最优化计算方法课后习题答案高等教育出版社。施光燕
最优化方法习题答案
s.t.3x1 2x2 6 x1, x2 , x3 0
解:引入剩余变量 x 4 , x5 和人工变量 x6 , x7 ,利用两阶段法得到辅助线性规划 max w x6 x7 max z' 2x1 3x2 x3
400 件,售货 600 件,五月份进货 500 件,售货 600 件,六月份进货 600 件售货 600 件时, 最大利润为 6100 元。
1.6 设市场上可买到 n 种不同的食品,第 j 种食品的单位售价为 c j ,每种食品含有 m 种基本 营养成分,第 j 种食品每一个单位含第 i 种营养成分为 aij ,每人每天对第 i 种营养成分的需 要量不少于 bi ,试确定在保持营养成分要求条件下的最经济食谱。
⑤因为 p2 , p4 线性相关, x 2 , x 4 不能构成基变量;
⑥因为 p3, p4 线性无关,可得基解 x(6) (0,0,1,1) , z6 3 ;
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z 3 。
(2) max z x1 x2 2x3 x4 x5
x1
x2
x3
x4
x5
x6
x7
z'
5
0
1
4
2
w
5
0
-1
2
x2
1 4
1
1 2
x7
5 2
0
-1
3
0
4
3
0
4
1
-1
3
0
2
2
-1
0
1
0
2
4
最优化方法及其应用课后答案
1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计
2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。
得
穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵
最优化方法习题答案
习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
最优化计算方法课后习题答案----高等教育出版社。施光燕
习题二包括题目: P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6;14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14。
设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。
解:已知 (1)(4,6)T x =-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15。
用DFP 方法求下列问题的极小点(1)22121212min353x x x x x x ++++ 解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T T H δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用(1)(1)()0df x d d αα+=,求得 10.5727α=- 所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ= 220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11xx d ⎛⎫=+= ⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止(3)(1,1)T x =-即为最优解。
最优化方法孙文瑜课后答案
最优化方法孙文瑜课后答案【篇一:81010218《最优化算法》教学大纲】xt>课程编号: 81010218课程名称:最优化算法英文名称:optimization algorithm 总学时:32 学分:2适用对象: 信息与计算科学本科专业先修课程:数学分析(1-3),高等代数(1-2),运筹学一、课程性质、目的和任务《最优化算法》课程是信息与计算科学专业的一门主要专业选修课。
本课程的目的是使学生理解最优化理论与方法的基本概念,掌握最优化的基本理论和常见的优化算法,为学习后继课程和解决实际问题打下扎实的基础,培养学生用数学知识解决实际问题的兴趣、意识,以及分析问题和解决问题的能力。
二、教学内容、方法及基本要求1.非线性规划基本概念教学内容:多元函数极值理论。
基本要求:理解非线性规划问题概念,一般形式,最优解的情况。
理解梯度、海赛矩阵等概念,掌握极值点的必要条件,充分条件。
理解凸函数概念,掌握凸函数的判定条件和方法。
理解凸规划概念。
2. 一维搜索教学内容:一维搜索。
基本要求:掌握求解非线性规划问题搜索法的基本思想。
掌握一维搜索的斐波那契方法和0.618法。
3.求解无约束非线性规划问题的解析法教学内容:梯度法,广义牛顿法,共轭梯度法,变度量法。
基本要求:理解梯度法,广义牛顿法,共轭梯度法,变度量法的基本思想,掌握四种方法的迭代步骤,了解四种方法的收敛定理。
4. 求解无约束非线性规划问题的直接法教学内容:步长加速法,方向加速法,单纯形法。
基本要求:理解步长加速法,方向加速法,单纯形法的基本思想,掌握三种方法的迭代步骤,了解三种方法的收敛准则。
了解解析法与直接法的优缺点。
5. 求解约束非线性规划问题的逐步线性逼近法教学内容:逐步线性逼近法。
基本要求:理解约束非线性规划问题一般模型。
理解逐步线性逼近法基本思想,掌握逐步线性逼近法的求解步骤。
6. 求解约束非线性规划问题的拉格朗日乘子法教学内容:拉格朗日乘子法。
最优化计算方法课后习题答案----高等教育出社。施光燕
习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化方法练习题答案
练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
最优化方法习题答案
月份 4 5 6
买进单价/(元/件) 17 16.5 17
售出单价/(元/件) 18 18 19
解:设 xi 表示每个月进货量, yi 表示相应月份售货量,其中 i 1,2,3 ,则有数学模型:
max z 18y1 18y2 19y3 17x1 16.5x2 17x3
x1 600 200
x1 y1 x2 600 200
x1
x2
x3
x4
x5 x6
x7
10+2M
15+M
12+M
0
0 -M 0
z
x4
5
3
1
1
00
09
x5
-5
6
15
0
10
0 15
x7
2
1
1
0
0 -1
15
以 x1 为换入变量, x 4 为换出变量
x1
x2
x3
x4
x5 x6
x7
0
z
x1 1
9 M 5
0.6
x5 0
9
x7 0
-0.2
10 3M 5
0.2
2 2M 5
(3) min z 2x1 3x2 x3 x1 4x2 2x3 8
s.t.3x1 2x2 6 x1, x2 , x3 0
解:引入剩余变量 x 4 , x5 和人工变量 x6 , x7 ,利用两阶段法得到辅助线性规划 max w x6 x7 max z' 2x1 3x2 x3
x1
x2
x3
x4
x5
x6
x7
z'
5
0
1
最优化方法习题答案
习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
计算方法 课后习题答案
,
正规方程组化为:
得 =2.43689 =0.291211
=2.43689所以 =11.45 = =0.291211
=2.43689所以 =11.45 1= =0.291211
12.求函数 在给定区间上对于 的最佳平方逼近多项式:
解:设
(1)
(2)
。
。
13. 上求关于 的最佳平方逼近多项式。
解:Legendre是[-1,1]上的正交多项式
解:1)用梯形公式有:
事实上,
2)Simpson公式
事实上,
3)由Cotes公式有:
事实上,
2.证明Simpson公式 具有三次代数精度。
证明:
而当 时
左侧:
右侧:
左侧不等于右侧。所以Simpson具有三次代数精度.
3.分别用复化梯形公式和复化公式Simpson计算下列积分.
(1) ,(3) ,(4)
注意到这里 是三重零点, 是单零点,故插值余项为
20.求作次数 的多项式 ,使满足条件
并列出插值余项。
解法1:由于在 处有直到一阶导数值的插值条件,所以它是“二重节点”;而在 处有直到二阶导数值的插值条件所以 是“三重节点”。因此利用重节点的差商公式:
可以作出差商表
一阶
二阶
三阶
四阶
0
0
1
1
1
-1
-1
利用 的第1式,可将第2式化为
同样,利用第2式化简第3式,利用第3式化简第4式,分别得
由 式消去 得
进一步整理
由此解出
解得:
因此所求的两点Gauss求积公式:
或依下面的思想:
解(2):令原式对于 准确成立,于是有
最优化方法习题答案
x3
-M
0
0
0
5
-1
1
2
x4
x5
1+ 2 M
0
3
ห้องสมุดไป่ตู้
x2
1 3
1
x5
2 3
0
以 x1 为换入基, x5 作为换出基有
-1- M 3
1 3 1
3
-M
0
0
0
5
3
-1
1
1
3
x1
x2
x3
x4
x5
0
x2
0
x1
1
0
1
2
1
1
2
0
1
2
3
3 M
-5.5
2
2
1
1
1.5
2
2
3 3
0.5
22
以 x 4 换入, x 2 换出有
⑤因为 p2 , p4 线性相关, x 2 , x 4 不能构成基变量;
⑥因为 p3, p4 线性无关,可得基解 x(6) (0,0,1,1) , z6 3 ;
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z 3 。
(2) max z x1 x2 2x3 x4 x5
x1 2x2 3x3 4x4 7 s.t.2x1 x2 x3 2x4 3
x1, x2 , x3, x4 0
解:易知
x1 的系数列向量
p1
1
2
,x 2
的系数列向量
p2
2
1
最优化方法练习题答案
练习题一1、建立优化模型应考虑哪些要素“答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停顿准则。
答:针对一般优化模型,讨论解的可行域,假设存在一()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===L L D 点,对于均有则称为优化模型最优解,最优解存在;*X D ∈X D ∀∈*()()f X f X ≤*X 迭代算法的收敛性是指迭代所得到的序列,满足,(1)(2)(),,,K X X X L L (1)()()()K K f X f X +≤则迭代法收敛;收敛的停顿准则有,,(1)()k k x x ε+-<(1)()()k k k x x xε+-<,,等等。
()()(1)()k k f x f x ε+-<()()()(1)()()k k k f x f x f x ε+-<()()k f x ε∇<练习题二1、*公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购〔可能用于生产附加值更高的产品〕。
如果你是该公司的决策者,对这3种资源的收购报价是多少?〔该问题称为例2.1的对偶问题〕。
解:确定决策变量对3种资源报价作为本问题的决策变量。
123,,y y y 确定目标函数问题的目标很清楚——“收购价最小〞。
确定约束条件资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++*2、研究线性规划的对偶理论和方法〔包括对偶规划模型形式、对偶理论和对偶单纯形法〕。
答:略。
3、用单纯形法求解以下线性规划问题:〔1〕⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ;〔2〕⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i 解:〔1〕引入松弛变量*4,*5,*6c j →1-11C B基b*1*2*3*4*5*60*421[1]-21000*532110100*64-101001c j -z j1-11因检验数σ2<0,故确定*2为换入非基变量,以*2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量*4作为换出的基变量。
最优化计算方法课后习题集答案解析
解:取 , 时,DFP法的第一步与最速下降法相同
, ,
,
以下作第二次迭代
,
其中,
,
所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代
,
,
所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6
最优化原理与方法课后习题1
第一章、预备知识一、考虑二次函数()2211221223f X x x x x x x =++-+1) 写出它的矩阵—向量形式: ()f X =12TTQx x xb +2) 矩阵Q 是不是奇异的? 3) 证明: f(x)是正定的 4) f(x)是凸的吗? 5) 写出f(x)在点x =()2,1T处的支撑超平面(即切平面)方程解: 1) f(x)=xx x x x x2122212132+-++=⎪⎪⎭⎫ ⎝⎛x x 2121⎪⎪⎭⎫⎝⎛6222⎪⎪⎭⎫ ⎝⎛x x 21+11T-⎛⎫ ⎪⎝⎭⎪⎪⎭⎫ ⎝⎛x x 21 其中 x=⎪⎪⎭⎫ ⎝⎛x x 21 ,Q=⎪⎪⎭⎫ ⎝⎛6222, b=⎪⎪⎭⎫⎝⎛-11 2) 因为Q=⎪⎪⎭⎫ ⎝⎛6222,所以 |Q|=6222=8>0 即可知Q 是非奇异的3) 因为|2|>0, 6222=8>0 ,所以Q 是正定的,故f(x)是正定的4) 因为2()f x ∇=⎪⎪⎭⎫ ⎝⎛6222,所以|)(2x f ∇|=8>0,故推出)(2x f ∇是正定的, 即)(2x f ∇是凸的5) 因为)(x f ∇=2121(2x 2-1,261)x x x T+++,所以)(x f ∇=(5,11)所以 ()f x 在点x 处的切线方程为5(21-x )+11(12-x )=0 二、 求下列函数的梯度问题和Hesse 矩阵 1) ()f x =2x 12+xx x x x 23923121+++x x x 2322+2) ()f x =2212()21n l x x x x ++解: 1) )(x f ∇= (,94321x xx ++ 26321+++xx x, xx 219+))(2x f ∇=⎪⎪⎪⎭⎫ ⎝⎛019161914 2) )(x f ∇=(x x x x xx 112221221+++,x x x x x x112221221+++))(2x f ∇=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----------++++++++)()()()(2221212222212142221214222121222222121222212122221212212122x x x x x x x x x x x x x x x x x x x x xx x xx x x x x x x x 三、 设f(x)=xx x x x x x323223322122--+++,取点)1,1,1()1(Tx=.验证d )1(=(1,0,-1)是f(x)在点x )1(处的一个下降方向,并计算min >t f(x )1(+t d)1()证明: )(x f ∇=)124,123,x 2(233221-+-+x x x x T)5,4,2()(1Tx f =∇d )(1x f ∇=(1,0,-1)⎪⎪⎪⎭⎫ ⎝⎛542= -3<0所以d)1(是f(x)在x )1(处的一个下降方向f(x )1(+t d)1()=f((1+t,1,1-t))=433)1(1)1(221(222)1()1+-=----+++-+t t t t t t∇f(x )1(+t d)1()=6t-3=0 所以t=0.5>0所以0min >t f(x )1(+t d)1()=3*0.25-3*0.5+4=3.25四、设,,i i i a b c (j=1,2,….,n )考虑问题Min f(x)=∑=nj jj xc 1s.t. b nj jjxa =∑=10≥xj(j=1,2,….,n)1) 写出其Kuhn Tuker 条件 2) 证明问题最优值是])([12112∑=nj j j b c a解:1)因),....,1(n j x j = 为目标函数的分母故0>x j所以λ*j (j=1,…,n )都为0所以Kuhn Tuker 条件为 0)()(=∇+∇x h x f μ即 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---x c x c x c n n 2222211 +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a a a n 21μ=0 2)将ac xjjjμ=代入 h(x)=0 只有一点得221(nj b n j bμ==⇒=∑=故有ac ca x jj nj jjj b∑==1所以最优解是21211()n j j j b a c =⎡⎤⎢⎥⎢⎥⎣⎦∑.五、使用Kuhn Tuker 条件,求问题min f(x)=)2()1(2122--+x xs.t.,021212112≥≥=+=-x x x x x x 的Kuhn Tuker 点,并验证此点为问题的最优解 解:x=(1/2,3/2) 0≠ 故1λ*,λ*2=0 则 0)()()(2211=+∇+∇x x x f h h μμ 即0111142222121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛--μμx x ⇒120,1μμ==-而⎪⎪⎭⎫ ⎝⎛=∇2002)(2x f ()210g x *∇= ()220g x *∇= ()210h x *∇=()220h x *∇=,()()()()()()()22222211221122H x f x g x g x h x h x f x λλμμ***********=∇+∇+∇+∇+∇=∇(){}{}12121213|00|1020,22T T T x y h y h y y y y y y *⎧⎫⎛⎫=∇=∇==-+-=+-==⎨⎬⎪⎝⎭⎩⎭故08)(2>=∇x x f x T ,即其为最优解.第二章、无约束优化问题一、设f(x)为定义在区间[a,b]上的实值函数,x *是问题min{f(x)|a b x ≤≤}的最优解。
最优化方法及其应用课后答案
最优化方法及其应用课后答案1. 最优化方法的分类包括哪些方面?最优化方法可分为三类:数学规划、非数学规划和元启发式方法。
2. 线性规划的标准形式是什么?线性规划的标准形式为:max cTxsubject toAx ≤ bx ≥ 0其中,cTx表示优化目标,Ax≤b表示约束条件,x≥0表示非负约束条件。
3. 拉格朗日乘数法是如何解决带有等式约束的优化问题的?拉格朗日乘数法是通过构建拉格朗日函数来解决带有等式约束的优化问题的。
具体地,拉格朗日函数L(x,λ)定义为:L(x,λ)=f(x)+λTh(x)其中,f(x)是优化目标函数,h(x)是等式约束函数,λ是拉格朗日乘数。
然后,通过求解L(x,λ)的梯度和等于0的条件,得到原问题的解。
4. 什么是梯度下降法?梯度下降法是一种迭代求解方法,用于优化无约束的多次可微函数。
该方法通过向负梯度方向下降来逐步逼近优化目标的最小值。
具体地,梯度下降法的迭代公式为:x(k+1)=x(k)-αk∇f(x(k))其中,x(k)是第k次迭代后的解,αk是步长,∇f(x(k))表示f(x(k))的梯度。
5. 遗传算法是如何实现优化的?遗传算法是一种元启发式方法,它基于模拟生物进化过程来实现优化。
算法先随机生成一组初始的个体,然后对这些个体进行遗传操作(交叉、变异),以产生新的个体,并按照适应度函数的大小保留一部分个体,舍弃一部分个体。
通过多次迭代,逐步优化得到最优解。
6. 模拟退火算法的基本思想是什么?模拟退火算法是一种元启发式方法,它基于物理中的退火现象进行优化。
算法维护一个当前解,然后随机生成一个新的解,并计算当前解到新解的能量差。
如果新解比当前解更优,则直接接受它。
若不是,则以一定概率接受新解,并降低概率参数T,然后继续下一步迭代。
通过多次迭代,逐步优化得到最优解。
7. 最大熵模型的基本原理是什么?最大熵模型是一种概率模型,它通过最大化经验熵与先验熵之和来实现分类或回归问题的优化。
最优化方法部分课后习题解答(1-7)
最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。
(2)约束最优点,并求出其最优值。
(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。
*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。
123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题二包括题目: P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14、 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15、 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135Tδδ-⎛⎫= ⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于就是停止 (3)(1,1)T x =-即为最优解。
习题四包括题目: P95页 3;4;8;9(1);12选做;13选做 3题解如下3、考虑问题21),(2)(min 21x x x f sx x -=∈,其中{}{}.10,1),(1),(2121222121≤≤≤≤+=x x x x x x x x S T T I(1)画出此问题的可行域与等值线的图形;(2)利用几何图形求出此问题的最优解及最优值;(3)分别对点,)1,0(,)0,0(,)1,1(,)0,1(4321TTTTx x x x -==-==指出哪些约束就是紧约束与松约束。
解:(1)如图所示,此问题的可行域就是以O 点为圆心,1为半径的圆的上半部分;等值线就是平行于直线x 2=2x 1的一系列平行线,范围在如图所示的两条虚线内。
(2)要求f 的最小值,即求出这一系列平行线中与x 2轴相交,所得截点纵坐标的最大值。
显然当直线在虚线1的位置,能取得极值。
如图求出切点⎪⎭⎫ ⎝⎛-51,52P ,此点即为最优解Tx )51,52(-=*,解得最优值5-=*f(3)对于区间集S 可以简化为g 1:012221≥--x xg 2:02≥-x对于点Tx )0,1(1=,g 1与g 2均为该点处的紧约束; 对于点Tx )1,1(2-=,g 1与g 2均为该点处的松约束; 对于点Tx )0,0(3=,g 1为该点的松约束,g 2为该点的紧约束; 对于点Tx )1,0(4-=,g 1为该点的紧约束,g 2为该点的松约束。
4题解如下4、试写出下列问题的K-T 条件,并利用所得到的表达式求出它们的最优解:(1)()();12min 2221-+-x xs 、t 、 012221≥--x x (2)()();12min 2221-+-x xs 、t 、 092221≥--x x (1)解:非线性规划的K-T 条件如下:022********=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--x x x x λ (1)0)1(2221=--x x λ (2)0≥λ (3)再加上约束条件 012221≥--x x (4) 为求出满足(1)~(4)式的解,分情况考虑:①若(4)式等号不成立,即012221>--x x ,那么由(2)式得0=λ,将0=λ代入(1)式解得21=x ,12=x ,所得值不满足012221>--x x 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得121+=λx ,112+=λx ,代入(4)式有: 1111222=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+λλ 解得5151--+-=或λ 因为0≥λ,所以51+-=λ,那么521=x ,512=x ,满足以上所有条件。
综上所述,所求非线性规划有唯一的K-T 点为:Tx )51,52(=* (2)解:非线性规划的K-T 条件如下:022********=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--x x x x λ (1)0)9(2221=--x x λ (2)0≥λ (3)再加上约束条件092221≥--x x (4) 为求出满足(1)~(4)式的解,分情况考虑:①若(4)式等号不成立,即092221>--x x ,那么由(2)式得0=λ,将0=λ代入(1)式解得21=x ,12=x ,所得值满足以上所有约束。
②若(4)式等号成立,由(1)式可以解得121+=λx ,112+=λx ,代入(4)式有: 9111222=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+λλ 解得351±-=λ 因为0≥λ,所以所得λ值均舍去,该情况不成立。
综上所述,所求非线性规划有唯一的K-T 点为:T x )1,2(=*8题解如下 8 考虑问题Min x12+x1x2+2x22-6x1-2x2-12x3 S 、t 、 X1+x2+x3=2 (1) -x1+2x2≤3 (2) X1,x2,x3≥0 (3)求出点(1,1,0)处的一个下降可行方向、解:首先检查在点(1,1,0)处哪些约束为有效约束。
检查易知(1),X3≥0为有效约束。
设所求可行方向d=(d1,d2,d3)T 。
根据可行方向d 的定义,应存在a>0,使对∀t ∈(0,a)能有 X+td=(1+td1,1+td2,0+td3)T 也能满足所有有效约束:(1+td1)+(1+td2)+(0+td3)=2 td3≥0 经整理即为d1+d2+d3=0 d3≥0满足上述不等式组的d=(d1,d2,d3)T 均为可行方向。
现只求一个可行方向,所以任取d3=1,求解d1+d2=-d3得d1+d2=-1,可任取d1=1,d2=-2得一可行方向 d=(1,-2,1)T 考虑下降性由题可知:将目标函数化为f(x)=1/2XTQX+bTX+C 从而 ▽f=QX+b 即2101614022000312x f x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∇= +-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ -⎣⎦⎣⎦⎣⎦▽f(1,1,0)=(-3,3,-12)因为 ▽f(1,1,0)Td=-21<0表明d=(1,-2,1)T 为原问题在x=(1,1,0)T 处的一个下降可行方向9题解如下9 用lemke 算法解下列问题: (1)min 2x12+2x22-2x1x2-4x1-6x2 S 、t 、 X1+x2≤2 X1+5x2≤5 X1,x2≥0 解:4224H -⎛⎫= ⎪- ⎝⎭ ,46c -⎛⎫= ⎪-⎝⎭,1115A ⎛⎫= ⎪⎝⎭,25b ⎛⎫= ⎪⎝⎭ 于就是00110015114215M - -⎡⎤⎢⎥ - -⎢⎥=⎢⎥ -⎢⎥ -2 4⎣⎦,2546q ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,1212y y w v v ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,1212u u z x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦与本题相应的线性互补问题为:W-MZ=q W ≥0,Z ≥0 WTZ=0 写成表格为选择与max{-qi}=-q4=6相应的第4行第9列元素作主元进行旋转,得次碰到这一对变量,故选z4进基、在所选列中,有 Min {8/5,11/9,2/6,6/4}=2/6故选相应的第3行第8列元素作主元,再进行旋转,得由于W0仍在基变量中,故继续运算、由于这时仅有W3,Z3这一对变量全不在基中,故仍在它们之中选一变量进基,由于就是第一次从这一对变量选取,故也选Z3进基,再由Min {38/6/4,8/8,28/6/2}=8/8在上表中W0已被置换出基,即得到了相应线性互补问题的解,也就就是所求二次规划的最优解:y1=-208/93,x1=35/31,x2=24/31,u2=32/31,y2=v2=v2=u1=0,即x*=(35/31,24/31)T 12题解如下12、(1)外点法min =)(f x 2221x x + s 、t 、 11≥x 解: 定义惩罚函数 F( )(){}[]2122211,0max ,--++=x x x x σσ=2221x x + 当 11≥x()2122211-++x x x σ 当11<x用解析法求解 min F(σ,x ),有=∂∂1x F12x 当11≥x()11221x x σ+- 当11<x222x x F=∂∂ 令01=∂∂x F ,02=∂∂x F得到 =*σx ()21,x x T ⎪⎭⎫⎝⎛+=0,1σσT易见,当+∞→σ时,()0,1=→**x x σT*x 恰为所求费线性规划的最优解。