浙江省绍兴县实验中学八年级上数学《第二章 特殊三角形》复习课件
浙教版八年级上册第2章复习 特殊三角形(1)等腰三角形课件(共20张PPT)
• 老师的意思是……?
问题一:边和角(等腰三角形两腰相等;两底角相等)
• 1.在等腰△ABC中,两边长为2和3,周长 为 7或8 ;【书本P25,作业题1】
• 学习宝典3:遇到等腰三角形腰上的“高”时,
要注意等腰三角形的顶角要分类讨论(锐角、钝 角、直角),所以高的位置会不一样
问题一:边和角(等腰三角形两腰相等;两底角相等)
• 变式5:等腰三角形∠A的相邻外角为 110̊,顶角为 70或40 ̊;
• 变式6: 等腰三角形∠A的相邻外角为 110̊,∠B为 55或70或40 ̊; 【作业
为什么三角形(判断形状,不需证明).
知识点: 学习宝典:
• (5)等边三角形是等腰三角形的特殊情形,你能 说说它的一些性质和判定吗?
准备好了吗?
• 数学书和作业本 • 课堂练习本(打开到你要写的这页) • 昨天布置的课本上的疑问 • 小组交流的对象
• 你的心
第2章复习 特殊三角形(1) ——等腰三角形
分享小故事
• 甲学生拿着一本数学书问老师:“老师, 书上所有的题目我都会做了,可是我为 什么不能考出满意的成绩呢?”老师回 答他:“要学着把书读‘厚’。”
问题一:边和角(等腰三角形两腰相等;两底角相等)
• 变式3:等腰△ABC中,
若∠A=40° 则∠B= 40或70或°10;0
若∠A=100°,则∠B= 40
°;
• 学习宝典2:等腰三角形和角有关的问题要分类
讨论,底角只能是锐角
• 变式4:等腰三角形一腰上的高与另一腰的
浙教版初中数学八年级上册第二章 特殊三角形-从勾股定理到图形面积关系的拓展 课件 教学课件
在Rt△ABC中,分别以a,b,c为边向外作正方 形,如图所示,则s1,s2,s3有什么数量关系?
a2+b2=c2
s1+s2=s3
小试牛刀
1.如图是一株美丽的勾股树,其中所有的四
边形都是正方形,所有的三角形都是直角三角
形.若正方形A、B、C、D的面积分别是9、
25、4、9,则最大正方形E的面积是 ( C )
合作探究
已知:如图,以Rt△ABC的三边a、b、c为
边分别向外作等腰直角三角形.面积分别为S1、
S2、S3,若斜边c=6,则S1+S2为
.
斜边或直角边
其实,在欧几 里得时代,人 们就已经知道 了勾股定理的 一些拓展。例 如,《原本》 第六卷曾介绍: “在一个直角 三
角形中,在斜边 上所画的任何图 形的面积,等于 在两条直角边上 所画的与其相似 的图形的面积之 和。”
E
S1
F
A
D
C
B
G
ห้องสมุดไป่ตู้
S3
S2
M
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别人的光。行为决定性格, 性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍下,又怎么会明白要多努力才能走到远方。所有的 豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅,我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不 停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随 波逐流,活鱼逆流而上。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏 平。不要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的 源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记住精彩的瞬间,激动的时刻,温馨的情景, 甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道 的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是 失败。没有一个朋友比得上健康,没有一个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺 健康,健康不是一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不要;什么 都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福一生,选对生活方式可以健康一生。 含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态 在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更 消耗身体。所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学 费。在这个尘世上,虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能了解 别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以不要别人的帮助,也没有人穷 得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不 愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻, 不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态, 是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜 花。如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击碎又无数闪地扑向礁 石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是甜的,也可以是苦的,但不能是没味的。你可
浙教版八年级上第二章特殊三角形复习课件
浙教版八年级上第二章特殊三角形复习课件一、教学内容二、教学目标1. 熟练掌握等腰三角形、等边三角形和直角三角形的性质与判定方法;2. 理解三角形内角和定理及推论的应用,并能运用其解决实际问题;3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点教学难点:等腰三角形和等边三角形性质的应用;直角三角形的判定方法;三角形内角和定理及推论的应用。
教学重点:等腰三角形、等边三角形和直角三角形的性质与判定;三角形内角和定理及推论。
四、教具与学具准备1. 教具:三角板、圆规、直尺、多媒体课件;2. 学具:三角板、圆规、直尺、练习本。
五、教学过程1. 导入新课:通过展示特殊三角形在实际生活中的应用,激发学生学习兴趣,引导学生复习特殊三角形的相关知识。
2. 复习等腰三角形:(1)回顾等腰三角形的性质:两边相等,两角相等;(2)讲解等腰三角形的判定方法:两边相等或两角相等;(3)例题讲解:证明一个三角形是等腰三角形;(4)随堂练习:判断一组数据是否能构成等腰三角形。
3. 复习等边三角形:(1)回顾等边三角形的性质:三边相等,三角相等;(2)讲解等边三角形的判定方法:三边相等或三角相等;(3)例题讲解:证明一个三角形是等边三角形;(4)随堂练习:判断一组数据是否能构成等边三角形。
4. 复习直角三角形:(1)回顾直角三角形的性质:一个角为直角,其他两角互余;(2)讲解直角三角形的判定方法:有一个角为直角或勾股定理;(3)例题讲解:证明一个三角形是直角三角形;(4)随堂练习:判断一组数据是否能构成直角三角形。
5. 复习三角形内角和定理及推论:(1)回顾三角形内角和定理:三角形的内角和等于180°;(2)讲解三角形内角和推论:三角形的外角等于不相邻的两个内角之和;(3)例题讲解:求三角形的内角或外角;(4)随堂练习:计算三角形的内角和或外角。
六、板书设计1. 特殊三角形的性质与判定;2. 三角形内角和定理及推论;3. 例题及解答;4. 随堂练习。
2024年浙教版八年级上第二章特殊三角形复习精彩课件
2024年浙教版八年级上第二章特殊三角形复习精彩课件一、教学内容1. 等腰三角形的性质与判定2. 等边三角形的性质与判定3. 直角三角形的性质与判定4. 特殊三角形在实际问题中的应用二、教学目标1. 理解并掌握等腰三角形、等边三角形及直角三角形的性质与判定方法。
2. 能够运用特殊三角形的性质解决实际问题,提高解决问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点重点:等腰三角形、等边三角形及直角三角形的性质与判定。
难点:特殊三角形在实际问题中的应用。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件。
2. 学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过多媒体课件展示特殊三角形在实际生活中的应用,引导学生思考特殊三角形的重要性。
2. 复习等腰三角形(1)教师引导学生回顾等腰三角形的性质与判定方法。
(2)例题讲解:证明一个三角形是等腰三角形。
3. 复习等边三角形(1)教师引导学生回顾等边三角形的性质与判定方法。
(2)例题讲解:证明一个三角形是等边三角形。
4. 复习直角三角形(1)教师引导学生回顾直角三角形的性质与判定方法。
(2)例题讲解:证明一个三角形是直角三角形。
5. 特殊三角形在实际问题中的应用(1)教师讲解特殊三角形在实际问题中的应用方法。
(2)例题讲解:求解一个实际问题,涉及特殊三角形。
(3)随堂练习:解决一个实际问题,涉及特殊三角形。
六、板书设计1. 等腰三角形的性质与判定2. 等边三角形的性质与判定3. 直角三角形的性质与判定4. 特殊三角形在实际问题中的应用七、作业设计1. 作业题目:(4)解决一个实际问题,涉及特殊三角形。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对特殊三角形的性质与判定掌握情况,以及在实际问题中的应用能力。
2. 拓展延伸:(1)引导学生思考:特殊三角形还有哪些性质和应用?(2)推荐阅读:关于特殊三角形的研究性文章,提高学生的兴趣和拓展知识面。
浙教版数学八上课件复习第二章特殊三角形(1)
浙教版数学八上课件复习第二章特殊三角形一、教学内容本节课我们将复习浙教版数学八上教材中第二章“特殊三角形”的内容。
具体包括:等腰三角形的性质与判定(2.1节),等边三角形的性质与判定(2.2节),以及勾股定理及其逆定理(2.3节)。
二、教学目标1. 理解并掌握等腰三角形和等边三角形的性质,能够熟练运用这些性质解决相关问题。
2. 理解并掌握勾股定理及其逆定理,能够运用其解决实际问题。
3. 培养学生的逻辑思维能力和空间想象能力,提高解决问题的策略和方法。
三、教学难点与重点教学难点:等腰三角形和等边三角形性质的应用,勾股定理逆定理的证明与运用。
教学重点:等腰三角形、等边三角形的性质,勾股定理及其逆定理。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件。
2. 学具:三角板、直尺、圆规、练习本。
五、教学过程1. 实践情景引入:展示等腰三角形和等边三角形在实际生活中的应用,如建筑、艺术等,引发学生思考。
通过展示等腰三角形和等边三角形在建筑中的应用,引导学生发现这两种三角形的美观与实用价值。
2. 例题讲解讲解等腰三角形和等边三角形的性质,以及勾股定理的应用。
3. 随堂练习学生独立完成练习题,巩固所学知识。
通过拓展延伸,介绍勾股定理在古代建筑中的应用。
六、板书设计1. 等腰三角形的性质与判定2. 等边三角形的性质与判定3. 勾股定理及其逆定理七、作业设计1. 作业题目:已知等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。
已知直角三角形的两条直角边分别为3cm和4cm,求该三角形的斜边长。
2. 答案:面积:(1013)/2 = 65cm²斜边长:√(3²+4²) = 5cm八、课后反思及拓展延伸1. 反思:本节课学生对等腰三角形、等边三角形的性质掌握情况较好,但在勾股定理逆定理的运用上还存在一定问题,需要在今后的教学中加强练习。
2. 拓展延伸:引导学生了解勾股定理在其他领域的应用,如物理学、天文学等,激发学生的学习兴趣。
浙教版数学八上课件复习第二章特殊三角形
浙教版数学八上课件复习第二章特殊三角形一、教学内容本节课复习浙教版数学八上课件第二章特殊三角形部分。
详细内容包括:1. 等腰三角形的性质与判定;2. 等边三角形的性质与判定;3. 直角三角形的性质与判定;4. 三角形的面积计算;5. 三角形全等的判定。
二、教学目标1. 熟练掌握等腰三角形、等边三角形、直角三角形的性质与判定;2. 学会运用三角形的面积计算方法解决实际问题;3. 掌握三角形全等的判定方法,并能够运用其解决实际问题。
三、教学难点与重点教学难点:三角形全等的判定方法。
教学重点:等腰三角形、等边三角形、直角三角形的性质与判定;三角形的面积计算。
四、教具与学具准备1. 教具:三角板、直尺、量角器、多媒体课件;2. 学具:三角板、直尺、量角器、练习本。
五、教学过程1. 实践情景引入:以一个等腰三角形为背景,提出问题:如何判断一个三角形是等腰三角形?引导学生回顾等腰三角形的性质与判定。
2. 例题讲解:(1)等腰三角形的性质与判定;(2)等边三角形的性质与判定;(3)直角三角形的性质与判定;(4)三角形的面积计算;(5)三角形全等的判定。
3. 随堂练习:设计相关练习题,让学生巩固所学知识。
4. 小结:六、板书设计1. 第二章特殊三角形复习2. 内容:(1)等腰三角形的性质与判定;(2)等边三角形的性质与判定;(3)直角三角形的性质与判定;(4)三角形的面积计算;(5)三角形全等的判定。
七、作业设计1. 作业题目:A. ABC,AB=AC;B. DEF,DE=DF;C. GHI,GH=GI;A. 等边三角形,边长为3cm;B. 等腰直角三角形,直角边长为4cm;C. 一般三角形,底为6cm,高为4cm;(3)已知在三角形ABC中,AB=AC,∠BAC=40°,求∠ABC的度数。
2. 答案:(1)A、B为等腰三角形;(2)A. 面积为3.9cm²;B. 面积为8cm²;C. 面积为12cm²;(3)∠ABC=70°。
2024年浙教版八年级上第二章特殊三角形复习课件
2024年浙教版八年级上第二章特殊三角形复习课件一、教学内容1. 等腰三角形的性质与判定(2.1节)2. 等边三角形的性质与判定(2.2节)3. 直角三角形的性质与判定(2.3节)4. 等腰直角三角形的性质与判定(2.4节)二、教学目标1. 让学生掌握等腰三角形、等边三角形、直角三角形及等腰直角三角形的性质与判定方法。
2. 培养学生运用特殊三角形知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:等腰三角形和等边三角形的判定方法,直角三角形的性质。
2. 教学重点:特殊三角形的性质及其应用。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件。
2. 学具:三角板、直尺、圆规、练习本。
五、教学过程1. 实践情景引入:展示一些特殊三角形在实际生活中的应用,如建筑、设计等,激发学生学习兴趣。
细节:通过多媒体课件展示图片,引导学生观察并思考。
2. 例题讲解:例1:已知一个三角形是等腰三角形,求证:这个三角形的底角相等。
例2:已知一个三角形是等边三角形,求证:这个三角形的三个角都相等。
例3:已知一个三角形是直角三角形,求证:这个三角形的两个锐角互余。
细节:通过讲解例题,引导学生运用特殊三角形的性质进行证明。
3. 随堂练习:让学生完成教材课后练习题,巩固所学知识。
细节:学生独立完成练习题,教师巡回指导,解答学生疑问。
六、板书设计1. 特殊三角形的性质与判定等腰三角形:性质、判定等边三角形:性质、判定直角三角形:性质、判定等腰直角三角形:性质、判定2. 例题及解答七、作业设计1. 作业题目:(1)已知一个三角形的两边长分别为5cm和12cm,第三边长为x cm。
判断这个三角形是什么类型的三角形。
(2)已知一个等边三角形的边长为a,求这个三角形的面积。
2. 答案:(1)根据在三角形中任意两边之和大于第三边,可得:x<5+12=17cm。
当x=5cm或12cm时,为等腰三角形;当x=13cm时,为直角三角形。
第2章+特殊三角形+复习课件2024-2025学年浙教版数学八年级上册
E 建在距离点 C 10km的地方
第24题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
返回目录
25. 如图, D 为等边三角形 ABC 的边 BC 上一点,以 AD 为边作等边三角
形 ADE ,连结 BE .
(1) 求证: BE = CD .
第25题
25
返回目录
解:(1) ∵ △ ABC 和△ ADE 都是等边三角形,∴ AE
1
2
3
4
567Fra bibliotek89
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
返回目录
18. 如图,在△ ABC 中, AB = AC , D 是 BC 的中点, DE ⊥ AC ,垂足
为 E ,连结 AD . 若∠ B =50°,则∠ ADE 的度数为( B )
第18题
A. 40°
1
2
3
B. 50°
= CD . ∵ BE = CD ,∴ EM = DN . 在△ AEM 和△ ADN
=,
中,∵ ∠=∠, ∴ △ AEM ≌△ ADN
=,
( SAS ).∴ AM = AN ,∠ EAM =∠ DAN . ∵ ∠ EAM +
∠ DAM =∠ DAE =60°,∴ ∠ DAN +∠ DAM =
浙教版八年级上第二章特殊三角形复习课件
浙教版八年级上第二章特殊三角形复习课件一、教学内容本节课我们将复习浙教版八年级上第二章特殊三角形的内容。
具体包括:等腰三角形的性质与判定(2.1节)、等边三角形的性质与判定(2.2节)、直角三角形的性质与判定(2.3节)以及特殊三角形在实际问题中的应用(2.4节)。
二、教学目标1. 熟练掌握等腰三角形、等边三角形和直角三角形的性质与判定方法。
2. 能够运用特殊三角形的性质解决实际问题。
3. 培养学生的空间想象能力、逻辑思维能力和团队合作能力。
三、教学难点与重点教学难点:特殊三角形性质的理解与运用。
教学重点:等腰三角形、等边三角形和直角三角形的性质与判定。
四、教具与学具准备教具:多媒体课件、三角板、量角器。
学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(5分钟)利用多媒体课件展示特殊三角形在实际生活中的应用,如等腰三角形屋顶、等边三角形装饰等,引导学生发现生活中的特殊三角形。
2. 例题讲解(15分钟)例题1:已知△ABC中,AB=AC,∠BAC=50°,求∠ABC和∠ACB 的度数。
例题2:已知△DEF中,DE=DF=EF,求∠EDF的度数。
3. 随堂练习(10分钟)练习题1:已知△GHJ中,GH=HJ,∠G=40°,求∠J的度数。
练习题2:已知△KLM中,KL=LM=MK,求∠KLM的度数。
4. 小组讨论(5分钟)将学生分成小组,讨论特殊三角形在实际问题中的应用,如建筑、艺术等。
六、板书设计1. 等腰三角形的性质与判定2. 等边三角形的性质与判定3. 直角三角形的性质与判定4. 特殊三角形在实际问题中的应用七、作业设计1. 作业题目:(1)已知△NOP中,NO=NP,∠N=70°,求∠O和∠P的度数。
(2)已知△QRS中,QR=QS=RS,求∠QRS的度数。
(3)在生活或艺术作品中,寻找特殊三角形的应用,并说明其特点。
2. 答案:(1)∠O=∠P=55°(2)∠QRS=60°八、课后反思及拓展延伸1. 反思:本节课学生对特殊三角形的性质与判定掌握情况较好,但在实际问题中的应用方面还需加强。
浙教版八年级数学上册第二章特殊三角形等腰三角形的性质定理课件共18张
A
E
D
B
C
等腰三角形两底角的平分线相等.
强化新知!
如图,在ΔABC中,AB=AC,P为BC的中点,
点D,E分别在 AB ,AC上,AD=AE
求证:PD=PE.
A
D
E
B
C
P
小结:等腰三角形的性质定理------两个底角相等
(或等边对等角)为两个角相等又增加了 一种证明方法
总结、反思!
∵∠A+∠B+∠C=180° ∴∠A=∠B=∠C=180º÷3=60°
推论 等边三角形的各角都相等, 并且每一个角都等于60 º
推论也可以和定理、定义、性质、基本事实 一 样作为推理、论证的根据.
及时巩固!
已知△AEF是等边三角形,点B, E,F,C在同一 直线上,且BE=EF=FC, 求∠BAC的度数.
1) 等腰三角形一个性质定理: 两底角相等. 2)等腰三角形一个推论:
等边三角形的每个内角都等于60°
3) 利用等腰三角形的性质定理 可进行简单的 推理,计算.
4) 分类思想: 在数学解题中起着非常重要的作用.
底角 顶角
考考自己!
A
(1) 如图,在△ABC中,AB=AC, 外角 ∠ACD=100°,则∠B=___8_0_°_.
(2)等腰三角形的一个底角是70°,
则其顶角是____4__0_°______.
B
100° CD
(3)如果等腰三角形的一个内角等于70° 那么它的底角度数_7_0_°__或__5_5_º___.
∴ ∆ABD ≌∆ACD (SSS)
∴∠B=∠C (全等三角形 对应角相等)
等腰三角形的两个底角相等.
浙教版八年级数学上册第2章特殊三角形PPT复习课件
另一个图形 ,并使这两个图形沿某一条 3.一般地,由一个图形变为___________ 直线折叠后能够_________ , 互相重合 ,这样的图形改变叫做图形的________ 轴对 称 对称轴 . 这条直线叫做________ 练习3:下列各组图形中成轴对称是( D )
顶角平分线 所在直线是它的 2.等腰三角形是轴对称图形,___________ 对称轴. 练习2:已知AD是等腰△ABC的顶角平分线,∠BAD=60°,则 30 ° ∠B= _______ . 3.三条边都相等的三角形叫做 ____________. 等边三角形 练习3:已知等边三角形的周长为3,则其边长为_______. 1
解:∵AC⊥BD,BE=DE,∴点 B,D 关于 直线 AC 对称.又∵点 E 在 AC 上,∴△BEF 与 △DEF 关于直线 AC 对称,∴△BEF≌△DEF, ∴S 阴影=S△ABC.又∵BD=8,∴BE=4,∴S△ABC 1 1 =2AC· BE=2×10×4=20(cm2)
15.如图,已知两条定直线a和l,其中在定直线l上有一个定点A,在 定直线a上有一个动点P,请找到使PA和点P到直线l距离之和最小时的
八年级数学上册(浙教版)
第2章 特殊三角形
2.1 图形的轴对称
一个图形 沿着一条直线折叠后,直线两侧的部分能够 1.如果把____________ _________ 互相重合 ,那么这个图形叫做__________ 轴对称图形 ,这条直线叫做_______ 对称轴 .
练习1:下列图形:①长方形;②三角形;③圆.其中是轴对称图形的是
浙教版初中数学八年级上册第二章 特殊三角形-从勾股定理到图形面积关系的拓展 课件 优质课件P
在Rt△ABC中,分别以a,b,c为边向外作正方 形,如图所示,则s1,s2,s3有什么数量关系?
a2+b2=c2
s1+s2=s3
小试牛刀
1.如图是一株美丽的勾股树,其中所有的四
边形都是正方形,所有的三角形都是直角三角
形.若正方形A、B、C、D的面积分别是9、
25、4、9,则最大正方形E的面积是 ( C )
课外拓展三
如图,在△ABC中,∠ACB=90º,AC>BC,分别
以AB、BC、CA为一边向△ABC外作正方形ABDE、
BCMN、CAFG,连接EF、GM、ND,设△AEF、
△BND、△CGM的面积分别为S1、S2、S3,则下 列结论正确的是( )
A.S1=S2=S3 C.S1=S3<S2
B.S1=S2<S3 D.S2=S3<S1
A、13 B、26 C、47
D、94
34
13
2、如图,阴影正方形部分的面积是 84 .
3、如图,直线l上有三个正
10 4
方形,面积分别为a,b,c,若
a=5,c=11,则b为( C )
A.5 B.6 C.16 D.55
拓展一
如图,如果以直角三角形的三条边a,b,c为 边,向外分别作正三角形,那么是否存在 s1+s2=s3呢?
拓展二
如图,如果以直角三角形的三条边a,b,c为 直径,向外分别作半圆,那么s1+s2=s3依然成 立吗?
s112π(a2)2
1πa2 8
பைடு நூலகம்
同理 s2, 8 1b2,s38 1c2
s1s28 1a 28 1b 28 1(a 2 b 2)
a2b2c2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、已知△ABC中, AB=20 ,AC=15 ,BC边上的高为12, 求△ABC的面积
小组合作的力量
例2、已知ΔABC是等腰三角形, BC边上的高恰好等于BC边长的一半, 求∠BAC的度数。
如图,在等腰△ABC中, AB=AC ,BD是△ABC 的角平分线 AD=BD=BC,求∠A的度数.
设
(分类思想)
1、 角的分类 2 、边的分类 3、 高的分类 在解等腰三角形、直角三角形 的题目时,经常会运用分类思想 讨论,以防止掉入数学“陷阱”!
要注意喔!
(方程思想)
1.求较复杂图形中角的度数 2.求较复杂图形中线段的长
简单多了!
4、 如图,点A是5×5网格图形中的一个格点(小正方形的顶点)
图中每个小正方形的边长为1,以A为其中的一个顶点,面积 等于 5 的格点等腰直角三角形(三角形的三个顶点都是格点)
2
的 个数是 A、10个 B、12个 C、14个
(
)
D、16个
A
2007年湖州市学业考试试题
如图,点A是5×5网格图形中的一个格点 (小正方形的顶点),图中每个小正方形的边 5 长为1,以A为其中的一个顶点,面积等于 2
我们试试看
例3:如图, △ ABC中,AB=AC,D是AB上一点, 且BC=5,CD=4,BD=3,求△ ABC的面积。
解:∵BC=5 CD=4 BD=3
A
∴BC2=CD2﹢BD2
∴ △BCD为Rt △ 则 △A3;3 4 5
C
设AD=x 则AB=x+BD=x+3 ∵AB=AC ∴AC=x+3 ∴由勾股定理得(x+3)2 =x 2 +4 2 解得x=7/6
绍兴县实验中学
课前热身、相互交流:
△ABC中,已知:AB=AC
①若∠A=36°,则∠B= 72° ;∠C= 72° ;
②若AB=2cm,BC =3cm,则△ABC 的周长是 7 cm 变式一:在等腰△ABC中, ①若有一个角为70°,则另外两个角分别 °、 55° 是 70°、40°或55 、 ②若有一个角为100°,则另外两个角分别 是 40°、 40° 、 变式二:第④题改为 ③若有两条边长分别为2cm和3cm, “在直角三角形中有两 则△ABC 的周长是 7或8 cm; 条边长为5cm和12cm, 求第三条边以及斜边上 ④若有两条边长分别为5cm和12cm, 则△ABC 的周长是 29 cm; 的高?
体验:实践性
例1、已知三角形ABC中, AB=20 ,AC=15 ,BC边上的高为12, 求ABC的面积
高是AD, 当△ABC为锐角△时 1 因为AD⊥BC AC=15 AD=12 AB=20 所以CD=9 BD=16 所以BC=9+16=25 所以 ABC的面积为12*9÷2+16*12÷2=150 当△ABC为钝角△时 2 因为AD⊥BC AC=15 AD=12 AB=20 所以CD=9 BD=16 所以BC=16-9=7 所以ABC的面积为 16*12÷2-12*9÷2=42
2. 反思一下你所获成功的经验, 与同学交流!
思考题
如图,有一个长方体的长、宽、高分别是6、4、4, 在底面A处有一只蚂蚁,它想吃到长方体上面与A相 对的B点处的食物,需要爬行的最短路程是___ __.
1、如果等腰三角形的一个外角为100°, 则这个等腰三角形的顶角为 20°或80° 。 (分类讨论)
∴AB=7/6+3=25/6 ∴S △ ABC =25/6×4÷2=25/3
再来练一个
例4、如图,有一个直角三角形纸片,现将直角边 AC沿直线AD折叠,使它落在斜边AB上,且与AE 重合,你能得到哪些结论? 若两直角边AC=6cm,BC=8cm,你能求 出CD的长吗? 8
6 10
1. 通过本堂课的学习,你有何收获?
的格点等腰直角三角形(三角形的三个顶点都是 格点)的 个数是 ( D )
10
5
5
A、10个
B、12个
C、14个
D、16个
A A
点A为直角顶点
8
8
点A不为直角顶点
例2、如图,长方形纸片ABCD,沿着图中虚线折 叠长方形的一边AD,使点D落在BC边的点F处, 已知AB=6cm,BC=10cm,求EC的长。
A D
6
E C
B
10
F
(三)探索解题方法
4.操作题
A
已知,如图,△ABC中,AB=AC, ∠A=36°, 你能否剪两刀将△ABC分成三个等腰三角形, 请将剪痕画在三角形中。
A A E D A
D
C B C B
E
B E
E
D C
D
B C
想法: 看法: 做法:
同一三角形中,等角对等边
都拥有一个36 °角
再造一个36 °角
2、如图,在三角形ABC中,BC=10, AD=BD,若三角形ACD的周长为18 , 则AC长为 。 10 B (转化思想)
D C A
合作的力量
如图,线段OD的一个端点O在直线a上,以OD为一 边画等腰三角形,并且使另一个顶点在直线 a上, 这样的等腰三角形能画多少个? D
150°
H
O
C
E
F a
2007年湖州市学业考试试题