高频电子线路设计
高频电子线路课程设计

实验内容
用模拟乘法器MC1496实现普通调幅,观 察并记录输入和输出信号的频率、幅度和 波形,测出ma; 用模拟乘法器MC1496实现平衡调幅,观 察并记录输出波形; 实现混频和倍频,观察并记录输入和输出 信号的频率、幅度和波形。
高频电子线路课程设计 12
实验注意事项
模拟乘法器在通信中的应用b级课设题目一高频电子线路课程设计10模拟乘法器在通信中的应用b技术指标?要求在中心频率f05mhz负载电阻rl10k?的情况下使mc1496各管脚静态值满足设计要求并不失真的输出普通调幅波输出普通调幅波双边带调幅波倍频混频波形
高频电子线路课程设计
哈尔滨工程大学实验示范中心
高频电子线路课程设计 1
高频电子线路课程设计 6
六、成绩评定
基础单元实验占总成绩的40%(其 中实验和报告各占50%)。 课程设计占总成绩60%(其中设计 报告、实验报告占50%;操作 50% )。
高频电子线路课程设计
7
七、课设题目
•
•
课程设计有3个题目供大家选择,题目 分为A、B、两个等级,A级题目优 秀起评,B级题目良好起评。 根据自己的实际情况在3个题目中任 选一个,按照所选题目的要求进行 设计并书写设计报告。
课设题目二
变容二极管调频振荡器设计(A)
高频电子线路课程设计
17
技术指标
1. 2. 3. 4. 中心频率 : 输出电压 : 频率稳定度: 最大频偏 : f0=6.5MHz Uom≥180mV(最大值) △f/f0≤10-4/半小时 △fm≥75kHz 并算出其调制灵敏度。
高频电子线路课程设计
18
采用变容二极管设计一个调频振荡器, 在中心频率处测试振荡器的频率稳定 度,输出电压幅度。在波形不失真的 情况下达到设计指标; 改变变容二极管两端电压使振荡器的 频率在f0左右变化,在保持输出电压 幅度不变的情况下,测出最大频偏; 绘出变容二极管特性曲线。
(完整版)高频电子线路课程设计(DOC)

通信与信息工程学院高频电子线路课程设计班级:通信工程姓名:学号:指导教师:设计时间:2016年1月4日-2016年1月8日成绩:评通信与信息工程学院二〇一三年摘要调幅式收音机一般都采用超外差式,它具有灵敏度高、功能工作稳定、选择性好及失真度小等优点。
所谓外差,是指天线输入信号和本机振荡信号产生一个固定中频信号的过程,超外差收音机在检波之前,先进行变频和中频放大,然后检波,音频信号经过低频放大送到扬声器。
由于其中的中频放大器对固定中频信号进行放大,所以该收音机的灵敏度和选择性课大大提高,但同时也会附带中频干扰。
关键词:收音机、组装、调试1.设计任务及目的1.1设计任务完成超外差式收音机的组装与调试1.2目的通过这次实验可以让我们更进一步理解巩固所学的基本理论和基本技能,培养运用仪器仪表检测元器件的能力以及焊接、布局、安装、调试电子线路的能力,培养及锻炼我们测试排查实际电子线路中故障的能力,加强对电子工艺流程的理解熟悉。
2. 超外差式调幅收音机的原理及电路图2.1 超外差式调幅收音机电路原理图如图2-1为超外差式收音机的电原理图:图2-12.2超外差式调幅收音机的工作原理分析超外差式收音机主要由输入电路、混频电路、中放电路、检波电路、前置低频放大器、功率放大电路和喇叭或耳机组成2.2.1输入调谐电路输入调谐电路由双连可变电容器的CA和T1的初级线圈Lab组成,是一并联谐振电路,Tl是磁性天线线圈,从天线接收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频率是f=l/2πLabCA,当改变CA时,就能收到不同频率的电台信号。
2.2.2变频电路本机振荡和混频合起来称为变频电路。
变频电路是以VT l为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。
VTl、T2、Cb等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465 KHz的等幅高频振荡信号。
高频电子线路课程设计

高频电子线路课程设计背景高频电子线路是电子工程中重要的一门学科,它涉及到射频信号处理、微波电路、天线设计等领域。
基本电路设计知识在高频电子线路中同样适用,但需要深入理解和掌握高频电路特性和性能参数,设计复杂又具有挑战性。
本文将针对高频电子线路课程设计进行详细阐述,帮助学生加深对于高频电子线路的理解和知识,同时具备实际应用价值。
设计目标设计一个5GHz的放大器电路,输入信号功率为-10dBm,输出信号功率为18dBm,增益不小于15dB。
设计步骤1. 确定放大器类型初步确定本次设计需要采用低噪声放大器(LNA),由于输入信号功率较低,需要保证输入电路的低噪声水平,同时保证放大器输出功率足够。
2. 设计输入电路输入电路的设计需要注意两点:一是适应5GHz信号的高频特性,二是实现低噪声。
输入电路可以采用微带线或共面波导作为传输线,并且要与放大器贴片封装相匹配。
3. 选择放大器器件在选择放大器器件时,需要注意输入/输出功率、增益、稳定性、电源电压等参数。
按照本次设计的要求,需要满足输入功率为-10dBm,输出功率为18dBm,且增益大于15dB。
因此,可以选择如下几个型号的器件:•Avago ATF-54143•NXP BFG425W/X•Linear Technology LTC2216CUJ-TRPBF4. 设计放大器电路放大器电路分为两个部分:共源放大器和输出级放大器。
在搭建放大器电路之前,需要评估器件的参数,包括输入阻抗、输出阻抗、谐振频率等。
放大器电路中还需要加入偏置电路,以保证放大器器件工作的稳定性。
具体放大器电路设计如下:5. 仿真和调试在完成放大器电路设计后,需要进行仿真和调试。
使用ADS软件对放大器电路进行仿真,评估电路的性能,如增益、频率响应、稳定性等。
在仿真过程中,可以通过调整偏置电路的元件值、调整电缆长度、改变传输线贴片等方式对电路进行调整,直到达到设计要求。
仿真结果如下:6. 实验验证在验证电路的性能之前,需要制作PCB板,将电路固定在板子上。
高频电子线路仿真实验的设计与实现

高频电子线路仿真实验的设计与实现高频电子线路仿真实验是一种重要的实验教学方法,它可以模拟各种高频电子器件的工作原理及性能,为学生提供一个全面的电子学习平台。
本文将介绍一种高频电子线路仿真实验的设计与实现。
一、实验目的本实验旨在让学生了解高频电子线路的基本概念、设计原理和仿真技术,加深学生对高频电子学科的理解,提高学生的实验能力和模拟能力。
二、实验设计1. 实验任务(1). 进行微波信号的电路设计和仿真。
(2). 利用Multisim对一些特定高频电路进行仿真,如微波带通滤波器、微波失谐器等。
(3). 进行实验测量,得到一些实验数据,并将仿真结果与实验结果进行对比分析。
2. 实验步骤(1). 了解微波电路的基本概念和出现条件。
(2). 电路元器件参数的测量及仿真。
(3). 利用Multisim二次开发包,编写自定义元器件并应用到微波电路设计中。
(4). 进行仿真,并分析其电路性能。
(5). 实验中使用网络分析仪测量实验数据,并与仿真数据进行对比分析。
三、实验流程1. 获取微波元器件的参数,并进行仿真。
2. 熟悉Multisim的仿真工具,建立仿真电路。
3. 对仿真电路进行微调,观察仿真结果,进行分析。
4. 制作实验电路,并进行实验测量。
5. 将实验数据与仿真结果进行对比分析,找出差异并进行解释。
四、实验工具1. Multisim仿真软件2. 网络分析仪3. 各种微波器件,如微波传输线、微波滤波器、微波功率放大器等。
五、实验结果通过网络分析仪测量实验数据,并与Multisim的仿真数据进行对比,得到了一些实验结果。
通过对实验数据和仿真数据的分析,学生可以深入了解微波电路的性能和设计原理,增强实验能力和仿真能力。
六、实验结论本实验通过对微波电路设计和仿真的研究,让学生了解到微波电路的基本原理和工作条件,掌握了Multisim仿真软件的使用,并能够对电路性能进行仿真分析。
通过对实验数据和仿真数据进行对比分析,学生能够进一步加深对微波电路的理解,增强实验能力和模拟能力。
高频电子线路

高频电子线路电子线路是现代电子技术的基石,广泛应用于通信、计算机、消费电子、医疗等领域。
高频电子线路是其中的一个重要分支,主要应用于高频通信、雷达、微波技术等领域。
本文将介绍高频电子线路的基本概念、分类、常用器件以及设计方法,并对其在实际应用中的一些问题进行了探讨。
一、基本概念高频电子线路是指工作频率在几百MHz至数GHz范围内的电子线路。
相比于低频电子线路,高频电子线路所涉及的频率更高,信号波形更为复杂,传输和反射效应更为显著,因此需要采用特殊的设计技术和器件来满足其特殊要求。
高频电子线路的特点主要包括以下几个方面:1. 器件的尺寸和结构对电路性能影响显著,需要进行精细化设计和工艺。
2. 信号传输中存在大量的反射和损耗,需要采用返波抑制和匹配技术来提高传输效率和信号质量。
3. 线路的电磁兼容性问题更为突出,需要进行屏蔽和抗干扰设计。
4. 信号时延和相位误差对系统性能有较大的影响,需要进行相位同步和时延补偿等技术处理。
二、分类根据其应用领域和特点,高频电子线路可以分为不同的分类,其中主要包括以下几类:1. 射频线路射频线路主要用于高频通信和无线电技术中,其特点是工作频率在几十MHz至数GHz范围内,需要采用匹配、滤波、放大、混频等技术来实现信号的调制、解调、传输和放大。
射频线路所用的器件包括晶体管、二极管、集成电路等。
2. 微波线路微波线路是指工作频率在数十GHz至数百GHz范围内的电子线路,是雷达、卫星、电视等高速通信系统的核心部件之一。
微波线路需要采用宽带、低损耗、高阻抗、稳定性好的器件和材料,如微带线、同轴线、波导等。
3. 毫米波线路毫米波线路是指工作频率在数百GHz至数千GHz范围内的电子线路,主要用于高速通信、毫米波雷达、太阳能辐射测量等领域。
毫米波线路需要采用特殊的器件和制备工艺,如基于硅基集成电路的器件和图案化的微波印刷技术。
三、常用器件1. 晶体管晶体管是高频电子线路中应用最广泛的器件之一,可用于放大、调制、解调、混频等应用。
高频电子线路课程设计

电路设计与仿真
学生根据设计方案使用电路仿真软件进行电路设 计和仿真,验证设计的可行性和正确性。这一阶 段通常需要2-3周的时间。
撰写报告与答辩
学生完成实验后,需撰写课程设计报告,并根据 指导教师的要求准备答辩。这一阶段通常需要1-2 周的时间。
02 高频电子线路基础知识
高频电子线路的基本概念
信号频率
图表绘制
根据实际需要,绘制相应的图表,如电路原理图、波形图等,使报告 更加直观易懂。
文字表述
使用准确、简洁的语言描述设计过程和结果,避免出现技术性错误和 歧义。
报告提交
按照学校或课程要求,将设计报告提交给指导老师或相关部门进行评 审。
05 课程设计总结与展望
课程设计的收获和不足
01
收获
02
深入理解高频电子线路的基本原理和应用。
03
电容
在高频电路中,电容的作 用主要是隔直流通交流, 对高频信号呈现较小的阻 抗。
电感
电感在高频电路中的作用 主要是阻止高频信号通过, 对直流呈现较小的阻抗。
电阻
在高频电路中,电阻的作 用与低频电路相似,用于 限制电流。
高频电子线路的基本电路
调谐电路
调谐电路是高频电子线路中的基本电路之一,用 于选择特定频率的信号。
高频电子线路课程设 计
目录
CONTENTS
• 课程设计概述 • 高频电子线路基础知识 • 课程设计题目解析 • 课程设计实践 • 课程设计总结与展望
01 课程设计概述
课程设计的目标
01
掌握高频电子线路的基本原理和应用
通过课程设计,学生将深入理解高频电子线路的基本原理,包括信号传
输、放大、滤波等,并能够掌握其在通信、雷达、无线电等领域的应用。
高频电子线路课程设计集电极调幅电路

目录一.背景简介............................................................................................... 错误!未定义书签。
二.选题概述............................................................................................... 错误!未定义书签。
1集电极振幅调幅器旳工作原理 ............................................................ 错误!未定义书签。
2集电极电路脉冲旳变化状况................................................................ 错误!未定义书签。
3集电极调幅波形图................................................................................ 错误!未定义书签。
4集电极调幅旳静态调制特性 ................................................................ 错误!未定义书签。
三.设计规定与任务................................................................................... 错误!未定义书签。
四.设计思绪 (5)1调幅波旳数学表达式推导 (5)2集电极调幅电路旳工作状态分析 (5)五.设计采用硬件及软件环境概述 (6)1仿真软件MULTISIM14概述 (6)1.1仿真软件概述 (6)1.2界面预览 (6)1.3元器件库旳阐明 (7)1.4注意事项及也许碰到旳问题 (7)2元器件阐明 (7)六.设计过程及设计电路 (8)1集电极振幅调制设计电路 (8)2集电极振幅调制仿真电路 (9)3调制信号波形和集电极调幅输出波形旳比较和分析 (9)4电路旳改善 (10)4.1此电路旳优缺陷 (10)4.2改善方案 (10)七.成果..................................................................................................... 错误!未定义书签。
电子行业第八章 高频电子线路

电子行业第八章高频电子线路1. 介绍高频电子线路是电子行业中非常重要的一个领域。
随着无线通信、雷达、卫星通信等技术的不断发展,高频电子线路成为实现高速数据传输和高频信号处理的关键技术。
本章将介绍高频电子线路的基本概念、原理和设计方法。
2. 高频电子线路基础知识2.1 高频信号特性在了解和设计高频电子线路之前,需要了解高频信号的特性。
高频信号具有频率高、波长短的特点,其传输和处理方式与低频信号有很大的不同。
高频信号常常需要考虑传输线路的阻抗匹配、反射损耗、时延和信号衰减等问题。
2.2 高频器件高频器件是高频电子线路的重要组成部分,包括高频放大器、射频开关、电磁波滤波器等。
这些器件的特性和参数对高频电子线路的性能有重要影响。
本节将介绍常用的高频器件的工作原理和设计要点。
3. 高频电子线路设计3.1 传输线路设计传输线路是高频电子线路设计中的重要组成部分,用于传输高频信号。
常用的传输线路包括微带线、同轴线等。
在设计传输线路时,需要考虑传输线路的长度、宽度、层间介质材料等因素。
3.2 高频功放设计高频功放是一种能够放大高频信号的电路,常用于无线通信系统和雷达系统中。
高频功放的设计需要考虑放大器的增益、输出功率、稳定性等因素。
3.3 射频开关设计射频开关是一种能够在高频信号下进行开关操作的器件,常用于无线通信和雷达系统中的信号切换。
射频开关的设计需要考虑开关速度、插入损耗、反射损耗等因素。
3.4 电磁波滤波器设计电磁波滤波器是一种用于滤除指定频率范围内的电磁波的器件,常用于高频通信系统中的波段选择和干扰抑制。
电磁波滤波器的设计需要考虑滤波器的带宽、通带损耗、回波损耗等参数。
4. 高频电子线路仿真与测试高频电子线路的仿真和测试是设计和验证高频电子线路性能的重要手段。
通过仿真和测试可以评估高频电子线路的性能,并进行必要的优化。
本节将介绍常用的高频电子线路仿真软件和测试设备。
4.1 电磁场仿真软件电磁场仿真软件能够模拟高频信号在电磁场中的传播和相互作用,帮助设计师优化高频电子线路结构。
高频电子线路的设计基础(一)

高频电子线路的设计基础(一)1.3 系统性能指标描述高频电路最常用的指标:c增益d噪声:接收机所能接收的最低信号电平直接受到其固有噪声的限制e非线性:接收机能接收的最高电平又受到非线性失真的限制f灵敏度与动态范围¾当时,电压增益接近最大值¾在高频时,电路阻抗比直流或低频的值小,L o R R <<21a11NF NF NF G −=+级放大器32111n NF NF NF NF NF −−−=++++La 0a 0e ()NF G kT BW G k T T BW⋅=+噪声温度与噪声系数的等效关系e01(1)T NF T T NF T =+=−1.3.3 非线性失真•在由各种有源器件构成的线性放大器中,由于有源器件的特性是非线性的,在放大过程中总会产生各种各样的失真,因此,必须限制信号的大小,使失真限制在允许的范围内,才能实现线性放大。
•但在诸如混频、调制和解调等频谱搬移电路中,有源器件的非线性又正是实现这些功能电路所必需的。
1.非线性器件的描述方法一个非线性电路系统的输入x (t )和输出y (t )可以描述成()()()()230123y t x t x t x t αααα=++++L¾该法称为幂级数展开法¾其它还有解析函数和折线表示法来度量放大器的线性120lg 1α−压缩点处的输入信号斜率为1的理想输出功率线实际输出功率线功率增益减小1dB ,实际输出功率比理想输出功率减小1dBm33三阶互调截点处的输入信号幅度为13压缩点和IP3的关系IP31dB3.039.6dBAA≈≈IM3功率基波功率dBm3indBm dBm2IIP P =+in 3o 1o 3P P IIP =⎜⎟⎝⎠2inP ⎛⎞⎜⎟(P +级输出的分量功率级输出的分量通过第级输出基波分量通过第13,13,12331in p inG P P IIP IIP G G P IIP IIP ==⎛⎞=⎜⎟⎜⎟⎝得两级系统的31IIP ¾功率单位是小结•由于二极管和晶体管的非线性特性,会产生增益压缩、交叉调制和互相调制等一系列非线性失真。
高频电子线路教学设计

高频电子线路教学设计前言电子线路设计是现代电子工程师的核心技能之一。
在高频电子线路设计方面,更是要求专业知识和技能的高度。
为了更好地提高学生对高频电子线路的学习和应用,本文提供了一种教学设计方案。
一、课程目标1.掌握高频电子线路的基本理论知识2.理解常用的高频电子线路的组成部分和原理3.学习高频电子线路中使用的符号和标准4.能够独立设计和优化高频电子线路二、教学步骤1. 理论知识讲解首先,教师应该在课程开始阶段,给学生讲解高频电子线路的基本理论知识。
教师可以讲解以下内容:1.高频电子线路的基本概念2.电路分析的基本方法和工具3.天线的基本原理4.高频电子器件的选择和设计2. 实验设计为了巩固学生的学习成果,教师可以设计相关的实验。
实验可以按照以下步骤进行:1.学生需要自己设计高频电子器件的电路图和PCB图2.在实验室中,学生需要使用测试设备进行电路测试和数据收集3.学生需要对测试数据进行分析和总结在实验结束后,学生需要提交实验报告,包括电路图、PCB图、测试数据和分析结果。
3. 项目实践在理论知识和实验设计后,教师可以为学生安排项目实践,让学生能够将所学知识应用到实际中。
项目实践可以按照以下步骤进行:1.教师可以为学生提供一个具体的项目主题,如天线设计、无线通信模块设计等2.学生需要通过对项目主题相关知识的了解和分析,最终完成项目设计,包括电路图、PCB图、测试数据和分析结果。
3.教师评估学生的项目设计,并对学生在所选项目方面的表现进行评分。
4. 总结与评估在课程结束后,教师可以让学生针对整个学习过程进行总结和评估。
学生需要总结以下内容:1.所学内容和所得收获2.学习过程中遇到的困难和解决方法3.对课程设计的建议和意见通过自我评估,学生可以更好地反思自己的学习和表现,并为今后的学习提供指导和启示。
三、课程评估1.学生的课堂表现和参与度2.学生提交实验报告和项目设计成果3.学生的总结和自我评估4.学生对课程设计的反馈和建议以上四点将对学生的课程评估产生影响。
高频电子线路仿真实验的设计与实现

高频电子线路仿真实验的设计与实现随着科技的不断发展,高频电子领域的相关技术也在不断更新,因此,针对高频电子线路的仿真实验也变得越来越重要。
本文从设计与实现两个方面,介绍了一种高频电子线路仿真实验的实现方法。
设计在设计上,需要首先确定实验的研究对象和目标,以及实验的具体流程。
例如,我们可以以单片机为研究对象,通过仿真实验来探究单片机在高频电子领域的响应特性。
同时,我们还需要确定实验的具体流程,包括搭建电路、获取数据和分析数据等环节。
具体来说,设计高频电子线路仿真实验可以分为以下几个步骤:1.确定实验的目的和研究对象2.选择仿真软件和模型,比如SPICE、Agilent ADS等3.搭建电路,输入电源、放大器等模块,并设置相应参数4.获取数据,如波形图、频谱图等5.分析数据,比如输出结果、误差分析等实现在实现上,需要注意以下几个方面:1.仿真软件与硬件平台的匹配不同的仿真软件可能有不同的限制和参数设置。
因此,在选择仿真软件时,需要考虑其与实际硬件平台的兼容性,并在实际操作前做好必要的参数调整。
2.搭建电路在搭建电路时,需要确保连接的正确性和稳定性,保证实验能够顺利进行。
同时,也需要注重电路设计的合理性和性能优化,从而提高实验的准确性和稳定性。
3.数据分析与处理实验结束后,需要对获取的数据进行分析和处理,以了解电路的性能和优化策略。
同时,还需要注重错误分析和误差校正,提高实验数据的可靠性和准确性。
总结在实施高频电子线路仿真实验时,需要考虑实验设计和实现两个方面。
在设计方面,需要确定实验的目的和研究对象,并选择合适的仿真软件和模型;在实现方面,则需要注意软硬件之间的匹配、电路设计和数据处理等问题。
总的来说,实现高频电子线路仿真实验需要综合应用理论和实践知识,保证实验的准确和有效性。
高频课程设计---基于Multisim的高频电子线路设计与仿真

高频电子线路课程设计题目:基于Multisim的高频电子线路设计与仿真中文摘要本接收系统,以模拟乘法器为核心,接收部分由本机振荡,混频电路,晶体振荡电路,小信号放大,鉴频电路等模块组成。
在设计过程中,采用模块化的设计方法,并使用了EDA 工具软件,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取,提高了设计效率。
方案的优点是电路简单、器件易得、大大提高了电路的可行性。
关键词: 调频接收机;鉴频电路;仿真目录第一章概述 (1)第二章窄带调频接收机原理介绍 (2)2.1 接收系统原理框图 (2)2.2 高频小信号放大电路 (3)2.3 混频电路 (3)2.4 晶体振荡器电路 (4)2.5 鉴频电路 (4)第三章设计要求 (5)3.1 目的及意义 (5)3.2主要技术指标和要求 (6)3.3 内容和要求 (6)第四章开发平台简介 (8)第五章详细设计及仿真 (10)5.1 高频小信号放大器电路设计及仿真 (10)5.2 混频电路设计及仿真 (11)5.3 晶体振荡电路设计及仿真 (12)5.4 鉴频电路设计及仿真 (12)总结 (16)参考文献 (17)第一章概述随着社会经济的迅速发展和科学技术的全面进步,计算机事业的飞速发展,以计算机与通信技术为基础的信息系统正处于蓬勃发展的时期。
随着经济文化水平的显著提高,人们对生活质量及工作软件的要求也越来越高。
在当今电子设计领域,EDA设计和仿真是一个十分重要的设计环节。
在众多的EDA设计和仿真软件中,EWB软件以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。
EWB软件及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。
EWB(电子工作平台)软件,最突出的特点是用户界面友好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是EWB软件的一大特色。
它采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
高频电子线路课程设计报告

高频电子线路课程设计报告高频电子线路课程设计报告设计题目超外差式收音机的装配与调试学生专业班级学生姓名(学号)指导教师完成时间实习(设计)地点年月日一、课程设计目的与任务(一)、目的:1、熟悉超外差式调幅收音机的工作原理。
2、学会阅读印刷电路板。
3、通过对一台调幅收音机的安装、焊接及调试,熟悉电子产品的装配过程。
4、掌握电子元器件的识别及质量检验。
5、学习整机的装配工艺及基本的手工焊接技巧。
6、培养自己的动手能力及严谨的工作作风。
(二)、任务:1、分析并读懂收音机电路图。
2、参照电原理图看懂接线电路图。
3、认识电路图上的符号,并与实物相参照,认识个电子元器件。
4、根据技术指标测试各元器件的要紧参数。
5、熟练焊接的具体操作,认真细心地安装焊接。
6、按照技术要求进行调试。
7、初步掌握电子线路故障的排除方法。
(三、实习器材:1、电烙铁2、螺丝刀、镊子、剪刀等必备工具3、松香与锡4、DS05-6电路板5、各元器件6、两节5号电池二、分析与设计1、设计任务分析①方案选择目前调频式或者调幅式收音机,通常都使用超外差式,它具有灵敏度高、工作稳固、选择性好及失真度小等优点。
我们要求选用的是超外差式调幅收音机。
收音机接收天线将广播电台播发的高频的调幅波接收下来,通过变频级把外来的各调幅波信号变换成一个低频与高频之间的固定频率—465KHz(中频),然后进行放大,再由检波级检出音频信号,送入低频放大级放大,推动喇叭发声。
不是把接收天线接收下来的高频调幅波直接放大去检出音频信号(直放式)。
在设计中,是根据所要求的内容、指标进行各单元的设计,拟定单元电路,初步确定电路元件参数;再根据组合起来的系统电路进行核算,确定整机电路。
最后通过安装调试达到要求的电气性能指标,确定最终的电路元件参数,固定、封装,成为完整的收音机产品。
②要紧性能指标频率范围:535~1065kHz中频频率:465kHz灵敏度:<1mV/m(能收到本省、本市以外较远的电台及信号较弱的电台)选择性:20lg21(1)(110)E MHzE MHz MHz>14dB输出功率:最大不失真功率≥100mW电源消耗:静态时,≤12mA,额定时约80Ma1.设计方案论证择中波晶体管超外差调幅收音机,其方框图如图1所示。
高频电子线路课程设计(单边带调制与解调电路设计)

高频电子线路题目:单边带调制解调电路的设计摘要单边带调制技术是模拟调制中的重要技术,相对于幅度调制(AM)、双边带调制(DSB)、残留边带调制(VSB)而言,传输带宽仅为调制信号带宽,有效节约了带宽资源,且节约载波发射功率。
本课程设计主要介绍单边带调制电路的设计。
学习和掌握电路设计的方法和仿真软件,并综合运用所学知识完成常规调幅的设计。
本设计的技术指标是采用乘法器来实现DSB的调制,然后经过带通滤波器滤除一个边带,得到单边带调幅波,解调时采用同步检波法实现。
输入参考信号频率5KHz,电压60mV左右,调幅系数0.5,载波频率为100KHz,载波电压为60mV。
关键字单边带,调制目录第1章单边带调制电路的设计意义 (4)第2章单边带调制电路的总体方案 (4)2.1 单边带调制方案 (4)第3章电路参数选择 (5)3.1输入信号参数 (5)3.2 调制器参数 (5)3.3 带通滤波器参数 (6)3.4低通滤波器参数 (6)第4章电路工作原理及设计说明 (7)4.1DSB信号的表达式、带宽 (7)4.2 SSB信号的产生及设计 (8)4.3 带通滤波器 (10)第5章实验结果 (12)第6章结果分析 (15)实验总结 (16)参考文献 (18)第1章单边带调制电路的设计义传输信息是人类生活的重要内容之一。
利用无线电技术进行信息传输在这些手段中占有极重要的地位。
无线电通信、广播、电视、导航、雷达、遥控遥测等等,都是利用无线电技术传播各种不同信息的方式。
无线电通信传输语音、点吗或其他信号;无线电广播传输语言、音乐等;电视传送图像、语言、音乐;导航是利用一定的无线电信号指引飞机或船舶安全航行,以保证他们能平安到达目的地;雷达是利用无线电信号的反射来测定某些目标(如飞机、船舶等)的方位;遥测遥控则是利用无线电技术来测量远处或运动体上的某些物理量,控制远处机件的运行等。
在以上这些信息传递的过程中,都要把频率不高的调制信号加载到高频载波上,然后进行信号的传输。
高频电子线路课程设计

高频电子线路课程设计一、课程目标知识目标:1. 让学生掌握高频电子线路的基本原理,理解高频信号的特点及其传输方式。
2. 使学生掌握常用高频元器件的原理、功能及应用,并能正确选用。
3. 培养学生分析并设计简单高频电子线路的能力。
技能目标:1. 培养学生运用所学知识进行高频电子线路搭建、调试及故障排除的能力。
2. 提高学生运用仿真软件进行高频电子线路设计的能力。
情感态度价值观目标:1. 培养学生热爱电子技术,对高频电子线路产生浓厚的兴趣。
2. 培养学生具备团队协作精神,善于沟通交流,敢于面对挑战。
3. 培养学生严谨的科学态度和良好的工程素养,注重实践与创新。
本课程针对高年级电子专业学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,使学生能够掌握高频电子线路的基本知识,具备实际操作能力,并在此基础上培养学生的创新意识和团队协作能力,为后续的专业课程学习和职业发展打下坚实基础。
二、教学内容本章节教学内容主要包括以下三个方面:1. 高频电子线路基本原理- 高频信号特点及其传输方式- 高频电路的基本组成与功能- 常用高频元器件的原理、功能及应用教学内容参考教材第1章至第3章,让学生掌握高频电子线路的基本概念和原理。
2. 高频电子线路设计与实践- 高频放大器、振荡器、混频器的设计原理- 高频电路的PCB设计技巧- 高频电子线路的搭建、调试及故障排除教学内容参考教材第4章至第6章,通过实践操作,提高学生的高频电子线路设计和实践能力。
3. 仿真软件在高频电子线路设计中的应用- 仿真软件的基本操作与使用方法- 高频电子线路仿真案例分析- 仿真软件在实际高频电子线路设计中的应用教学内容参考教材第7章,使学生掌握仿真软件在高频电子线路设计中的应用。
教学进度安排如下:1-2周:高频电子线路基本原理3-4周:高频电子线路设计与实践5-6周:仿真软件在高频电子线路设计中的应用教学内容具有科学性和系统性,结合教材章节和实际教学需求,旨在帮助学生全面掌握高频电子线路的相关知识和技能。
高频电子线路综合设计

摘要 (I)1.高频小信号调谐放大器的电路设计与仿真 (1)1.1主要技术指标 (1)1.2给定条件 (1)1.3设计过程 (1)1.3.1 选定电路形式 (2)1.3.2设置静态工作点 (3)1.3.3谐振回路参数计算 (3)1.3.4确定耦合电容与高频滤波电容 (4)1.4 电路调试与测量 (5)1.4.1 高频小信号放大器实物电路图 (5)1.4.2 高频小信号放大器的焊接及静态工作点设置 (5)1.4.3 谐振频率的调测与电压放大倍数的测量 (6)1.4.4实物效果图 (6)2.LC/晶振振荡器电路设计 (8)2.1任务要求 (8)2.2振荡器工作原理 (8)2.2.1电容三点式振荡器 (8)2.2.2并联型改进电容三端式振荡器(西勒电路) (10)2.3 静态工作电流的确定 (11)2.4.确定主振回路元器件 (12)2.5电路仿真 (14)3.高频谐振功率放大器电路 (15)3.1确定功放的工作状态 (15)3.2 基极偏置电路计算 (16)3.3计算谐振回路与耦合线圈的参数 (16)3.4 电源去耦滤波元件选择 (17)3.5仿真结果 (17)4.小结与体会 (22)5 参考文献 (23)摘要高频小信号放大器一般用于放大微弱的高频信号,此类放大器应具备如下基本特性:只允许所需的信号通过,即应具有较高的选择性。
放大器的增益要足够大。
放大器工作状态应稳定且产生的噪声要小。
放大器应具有一定的通频带宽度。
在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有能在没有激励信号的情况下产生周期信号的电子电路,这种在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路就是振荡器。
高频谐振功率放大电路,是无线电发射机的重要组成部分,它的主要功用是实现对高频已调波信号的功率放大, 然后经天线将其转化为电磁波辐射到空间,以实现用无线信道的方式完成信息的远距离传送。
电路理论中的高频电路设计

电路理论中的高频电路设计高频电路设计是电路理论中的一个重要方向,主要是针对高频电信号传输、处理和控制的电路设计。
随着科技的不断发展,高频电路在物联网、智能家居、无线通信等领域有着广泛应用,因此高频电路设计也成为了电子工程师们一个必备技能。
一、高频电路设计的基本理论高频电路设计首先需要了解高频电路的特性,从而确定电路参数,并了解不同的组件如电容、电感、晶体管等的特性和应用。
在高频电路中,信号的频率极高,对电路的稳定性、失真以及传输损耗等要求较高,因此高频电路的设计需要考虑通带、阻带、截止频率、增益、噪声系数等参数。
在高频电路设计中,需要了解噪声、回路稳定性、阻抗匹配、滤波等相关理论。
二、高频电路设计的步骤和注意事项高频电路的设计流程包括电路需求、设计要求确定、原理设计、元器件选型、电路仿真、电路调整、布局与制造、测试验证等步骤。
在进行高频电路设计时,需要遵循以下几个注意事项:1. 频带选择:要根据所需的信号频率范围,选择合适的频带,避免选择过窄或过宽的频带,否则会导致信号的传输质量下降。
2. 技术选型:要根据电路的具体特性选择合适的技术方案。
例如,要根据功率、噪声系数、稳定性等因素选择合适的晶体管等器件。
3. 元器件选型:在选型时要考虑温度、电压、频率等因素,以满足高频电路设计的具体需求,选择合适的元器件。
4. 运用仿真:高频电路设计需要结合仿真软件进行各种参数模拟预测,以达到最佳效果。
5. 布局注意事项:高频电路的布局要注意地线的设计、分布电容的设置、的隔离、规避交叉干扰等因素。
6. 规范制造:高频电路制造时需要规范用料、焊接技术等方面,确保电路的质量。
三、实例展示:低噪声放大器的高频电路设计低噪声放大器是高频电路设计的常见应用,因其在RF(射频)和通信系统中广泛应用。
低噪声放大器的设计可分为两个部分,即前端和后端。
1. 前端设计低噪声放大器的前端包括输入匹配网络、放大器和输出匹配网络。
输入匹配网络由两部分组成,包括信号源驱动网络和放大器输入匹配网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子线路课程设计总结报告学生姓名:学号:专业:电子信息工程班级:报告成绩:评阅时间:教师签字:河北工业大学信息学院2015年3月课题名称:小功率调幅AM 发射机设计内容摘要:小功率调幅AM 发射机在现代通信系统中应用广泛,小功率调幅AM 发射机的设计包括主振级、缓冲级、高频放大级、音频放大级、振幅调制级、高频功率放大级六个部分的电路设计和参数选择,且还考虑到各个单元电路之间的耦合关系,并结合Multisim 软件进行了各部分的调试与仿真,得到了整机电路。
理论上满足了最基本的小功率调幅发射机的设计要求。
一、设计内容及要求1、设计内容小功率调幅AM 发射机的设计 2、设计的技术指标:载波频率 Z MH 10=c f载波频率稳定度 α≥3-10输出功率 mW 2000≥P 负载电阻 Ω=50A R输出信号带宽 Z kH 9=BW (双边带) 残波辐射 dB 40≤ 单音调幅系数 8.0=a m 平均调幅系数 ≥m 0.3 发射效率 %50≥η二、方案选择及系统框图1、方案选择 (1)主振级方案1:采用LC 三点式正弦波振荡器,由于电容三点式振荡器的输出波形比电感三点式振荡器的 输出波形好,最高工作频率一般比电感三点式振荡器的高。
另外,在电容三点式振荡器中,极间电容与电容并联,频率变化不改变电抗的性质。
因此振荡器的电路型式一般采用电容三点式。
在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。
方案2:采用晶体振荡器,晶体振荡器比普通的三点式振荡器具有更高的频率稳定度,频率稳定度可达到10-10数量级,波形失真也比较小。
在频率稳定度要求较高的电路中,可以采用晶体振荡器作为主振级,比如石英晶体振荡器。
方案3:采用RC 正弦波振荡器,RC 振荡电路中没有谐振回路,主要有电阻和电容组成,因此一般不采用RC 正弦波振荡器作为主振器。
方案4:负阻正弦波振荡器,采用负阻器件与LC 谐振回路共同构成的一种正弦波振荡器,主要工作在100MHz 以上的超高频段,因此,本设计中不采用负阻正弦波振荡器。
方案5:单片集成振荡电路,可靠性强,频率稳定度高。
(2)高频放大器方案1:如果选用集成模拟乘法器作振幅调制器,输入信号是小信号。
当振荡器输出电压能够满足要求时,可以不加高频电压放大器。
方案2:如果采用集电极调幅电路,就要使用一至二级高频电压放大器,以满足集电极调幅的大信号输入。
高频电压放大器一般采用高频调谐放大器。
(3)振幅调制器AM 信号的产生可以采用高电平调制和低电平调制两种方式完成。
目前,AM 信号大都用于无线电广播,因此多采用高电平调制方式。
方案1:集电极调幅集电极调幅的波形 (工作在过压区)方案2:基极调幅基极调幅的波形(工作在欠压区)(a )t(b )ttt tu C E c0+u ΩE c000i ci c10I c10E c u ΩtI c1E c0临界欠压区过压区t0E b I c1E b min欠压区过压区I c1i c1u bttE b 0E b max E b cr方案3:集电极基极组合调幅 方案4:模拟乘法器实现的调幅(4)高频功率放大器 方案1:甲类功率放大器在输入正弦信号的一个周期内,都有电流流过三极管,这种工作方式通常称为甲类放大,甲类放大的集电极效率最高为50%。
方案2:乙类功率放大器在输入正弦信号的一个周期内,只有半个周期,三极管的iC > 0 ,称为乙类放大。
乙类放大的集电极效率最高为78.5%。
方案3:甲乙类功率放大器在输入正弦信号的一个周期内,有半个周期以上,三极管的iC > 0 ,称为甲乙类放大方案4:丙类谐振功率放大器丙类谐振功率放大器有三种状态:欠压、过压和临界。
因为欠压状态的工作效率较低,而过压状态的又会产生较为严重的失真,所以一般选用让其工作在临界状态。
为了使高频功放以高效率输出大功率,常选在丙类状态下工作。
2、系统框图由高频电子线路课程理论内容知道,只有当天线的长度与发射机高频振荡的波长λ相比拟时,天线才能有效的把载波发射出去。
发射机能够通过振幅调制功能实现低频信号对高频载波信号的调制,使其最终以电磁波的形式发射出去。
小功率调幅发射机的系统框图如下:三、单元电路设计、参数计算和器件选择1、主振器主振器就是高频振荡器,根据载波频率的高低、频率稳定度来确定电路型式。
本设计要求载波频率为10MHz,为短波、高频波段,在短波和超短波的通信设备中常用电容三点式反馈振荡器,主要原因是电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好,反馈是由电容产生的,高次谐波在电容上产生的反馈压降较小,输出中高频谐波小。
另外,电容三点式振荡器最高工作频率一般比电感三点式振荡器的高。
本设计要求频率稳定度不低于3-10,而克拉泼电路的频稳度大体在4-10和5-10之间,满足设计要求,而且电路比较简单,容易分析,因此主振器选取克拉泼电路。
R1、R2 为直流分压偏置电阻,R1、R2、R3和R22为三极管提供静态工作点,为保证振荡器起振的振幅条件,起始工作点应设置在线性放大区,从稳频出发,稳定状态应在截至区。
旁路电容C1使三极管基极交流接地,且为共基状态。
克拉泼电路满足电容三点式组成法则,因此为电容三点式振荡器的特例。
C3、C4 、C29、L7 的值决定了振荡回路的工作频率。
电路图为:参数计算: 已知条件:Vcc=12V ,fc=10MHz ,选择的晶体管型号是2N2219,如果其放大倍数β,静态工作点ICQ 、VCEQ 、VCEQ 已知。
依据电路计算:反馈系数kf= gm=频率稳定度表示一定时间范围内或一定的温度、湿度、电源电压等变化范围内振荡频率的相对变化程度,振荡频率的相对变化量越小,则表明振荡频率稳定度越高。
()osc=fL C C C ⨯++⨯⨯πVICQ m 260010f f f f f -=∆98C C式中f0为标称频率, f1为实际工作频率。
仿真波形为:2、缓冲器缓冲器的作用是将振荡级与功放级隔离,以减小功放级对振荡级的影响。
因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。
整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。
不论是在低频电路还是高频电路的整机设计中,缓冲隔离级常采用射极跟随器电路,改变射极电阻R7的阻值,可以改变射极跟随器输入阻抗。
电路图为: 参数计算:忽略晶体管基极体电阻bb r '的影响,则射极输出器的输入电阻()()()8//76//5//4R R R R R Ri +=β输出电阻()0//76r R R R +=式中,r 很小,所以可将射极输出器的输出电路等效为一个恒压源,电压放大倍数i m im V R g R g A +=1式中,gm ——晶体管的跨导,一般情况下1〉〉imR g仿真波形为:3、高频放大器高频电压放大器的任务是将振荡电压放大以后送到振幅调制器,可以选用高频调谐放大器。
如果选用集成模拟乘法器作振幅调制器,输入信号是小信号。
当振荡器输出电压能够满足要求时,可以不加高频电压放大器。
如果采用集电极调幅电路或者基极调幅电路,就要使用一至二级高频电压放大器,以满足集电极调幅或基极调幅的大信号输入。
谐振放大器的调试方法首先应调整每一级所需的直流工作点,但要注意一点:在多级谐振放大器中,由于增益高,容易引起自激振荡。
因此,在测试其直流工作点时,应先用示波器观察一下放大器的输出端是否有自激振荡波形。
如果已经有自激振荡,应先设法排除它,然后再测试其直流工作点。
否则,所测数据是不准确的。
对于调谐放大器的频率特性、增益及动态范围的调整及测试,一般有两种方法,一种是逐点法;一种是扫频法。
后者比较简单、直观。
但由于其频标较粗,对于窄带调谐放大器难以精确测试。
电路图为:仿真波形为:4、音频放大器音频放大器用于放大音频信号,作为调制信号对高频载波信号进行幅度调制。
电路图为:仿真波形为:5、振幅调制器振幅调制器的任务是将所需传送的信息“加载”到高频振荡中,使其输出信号的幅度随着低频信号的变化而变化,从而实现低频信号搬移到高频段,被高频信号携带并有效进行远距离传输的目的。
AM 信号的产生可以采用高电平调制和低电平调制两种方式完成。
目前,AM 信号大都用于无线电广播, 多采用高电平调制方式。
高电平调制是在高频功率放大器中进行的。
通常分为基极调幅、集电极调幅以及集电极基极(或发射极)组合调幅。
此设计采用基极调幅方式,放大器工作于欠压状态。
电路图为:仿真波形为:6、高频功率放大器高频功率放大器是调幅发射机的末级,它的任务是要给出发射机所需要的输出功率。
本题要求%50≥η,通常采用丙类功率放大器。
电路图为:仿真波形为:四、整体电路设计及工作原理六、电路设计总结七、参考文献1 谢嘉奎,宣月清,冯军. 电子线路(非线性部分). 北京:高等教育出版社,20052 谢嘉奎,宣月清,冯军. 电子线路(线性部分). 北京:高等教育出版社,20053 孙余凯,项绮明.精选实用电子电路260例.北京:电子工业出版社,20074 何国栋.Multisim基础与应用.北京:中国水利出版社,20145 张肃文.高频电子线路(第五版).北京:高等教育出社,2009八、收获、体会通过本次高频电子线路课程设计,不论是理论知识方面还是实际应用方面我都收获了很多。
虽然上学期刚刚学完了高频电子线路的理论课程,但实际设计电路时仍然感觉不知所措。
根据老师的讲解知道电路应该由哪几部分构成,为每一部分寻找模型并没有花费太大的力气,但是要根据实际元件的特性去设计元件的参数却遇到很大的困难,于是我查阅了一些资料,和同组人一起讨论计算,再不懂的像老师请教,并用心注意细节问题。
经过不断的努力,各个单元模块的设计大致成型。
我想遇到困难的主要原因是对于电路的分析不清楚,对电路的设计能力不足。
Multisim是本学期我接触的新软件,用于高频仿真,为此,我查阅了大量的书籍了解这个软件的运用方法,为设计电路奠定基础。
在实际进行仿真时,我首先将电路的六个部分结合起来构成整机电路,发现仿真过程中出现很多错误。
于是我将六个部分分别进行了仿真,确保每一部分电路功能正确后再构成整机电路,这样使电路的仿真变得容易一些。
另外,在仿真的过程中除了修改一些电阻的阻值,使电路正常工作外,将话筒和天线用XFG和电阻代替。
当然这次课程设计也教会了我许多,首先它将我平时的所学结合在一起,有了一个系统的框架,然后再去补充这个框架的内容,使我有了一个课程设计的基本方向和目的,不至于太过盲目;其次也锻炼了我查阅资料的能力,以及对有用资料的筛选能力;再者通过跟同学们的讨论研究,我懂得了合作的重要性。