微波与天线讲解
微波技术与天线
shz
c.已知电源电动势Eg,内阻Rg及负载阻抗ZL时
的特解:
U ( z)
Eg Z0 Rg Z0
e z L e 2l ez (1 1 Le2l )
I( z)
Eg Rg Z0
e z L e 2l ez (1 1 Le2l )
其中:
1
Rg Rg
Z0 Z0
L
Z L Z L
Z0 Z0
2.向微波电路的小型化,微型化和单片集 成化方向发展;
3.向开辟新的微波应用领域方向发展。
第二章 传输线的基本理论
第一节 传输线的基本概念
一. 传输线的种类:
1. 微波传输线的定义: 2. 传输线的种类:
a. TEM波传输线: b. 金属波导传输线: c. 表面波传输线:
二 分布参数的概念:
1. 长线与短线的概念:
电流)的一般公式:
U (z) U L IL z0 ez U L IL z0 ez
2
2
I( z)
U L IL z0 2z0
e z
U
L
IL 2z0
z0
e z
解的双曲函数形式为:
U (z) U Lchz ILZ0shz
I( z)
U L Z0
shz
ILchz
b. 已知始端电压U1 和电流 I1时的特解:
L0
jC0 (1
j G0
C0
)
j
L0C0 [1
j
1 2
( R0
L0
G0
C0
)]
( R0 C0 G0 2 L0 2
j
L0 ) j
C0
L0C0
R0
2
C0 G0 L0 2
微波技术与天线
微波技术与天线微波技术在现代通信和雷达系统中起着重要的作用。
而天线作为微波技术的关键组成部分,对于接收和发射微波信号起着至关重要的作用。
本文将介绍微波技术的基本原理和应用,并探讨天线在微波通信中的作用和种类。
微波技术是一种利用微波频段(10^9 - 10^12 Hz)的电磁波进行通信和雷达探测的技术。
与传统的无线电通信相比,微波技术具有更高的频率和更大的带宽,使得它可以传输更多的信息和提供更快的数据传输速率。
微波技术的应用范围非常广泛,包括无线通信、卫星通信、雷达系统、无线电广播和微波炉等。
微波技术的基本原理是利用电磁波在空间中的传播特性进行信息传输。
它可以通过空间传播、导波传输和辐射传输等方式进行信号传输。
其中,空间传播是利用电磁波在自由空间中传播的特性进行远距离通信;导波传输是利用导波介质(如同轴电缆、光纤等)中的传输模式进行信号传输;辐射传输是利用天线将电磁波转化为空间中的辐射场进行信号传输。
天线是微波通信系统中的重要组成部分,它不仅负责接收和发射微波信号,还承担着信号传输和辐射的功能。
天线的主要作用是将电磁波通过辐射或传输的方式转化为空间中的电磁场。
根据天线的结构和工作原理的不同,可以将天线分为不同的类型,包括定向天线、宽带天线和多功能天线等。
定向天线是一种能够将微波信号集中在某个方向的天线。
它主要通过抑制其他方向上的辐射来实现对目标方向上的电磁波辐射。
定向天线通常具有高增益和窄波束宽度的特点,可以用于长距离通信和雷达系统中。
常见的定向天线包括抛物面天线、柱面天线和饼式天线等。
宽带天线是一种能够在较宽频带范围内工作的天线。
它通常采用特殊的结构设计和宽带匹配技术,使得它能够在整个微波频段内工作。
宽带天线可以满足通信和雷达系统中的高速数据传输需求,具有灵活性和适应性较强的特点。
常见的宽带天线包括天线阵列、双极天线和Vivaldi天线等。
多功能天线是一种能够在不同信号工作模式下工作的天线。
它可以根据不同的应用需求,实现信号的接收、发射和扫描等功能。
微波技术与天线课件
其中一对匹配:
S12 S34 0 S11 S22 0
(20-6) (20-7)
符合上述条件的即可称为定向耦合器,其[S]矩阵是
微波技术与天线课件
三、四口网络的一般性质
0 0 S13 S14
[S]
0
0
S23
S24
S13 S14
S23 S24
微波技术与天线课件
多口元件
如图:假设有N个端口。我们大概就用这样一个S 矩阵来分析多端口元件。
s11 s12
s21
s22
sn1
sn 2
s1n a1 b1
s2n
a2
b2
snn
an
bn
微波技术与天线课件
多口元件
它的物理概念非常清楚,由入射进去的激励
波 a1,a2……an , 通 过 网 络 , 出 来 变 成 b1,b2……bn 。 因 此 上 面 矩 阵 可 以 简 化 为
口网络的三个端口不可能同时匹配。除了三端口
以外,二端口以上的微波网技术络与天都线课可件以全匹配。
一、三口网络的一般性质
2. 无耗非互易三口网络 无耗非互易网络:Sij≠Sji [性质]无耗非互易三口网络的三个端口可以完全匹配。 典型的就是环形器,有两种典型的理想矩阵对应不同 的环行器:
微波技术与天线课件
平
等 端
分相位
幅输入 反相等
二、三口元件
2. 铁氧体环行器——环行元件
3
1
2
0 0 1 [S] 1 0 0
0 1 0
理想s矩阵
[例1] 理想环行器端口③接匹配负载 L,即o 可构成二 端口隔离器。
微波技术与天线(重点)
微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz (波长1m)至3000GHz(波长0.1m).微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性.与低频区别:趋肤效应,辐射效应,长线效应,分布参数。
微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。
集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。
这类电路所涉及电路元件的电磁过程都集中在元件内部进行。
用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。
对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。
分布参数:电路是指电路中同一瞬间相邻两点的电位和电流都不相同。
这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。
分布参数电路的实际尺寸能和电路的工作波长相比拟。
对于分布参数电路由传输线理论对其进行分析。
均匀传输线方程(电报方程):,传输线瞬时电压电流:特性阻抗:(无耗传输线R=G=0.)平行双导线(直径为d,间距为D):同轴线(内外导体半径a,b):相移常数:tt ziLt zRizt zu∂∂+=∂∂),(),(),(tt zuCt zGizt z i∂∂+=∂∂),(),(),()cos()cos(),(21zteAzteAt zu zzβωβωαα-++=-+)]cos()cos([1),(21zteAzteAZt zi zzβωβωαα-++=-+CjGLjRZωω++=dDZr2ln1200ε=abZrln600ε=λπωβ2==LC输入阻抗:反射系数:终端反射系数:输入阻抗与反射系数关系:驻波比:;1.行波状态沿线电压电流振幅不变,驻波比为1,终端反射系数0,传输线上各点阻抗等于传输线特性阻抗。
微波技术与天线
微波技术与天线1. 引言微波技术是一种高频电磁波技术,其波长在1mm到1m之间。
微波技术在通信、雷达、卫星通信和无线电频谱等领域有着广泛的应用。
而天线是将电磁波转换为电信号或者将电信号转换为电磁波的设备。
本文将介绍微波技术与天线的基本原理和应用。
2. 微波技术的基本原理微波技术是利用微波电磁波来传输和处理信息的技术。
微波电磁波具有较高的频率和较短的波长,能够提供更高的频宽和更大的信息容量。
微波技术的基本原理包括以下几个方面:2.1 微波的特性微波电磁波是一种高频率的电磁波,其频率范围为300MHz到300GHz,相应的波长范围为1mm到1m。
微波的特性包括强迫共振、反射、透射、衍射、折射和干涉等。
2.2 微波传输技术微波传输技术是将微波信号通过天线发射和接收的过程。
在微波传输中,需要考虑信号的衰减、传输损耗、干扰等因素。
2.3 微波放大器微波放大器是用来放大微波信号的设备,常见的微波放大器有二极管放大器、管式放大器和固态放大器等。
2.4 微波滤波器微波滤波器是用来对微波信号进行滤波的设备,常见的微波滤波器有带通滤波器、带阻滤波器和低通滤波器等。
2.5 微波集成电路微波集成电路是将多个微波器件集成在一个芯片上的技术,它可以提高系统的集成度和性能。
3. 天线的基本原理天线是将电磁波转换为电信号或者将电信号转换为电磁波的设备。
天线的基本原理包括以下几个方面:3.1 天线的类型常见的天线类型包括单极天线、双极天线、定向天线、全向天线和宽带天线等。
3.2 天线的工作原理天线的工作原理是将电流转换为电磁波或者将电磁波转换为电流。
天线的工作原理涉及到电磁场理论和天线的电路模型。
3.3 天线的增益与方向性天线的增益是指天线在某一方向上辐射或接收的电磁波功率与同样功率电源的参考天线(标准天线)相比的比值。
天线的方向性是指天线在特定方向上的辐射或接收性能。
3.4 天线的设计与优化天线的设计与优化是指根据特定应用的需求,选择适当的天线类型、形状、材料和尺寸,并进行相应的电磁仿真和优化。
《微波技术与天线》课件
这个PPT课件将为您介绍微波技术与天线的基本概念和应用,从微波技术的 发展历程,到微波器件、微波天线、微波信号传输、微波测量技术、微波辐 射安全等多个方面进行深入讲解。
一、微波技术概述
微波技术的发展历程,基本特征以及在通信领域的应用。
二、微波器件
微波器件的分类
介绍不同类型的微波器件,如微波管、半导 体器件和微波集成电路。
微波天线的设计 与制造
提供设计和制造微 波天线的关键步骤 和技术。
四、微波信号传输
1 微波信号的特点
2 微波信号的传输方式
介绍微波信号的特点,如频率和传输距离。
讲述微波信号的不同传输方式,如无线和 光纤传输。
3 微波信号的功率损耗ຫໍສະໝຸດ 4 微波信号的干扰与抗干扰方法
解释微波信号传输中的功率损耗问题及其 影响。
半导体器件
讲述半导体器件在微波技术中的重要性和功 能。
微波管
深入解释微波管的工作原理和应用。
微波集成电路
介绍微波集成电路的设计和制造过程。
三、微波天线
微波天线的基本 原理
解释微波天线的工 作原理和其在通信 中的作用。
微波天线的分类
介绍不同类型的微 波天线,如方向性 天线和宽带天线。
微波天线的参数
讲述微波天线的常 见参数和它们的意 义。
提供微波信号干扰及其抗干扰方法的详细 信息。
五、微波测量技术
微波测量的基本 原理
介绍微波测量的基 本原理和常见应用。
微波频率计的工 作原理
解释微波频率计的 工作原理以及它在 微波测量中的作用。
微波功率计的工 作原理
深入讲解微波功率 计的工作原理和它 在微波测量中的应 用。
《微波技术与天线》第六章 天线.ppt
29
天线的的方向图参数
旁瓣电平
指离主瓣最近且电平最高的第一旁瓣电平(dB)。 不需要辐射的区域电平应尽可能低。
前后比
最大辐射方向(前向)电平与其相反方向(后向)电平 之比。(dB)
2020/4/27
30
天线的的方向图参数
方向系数D
在离天线某距离处,天线在最大辐射方向上的辐射功
率流密度Psmax 与相同辐射功率的理想无方向性天线 在同一距离处的辐射功率流密度Ps0之比(dB)。
21
基本振子的辐射
结论
比较电基本振子的远区场Eθ与磁基本振子的远区 场Eφ,可以发现它们具有相同的方向函数|sinθ|, 而且在空间相互正交,相位相差90°。
所以将电基本振子与磁基本振子组合后,可构成 一个椭圆(或圆)极化波天线。螺旋天线为该情 况。
2020/4/27
22
天线的电参数
天线方向图参数 天线效率 增益系数 极化特性 频带宽度 输入阻抗 有效长度
设有一电阻RΣ, 当通过它的电流等于天线上的最大电 流时, 其损耗的功率就等于其辐射功率。
辐射电阻的高低是衡量天线辐射能力的一个重要指标: 辐射电阻越大,天线的辐射能力越强。
A
R R RL
1 1 RL
R
中长波和电尺寸很小的天线中:R∑小, RL大,ηA小, 仅百分之几; 202超0/4/27短波、微波,电尺寸可以做的很大, ηA→1。 35
如果通信的一方是剧烈摆动或高速运动着的,为了提 高通信的可靠性,发射和接收都应采用圆极化天线。
如果雷达是为了干扰和侦察对方目标,也要使用圆极 化天线。典型的例子是车载GPS常用的圆极化天线。
在人造卫星、宇宙飞船和弹道导弹等空间遥测技术中, 由于信号通过电离层后会产生法拉第旋转效应, 因此 其发射和接收也采用圆极化天线。
微波技术与天线
微波技术与天线微波技术与天线引言:微波技术是一种在20世纪发展起来的射频技术,它在通信、雷达、无线电频谱分析、医疗影像等领域有着广泛的应用。
而天线作为微波技术中的重要组成部分,起到了传输和接收信号的重要作用。
本文将重点探讨微波技术与天线的关系,以及它们在现代科技领域中的应用。
第一章:微波技术概述微波是一种电磁波,其频率范围在300兆赫兹(GHz)到300吉赫兹(GHz)之间,波长在1mm到1m之间。
由于微波的较高频率和较短波长,它具有许多特殊的性质,如方向性强、传输损耗小等。
这使得微波在通信和雷达系统中具有重要的地位。
微波技术是一种基于微波的射频技术。
它包含了一系列与微波信号相关的技术和设备,如微波电路、微波器件、微波源等。
微波技术的发展得益于材料科学和射频电子学的进步,随着计算机技术的发展,微波技术的应用也愈发广泛。
第二章:天线的基本原理天线是一种能够将电磁波转换为电流或将电流转换为电磁波的设备。
它一般由导电材料制成,通过合适的设计和布局,可以实现对特定频率范围的电磁波的传输和接收。
天线的基本原理是根据电流的加速度产生电磁波,并利用电磁波与传输介质之间的相互作用实现信号的传输或接收。
天线的特性与设计密切相关,包括天线的增益、方向性、极化等。
增益是指天线能够将电磁波能量聚焦在某一方向上的能力,方向性是指天线辐射或接收电磁波的主要方向,极化是指电磁波的电场矢量振动方向。
合理的天线设计能够提高通信系统的性能,如增强信号的强度和可靠性。
第三章:微波技术与天线的应用微波技术与天线在通信、雷达、无线电频谱分析、医疗影像等领域的应用越来越重要。
在通信系统中,微波技术与天线广泛应用于无线通信系统中。
它可以实现长距离、高速率的信号传输。
微波通信系统主要包括微波天线、微波发射器和微波接收器。
微波天线作为传输和接收信号的关键设备,承担着重要的角色。
合理选择和设计微波天线可以提高通信系统的性能,如增加系统的传输距离、提高通信速率等。
微波技术与天线复习知识要点资料讲解
微波技术与天线复习知识要点资料讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
谈谈对微波技术与天线课程的理解
微波技术与天线课程是电子工程专业中重要的一门课程,它涉及到电磁场理论、电磁波传播、微波器件与天线设计等内容,对于培养学生的电磁场理论基础、微波技术应用能力具有重要意义。
本文将从以下几个方面来探讨微波技术与天线课程的理解:一、微波技术的基本概念微波是指波长在1mm至1m范围内的电磁波,它具有高频高速传输、小型化、高效率等特点,广泛应用于通信、雷达、无线电频率识别等领域。
微波技术是指对微波进行产生、传输、接收和应用的技术的总称,它是电子工程领域的一个重要分支。
二、微波技术的原理与应用微波技术的原理主要包括微波的产生与调制、微波的传输与损耗、微波的接收与检测等内容,其应用涵盖无线通信、卫星通信、雷达系统、微波加热和医学影像等领域。
学习微波技术课程,可以使学生了解微波的基本特性、传输特性和应用特性,培养学生分析和解决实际工程问题的能力。
三、天线的基本原理与设计方法天线是一种能够发射或接收电磁波的装置,它在微波通信、卫星通信、雷达系统等领域起着至关重要的作用。
天线的基本原理包括辐射机制、辐射特性和阵列天线设计等内容,学习天线课程可以使学生掌握天线的工作原理和设计方法,培养学生进行天线工程设计与研发的能力。
四、微波技术与天线课程在电子工程中的重要性微波技术与天线课程作为电子工程专业的核心课程之一,对于培养学生的电磁场理论基础、微波技术应用能力、天线工程设计能力具有重要意义。
通过学习微波技术与天线课程,可以使学生全面了解微波技术与天线工程领域的最新发展动态,为学生将来从事相关领域的工作打下坚实的理论基础。
微波技术与天线课程在电子工程专业中具有重要地位,通过系统地学习与研究,可以培养学生对微波技术与天线工程领域的深刻理解和应用能力,为学生的专业发展和工程实践提供有力支持。
希望学生们能够重视微波技术与天线课程的学习,积极参与课程实践与科研创新,提高自身的专业素养和未来的就业竞争力。
微波技术与天线课程在电子工程专业中的地位不容忽视。
微波技术与天线复习要点
微波技术与天线复习要点微波技术与天线是电子工程中非常重要的两个领域。
微波技术涉及了微波器件、微波电路和微波系统等方面的知识,而天线则涉及到电磁波传输和接收的技术。
下面将从微波技术和天线的基本原理、设计和应用等方面进行复习要点的总结。
一、微波技术的复习要点:1.微波的概念:微波是指频率在0.3GHz到300GHz之间的电磁波。
其特点是波长短、能量集中、穿透能力强。
2.微波器件:包括微波管、微波集成电路和微波半导体器件等。
微波管是一种用于产生、放大、调制和检波微波信号的器件。
微波集成电路是将微波器件集成在一块微波板上,实现微波信号的处理功能。
3.微波电路:包括微波传输线、微波滤波器和微波功率分配器等。
微波传输线用于在电路中传输微波信号,常用的微波传输线有阻抗线、共面波导和同轴线等。
微波滤波器用于选择性地通过或阻断特定频率范围内的微波信号。
微波功率分配器用于将微波信号分配到不同的传输线或输出端口。
4.微波系统:包括微波通信系统、微波雷达系统和微波遥感系统等。
微波通信系统是利用微波信号进行通信的系统,其特点是高速率、抗干扰性强。
微波雷达系统是利用微波信号检测目标的系统,其特点是高分辨率、远距离探测。
微波遥感系统是利用微波信号获取地球表面信息的系统,其特点是穿透云雾、对地物覆盖情况敏感。
二、天线的复习要点:1.天线的基本原理:天线是用于辐射电磁波或接收电磁波的装置。
其基本原理是由电流产生的电场和磁场辐射出去形成电磁波。
根据发射和接收的方式不同,天线分为发射天线和接收天线。
2.天线的参数:包括增益、方向性、波束宽度和极化等。
增益是指天线辐射能量的能力,方向性是指天线在不同方向上的辐射强度不同,波束宽度是指天线辐射的主瓣宽度,极化是指电场矢量的方向。
3.天线的设计:包括天线的结构设计和参数设计。
结构设计涉及到天线的形状和尺寸,参数设计涉及到天线的频率和阻抗匹配。
4.天线的应用:包括通信系统、雷达系统和无线电广播等。
微波技术与天线
微波技术与天线微波技术和天线是现代通信和广播技术中两个非常重要的领域。
这两个领域旨在提高通信效率和性能,并满足不断增长的业务需求。
微波技术和天线在各种应用中都有重要作用,包括无线通信、卫星通信、雷达、无线电传输、导航、航空航天和防御等方面。
在本文中,将介绍微波技术和天线的基础知识和应用领域。
微波技术是电磁波科学的重要方面,其主要研究微波频段的各种应用。
微波频段的频率范围是300MHz~300GHz,与射频和毫米波频段之间。
这个范围的频率被广泛用于通信、雷达、导航和遥感等应用。
微波技术应用广泛,最常见的应用之一是通信。
微波技术被用于构建各种类型的通信系统,如卫星、移动电话和电视广播。
此外,微波技术还用于雷达系统,用于军事和民用航空。
微波技术还被用于无线电传输和导航,如GPS定位系统就使用了微波的频率范围。
微波技术的一个重要组成部分是天线。
天线是将电磁能转换为无线信号的器件。
在微波频段,天线的设计变得复杂和精确。
微波天线设计涉及到一系列重要的参数,如频率响应、辐射图案、天线增益、电子孔径等。
天线的性能直接影响着通信系统的效率和效果,因此天线的选择和设计是非常重要的。
天线通常是由一个或多个射频元件组成的。
射频元件是用于执行射频能量转换的传输线、高频开关、滤波器和其他组件的成品。
通过控制射频元件的状态,可以实现通信系统的调制、分路、复用和解调。
当在微波频段进行通信时,由于信号在传输过程中的损耗,需要使用射频功率放大器和信号增强放大器来保证信号能够达到足够的强度,以克服高噪声环境和可能遇到的障碍物。
在设计天线的过程中,一个重要的考虑因素是电子孔径。
电子孔径是天线的有效长度,定义为天线的物理尺寸除以在接收和发射时电磁场存在的波长。
通过选择天线的长度,可以调整天线接收电磁波的频率和波长,以满足系统的特定需求。
另一个重要的参数是天线的增益。
天线增益是比较天线输出功率和输入功率之间的关系。
为了提高信号强度,可以通过增加天线增益来放大信号。
《微波技术与天线》第章-课件 (二)
《微波技术与天线》第章-课件 (二)
微波技术与天线是现代通信领域的重要组成部分,它涉及到无线通信、雷达、卫星通信等多个领域。
本文将从以下几个方面介绍微波技术与
天线的相关知识。
1. 微波技术的概念
微波技术是指在微波频段(1-300GHz)内进行电磁波传输、处理和控
制的技术。
它是一种高频电磁波技术,具有大带宽、高速率、低损耗
等优点。
微波技术广泛应用于通信、雷达、医疗、工业等领域。
2. 微波天线的分类
微波天线是指用于接收和发射微波信号的天线。
根据其结构和工作原理,可分为微带天线、槽天线、饼状天线、螺旋天线等多种类型。
不
同类型的微波天线适用于不同的应用场景,如微带天线适用于卫星通信、移动通信等领域,螺旋天线适用于雷达、导航等领域。
3. 微波器件的应用
微波器件是指用于微波信号处理和控制的电子器件。
常见的微波器件
包括微波放大器、微波滤波器、微波开关等。
这些器件广泛应用于通信、雷达、卫星通信等领域,对于保障国家安全和提高人们生活质量
具有重要意义。
4. 微波技术的发展趋势
随着信息技术的快速发展,微波技术也在不断创新和发展。
未来,微
波技术将更加注重集成化、智能化和高效化,发展出更加先进的微波器件和微波天线,为人们的生活和工作带来更多的便利和可能。
总的来说,微波技术与天线是现代通信领域的重要组成部分,它在通信、雷达、卫星通信等多个领域具有广泛应用。
未来,微波技术将继续创新和发展,为人们的生活和工作带来更多的便利和可能。
微波与天线ppt课件
。
天线在雷达与导航中的应用
雷达天线
雷达是一种利用微波探测目标的电子设备。天线在雷达中起 到发射和接收信号的作用,通过分析反射回来的信号,可以 获得目标的位置、速度等信息。
卫星导航天线
卫星导航系统通过发射和接收微波信号,实现定位和导航。 天线在此过程中负责发射和接收信号,帮助用户获得位置信 息。
微波与天线在其他领域中的应用
微波与天线ppt课件
目录
CONTENTS
• 微波与天线概述 • 微波的基本理论 • 天线的基本原理 • 微波与天线的应用 • 微波与天线的未来发展
01
微波与天线概述
微波的定义与性质
微波是指频率在300 MHz到300 GHz之 间的电磁波。
它在通信、雷达、导 航、加热等领域得到 广泛应用。
微波具有波长在1米 到1毫米之间,以及 穿透性、反射性、折 射性等特点。
多天线技术
多天线技术是一种利用多个天线同时发送和接收信号的技术,可以显著提高无线通信系统的性能。未 来,多天线技术将在微波与天线领域发挥重要作用,实现更高的频谱效率和更稳定的传输。
MIMO技术
MIMO技术是一种利用多个天线同时发送和接收信号的技术,可以显著提高无线通信系统的性能。未 来,MIMO技术将成为微波与天线领域的重要研究方向,实现更高的频谱效率和更稳定的传输。
波动方程与麦克斯韦方程
波动方程
描述电磁波在空间中传播的基本 方程,包括电场强度E和磁场强度 H的波动特性。
麦克斯韦方程
一组描述电磁场变化和传播的方 程,包括高斯定理、安培定律、 法拉第定律和欧姆定律。
谐振腔与传输线理论
谐振腔
一种能够支持电磁振荡的封闭空间, 通常由金属壁构成,用于产生和储存 微波能量。
微波与天线PPT课件
天线的工作原理
总结词
天线的工作原理
详细描述
天线的工作原理基于电磁波的辐射和接收。当天线受到电流激励时,会在其周围产生电磁场,形成电 磁波的辐射。反之,当天线接收到电磁波时,会在其导体上产生感应电流,从而将电磁波能量转换为 电信号。天线的方向性和增益与其形状、尺寸和工作频率等因素有关。
天线的参数与性能
THANKS FOR WATCHING
感谢您的观看
方式、增益等。
06 总结与展望
微波与天线技术的总结
01
技术发展历程
微波与天线技术自20世纪初诞生以来,经历了从基础理论到实际应用的
发展过程。初期主要应用于军事领域,随着技术的不断进步,逐渐扩展
到通信、雷达、导航、探测等民用领域。
02
关键技术突破
在发展过程中,出现了许多关键技术突破,如超宽带天线、智能天线、
05 案例分析
案例一:卫星通信天线
总结词
卫星通信天线是微波与天线技术的重要应用之一,主要用于卫星信号的接收和 发射。
详细描述
卫星通信天线通常由反射器和馈源组成,其尺寸和形状根据所服务的卫星轨道 和频率范围而有所不同。为了实现高效的信号传输,卫星通信天线需要精确地 指向卫星,这通常通过自动控制系统来实现。
系统集成与小型化
未来微波与天线技术将更加注重系统集成和小型 化,以提高设备的整体性能和便携性。这需要突 破现有技术的限制,探索新的材料和工艺方法。
新材料的应用
随着新材料技术的不断发展,新型材料如碳纳米 管、二维材料等将在微波与天线技术中得到广泛 应用,为技术的发展带来新的机遇和挑战。
环境适应性需求
随着应用领域的不断扩展,微波与天线技术对环 境适应性提出了更高的要求。如何提高设备的抗 干扰能力、稳定性以及在复杂环境下的性能表现 ,将是未来发展的重要方向。
微波技术与天线——第1章
(1-7a) 根据双曲函数的表达式,上式整理后可得 (1-7c)
第一章、传输线理论 (2)已知传输线始条件 这时将坐标原点z=0选在始端较为适宜。将始端条件 U(0)=U1,I(O)=I1 ,代入式(1—4),同样可得沿线的 电压电流表达式为
(1-6b)
第一章、传输线理论 4、传输线的特性参量 传输线的特性参量主要包括:传播常数、特性阻抗、 相速和相波长 (1)、传播常数
反映波经过单位长度传输线后幅度和相位的变化 的物理量。
传播常数γ 一般为复数,可表示为 其中实部α称为衰减常数,表示行波每经过单位长度 后振幅的衰减,单位为分贝/米(dB/m)或奈培/米
第一章、传输线理论 (NP/m);虚部β称为相移常数,表示行波每经过单位长 度后相位滞后的弧度数,单位为弧度/米(rad/m)。 对于低耗传输线,一般满足 R0 L0 , G0 C0 , 所以有
第一章、传输线理论 由此可得
衰减常数是由传输线的导体电阻损耗αc和填充介质的漏 电损耗αd两部分组成。对于无耗传输线RO=0,G0=0
实际应用中,在微波频段内,总能满 足 R0 L0 , G0 C0 因此可把微波传输线当作无耗传输线来看待。
第一章、传输线理论 (2)特性阻抗 特性阻抗定义:传输线上入射波电压Ui(z)与入射波电流 Ii(z)之比。或反射波电压Ur(z)与反射波电流Ir(z)之比 的负值,即
图1-2
图1-3
第一章、传输线理论
电阻器
第一章、传输线理论 电容器
第一章、传输线理论 电感器
图1-9
图1-10
图1-11
第一章、传输线理论 在微波频率下传输线的分布参数效应
体现为分布参数电感,电容,电导和电阻
微波传输线的特点
天线和微波技术基础知识概述
天线和微波技术基础知识概述天线和微波技术是现代通信领域中非常重要的组成部分。
天线作为接收和发射无线信号的关键装置,而微波技术则主要用于传输和处理高频率的电磁信号。
本文将对天线和微波技术的基础知识进行概述,以帮助读者加深对这一领域的了解。
一、天线基础知识1. 天线的定义和作用天线是一种通过电磁辐射和感应的方式,将电磁信号转换为自由空间中的电磁波,或者将电磁波转换为电信号的装置。
它负责将信号从发射源传输到接收源,或者将接收到的信号转换为电信号。
2. 天线的分类根据天线的形式和使用场景,可以将其分为多种类型,如:(1)微带天线:用于无线通信和雷达系统,具有体积小、重量轻、成本低的优点。
(2)偶极子天线:应用广泛,适用于各种频率范围和工作环境。
(3)扩展频带天线:可以在多个频段上工作,适应不同通信需求。
(4)阵列天线:通过组合多个天线单元,实现波束和指向性辐射。
(5)喇叭天线:用于辐射高功率无线信号,可在长距离范围内传输。
3. 天线参数天线的性能主要由以下参数来衡量:(1)增益:表示天线向某个方向传输/接收信号的能力,可以通过增加天线尺寸或精心设计来提高。
(2)方向性:指示天线向某个方向辐射/接收信号的能力,可以通过改变天线结构来实现。
(3)驻波比:用于衡量天线的适配性和效率,一般要求越小越好。
二、微波技术基础知识1. 微波的概念和特点微波是一种频率范围在300 MHz至300 GHz之间的电磁波,具有高频率、短波长和较强的穿透能力。
微波技术在无线通信、雷达、卫星通信等领域有着广泛的应用。
2. 微波器件和系统(1)微波集成电路(MIC):它是一种将微波元器件(如传输线、滤波器、放大器等)集成在同一芯片上的技术,可以实现尺寸小、性能优越的微波电子元器件。
(2)高频开关:用于控制微波信号的通断,具有快速响应、低损耗的特点。
(3)微波天线系统:结合天线和微波技术,用于将微波信号进行传输和接收。
(4)微波滤波器:用于筛选和处理特定频率范围内的微波信号,以满足通信系统的要求。
《微波与天线》课件
根据通信距离和覆盖范围需要,选择合适的天 线方向性和增益。
尺寸和形状
根据波长和系统要求设计合适的天线尺寸和形 状。
材料和制造工艺
选择合适的材料和制造工艺,以满足天线的性 能要求。
常见的微波与天线技术
抛物面天线
通过抛物面反射原理实现高增益 和方向性。
贴片天线
常见于无线通信设备和移动通信 技术中的小型天线。
螺旋天线
通过螺旋结构实现极化控制和宽 带性能。
结语和总结
微波与天线是现代通信和科学技术的关键基础。掌握微波与天线的基本原理 和设计要点对实现高效通信和系统性能至关重要。
《微波与应用领域、原理、分类、设计要点、 常见技术,并总结总结结语。
什么是微波与天线
微波与天线是电磁波及其传输和接收技术的核心组成部分。微波是一种高频电磁波,天线是用于接收和发送电 磁波的装置。
微波与天线的应用领域
通信
微波与天线在无线电通信、卫星通信等领域中 发挥着重要作用。
3 天线特性
天线的特性如增益、方向 性和频率响应对微波系统 的性能起着关键作用。
微波与天线的分类
根据频率
• 射频(RF)微波 • 微波 • 毫米波
根据结构
• 常见天线 • 阵列天线 • 反射天线
根据功能
• 发射天线 • 接收天线 • 双工天线
微波与天线的设计要点
频率选择
根据应用需求选择合适的频率范围和带宽。
医疗
微波与天线被用于医学领域,如磁共振成像 (MRI)和肿瘤治疗。
雷达
微波与天线被广泛应用于雷达系统,用于探测 目标、测距和测速。
遥感
微波与天线被用于地球观测和航空航天领域中 的遥感技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波与天线结课报告学生姓名:___________________班级:____________________专业:____________________指导老师:___________________2015.11 摘要:简述微波天线在通信中应用的广泛性和重要性在对第一菲涅尔区衰落因子和相对余隙等重要因素详细分析的基础上提出选择微波天线时应注意的问题并提出采用分集接收自适应均衡阻抗匹配和避雷保护等技术改善微波天线的性能进而提出微波天线选择的优化方案关键词:微波天线第一菲涅尔区衰落因子分集技术自适应均衡阻抗匹配Abstract : Description of breadth and importanee of basic microwaveantenna in com muni cati on applicati ons in an importa nt factor in thedecline of the first Fresnel zone clearanee and other factors andrelatively detailed analysis of the proposed microwave antenna should be chose n atte nti on to the problem and proposed use diversity receiver adaptive equalization impedanee matching and lightning protectiontech no logy to improve the performa nee of the microwave antenna microwave antenna selecti on and the n propose optimizati onKey words : microwave antenna of the first Fresnel zone fading factor diversity adaptive equalizati on impeda nee match ing在微波频段通过地面视距进行信息传播的时候,微波通信技术是一种重要的无线通信手段。
随着微波通信技术的飞速发展,在20世纪60年代~70年代初期,出现一批中小容量的数字微波通信系统。
到20世纪80年代后期,由于在传输系统中同步数字系列(SDH的应用,出现了SDH大容量数字微波通信系统。
1引言随着无线通信技术的迅速发展,微波通信技术通信的应用的范围非常广泛。
微波天线是微波通信系统中最重要的部分,凡是能利用电磁波来传递的信息几乎都依靠微波天线传递与互换,同时微波天线也可辐射电磁波等能量。
微波天线是微波通信系统收发设备的“出入口”,天线性能直接影响整个系统的运行。
目前关于微波天线优化的研究成果虽然很多,但多数均是从单一因素进行考虑,优化效果并不是非常理想,本文通过综合考虑多种因素并优化微波天线选择参数来寻找更合理的选择方法。
2微波通信的概述微波通信是指用微波频率作为载波携带信息,进行中继(接力)通信的方式。
微波是指频率在300MHz- 300GHz范围内的电磁波。
目前通常使用的微波频率范围只有1GHz~ 40GHz其相应的波长为1m~ 1mm还可以细划为分米波(300MHz ~ 3GHz)、厘米波(3GHz ~ 30GHz 和毫米波(30GHz ~ 300GHz。
3微波天线选择时应考虑的因素研究图1为微波传播示意图,微波信号在传输过程中,会受到大气、海面、地面、高大建筑物、山峰的折射和绕射等影响,导致信号衰落和失真,甚至中断。
因此对微波传输天线进行优化,必须根据微波通信的基本特点,研究微波在传输过程中受到的影响因素,进而进行优化以减少信号衰落和失真。
图1微波传播示意图3.1地面地形因素在微波通信系统中,信号传输主要利用微波的视距传播。
微波通信的频率大部分在2 ~ 20GHz范围内,不同的地形条件,其反射系数及电平损耗不同。
无线电波在自由空间传输时,其单位面积内的能量会因自由扩散而减少,所减小的能量称为自由空间传输损耗,用L s表示,单位为分贝(dB),其计算公式为:L s=92.4 20lg f 20lgd (1)式中,f为发射频率,GHz d为站距,km由式(1、可见,微波传播过程中树林、建筑、山头或地面障碍物等会阻挡「洁+⑴宀十叫沁,2)"+(叮2) \ d2d 2 "d 2d(3)一部分电磁波,增加损耗,而平滑地面或水面可将一部分信号反射到接收天线, 反射波和直射波矢量相加可能相互抵消而产生附加损耗。
地面反射对视距传播有 重要影响,它是产生电平衰落的主要原因之一。
但当微波传输路径上有刀刃形障 碍物(或山峰)阻挡时,如果障碍物的尖峰恰好落在两个相邻微波站的收信天线 和发信天线的连线上,微波传输会增加6dB 电平衰耗;当障碍物的尖峰超出连线 时,电平衰耗将增加更快,实际应用中应避免出现这种情况, 可通过改动微波传 输线路或增高天线来改动传输特性。
为更好的分析微波的传播特性,应用菲涅尔区的概念进行分析,则从波源到 观察点的电波可认为是通过许多菲涅尔区传播的,且在观察点的合成场强E E i /2( E i 为第一菲涅尔区的场强),即只要保证第一菲涅尔区的一半不被地 形地物遮挡,就可近似得到自由空间传播时的场强。
若要知道阻挡物多高才能满 足传播条件,必须计算第一菲涅尔区的半径F i ,单位为m 计算方法为:式中,d 指收发间距离,km ,是波长,m由式(2)可知,为避免附加损耗,必须使所有障碍物都处于第一菲涅尔区 以外。
在地面障碍物高度一定的情况下, 波长越长,电波传播主要通道的横截面 积越大,相对遮挡面积就越小,接收点场强就越大,因此,频率越低 "绕射能力越强。
3.2地面反射因素在微波的传播过程中,在接收点除收到直射波外,还会收到经地面反射的反 射波。
反射点到直射波的垂直距离称余隙h c ,接收点的合成场强与自由空间场强 之比称为地面反射引起的衰落因子,用 V 表示,单位为dB, h c /F i 称相对余隙借助余隙h c 计算V ,其计算过程如下:F i =31.6 ■ d 1d 2 (2)式中,r i 为直射路径,m 为反射路径,m 也r 为行程差,m h c 为余隙,m R 为 第一菲涅耳区半径,m ••为反射系数。
从以上计算过程可知,衰落因子V 与相对余隙h c /F i 有关。
如图2所示,当 h c /F i =0.557时,收信场强E =E °,此时余隙具有特殊意义,记为h 。
=0.577F i , 称为自由空间余隙。
当h c /F i :: 0.577时,发生绕射衰落较大;随着余隙增大,反 射点处于第一菲涅尔区,反射信号与直射信号同相相加,使衰落因子出现正值; 当余隙增大到一定程度时,反射点进入第二菲涅尔区内,反射信号与直射信号反 相,衰落因子急剧下降,甚至会造成信号中断。
L r =r 2 -r 1 d 2hh 2 ---- 痒 dh c 2 2d 1d 2 F i = 一 g =胞二葩d九 2 2 * dh cdh c k-r 2~ = 代入得: V = / • { - 2斤h c F i (5)(6)(7)(8)“理耳区用号1 2 3 4 S 6—L 0 ・仇5图2 V dB 与h c /F i 的关系曲线3.3大气的影响大气中带电粒子都有其固定的电磁谐振频率, 当接近谐振频率时就会产生共 振吸收,使微波产生衰减,但其相对于自由空间产生的衰减是微不足道的; 另外 雨雾中的小水滴也会使电磁波产生散射衰落, 一般在10GHz 以下,衰耗并不严重。
因此,这里主要研究大气折射的影响。
大气的不均匀使大气的成分、压强、温度和湿度都随高度变化,引起大气折 射率也随高度发生变化,这将导致电波传播方向发生变化,并同地面反射和直射 造成微波的多径衰落。
电波在自由空间的传播速度 c 与在大气中的传播速度v 的 比值,即n 二c/v 。
当无折射时,地球半径为R o ,余隙为h c ,地球突起高度为h c , d i 、d 2分别为反射点到收、发两端的水平距离,则任一点的地球凸起高度为:d-\d2 2R o 考虑电波折射,地球等效半径R e ,等效地球凸起高度为:式中d ,、d 2以km 为单位,R 0 =6370km ,代入式(10),则有:he ,强(m )( 11)51 K 设地球凸起的高度变化为:h e ,在数值上,余隙的变化就是地球凸起高度的变化 即:等效后的余隙 h ce 为:h ce = h e :h c = h e ■ d1d 2(K 1)2KR 0 由式(13)可知:当K 1,正折射时,等效余隙h ce 增大;K <1,负折射时, 等效余隙h ce 减少。
在实际选用天线时要综合考虑各种因素,应重点考虑地形、 地面反射和大气折射的影响。
(9)h ed 1d 2 2Re d22 2KR o (10)h e 二:he 二 h _h edq 2 2R 0 d~|d 2 2KR 0dM 2(K -1) 2KR 。
(12) (13)4微波天线优化方法的研究为保证微波天线的发送端可有效将信号发送至目的地或中继站,在接收端能够可靠接收到信号,应在充分考虑地面、大气及其他自然因素影响的基础上采取一定优化措施。
4.1分集技术的优化分集技术,就是在接收端将相关性较小的多路收信机输出信号进行选择或合成,从而减轻多径衰落造成的影响。
分集技术是通过查找和利用自然界无线传播环境中独立的(至少是高度不相关的)多径信号来实现的,如果一条无线传播路径经历了深度衰落,而另一条相对独立的路径中可能仍包含较强的信号,因此可以在多个信号中选择2个或更多的信号进行合并,这样可同时提高接收端的瞬时信噪比和平均信噪比,一般可提高20 ~ 30dB具体实现方法有以下几种:(1)空间分集又称天线分集图3是移动通信中使用较多的分集形式,采用多副接收天线来接收信号,然后进行合并。
为保证接收信号的独立性,要求天线间的距离足够大,在理想情况下,接收天线之间的距离只要大于波长■的一半即可。
从技术角度讲,分集天线数即分集重数越多,性能改善越好,但当分集重数多到一定程度数时,分集重数继续增多,性能改善量将逐步减小。
因此,分集重数在2 ~ 4重较合适。
图3空间分集示意图(2)极化分集在移动环境下,空中的水平路径和垂直路径是不相关的,因而信号也呈现不相关的衰落特性。
在发射和接收端各装两副天线,一副水平极化天线,一副垂直极化天线,可得到2个不相关的信号。