A 为常 数),则在任意时刻 t 质点的加速度为多少?什么时刻质点的速度为零? 解:(1)
(SI) (2)令
有 得 (SBiblioteka ) (K=0,1,2……)3、一质点沿X 方向运动,其加速度随时间变化关系为:a=3+2t (SI), 如果初始时质点的速度 为 5m/s ,则当 t 为 3s 时,质点的速度为多少? 解:由
由B到A船对地的速度大小: 甲由A到B再回到A所需时间: 乙由A到B再回到A所需时间:
所以甲比乙晚十分钟回到码头A 。
9、轮船在水上以相对于水的速度航行,水流速度为,人相对于甲板以 速度行走。如人相对于岸静止,则、和的关系是怎样的? 解:
即 的关系为:
第一章 运动学
1、质点的运动方程为 (SI),则在t 由 0 至 4s 的时间间隔内,质点的位 移大小为多少?在 t 由0 到 4s 的时间间隔内质点走过的路程为多少? 解:本题质点在x方向作直线运动
(1) t1=0时,=0 t2=4(s) 时, =(m) ∴位移大小(m) (2 ) 令 得t=3 (s ) 即t=3 (s )时,质点拐弯沿x轴负向运动,则0~4(s)内质点走过 的路程:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-6 松弛的二头肌,伸长5㎝时,所需要的力为25N,而这条肌肉处于紧张状态时,产生同样伸长量则需500N的力。如果把二头肌看做是一条长为0.2㎝,横截面积为50㎝的圆柱体,求其在上述两种情况下的杨氏模量。 (2×10N·m;4×10N·m)
2-7 在边长为0.02m的正方体的两个相对面上,各施加大小相等、方向相反的切向力9.8×10N,施加力后两面的相对位移为0.00lm,求该物体的切变模量。 章物体的弹性
2-1 形变是怎样定义的?它有哪些形式?
答:物体在外力作用下发生的形状和大小的改变称为形变。形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在一定形变限度内,去掉外力后物体能够完全恢复原状的形变,而范(塑)性形变去掉外力后物体不再能完全恢复原状的形变。
2-2 杨氏模量的物理含义是什么?
答:在长度形变中,在正比极限范围内,张应力与张应变之比或压应力与压应变之比称为杨氏模量。杨氏模量反映物体发生长度形变的难易程度,杨氏模量越大,物体越不容易发生长度变形。
2-3 动物骨头有些是空心的,从力学角度来看它有什么意义?
答:骨骼受到使其轴线发生弯曲的载荷作用时,将发生弯曲效应。所产生的应力大小与至中心轴的距离成正比,距轴越远,应力越大。中心层附近各层的应变和应力都比小,它们对抗弯所起的作用不大。同样,骨骼受到使其沿轴线产生扭曲的荷载作用时,产生的切应力的数值也与该点到中心轴的距离成正比。因此,空心的骨头既可以减轻骨骼的重量,又而不会严重影响骨骼的抗弯曲强度和抗扭转性能。
27-24-25-2210-2-52
1
2-4 肌纤维会产生哪几种张力?整体肌肉的实际张力与这些张力有何关系?
答:肌纤维会产生两种张力,一种是缩短收缩的主动张力,另一种是伸长收缩的被动张力。整块肌肉伸缩时的张力是主动张力和被动张力之和。
2-5 如果某人的一条腿骨长0.6m,平均横截面积为3㎝。站立时,两腿支持整个人体重为800N,问此人每条腿骨要缩短多少?已知骨的杨氏模量为10N·m。 (8×10m)