三角函数图象的平移与伸缩问题
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩之杨若古兰创作函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变更A kωϕ,,,来彼此转化.A ω,影响图象的外形,k ϕ,影响图象与x 轴交点的地位.由A 惹起的变换称振幅变换,由ω惹起的变换称周期变换,它们都是伸缩变换;由ϕ惹起的变换称相位变换,由k 惹起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也能够将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. xy sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为本来的1/2 横坐标不变 纵坐标伸长为本来的3倍例1 将sin y x =的图象如何变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到本来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到本来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最初把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到本来的2倍,得2sin y x=的图象;②将所得图象的横坐标缩小到本来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最初把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:不管哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y 纵坐标不变 横坐标缩短为本来的1/2 纵坐标不变 横坐标向左平移π/6 个单位横坐标不变 纵坐标伸长为本来的3倍πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到本来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象如何变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过引诱公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。
三角函数的平移与伸缩变换_整理
函数y=Asin(3%+⑺的图像(1)物理意义:y=A sin(3%十①)(A>0,3>0),x£[0,+8)表示一个振动量时,A称为振幅,T=至f=1称为频率,3%十中称为相位,中称为初相。
①,T(2)函数y=A sin(3%+中)+k的图像与y=sin%图像间的关系:①函数y=sin%的图像纵坐标不变,横坐标向左(3>0)或向右(3<0)平移1^1个单位得y=sin(%十①)的图像;②函数y=sin(%+①)图像的纵坐标不变,横坐标变为原来的-,得到函数3y=sin(3%+中)的图像;③函数y=sin(3%+中)图像的横坐标不变,纵坐标变为原来的A倍,得到函数y=A sin(3%+明的图像;④函数y=A sin(3%+中)图像的横坐标不变,纵坐标向上(k>0)或向下(k<0),得至1」y=A sin(3%+中)+k的图像。
要特别注意,若由y=sin(3%)得至1」y=sin(3%+中)的图像,则向左或向右平移应平移1-1个单位。
3-对y=sin(%+-)图像的影响一般地,函数y=sin(%+-)的图像可以看做是把正弦函数曲线上所有的点向____当->0时)或向(当-<0时)平移-个单位长度得到的注意:左右平移时可以简述成“”3对y=sin3%图像的影响函数y=sin3%%e R(3>0且3中1),的图像可以看成是把正弦函数上所有的点的横坐标(3>1)或(0<3<1)到原来的1倍(纵坐标不变)。
3A对y=Asin%的影响函数y =Asin x,x e R (A >0且A 丰1)的图像可以看成是把正弦函数上所有的点 的纵坐标(A >1)或(0<A <1)到原来的A 倍得到的由y =sin x 至U y =Asin (3x +⑺的图像变换 先平移后伸缩:先伸缩后平移:【典型例题】例2、把y =3cos(2x +亍)作如下变换: (1)向右平移三个单位长度;2(2)纵坐标不变,横坐标变为原来的1;3(3)横坐标不变,纵坐标变为原来的3;4(4)向上平移1.5个单位长度,则所得函数解析式为.4冗练习:将y =2sin(2x +4-)+2做下列变换: (1)向右平移-个单位长度;2(2)横坐标缩短为原来的一半,纵坐标不变; (3)纵坐标伸长为原来的4倍,横坐标不变;(4)沿y 轴正方向平移1个单位,最后得到的函数y =f (x )= 例3、把y =f (x )作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变;例1 练习:将y =sin x 的图象怎样变换得到函数 y =2sin+1的图象.将y =cos x 的图象怎样变换得到函数y =cos 、x -n ]的图象.V 4)(2)向左平移三个单位长度;3(3)纵坐标变为原来的3,横坐标不变;533n(4)沿J 轴负方向平移2个单位,最后得到函数y =3sin(3x +-),求y =f (x ).424nn练习1:将y =4sin (8x +/作何变换可以得到y =sin x .n 3练习2:对于y =3sin (一+-x )作何变换可以得到y =sin x .65例4、把函数y =sin@x +S )(3>0,1S l <多的图象向左平移三个单位长度,所得 曲线的一部分图象如图所示,则()nnA.3=1,3=一B.3=1,S =一—66 nnC.3=2,3=一D.3=2,3=一—33练习:7、右图是函数y =A sin (3x +3)(x e R )在区间(--,些)上的图象,只要将66(1)y =sin x 的图象经过怎样的变换?(2)y =cos2x 的图象经过怎样的变换? 【课堂练习】n1、为了得到函数y =sin(3x +-)的图象,只需把函数y =sin3x 的图象6()A 、向左平移-B 、向左平移—C 、向右平移-D 、向右平移—618618(n '2、为得到函数y =cos2x +-的图像,只需将函数y =sin2x 的图像()I 3JA 、 C 、向左平移5n 个长度单位 12向左平移5n 个长度单位6B 、 D 、 向右平移5n 个长度单位 12 向右平移5n 个长度单位 63、要得到函数y二sinx的图象,只需将函数y二cosx-兀的图象()I3)A、向右平移:个单位B、向右平移;个单位C、向左平移;个单位D、向左平移兀个单位64、为了得到函数产sin"-兀)的图象,可以将函数y=cos2%的图象()6A、向右平移兀个单位长度B、向右平移兀个单位长度63C、向左平移兀个单位长度D、向左平移兀个单位长度63.…...__,,..冗一5、把函数y=sin%(%e R)的图象上所有点向左平行移动3个单位长度,再把所得图象上所有点的横坐标缩短到原来的1倍(纵坐标不变),得到的图象所表2示的函数是()A 、兀、%e R%.%兀、cB、y=sin(+),%eRC、y=sin(2%+;), %eRn./c2兀、nD、y=sin(2%+3),%e R6、为了得到函数y二sin(2%-兀)的图像,只需把函数y二sin(2%+兀)的图像()3 6A、向左平移兀个长度单位B、向右平移兀个长度单位4 4C、向左平移兀个长度单位D、向右平移兀个长度单位22一兀,,-7、已知函数f(%)=sm@%+)(%e R,E〉0)的最小正周期为兀,为了得到函数4g(%)=cos B%的图象,只要将y=f(%)的图象()A、向左平移兀个单位长度B、向右平移兀个单位长度88C、向左平移兀个单位长度D、向右平移兀个单位长度448.将函数y=sinx的图象向左平移中(0<p<2兀)的单位后,得到函数冗y=sin(%一)的图象,则中等于(6专练:B-56 D. 11兀五-1.(2009山东卷理)将函数y=sin2x的图象向左平移—个单位,再向上平移1个4单位,所得图象的函数解析式是().兀、A.y=cos2xB.y=cos2x+1C.y=1+sin(2x+一)4D.y=2sin2x兀2.(2009天津卷理)已知函数f(x)=sin@x+)(x e R,B>0)的最小正周期为兀,4为了得到函数g(x)=cos B x的图象,只要将y=f(x)的图象A向左平移-个单位长度B向右平移-个单位长度88C向左平移-个单位长度D向右平移-个单位长度44’—'3.(09山东)要得到函数y=sin x的图象,只需将函数y=cos x--的图象()l3)A、向右平移—个单位B、向右平移3个单位C、向左平移g个单位D、向左平移—个单位4.(10江苏卷)为了得到函数y=2sin(^+-),x e R的图像,只需把函数36y=2sin x,x e R的图像上所有的点A、向左平移-个单位长度,再把所得各点的横坐标缩短到原来的1倍(纵坐63标不变)B、向右平移-个单位长度,再把所得各点的横坐标缩短到原来的3倍(纵坐标不变)C、向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵6坐标不变)D、向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵6坐标不变)-5、(2010全国卷2理数)(7)为了得到函数y=sin(2x-3)的图像,只需把函数兀y=sm(2x+一)的图像6A、向左平移-个长度单位B、向右平移-个长度单位44C、向左平移-个长度单位D、向右平移-个长度单位226、(2010辽宁)设3>0,函数y=sin®x+1)+2的图像向右平移4-个单位后与原图像重合,则3的最小值是A、2B、4C、3D、3332。
三角函数图像平移与伸缩变换(学生版)陈妍
三角函数图像题异名三角函数平移变换1.要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的( )(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 (B)横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度 (C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度2. 将函数()y f x =的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图形沿x 轴正向平移3π,得到的新曲线与函数3sin y x =的图象重合,则()f x =( ) A. 3sin(2)3x π+ B. 3sin()23x π+ C. 23sin(2)3x π-D. 23sin()23x π+3.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位5.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度6.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2 二.增减性与值域(高考原题)7.(2015年1卷8)函数=的部分图像如图所示,则的单调递减区间为( ) (A )(B ) (C ) (D ) 8.(2019年2卷9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │D. f (x )= sin│x │9.(2019年1卷11)关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数;②f (x )在区间(2π,π)单调递增;③f (x )在[,]ππ-有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( )A. ①②④B. ②④C. ①④D. ①③10. (2018)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________.2π3π6π1212π612π12()f x cos()x ωϕ+()f x 13(,),44k k k Z ππ-+∈13(2,2),44k k k Z ππ-+∈13(,),44k k k Z -+∈13(2,2),44k k k Z -+∈。
三角函数图像的平移、变换练习题
三角函数图像的平移、变换练习题1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是(A )sin(2)10y x π=- (B )sin(2)5y x π=- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的( )(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 125、已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( )A 向左平移8π个单位长度B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度6、为了得到函数y=x x x cos sin 3sin 2+的图象,可以将函数y=sin2x 的图象( ) 6π个单位长度,再向下平移21个单位长度6π个单位长度,再向上平移21个单位长度12π个单位长度,再向下平移21个单位长度12π个单位长度,再向上平移21个单位长度7、为得到函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象() A .向左平移512π个长度单位 B .向右平移512π个长度单位 C .向左平移56π个长度单位 D .向右平移56π个长度单位8、)33sin(32)(πω+=x x f (ω>0)(1)若f (x +θ)是周期为2π的偶函数,求ω及θ值(2)f (x )在(0,3π)上是增函数,求ω最大值。
三角函数的平移与伸缩变换-整理
)(A > 0,3> 0) ,x € [0,+ s)表示一个振动量时,A1图像的纵坐标不变,横坐标变为原来的-,得到函数)图像的横坐标不变, 纵坐标向上(k 0)或向下(k 0),要特别注意,若由y sin x 得到y sin x 的图像,则向左或向右平移应平 移|—|个单位。
对y sin (x )图像的影响一般地,函数y sin (x )的图像可以看做是把正弦函数曲线上所有的点向 ____ 当>0时)或向 ______ 当 <0时)平移| |个单位长度得到的 注意:左右平移时可以简述成“ _____________ ”_ 对y sin x 图像的影响函数y sin x x R ( 0且 1),的图像可以看成是把正弦函数上所有的点的1横坐标 ______ 1)或 _____ 0 1)到原来的一倍(纵坐标不变)。
A 对y A sin x 的影响函数y A sinx , x R(A 0且 A 1)的图像可以看成是把正弦函数上所有的点 的纵坐标 ______ (A 1)或 ________ _0 A 1)到原来的A 倍得到的函数 y A sin( x)的图像2 称为振幅,T = 一-称为频率,x 称为相位,称为初相。
T(2)函数 y Asin( x)k 的图像与ysin x 图像间的关系:① 函数y sin x 的图像纵坐标不变, 横坐标向左(>0 )或向右(<0 )平移||个(1)物理意义:y Asin ( x② 函数y sin xy sin x的图像;③ 函数ysin xy As in( x)的图像;④ 函数y Asin( x得到 y Asi n x图像的横坐标不变,纵坐标变为原来的 A 倍,得到函数k 的图像。
单位得y sin x 的图像;由y si nx到y A si n( x )的图像变换先平移后伸缩:先伸缩后平移:【典型例题】例1 将y sin x的图象怎样变换得到函数y 2sin 2x n1的图象.4练习:将y cosx的图象怎样变换得到函数y cos 2x」的图象.44例2、把y 3cos(2x )作如下变换:(1)向右平移一个单位长度;21(2)纵坐标不变,横坐标变为原来的-;33(3)横坐标不变,纵坐标变为原来的;4(4)________________________________________________ 向上平移1.5个单位长度,则所得函数解析式为_____________________________ .4练习:将y 2sin(2x ) 2做下列变换:(1)向右平移—个单位长度;2(2)横坐标缩短为原来的一半,纵坐标不变;(3)纵坐标伸长为原来的4倍,横坐标不变;(4)沿y轴正方向平移1个单位,最后得到的函数y f(x) ________________ . 例3、把y f (x)作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变;(2)向左平移—个单位长度;33(3)纵坐标变为原来的-,横坐标不变;53 3(4)沿y轴负方向平移2个单位,最后得到函数y —sin(—x -),求y f (x).练习1 :将y4sin( x8 才)作何变换可以得到y sinx. 练习2:对于y 3sin(63|x)作何变换可以得到y si nx.例4、把函数y sin( x )(0,112)的图象向左平移 A. 1,B.61, -6C.2,—D.2, —33练习:7、 右图是函数 y Asin( x )(x R)在区间5(-,—)上的图象,只要将 6 6(1) y si nx 的图象经过怎样的变换?(2) y cos2x 的图象经过怎样的变换?【课堂练习】1、为了得到函数y sin(3x —)的图象,只需把函数y sin 3x 的图象曲线的一部分图象如图所示,则() 3个单位长度,所得3、要得到函数y sinx 的图象,只需将函数y cos x —的图象( )A 、向右平移-个单位B 、向右平移-个单位C 、向左平移-个单位D 、向 左平移-个单位4、为了得到函数y sin(2x )的图象,可以将函数y cos2x 的图象( )6A 、向右平移-个单位长度B 、向右平移-个单位长度63C 、向左平移-个单位长度D 、向左平移-个单位长度636、为了得到函数y sin(2x —)的图像,只需把函数y sin(2x —)的图像()g(x) cos x 的图象,只要将y f (x)的图象 ( )A 、向左平移6B 向左平移18C 向右平移云D 、向右平移182、为得到函数yncos 2x3的图像'只需将函数ysin 2x 的图像(A 、向左平移55个长度单位12C 、向左平移 乞个长度单位6B 、向右平移55个长度单位12D 、向右平移55个长度单位65、把函数y sin x ( x所得图象上所有点的横坐标缩短到原来的 示的函数是()A 、y sin(2 x) , x R 3C 、 y sin(2x ) , x R 3 R )的图象上所有点向左平行移动个单位长度,再把312倍(纵坐标不变),得到的图象所表xB 、y sin( ) , x R2 6 2D 、 y sin(2x ) , x R3A 、向左平移-个长度单位4 C 、向左平移-个长度单位27、已知函数 f (x) sin( x )(x R,4B 、向右平移-个长度单位4 D 、向右平移-个长度单位20)的最小正周期为,为了得到函数A 、 向左平移-个单位长度8B 、 向右平移一个单位长度8C 、 向左平移一个单位长度4D 、 向右平移一个单位长度48.将函数 y=s inx 的图象向左平移 (0V 2)的单位后,得到函数y=sin (x -)的图象,则等于()A.—B. 5C. 7D.116 6 6 6专练:1. (2009山东卷理)将函数y sin2x 的图象向左平移;个单位,再向上平移1个 单位,所得图象的函数解析式是( ).A. y cos2xB. y cos2x 1C. y 1 sin (2x )4D. y 2sin 2 x2. (2009天津卷理)已知函数f (x ) sin ( x -)(x R, 0)的最小正周期为4 为了得到函数g (x ) cos x 的图象,只要将y f (x )的图象A 、向右平移—个单位B 、向右平移—个单位C 、向左平移—个单位D 、向左平移—个单位4( ( 10江苏卷)为了得到函数y 2sin (Z ),x R 的图像,只需把函数3 6y 2 si nx,x R 的图像上所有的点A 、向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐63标不变)A 向左平移一个单位长度8 C 向左平移一个单位长度4B 向右平移一个单位长度8 D 向右平移一个单位长度43.(09山东)要得到函数y sin x 的图象,只需将函数y cos x 的图象()B、向右平移—个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变)C、向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D、向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵6坐标不变)5、(2010全国卷2理数)(7)为了得到函数y sin(2x -)的图像,只需把函3数y sin(2x -)的图像A、向左平移一个长度单位4C、向左平移一个长度单位26、( 2010辽宁)设0,函数y sin(原图像重合,则的最小值是A、-3 B、-3B、向右平移一个长度单位4D、向右平移-个长度单位2x -) 2的图像向右平移—个单位后与3 3C、-D、 32。
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩之邯郸勺丸创作函数sin()y A x kωϕ=++的图象与函数sin y x=的图象之间可以通过变更A kωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. xy sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为原来的1/2 横坐标不变 纵坐标伸长为原来的3倍例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y 纵坐标不变 横坐标缩短为原来的1/2 纵坐标不变 横坐标向左平移π/6 个单位横坐标不变 纵坐标伸长为原来的3倍πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。
三角函数的平移、伸缩变换(人教a版)(含答案)
三角函数的平移、伸缩变换(一)(人教A版)一、单选题(共15道,每道6分)1.为了得到函数的图象,只需把函数的图象上所有的点( )A.向左平移1个单位长度B.向右平移1个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:A解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换2.为了得到函数的图象,只需把的图象上所有的点( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移1个单位长度D.向右平移1个单位长度|答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换3.把函数图象所有点的横坐标缩短为原来的,纵坐标不变,则新的函数为( )..答案:A解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换4.把函数图象所有点的横坐标伸长到原来的2倍,纵坐标不变,则新的函数为( )..`答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换5.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象的解析式为( )..答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换6.由的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,则为( )..%答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.将函数的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短为原来的,纵坐标不变,得到的函数解析式为( )..答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象上每点的横坐标缩短为原来的,再将所得图象向左平移个单位长度,得到的函数解析式为( )..$答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换9.将函数的图象上每点的横坐标伸长到原来的2倍,再将所得图象向右平移个单位长度,纵坐标不变,得到的函数解析式为( )..答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换10.将函数的图象向左平移个单位,再向上平移1个单位长度,所得图象的函数解析式是( )..~答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换11.将函数的图象上每点的横坐标缩小为原来的,再向下平移2个单位,所得图象的函数解析式是( )..答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换12.将函数的图象上每点的横坐标伸长到原来的倍,将所得图象向左平移2个单位,纵坐标不变,所得图象的函数解析式是( )..|答案:A解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换13.由函数的图象得到函数的图象,下列变换错误的是( )A.将函数的图象向左平移个单位,再将图象上所有点的横坐标伸长到原来的2倍B.将函数的图象上所有点的横坐标伸长到原来的2倍,再向左平移个单位长度C.将函数的图象向左平移个单位,再将图象上所有点的横坐标伸长到原来的2倍D.将函数的图象向左平移个单位,再将图象上所有点的横坐标缩短为原来的答案:D解题思路:根据三角函数变换的性质,选D.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换14.由函数的图象得到函数的图象,下列变换正确的是( )A.将函数的图象向左平移个单位长度,再将图象上所有点的纵坐标伸长到原来的2倍B.将函数的图象上所有点的纵坐标缩短到原来的,再将图象向右平移个单位长度C.将函数的图象上所有点的纵坐标缩短到原来的,再将图象向左平移个单位长度D.将函数的图象向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍》答案:C解题思路:根据三角函数变换的性质,选C.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换15.由函数的图象得到函数的图象,下列变换错误的是( )A.将函数的图象向左平移个单位,再将图象上所有点的横坐标缩短为原来的B.将函数的图象上所有点的横坐标缩短为原来的,再将图象向左平移个单位C.将函数的图象上所有点的横坐标缩短为原来的,再将图象向左平移个单位D.将函数的图象向右平移个单位,再将图象上所有点的横坐标缩短为原来的答案:C解题思路:根据三角函数变换的性质,选C.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。
高考数学复习点拨:三角函数图象的平移和伸缩
三角函数图象的平移和伸缩河北 张军红函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A kωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x=的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x=的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x=的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。
三角函数的平移伸缩变换练习题
三角函数的平移伸缩变换题型一:已知开始和结果,求平移量ϕω【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A )向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C ) 向上平行移动3π个单位长度 (D ) 向下平行移动3π个单位长度【】为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度【】要得到函数cos y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )(A ).向右平移π6个单位 (B ).向右平移π3个单位 (C ).向左平移π3个单位 (D ).向左平移π6个单位【】要得到函数(21)y cos x =+的图象,只要将函数2y cos x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位【】要得到sin(2)3y x π=-的图象,只需将sin 2y x =的图象 ( )(A )向左平移3π个单位 (B )向右平移3π个单位 (C )向左平移6π个单位 (D )向右平移6π个单位【】.将函数sin 2y x =的图象作平移变换,得到函数sin(2)6y x π=-的图象,则这个平移变换可以是 ( )A. 向左平移6π个单位长度 B. 向左平移12π个单位长度 C. 向右平移6π个单位长度 D. 向右平移12π个单位长度【】为了得到函数4sin(3)()4y x x R π=+∈的图象,只需把函数4sin()()4y x x R π=+∈的图象上所有点( )A 、横坐标伸长到原来的3倍,纵坐标不变B 、横坐标缩短到原来的13倍,纵坐标不变C 、纵坐标伸长到原来的3倍,横坐标不变D 、纵坐标缩短到原来的13倍,横坐标不变.【2015山东】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 【】为了得到函数πsin 23y x ⎛⎫=- ⎪⎝⎭的图像,只需把函数πsin 26y x ⎛⎫=+⎪⎝⎭的图像 A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位【】要得到cos(2)4y x π=-的图像,只需将sin 2y x =的图像( ) A 向左平移8π个单位 B 向右平移8π个单位 C 向左平移4π个单位D 向右平移4π个单位【】已知函数()sin 4πf x x ω⎛⎫=+ ⎪⎝⎭()R 0x ω∈>,的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度题型二:已知开始,平移量,求结果【】. 将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-【】函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2),3y x x R π=-∈ (B )sin(),26x y x R π=+∈(C )sin(2),3y x x R π=+∈ (D )2sin(2),3y x x R π=+∈【】函数3sin(2)3y x π=+的图象,可由y sinx =的图象经过下述哪种变换而得到 ( )(A )向右平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(B )向左平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(C )向右平移6π个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的31倍(D )向左平移6π个单位,横坐标缩小到原来的21倍,纵坐标缩小到原来的31倍【】.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是 . 【】. 将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是____________▲________________ .【】把函数sin(2)4y x π=+的图像向左平移8π个单位长度,再将横坐标压缩到原来的12,所得函数的解析式为( )。
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习 1、要得到函数y=2cos (x+)sin (﹣x )﹣1的图象,只需将函数y=sin2x+cos2x 的图象( )A 、向左平移个单位B 、向右平移个单位C 、向右平移个单位D 、向左平移个单位 2、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( ) A 、 B 、 C 、 D 、3、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( ) A 、 B 、C 、D 、sin (2x )+3 4、把函数y=(cos3x ﹣sin3x )的图象适当变化就可以得到y=﹣sin3x 的图象,这个变化可以是( )A 、沿x 轴方向向右平移B 、沿x 轴方向向左平移C 、沿x 轴方向向右平移D 、沿x 轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度C、向左平移个单位长度D、向左平移个单位长度6、把函数y=sinx的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),然后把图象向左平移个单位,则所得到图象对应的函数解析式为()A、 B、C、 D、1、D2、A3、D.4、D.5、A.6、D。
高中数学三角函数的图像平移与缩放技巧
高中数学三角函数的图像平移与缩放技巧在高中数学的学习中,三角函数是一个重要的内容,它是解决各种实际问题的基础。
而理解三角函数的图像平移与缩放技巧,则能够帮助我们更好地理解和应用三角函数。
本文将通过具体题目的举例,来说明这方面的考点和解题技巧,并给出一些相关的练习题供读者练习。
一、图像平移图像平移是指将函数图像沿着横轴或纵轴方向上移动一定的单位长度。
对于三角函数而言,图像平移主要是通过改变函数中的常数项来实现的。
例如,考虑函数y = sin(x)。
我们知道,正弦函数的图像在原点处有一个特殊的点,即(0, 0)。
现在,如果我们想将这个函数的图像向右平移2个单位长度,我们只需要将函数中的自变量x替换为x-2,即y = sin(x-2)。
这样,原来的(0, 0)点就变成了(2, 0)点,整个图像向右平移了2个单位长度。
同样地,如果我们想将函数y = cos(x)的图像向上平移3个单位长度,我们只需要将函数中的因变量y替换为y+3,即y+3 = cos(x)。
这样,原来的(0, 1)点就变成了(0, 4)点,整个图像向上平移了3个单位长度。
通过上述例子,我们可以看出,图像平移主要是通过改变函数中的常数项来实现的。
对于正弦函数而言,平移的方向和距离由常数项的正负和数值大小决定;对于余弦函数而言,平移的方向和距离由常数项的正负和数值大小决定。
练习题:1. 画出函数y = sin(x-π/2)的图像,并说明其平移的方向和距离。
2. 画出函数y = cos(x+π/4)的图像,并说明其平移的方向和距离。
二、图像缩放图像缩放是指将函数图像沿着横轴或纵轴方向进行拉伸或压缩,使得图像变得更宽或更窄,更高或更矮。
对于三角函数而言,图像缩放主要是通过改变函数中的系数来实现的。
例如,考虑函数y = 2sin(x)。
我们知道,这个函数的图像是正弦函数图像的纵坐标放大了2倍。
也就是说,原来的正弦函数图像上的每个点的纵坐标都乘以了2。
三角函数图像的变换
三角函数图像的变换三角函数是一类重要的基础函数,包括正弦函数、余弦函数、正切函数等。
在数学中,我们经常遇到需要对三角函数进行图像变换的情况,比如平移、伸缩、翻转等。
本文将介绍三角函数图像的常见变换以及它们对函数图像的影响。
一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动一段距离。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴向右平移a个单位,新函数为y=sin(x-a)。
当a取正值时,函数图像向右平移;当a取负值时,函数图像向左平移。
平移变换后的图像与原图像形状相同,只是位置不同。
二、伸缩变换伸缩是指将函数图像进行横向或纵向的比例拉伸或压缩。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴方向进行压缩b倍,新函数为y=sin(bx)。
当b大于1时,函数图像横向压缩;当0<b<1时,函数图像横向拉伸。
同样,沿纵轴方向进行伸缩也可得到相应的函数图像变换。
三、翻转变换翻转是指将函数图像沿着横轴或纵轴进行翻转,也称为镜像变换。
以正弦函数为例,设原函数为y=sin(x),将它沿横轴进行翻转,新函数为y=-sin(x)。
同样地,纵向翻转可得到相应的函数图像变换。
四、混合变换除了单一的平移、伸缩和翻转变换,我们还可以通过组合这些变换来得到更复杂的函数图像变换。
比如,可以将平移、伸缩和翻转变换相结合,得到更丰富多样的变换效果。
以上是对三角函数图像常见变换的简要介绍,下面我们将进一步讨论这些变换对函数图像的具体影响。
1.平移变换的影响:平移变换只改变了函数图像的位置,不改变其形状。
假设原函数图像位于坐标系上方,若平移后函数图像向右移动,则新函数图像将出现在原来的右侧;若平移后函数图像向左移动,则新函数图像将出现在原来的左侧。
平移变换对函数图像的垂直位置没有影响。
2.伸缩变换的影响:横向伸缩会拉伸或压缩函数图像。
当b大于1时,函数图像在x轴方向上被压缩,变得更加陡峭;当0<b<1时,函数图像在x轴方向上被拉伸,变得更加平缓。
三角函数图象的平移和伸缩
三角函数图象的平移和伸缩函数 y Asi n ( x) k的图象与函数 y sin x 的图象之间可以通过变化 A,,,k来相互转化. A,影响图象的形状,,k影响图象与x 轴交点的位置.由 A 引起的变换称振幅变换,由引起的变换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩y sin x 的图象向左 ( >0) 或向右 (0)平移个单位长度得 y sin( x) 的图象横坐标伸长 (0<<1) 或缩短 ( >1)到原来的1(纵坐标不变 )得 y sin(x) 的图象纵坐标伸长 ( A 1) 或缩短 (0< A <1)为原来的 A倍 (横坐标不变 )得 y Asin(x) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 y Asin( x) k 的图象.y sin x纵坐标不变横坐标向左平移π/3个单位纵坐标不变横坐标缩短为原来的 1/2横坐标不变纵坐标伸长为原来的 3倍先伸缩后平移y sin x 的图象纵坐标伸长 ( A 1)或缩短 (0 A 1)为原来的 A倍( 横坐标不变 )y sin(x)3y sin(2x)3y 3sin(2x)3得 yAsin x 的图象 横坐标伸长 (0 1) 或缩短 ( 1)到原来的 1(纵坐标不变 )得 yAsin( x) 的图象向左 ( 0)或向右 ( 0)平移个单位得 yAsin x( x ) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 yA sin( x ) k 的图象.纵坐标不变y sin x横坐标缩短为原来的 1/2纵坐标不变横坐标向左平移π /6个单位横坐标不变纵坐标伸长为原来的 3倍y sin 2xy sin(2x)3y 3sin(2x ) 3例 1 将 y sin x 的图象怎样变换得到函数y 2sin2 xπ1 的图象.4解:(方法一)①把y sin x 的图象沿 x 轴向左平移π个单位长度,得y sin xπ的图象;②将所得44图象的横坐标缩小到原来的1,得 y sin 2xπ的图象;③将所得图象的纵坐标伸长到原来的2 倍,得24y 2sin 2xπ的图象;④最后把所得图象沿y 轴向上平移 1 个单位长度得到y2sin 2xπ 1 的图象.44(方法二)①把 ysin x 的图象的纵坐标伸长到原来的2 倍,得 y 2sin x 的图象;②将所得图象的横坐标缩小到原来的1,得 y 2sin2 x 的图象; ③将所得图象沿 x 轴向左平移 π个单位长度得 y 2sin 2 x π 的 2 88 图象;④最后把图象沿 y 轴向上平移 1 个单位长度得到 y π 1 的图象.2sin 2 x4说明: 无论哪种变换都是针对字母x 而言的.由 ysin 2x 的图象向左平移π个单位长度得到的函数图象8的解析式是 y sin 2xπ而不是 ysin 2 xπ ,把 ysin xπ的图象的横坐标缩小到原来的1,得到884 2的函数图象的解析式是y sin 2xπ而不是y sin 2 x π .44 对于复杂的变换,可引进参数求解.例 2将 y sin 2 x 的图象怎样变换得到函数y cos 2 xπ的图象.4分析:应先通过诱导公式化为同名三角函数.解: y sin 2 x cos π2x cos 2x π ,22在 y cos 2xπ中以 x a 代 x ,有 y cos 2( x a)πcos 2x2a π .222 根据题意,有 2 x 2a π 2x π,得 a π.2 4 8所以将 y sin 2 x 的图象向左平移π个单位长度可得到函数y cos 2xπ 的图象.84。
高一三角函数图象的平移和伸缩
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭, 在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 练习1、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( )A 、B 、C 、D 、 2、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( )A 、B 、C 、D 、sin (2x )+3 3、要得到函数y=cos()24x π-的图象,只需将y=sin 2x 的图象( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位 4、若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1y= sinx 2的图象则y=f(x)是( ) A . 1y=sin(2)122x π++ B. 1y=sin(2)122x π-+ C. 1y=sin(2)124x π++ D. 1sin(2)124y x π=-+ 5.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位6.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位7.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度8.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度C 向左平移4π个单位长度 D 向右平移4π个单位长度9.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是(C ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0。
函数 图像的平移变换与伸缩变换
函数()y f x =图像的平移变换与伸缩变换在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。
而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。
三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。
所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。
多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。
现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。
大家知道,sin y x =的图像向上(下)平移10个单位,可得到10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的图像向右(左)平移10π,可得到sin()10y x p =-(sin()10y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12),可得到1sin 2y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反左加右减,下加上减;横向变换变x ,纵向变换变y ;各种变换均在x 、y 头上直接变;x 、y 的变化总与我们的感觉相反。
例如,向左或向右平移、横向伸长或横向缩短时变化的均为x ;向上平移或向下平移、纵向伸长或纵向缩短时变化的均为y ;从这可以看出横向变换变x ,纵向变换变y 。
三角函数先平移后伸缩和先伸缩后平移
三角函数先平移后伸缩和先伸缩后平
移
三角函数先平移后伸缩和先伸缩后平移的区别在于,它们对函数的变换顺序不同。
三角函数先平移后伸缩,即先对函数进行平移,再进行伸缩,可以用公式表示为:y=A·sin(B(x-C))+D,其中A为伸缩因子,B为振幅因子,C为平移量,D为偏移量。
而三角函数先伸缩后平移,即先对函数进行伸缩,再进行平移,可以用公式表示为:y=A·sin(Bx)+C,其中A为伸缩因子,B
为振幅因子,C为偏移量。
从上述公式可以看出,三角函数先平移后伸缩和先伸缩后平移的区别在于,前者有两个参数C和D,而后者只有一个参数C。
此外,三角函数先平移后伸缩和先伸缩后平移的变换结果也不同。
先平移后伸缩的变换结果是,函数的振幅和周期不变,但是函数的位置和偏移量发生变化;而先伸缩后平移的变换结果是,函数的振幅和偏移量发生变化,但是函数的位置和周期不变。
因此,三角函数先平移后伸缩和先伸缩后平移的区别在于,它们对函数的变换顺序不同,变换结果也不同。
三角函数的平移及伸缩变换(含答案)
三角函数的平移及伸缩变换一、单选题(共8道,每道12分)1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y=f(x)的表达式是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( )A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值是( )A.πB.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.函数的图象如图所示,为了得到的图象,则只要将f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数图像的平移与伸缩问题
【问题探究】
在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数y=Asin(x+)+m(A
0, 0)的图像是由sin y x 的图像怎样变换得来的,这
要涉及的变换有平移变换与伸缩变换。
而我们在后来复习函数时,也要增加函数()y f x 的图像变换的内
容。
三角函数也属于函数,因此一般函数()y
f x 的图像变换法则和方法对三角函数同样适用。
所以为了
使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。
多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。
现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。
大家知道,sin y
x 的图像向上(下)平移10个单位,可得到10sin y x (10sin y x ),即
sin 10y x (sin 10y x )的图像;sin y x 的图像向右(左)平移
10
π
,可得到sin()10y x
(sin()10y x
)的图像;sin y x 的图像横向伸长至原来的2倍(横向缩至原来的1
2),
可得到1sin 2y x (sin 2y x )的图像;sin y x 的图像纵向伸长至原来的3倍(纵向缩短至原来的1
3),
可得到1sin 3y x (3sin y x ),即3sin y x (1sin 3y x )的图像;我们可用表格把上述小题的变换内容
10
x
10
x
10y 10y
12
x
x 2x
x
13y 3y
从上面的表格,我们可以感到平移变换和伸缩变换有如下特点:
左加右减,下加上减;横向变换变x ,纵向变换变y ;各种变换均在x 、y 头上直接变;x 、y 的变化总与我们的感觉相反。
例如,向左或向右平移、横向伸长或横向缩短时变化的均为x ;向上平移或向下平
移、纵向伸长或纵向缩短时变化的均为y ;从这可以看出横向变换变x ,纵向变换变y 。
向右平移1
10
π时,我们感觉图像上的每个点的横坐标应增加
1
10
π,但x 的变化却为把x 变为10x ;横向伸长至原来的2倍时,我们感觉每个点的横坐标应变为原来的2倍,但实际上x 的变化却为把x 变为1
2
x ;从这可看出x 、
y 的变化总与我们的感觉相反。
从上面的解析式的相应变化中可看到,x 、y 的变化均是直接把x 或y 变成多少,其余一律照抄下来。
例如,sin(2)3
y x
的图像向右平移2个单位,应得到sin[2(2)
]
3
y x 的图像,而不是sin(22
)3y
x ;sin(2)3
y x 的图像横向伸长至原来的3倍,应得到
1sin(2)33y x ,即2sin()33y x 的图像,而不是1
sin[(2)]33
y x 的图像,这就体现了各种变
换均在x 、y 头上直接变。
【总结提升】
把平移变换和伸缩变换的规律总结成口诀,为:横向变换动x ,纵向变换动y ;直接在x 、y 头上动;解析式的相应变化总与我们的感觉相反。
这个变换不但对三角函数适用,对任意函数也适用。
例如,
22x y x 的图像向右平移3个单位,得到3
22(3)x
y x 的图像。
教学生应用口诀时,要把口诀具体转化为式子表示出来,就像那个表格中的一样,向右平移3个单位,就把x 变为3x ;横向伸长至原来的3倍,就把x 变为1
3
x 。
例如,函数(2)y f x 的图像向右平移
3个单位,应得到[2(3)]y
f x 的图像,而不是(23)y f x 的图像;函数(2)y f x 的图像横向伸
长至原来的3倍,应得到1(2)3y f x 的图像,而不是1
[(2)]3y f x 的图像。
这里是学生容易出错的地方,用式子3x
x ,1
3
x x 来表达口诀,学生较易接受,犯错的机率也大幅下降。
还有,纵向变换动y ,是在y 头上直接动。
学生可能以前纵向变换是在解析式等号的右边进行变式的,如果是这样变换方法就与刚才总结的口诀不相符了,只有强调直接在y 头上动,才符合本文中的口诀,这与以前的不矛盾,只是改变了变式的左右面。
只有从本质上掌握了平移变换和伸缩变换的方法,才能应对各种复杂和连续的变换的题目,才能学会变换的逆向使用和变形使用。
例如,sin y
x 的图像经过怎样的变换能得到112sin()36
y
x 的图像
呢?应有好几个变换方法,需要进行横向平移、横向伸缩、纵向伸缩,纵向伸缩第几步执行都可以,横向
平移和横向伸缩谁先谁后将使横向平移时的平移量不一样。
只有从本质上掌握了平移变换和伸缩变换的方法,才能体会到这一点。
以上是我多年教学中对变换的一点点感受,我认为学生在这个知识点上认识不足,不能掌握到位,所以写了一篇这样的论文。
文中难免有不足之处,还望专家和同仁指出。