中考数学复习专题练习:矩形、菱形、正方形(解析版)

合集下载

中考数学第21讲-矩形菱形正方形(含答案)

中考数学第21讲-矩形菱形正方形(含答案)

中考数学专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【提醒:1、矩形是对称到对称中心是又是对称图形对称轴有条2、矩形被它的对角线分成四个全等的三角形和两个全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等知识解决问题】菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【提醒:1、菱形即是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形知识洁具的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【提醒:菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:⑴正方形也即是对称图形,又是对称图形,有条对称轴⑵几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的和联系】【重点考点例析】考点一:和矩形有关的折量问题例1 如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.对应训练1.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB 于点F,∠AED=2∠CED,点G是DF的中点,若BE=1,AG=4,则AB的长为.考点二:和菱形有关的对角线、周长、面积的计算问题例2 如图,菱形ABCD的周长为20cm,且tan∠ABD=34,则菱形ABCD的面积为cm2.对应训练2.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC 于点E,则AE的长是()A.53cm B.25cm C.485cm D.245cm考点三:和正方形有关的证明题例3 如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.对应训练12.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD 上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.考点四:四边形综合性题目例4 如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A 旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是.对应训练4.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是.【聚焦中考】2.已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF ⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=12BD,则四边形ABCD是什么特殊四边形?说明理由.3.如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥AC C.∠B=60°D.AC是∠EAF的平分线4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.5.(如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.(1)在图中画出线段DE和DF;(2)连接EF,则线段AD和EF互相垂直平分,这是为什么?【备考真题过关】一、选择题1.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.3cm B.2cm C.2 3 D.4cm2.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形3.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.404.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形5.如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD 的中点,连接OE,则线段OE的长等于()A.3cm B.4cm C.2.5cm D.2cm6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形的周长是()A.24 B.16 C.413D.237.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.3B.2 C.3 D.28.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD= 34AM2.其中正确结论的个数是()A.1 B.2 C.3 D.49.如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=43,④S△ODC =S四边形BEOF中,正确的有()A.1个B.2个C.3个D.4个10.如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A ′B ′C ′D ′,图中阴影部分的面积为( )A .212aB .233aC .23(1)4a -D .23(1)3a -二、填空题11.如图,矩形ABCD 中,AB=2,AD=4,AC 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则EF= .11.512.如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于x 轴,边OA 与x 轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .13.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE ⊥AC 于E ,∠EDC :∠EDA=1:2,且AC=10,则DE 的长度是 .14.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是.16.我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,它的中点四边形的对角线长是.17.菱形的两条对角线长分别为6和8,则这个菱形的周长为.18.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E 为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标.19.如图,在菱形ABCD中,点E、F分别是BD、CD的中点,EF=6cm,则AB= cm.20.如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC 于点F,则四边形BEDF的面积为cm2.21.如图,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为(结果保留两位有效数字,参考数据π≈3.14)22.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6 2,则另一直角边BC的长为.三、解答题23.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.24.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.25.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.27.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.28.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.。

中考数学二轮专题复习-矩形、菱形及正方形及答案详解

中考数学二轮专题复习-矩形、菱形及正方形及答案详解

中考数学二轮专题复习-矩形、菱形及正方形一、单选题1.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等3.如图,菱形的对角线、相交于点,过点作于点,连接,若,,则菱形的面积为()A.B.C.D.4.如图,有甲、乙、丙三个矩形,其中相似的是()A.甲与丙B.甲与乙C.乙与丙D.三个矩形都不相似5.如图,在菱形ABCD中,DE⊥AB,cosA=,AE=3,则tan∠DBE的值是()A.B.2C.D.6.如图,在菱形ABCD中,对角线AC与BD交于点O,E是边AB的中点,连结OE.若菱形ABCD的面积为24,AC=8,则OE的长为()A.B.3C.D.57.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF等于()A.B.C.D.8.如图,矩形中,对角线交于点O,,则矩形的面积是()A.2B.C.D.89.如图,将长、宽分别为6cm,cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.cm2 B.(36)cm2C.cm2D.cm210.如图所示,反比例函数的图象经过矩形OABC的边AB的中点,则矩形OABC的面积为()A.2B.4C.5D.811.如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD ,垂足分别为点E,F,连结EF,则△AEF 的面积是()A.B.C.D.12.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为()A.6.5dm B.6dm C.5.5dm D.4dm13.将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为()A.B.C.D.14.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A.6B.8C.10D.915.如图,在矩形ABCD中,对角线、BD交于C,,垂足为E,,那么的面积是()A.B.C.D.16.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CI⊥HJ于点I,交AB于K,在图形的外部作矩形MNPQ,使点D,E,G和H,J都落在矩形的边上.已知矩形BJIK的面积为1,正方形ACDE的面积为4,则为()A.B.C.D.17.如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点F在射线上,且与相交于点G,连接.则下列结论:①,② 的周长为 ,③;④当 时,G 是线段 的中点,其中正确的结论是( )A .①②③B .①④C .①③④D .①②③④ 18.如图,菱形ABCD 的边长为4,E 、F 分别是AB 、AD 上的点,AC 与EF 相交于点G ,若, ,则FG 的长为( )A .B .2C .3D .419.如图,在△ABC 中,∠ACB =90°,以△ABC 的各边为边分别作正方形BAHI ,正方形BCFG 与正方形CADE ,延长BG ,FG 分别交AD ,DE 于点K ,J ,连结DH ,IJ.图中两块阴影部分面积分别记为S 1,S 2.若S 1:S 2=1:4,S 四边形边BAHE =18,则四边形MBNJ 的面积为( )A.5B.6C.8D.920.如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50B.50C.100D.100二、填空题21.在四边形ABCD中,对角线AC,BD交于点O,OA=OC=OB=OD,添加一个条件使四边形ABCD是正方形,那么所添加的条件可以是(写出一个即可)22.如图,分别以Rt△ABC三边构造三个正方形,面积分别为S1,S2,S3,若S1=15,S3=39,则S2=.23.如图,在平面直角坐标系中,点A1(1,0)、A2(3,0)、A3(6,0)、A4(10,0)、……,以A1A2为对角线作第一个正方形A1C1A2B1,以A2A3为对角线作第二个正方形A2C2A3B2,以A3A4,为对角线作第三个正方形A3C3A4B3,……,顶点B1,B2,B3……都在第一象限,按照此规律依次下去,则点Bn的坐标为.24.如图,菱形ABCD的对角线,BD相交于点,,,以AB为直径作一个半圆,则图中阴影部分的面积为.25.如图,在矩形ABCD中,AB=8,AD=10,AD,AB,BC分别与⊙O相切于E,F,G三点,过D作⊙O的切线交BC于点M,切点为N,则DM的长为.26.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为的正方形四周分别放置四个边长为的小正方形,构造了一个大正方形,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作,每一个边长为的小正方形面积记作,若,则的值是.27.如图,正方形ABCD的边长为4,P是边CD上的一动点,EF⊥BP交BP于G,且EF平分正方形ABCD的面积,则线段GC的最小值是.28.正方形ABCD的边长为4,点E是BC边上的一动点,连结AE,过点B作BF⊥AE于点F,以BF为边作正方形FBHG,当点E从B运动到C时,求CF的最短距离为;线段HG扫过的面积为29.如图,在矩形ABCD中,AB=4,BC=3,将△BCD沿射线BD平移长度a(a>0)得到△B'C'D',连接AB',AD',则当△AB'D'是直角三角形时,a的长为.30.如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD边上的动点,PQ=16,以PQ 为直径的⊙O与BD交于点M,N,则MN的最大值为.三、计算题31.如图,在中,,D为的中点,,,连接交于点O.(1)证明:四边形为菱形;(2)若,,求菱形的高.32.如图,已知在矩形ABCD中,AB=6,BC=2,点E,F分别在边CD,AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形;(2)若□AFCE是菱形,求菱形AFCE的边长.四、解答题33.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.34.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D′,此时点B′恰好落在边AD上.连接B′B,若∠AB′B=75°,求旋转角及AB长.35.如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.36.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作,交CD的延长线于点G.思路二:过点A作,并截取,连接DG.思路三:延长CD至点G,使,连接AG.请选择你喜欢的一种思路证明(探究发现)中的结论.(3)(迁移应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且,,设,试用含的代数式表示DF的长.37.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).38.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边中,是边上一点(不含端点),是的外角的平分线上一点,且.求证:.点拨:如图②,作,与的延长线相交于点,得等边,连接.易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.问题:如图③,在正方形中,是边上一点(不含端点),是正方形的外角的平分线上一点,且.求证:.五、综合题39.将绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得,如图①,我们将这种变换记为.(1)如图①,对作变换得,则;直线与直线所夹的锐角为度;(2)如图②,中,,对作变换得,使点B、C、在同一直线上,且四边形为矩形,求和n的值;(3)如图③,中,,对作变换得,使点B、C、在同一直线上,且四边形为平行四边形,求和n的值. 40.如图(1)如图1,正方形ABCD与调研直角△AEF有公共顶点A,∠EAF=90°,连接BE、DF,将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,则=;β=;(2)如图2,矩形ABCD与Rt△AEF有公共顶点A,∠EAF=90°,且AD=2AB,AF=2AE,连接BE、DF,将Rt△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,请求出的值及β的度数,并结合图2进行说明;(3)若平行四边形ABCD与△AEF有公共项点A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的锐角的度数为β,则:①=;②请直接写出α和β之间的关系式.答案解析部分【解析】【解答】解:∵平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,∴A、B、C不符合题意,D符合题意.故答案为:D.【分析】根据平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,即可得出答案.【解析】【解答】解:A、∵对角线互相平分的四边形是平行四边形,而对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意.故答案为:D.【分析】利用对角线互相平分且相等的四边形是矩形,可作出判断.【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∵OA=3,∴AC=6,∴菱形ABCD的面积.故答案为:A.【分析】根据菱形的性质和直角三角形斜边上的中线定理求出对角线的长即可求出菱形的面积。

2015年中考数学复习专题复习第二十一讲矩形 菱形 正方形(含参考答案)

2015年中考数学复习专题复习第二十一讲矩形 菱形 正方形(含参考答案)

第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2014•黔南州)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°思路分析:根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2014•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是________cm.思路分析:根据菱形的对角线互相垂直且平分各角,可设较小角为x,因为邻角之和为180°,∴x+2x=180°,所以x=60°,画出其图形,根据三角函数,可以得到其中较长的对角线的长.考点三:和正方形有关的证明题例3 (2014•菏泽)已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连结MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.思路分析:(1)根据角平分线的定义求出∠CBM=∠CDN=45°,再求出∠ABM=∠ADN=135°,然后根据正方形的每一个角都是90°求出∠BAM+∠NAD=45°,三角形的一个外角等于与它不相邻的两个内角的和∠BAM+∠AMB=45°,从而得到∠NAD=∠AMB,再求出△ABM和△NDA相似,利用相似三角形对应边成比例列式求解即可;(2)过点A作AF⊥AN并截取AF=AN,连接BF、FM,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△ABF和△ADN全等,根据全等三角形对应边相等可得BF=DN,∠FBA=∠NDA=135°,再求出∠FAM=∠MAN=45°,然后利用“边角边”证明△AFM和△ANM全等,根据全等三角形对应边相等可得FM=NM,再求出△FBM是直角三角形,然后利用勾股定理判断即可.考点四:四边形综合性题目【迁移拓展】由条件AD•CE=DE•BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD 上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.【聚焦山东中考】CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.113.(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=23BE,则长AD与宽AB的比值是______ .4.(2014•日照)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC 边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.5.(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin ∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.【备考真题过关】一、选择题1.(2014•郴州)下列性质中,平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.(2014•珠海)边长为3cm的菱形的周长是()4.(2014•齐齐哈尔)如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE,下列结论:①△FBD是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为532cm;⑤AE的长为145cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个5.(2014•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.86.(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍7.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°8.(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An 分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C.n114⎛⎫⎪⎝⎭-D.1n49.(2014•本溪)如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=kx(x>0)的图象上,已知点B的坐标是(65,115),则k的值为()A.4 B.6 C.8 D .1010.(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°11.(2014•攀枝花)如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO∥12BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有()A.1个B.2个C.3个D.4个12.(2014•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(2014•桂林)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是________.14.(2014•郴州)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD 沿CE折叠后,点B落在AD边的F点上,则DF的长为________.15.(2014•宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= ________cm.16.(2014•巴中)菱形的两条对角线长分别是方程2x-14x+48=0的两实根,则菱形的面积为________.17.(2014•齐齐哈尔)已知正方形ABCD的边长为2cm,以CD为边作等边三角形CDE,cm则△ABE的面积为_____218.(2014•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是_______ (只填写序号).三、解答题第二十一讲矩形菱形正方形答案【重点考点例析】考点一:与矩形有关的折叠问题例1 解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB 和△CED 中,BAE DCE AEB CED AB CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AEB ≌△CED (AAS ), ∴BE=DE ,故C 正确; ∵得不出∠ABE=∠EBD ,∴∠ABE 不一定等于30°,故D 错误. 故选:D .考点二:和菱形有关的对角线、周长、面积的计算问题 例2 解:解:∵菱形的周长为20cm ∴菱形的边长为5cm ∵两邻角之比为1:2 ∴较小角为60° 画出图形如下所示: ∴∠ABO=30°,AB=5cm ,∵最长边为BD ,BO=AB •cos ∠ABO=5∴BD=2BO=考点三:和正方形有关的证明题∴BM •DN=AB •AD=2a ;(2)以BM ,DN ,MN 为三边围成的三角形为直角三角形.证明如下:如图,过点A 作AF ⊥AN 并截取AF=AN ,连接BF 、FM ,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF 和△ADN 中,AB AD 13AF AN ⎧⎪∠∠⎨⎪⎩===,∴△ABF ≌△ADN (SAS ),∴BF=DN ,∠FBA=∠NDA=135°,∵∠FAN=90°,∠MAN=45°,∴∠1+∠2=∠FAM=∠MAN=45°,在△AFM 和△ANM 中,AF AN FAM MANAM AM ⎧⎪∠∠⎨⎪⎩===,∴△AFM ≌△ANM (SAS ),∴FM=NM ,∴∠FBP=180°-∠FBA=180°-135°=45°,∴∠FBP+∠FBM=45°+45°=90°,∴△FBM 是直角三角形,∵FB=DN ,FM=MN ,∴以BM,DN,MN为三边围成的三角形为直角三角形.∴CF=PD-PE.【聚焦山东中考】1.C.2.A.34.(1)证明:过点F 作FG ⊥BC 于点G .∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE 和△EGF 中,12B FGE 90AE EF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△EGF (AAS ).∴AB=EG ,BE=FG .又∵AB=BC ,∴BE=CG ,∴FG=CG ,∴∠FCG=∠45°,即CF 平分∠DCG ,∴CF 是正方形ABCD 外角的平分线.(2)∵AB=3,∠BAE=30°,∠tan30°=BE AB,在Rt △CFG 中,cos45°=C G CF , ∴5.(1)证明:如图1,∵E ,F 分别是正方形ABCD 边BC ,CD 的中点, ∴CF=BE ,在Rt △ABE 和Rt △BCF 中,AB BC ABE BCF BE CF ⎧⎪∠∠⎨⎪⎩===∴Rt △ABE ≌Rt △BCF (SAS ),∠BAE=∠CBF ,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF .(2)解:如图2,根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90° ∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴222x x k 4k =-+(), ∴x=5k 2,∴sin ∠BQP= B P 2k 45k QP 52==, (3)解:∵正方形ABCD 的面积为4,∴边长为2,∵∠BAE=∠EAM ,AE ⊥BF ,∴AN=AB=2,∵∠AHM=90°,∴GN ∥HM , ∴2AGN AHM S AN ()S AM =,∴2AGN S 1=, ∴AGN 4S 5=, ∴AHM AGN GHMN 41S S S 155=-=-=四边形, ∴四边形GHMN 的面积是1 5.【备考真题过关】一、选择题1.A.2.C.3.D4.C.5.C.6.B.7.C.8.B.9.C.10.C. 11.C. 12.C. 二、填空题。

备战中考数学(华师大版)巩固复习第十九章矩形、菱形与正方形(含解析)

备战中考数学(华师大版)巩固复习第十九章矩形、菱形与正方形(含解析)

备战中考数学(华师大版)巩固复习第十九章矩形、菱形与正方形(含解析)2019备战中考数学(华师大版)巩固复习-第十九章矩形、菱形与正方形(含解析)一、单选题1.如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A. 甲、乙均正确 B. 甲、乙均错误 C. 甲正确,乙错误 D. 甲错误,乙正确2.汶川地震后,某电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()5.如图,在菱形ABCD中,AB的垂直平分线EF 交对角线AC于点F,垂足为点E,连接DF,且∠CDF=24°,则∠DAB等于()A. 102°B. 104°C. 106°D. 114°6.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4cm2B. 2cm2C. cm2D. 2cm27.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线BD的长是()A. 5B. 10C. 5D.108.若一个正方形的边长为4,则它的面积是()A. 8B. 12C. 16D. 20二、填空题9.如图,在△ABC中,AB=6cm,AC=8cm,BC=10cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是________ cm.10.如图,DE∥AC交AB于点E,DF∥AB交AC于F,∠1=∠2,四边形AEDF的形状是________.11.如图所示,E,F分别是矩形ABCD的边BC,CD上的点,用S△CEF 表示△CEF的面积,若S△CEF=3,S△ABE =4,S△ADF=5,则S△AEF=________ .12.如图,正方形ABCD的对角线长为8 ,E为AB上一点,若EF⊥A C于F,EG⊥BD于G,则EF+EG=________.13.在Rt△ABC中,AD是斜边上的高,若AB=,DC=2,则BD=________ ,AC=________14.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.15.如图,矩形 ABCD 的对角线 AC、BD 相交于点 O,DE ∥ AC,CE ∥ BD,若 BD = 5,则四边形 DOCE 的周长为________.16.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC= ;③当0<t≤10时,y= t2;④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是________.三、解答题17.如图,在Rt△ABC中,∠ACB=90°,过点C 的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.18.如图,四边形ABCD是正方形,点E是AB边上的点,BE=1.将△BCE绕点C顺时针旋转90°得到△DCF.已知EF=2.求正方形ABCD的边长.19.如图,矩形ABCD中,AC与BD相交于点O.若AO=3,∠OBC=30°,求矩形的周长和面积.四、综合题20.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1∶2,周长是32cm.求:(1)两条对角线的长度;(2)菱形的面积.21.菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.(1)如图1,当∠ABC=90°时,△OEF的形状是________;(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;(3)在(1)的条件下,将∠MON的顶点移到AO 的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且= 时,直接写出线段CE的长.22.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=________;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是________;(整点指横坐标、纵坐标都为整数的点)(2)如图2,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF 是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是________.23.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4),一次函数的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM 的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.答案解析部分一、单选题1.【答案】A【考点】菱形的判定【解析】【解答】根据菱形的判定定理及性质可得甲、乙的做好均正确.【分析】根据菱形的判定定理即可得出答案。

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。

2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)

2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)

第3题图A. 20 °B.302020年中考数学一轮专项复习一一矩形、菱形、正方形课时1 矩形■基础过关1. (2019重庆模拟)下列关于矩形对角线的说法中,正确的是 ( )A.对角线相互垂直B.面积等于对角线乘积的一半C.对角线平分一组对角D.对角线相等2 . (2019临沂)如图,在?ABCD 中,M, N 是BD 上两点,个条件,使四边形 AMCN 是矩形,这个条件是()B. MB= MOD. / AMB = Z CNDBM = DN,连接 AM, MC , CN, NA.添加一1A. OM =2ACC. BD± AC3 .如图,将矩形纸片 数为( )ABCD 沿BD 折叠,得到△ BCD, CD 与AB 交于点E.若/1 = 35°,则/ 2的度第2题图5.如图,矩形 ABCD 中,A (-2, 0), B (2, 0), C (2, 2),将AB 绕点A 旋转,使点 B 落在边CD 上的点E 处,则点E 的坐标为()B. (2击,2) D. (2^3-2, 2)4. (2019贵阳模拟)如图,在矩形ABCD ( ) ABCD 中,AE 平分/ BAD,交边BC 于点E,若ED=5, EC=3,则A. 11B. 14C. 22D. 28A.(a 2) C. (1 ,6.如图,在矩形ABCD 中,对角线 AC 与BD 相交于点 O,过点A 作BD 的垂线,垂足为E.已知/ EAD= 3/BAE,则/ EAO 的度数为(A . 22.5B. 67.5C. 45°D. 60°7 . (2020原创)如图,点O 是矩形 则^ BOE 的周长为()ABCD 对角线 AC 的中点,OE // AB 交AD 于点E.若AB=6, BC=8,A. 10B. 8 + 2^5C. 8+2^13D. 14E第4题图第5题图4第6题图10.(人教八下P55练习2题)如图,?ABCD的对角线AC、BD交于点O, △ OAB是等边三角形,AB =4.(1)求证:四边形ABCD是矩形;(2)求四边形ABCD的面积.8. (2018遵义)如图,点P是矩形ABCD的对角线AC上一点, 点E, F,连接PB、PD.若AE=2, PF = 8.则图中阴影部分的面积为过点P作EF // BC,分别交AB, CD于A. 10 8.12 C. 16D. 189.(2019徐州)如图,矩形ABCD中,AC、BD交于点O, M、N分别为BC、OC的中点,若MN = 4, 则AC的长为第7题图第8题图第9题图第10题图11 . (2019怀化)已知:如图,在?ABCD中,AEXBC, CFXAD, E, F分别为垂足.⑴求证:△ ABE^A CDF ;(2)求证:四边形AECF是矩形.第11题图12 . (2019连云港)如图,在^ ABC中,AB = AC>AABC沿着BC方向平移得到△ DEF ,其中点E在边BC上,DE 与AC相交于点O.(1)求证:△ OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.第12题图1 . (2019台州)如图,有两张矩形纸片 ABCD 和EFGH, AB=EF =2 cm, BC = FG=8 cm 把纸片 ABCD 交叉叠放在纸片 EFGH 上,使重叠部分为平行四边形,且点 D 与点G 重合,当两张纸片交叉所成的角 “最 小时,tan a 等于()2 .如图,在矩形 ABCD 中,AB = 4, BC = 6, E 是矩形内部的一个动点,且 AEXBE,则线段CE 的最 小值为.A.B. 2C. 187D.8_15;1 DB EC F第1题图第2题图立满分冲关1. (2019眉山模拟)如图,在矩形ABCD中,E是AD边的中点,BEXAC,垂足为点F,连接DF ,分析下列四个结论:① CF = 3AF;②AB=DF;③DF = ^BC;④S四边形CDEF^S MBF.其中正确白结论有( )第1题图A . 1个B,2个C,3个D,4个【错误结论纠正】请将错误结论改正确.2 .如图,在矩形ABCD中,ZBAC=30°,对角线AC, BD交于点O, / BCD的平分线CE分别交AB, BD于点E, H,连接OE.(1)求/ BOE的度数;(2)若BC=1,求^ BCH的面积;(3)求S A CHO :S^BHE的值.H E第2题图课时2菱形(建议时间:40分钟)名■基础过关1. (2019玉林)菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2. (2019 河北)如图,菱形ABCD 中,/ D= 150°,则/ 1 =()A.30 °B. 25 °C. 20 °D. 15 °DB第2题图3. (2019襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C, D两点,连接AC, BC, AD, BD,则四边形ADBC一定是()A.正方形B.矩形第3题图4. (2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2 2B. 2 . 5C. 4 2D. 2 . 105. (2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC± BDB.AB = ADC.AC= BDD./ ABD = Z CBD,4第5题图6 . (2019赤峰)如图,菱形ABCD的周长为20,对角线AC、BD相交于点O, E是CD的中点,则OE 的长是()A. 2.5B. 3第6题图7. (2019天津)如图,四边形ABCD 为菱形,A, B两点的坐标分别是(2, 0), (0, 1),点C, D在坐标轴上,则菱形ABCD的周长等于(y6D第7题图A. 5B.4 3C.4 5D. 208 . (2019永州)如图,四边形ABCD的对角线相交于点O,且点。

九年级数学中考复习课题矩形、菱形、正方形AB组习题专题课后训练分层练习B组提高题含答案解析

九年级数学中考复习课题矩形、菱形、正方形AB组习题专题课后训练分层练习B组提高题含答案解析

九年级数学中考复习课题矩形、菱形、正方形AB组习题专题课后训练分层练习B组提高题含答案解析A组1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分D.对角线相等解:矩形的性质有:①矩形的对边相等且平行,①矩形的对角相等,且都是直角,①矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,①菱形的对角相等,①菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;①矩形具有而菱形不一定具有的性质是对角线相等,故选D.3.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC 和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直D.相等且互相平分解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;①原四边形对角线互相垂直,所得的四边形是矩形;①原四边形对角线既相等又垂直,所得的四边形是正方形;①原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.4.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm解:如图:①菱形ABCD中BD=8cm,AC=6cm,①OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.5.如图,菱形纸片ABCD,①A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则①DEC等于75度.解:连接BD,①四边形ABCD为菱形,①A=60°,①①ABD为等边三角形,①ADC=120°,①C=60°,①P为AB的中点,①DP为①ADB的平分线,即①ADP=①BDP=30°,①①PDC=90°,①由折叠的性质得到①CDE=①PDE=45°,在①DEC中,①DEC=180°﹣(①CDE+①C)=75°.故答案为:75.6.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.解:如图,连接CE,,设DE=x,则AE=8﹣x,①OE①AC,且点O是AC的中点,①OE是AC的垂直平分线,①CE=AE=8﹣x,在Rt①CDE中,x2+42=(8﹣x)2解得x=3,①DE的长是3.故答案为:3.7.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,①1=15°,则①2=30°.解:①四边形ABCD是矩形,①①ABC=①BAD=90°,OB=OD,OA=OC,AC=BD,①OB=OC,OB=OA,①①OCB=①OBC,①AB=BE,①ABE=90°,①①BAE=①AEB=45°,①①1=15°,①①OCB=①AEB﹣①EAC=45°﹣15°=30°,①①OBC=①OCB=30°,①①AOB=30°+30°=60°,①OA=OB,①①AOB是等边三角形,①AB=OB,①①BAE=①AEB=45°,①AB=BE,①OB=BE,①①OEB=①EOB,①①OBE=30°,①OBE+①OEB+①BEO=180°,①①OEB=75°,①①AEB=45°,①①2=①OEB﹣①AEB=30°,故答案为:30°.8.如图,在Rt①ABC中,①ACB=90°,D为AB的中点,AE①CD,CE①AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.证明:(1)①在Rt①ABC中,①ACB=90°,D为AB中点,①CD=AB=AD,又①AE①CD,CE①AB①四边形ADCE是平行四边形,①平行四边形ADCE是菱形;(2)在Rt①ABC中,AC===8.①平行四边形ADCE是菱形,①CO=OA,又①BD=DA,①DO是①ABC的中位线,①BC=2DO.又①DE=2DO,①BC=DE=6,①S菱形ADCE===24.B组9.如图:点P是Rt①ABC斜边AB上的一点,PE①AC于E,PF①BC于F,BC=15,AC=20,则线段EF的最小值为()A.12B.6C.12.5D.25解:如图,连接CP.①①C=90°,AC=3,BC=4,①AB===25,①PE①AC,PF①BC,①C=90°,①四边形CFPE是矩形,①EF=CP,由垂线段最短可得CP①AB时,线段EF的值最小,此时,S①ABC=BC•AC=AB•CP,即×20×15=×25•CP,解得CP=12.故选A.10.如图,在菱形ABCD中,①BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则①CDF为()A.80°B.70°C.65°D.60°解:如图,连接BF,在①BCF和①DCF中,①CD=CB,①DCF=①BCF,CF=CF①①BCF①①DCF①①CBF=①CDF①FE垂直平分AB,①BAF=×80°=40°①①ABF=①BAF=40°①①ABC=180°﹣80°=100°,①CBF=100°﹣40°=60°①①CDF=60°.故选D.11.如图,在菱形ABCD中,①A=110°,E,F分别是边AB和BC的中点,EP①CD于点P,则①FPC的度数为()A.55°B.50°C.45°D.35°解:延长PF交AB的延长线于点G.如图所示:在①BGF与①CPF中,,①①BGF①①CPF(ASA),①GF=PF,①F为PG中点.又①由题可知,①BEP=90°,①EF=PG,①PF=PG,①EF=PF,①①FEP=①EPF,①①BEP=①EPC=90°,①①BEP﹣①FEP=①EPC﹣①EPF,即①BEF=①FPC,①四边形ABCD为菱形,①AB=BC,①ABC=180°﹣①A=70°,①E,F分别为AB,BC的中点,①BE=BF,①BEF=①BFE=(180°﹣70°)=55°,①①FPC=55°;故选:A.12.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,①1=15°,则①2=30°.解:①四边形ABCD是矩形,①①ABC=①BAD=90°,OB=OD,OA=OC,AC=BD,①OB=OC,OB=OA,①①OCB=①OBC,①AB=BE,①ABE=90°,①①BAE=①AEB=45°,①①1=15°,①①OCB=①AEB﹣①EAC=45°﹣15°=30°,①①OBC=①OCB=30°,①①AOB=30°+30°=60°,①OA=OB,①①AOB是等边三角形,①AB=OB,①①BAE=①AEB=45°,①AB=BE,①OB=BE,①①OEB=①EOB,①①OBE=30°,①OBE+①OEB+①BEO=180°,①①OEB=75°,①①AEB=45°,①①2=①OEB﹣①AEB=30°,故答案为:30°.13.(2019•绍兴)如图,在直线AP上方有一个正方形ABCD,①P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则①ADE的度数为15°或45°.【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.解:①四边形ABCD是正方形,①AD=AE,①DAE=90°,①①BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,①①ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,①①AE′M为等边三角形,①①E′AM=60°,①①DAE′=360°﹣120°﹣90°=150°,①AD=AE′,①①ADE′=15°,故答案为:15°或45°.14.如图:在①ABC中,CE、CF分别平分①ACB与它的邻补角①ACD,AE①CE于E,AF①CF 于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断①ABC的形状,直接写出结果,不用说明理由.(1)证明:①AE①CE于E,AF①CF于F,①①AEC=①AFC=90°,又①CE、CF分别平分①ACB与它的邻补角①ACD,①①BCE=①ACE,①ACF=①DCF,①①ACE+①ACF=(①BCE+①ACE+①ACF+①DCF)=×180°=90°,①三个角为直角的四边形AECF为矩形.(2)结论:MN①BC且MN=BC.证明:①四边形AECF为矩形,①对角线相等且互相平分,①NE=NC,①①NEC=①ACE=①BCE,①MN①BC,又①AN=CN(矩形的对角线相等且互相平分),①N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则M1N是①ABC的中位线,MN①BC,而MN①BC,M1即为点M,所以MN是①ABC的中位线(也可以用平行线等分线段定理,证明AM=BM)①MN=BC;法二:延长MN至K,使NK=MN,因为对角线互相平分,所以AMCK是平行四边形,KC①MA,KC=AM因为MN①BC,所以MBCK是平行四边形,MK=BC,所以MN=BC(3)解:①ABC是直角三角形(①ACB=90°).理由:①四边形AECF是菱形,①AC①EF,①EF①AC,①AC①CB,①①ACB=90°.即①ABC是直角三角形.15.如图,在①ABC中,①ABC=90°,BD为AC的中线,过点C作CE①BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.(1)证明:①①ABC=90°,BD为AC的中线,①BD=AC,①AG①BD,BD=FG,①四边形BGFD是平行四边形,①CF①BD,①CF①AG,又①点D是AC中点,①DF=AC,①BD=DF;(2)证明:①BD=DF,①四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,①在Rt①ACF中,①CFA=90°,①AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,①四边形BDFG的周长=4GF=20.。

中考数学_专项_矩形、菱形、正方形考点及题型

中考数学_专项_矩形、菱形、正方形考点及题型

【中考数学】矩形、菱形、正方形的5大考点及题型汇总矩形、菱形、正方形是八年级下册特殊平行四边形这一章节的重要组成部分。

他们都是基于平行四边形的性质衍生出来的其基本的性质都和平行四边形是一样的。

所以大家在进行学习和记忆的时候只需要紧抓其特殊部分,就能把他们都区分出来。

熟练掌握矩形,菱形,正方形的性质,定义和判定是这部分学习的重点,同时这部分也是中考数学几何部分的重要考点。

只有把这些性质和判定融会贯通。

那么在遇到综合题或者是类似题型的几何才能应对自如,尽快的形成自己的解题思路。

今天就给大家分享初中数学矩形、菱形、正方形的5大考点及题型,同学们赶紧来查漏补缺。

一、矩形、菱形、正方形的性质1.矩形的性质①具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形是轴对称图形,它有两条对称轴;⑤直角三角形斜边上的中线等于斜边的一半。

2.菱形的性质①具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴;⑤菱形的面积=底×高=对角线乘积的一半。

3.正方形的性质: 正方形具有平行四边形,矩形,菱形的一切性质①边:四边相等,对边平行;②角:四个角都是直角;③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;④正方形是轴对称图形,有四条对称轴。

例1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.360 B.90C.270 D.180例2 如图,矩形ABCD中,AE⊥BD于点E,对角线AC与BD相交于点O,BE:ED =1:3,AB=6cm,求AC的长。

例3 如图, O是矩形ABCD 对角线的交点, AE平分∠BAD,∠AOD=120°,求∠AEO 的度数。

例4 菱形的周长为40cm,两邻角的比为1:2,则较短对角线的长________ 。

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【苏教版】中考数学精编专题汇编专题1平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【江苏省南京市中考二模】下列命题中假命题是( ) A 、两组对边分别相等的四边形是平行四边形 B 、两组对角分别相等的四边形是平行四边形C 、一组对边平行一组对角相等的四边形是平行四边形D 、一组对边平行一组对边相等的四边形是平行四边形D 、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确. 故选D .【考点定位】命题与定理.2.【江苏省江阴市中考】如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于( )A.2B.3C.4D.5 【答案】C.B【解析】已知菱形ABCD ,根据菱形的性质可得AB=BC=8,OB=OD ,又因E 是CD 的中点,所以OE 为△DBC 的中位线,根据三角形的中位线定理可得OE=BC=4.故选C. 【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市中考】如图,▱ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB 【答案】C .【考点定位】平行四边形的性质.4.【江苏省徐州市中考】如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )【考点定位】菱形的性质.215. 【江苏省徐州市中考模拟】15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .【答案】AC=BD .【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市中考模拟】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD 沿射线BD 方向平移,在平移的过程中,当点B的移动距离为时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC1D 1为菱形.【解析】当点B 的移动距离为时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市中考】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市中考】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于 cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省中考模拟】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市中考】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.专题2 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市九年级上学期期末】如图,⊙O 中,OA ⊥BC ,∠A OB=52°,则∠ADC 的度数为( )A .36°B .26°C . 38°D .46°【答案】D . 【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市九年级下学期期中】一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A . B.C .D .【答案】C.【解析】根据圆锥的侧面积公式S=πrl 可得这个圆锥的侧面积为π×1×4=4π.故选C. 【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区中考】如图,⊙O 上A 、B 、C 三点,若∠B=50,∠A=20°,则∠AOB 等于( ) A 、30° B 、50° C 、70° D 、60°【答案】D .2π12π4π8π【解析】先根据圆周角定理得出∠ACB=∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-∠AOB-50°,解得∠AOB=60°.故选D .【考点定位】圆周角定理.4.【江苏省南通市九年级上学期期末】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm . A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市中考一模】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,AB=5,∴∠A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =×BO ×AB-.故答案为:121212625π312605360π⨯536225π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州中考】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m. 【答案】6.【考点定位】圆锥的计算.7.【江苏省中考】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 . 【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市中考二模】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴AD=12cm ,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC 的内切圆半径为r ,∴AO=12-r ,∴(12-r )2-r 2=64,解得r=.故答案为:. 【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州中考一模】如图所示,D 是以AB 为直径的半圆O 上的一点,C 是弧AD 的中点,点M 在AB 上,AD 与CM 交于点N ,CN=AN .625π103103103(1)求证:CM⊥AB;(2)若BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市中考】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.专题3 图形的变换、视图与投影学校:___________姓名:___________班级:___________1. 【江苏省苏州市中考一模】下列腾讯QQ表情中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的概念求解.A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【考点定位】轴对称图形.2.【江苏省徐州市中考模拟】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【考点定位】1.中心对称图形;2.轴对称图形.3. 【江苏省淮安市中考】如图所示物体的主视图是()A. B. C. D.【答案】C.【考点定位】简单组合体的三视图.4.【江苏省常州市中考】下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【答案】B.故选B.【考点定位】轴对称图形.5.【江苏省常州市中考】将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【答案】8cm2 .故答案为:8cm 2.【考点定位】1.翻折变换(折叠问题);2.最值问题.6.【江苏省江阴市中考】如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN的长为【答案】 4. 【解析】 故答案为:4.【考点定位】翻折变换;勾股定理. 7.【江苏省苏州市区中考】在R t △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π).【答案】.【解析】将△ABC 绕点B 旋转60°,顶点C 运动的路线长是就是以点B 为圆心,B C 为半径所旋转的弧,根据弧长公式即可求得.∵AB=4,∴BC=2,所以弧长=.故答案为:. 【考点定位】1.弧长的计算;2.旋转的性质.8.【江苏省扬州市2015年中考数学试题】如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = 23π602180π⨯=23π23π【答案】5【考点定位】旋转的性质9.【江苏省徐州市中考】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.【答案】(1)画图见解析;(2)画图见解析;△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)2.5π.【解析】试题解析:(1)如图所示:.(2)如图所示:△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)过点O作OE⊥AB,线段AB2﹣π()2=5π﹣2.5π=2.5π. 【考点定位】1.作图-旋转变换;2.扇形面积的计算;3.作图-轴对称变换.10.【江苏省南京市中考二模试题】△ABC 中,AB=AC=10,BC=12,矩形DEFG 中,EF=4,FG >12.(1)如图①,点A 是FG 的中点,FG ∥BC ,将矩形DEFG 向下平移,直到DE 与BC 重合为止.要研究矩形DEFG 与△ABC 重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B 与F 重合,E 、B 、C 在同一直线上,将矩形DEFG 向右平移,直到点E 与C 重合为止.设矩形DEFG 与△ABC 重叠部分的面积为y ,平移的距离为x .①求y 与x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与x 的大致图象,并在图象上标注出关键点坐标.2【考点定位】几何变换综合题.。

中考数学复习----《正方形的判定》知识点总结与专项练习题(含答案解析)

中考数学复习----《正方形的判定》知识点总结与专项练习题(含答案解析)

中考数学复习----《正方形的判定》知识点总结与专项练习题(含答案解析)知识点总结1.直接判定:四条边都相等,四个角都是直角的四边形是正方形。

2.利用平行四边形判定:一组邻边相等且有一个角是直角的平行四边形是正方形。

(定义判定)3.利用菱形与矩形判定:①有一个角是直角的菱形是正方形。

②对角线相等的菱形是正方形。

③邻边相等的矩形是正方形。

④对角线相互垂直的矩形是正方形。

练习题1、(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.4【分析】根据题意作出合适的辅助线,然后逐一分析即可.【解答】解:连接AC,MN,且令AC,MN,BD相交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.2、(2022•滨州)下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】根据,平行四边形,矩形,菱形,正方形的判定方法一一判断即可.【解答】解:A、对角线互相垂直的四边形是平行四边形,是假命题,本选项不符合题意;B、有一个角是直角的四边形是矩形,是假命题,本选项不符合题意;C、对角线互相平分的四边形是菱形,是假命题,本选项不符合题意;D、对角线互相垂直的矩形是正方形,是真命题,本选项符合题意.故选:D.3、(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC =150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有(填上所有正确结论的序号).【分析】①利用SAS证明△EFB≌△ACB,得出EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;根据两边分别相等的四边形是平行四边形得出四边形ADFE是平行四边形,即可判断结论①正确;②当∠BAC=150°时,求出∠EAD=90°,根据有一个角是90°的平行四边形是矩形即可判断结论②正确;③先证明AE=AD,根据一组邻边相等的平行四边形是菱形即可判断结论③正确;④根据正方形的判定:既是菱形,又是矩形的四边形是正方形即可判断结论④正确.【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.。

(完整)年中考数学专题复习第二十一讲矩形-菱形-正方形(含详细参考答案)

(完整)年中考数学专题复习第二十一讲矩形-菱形-正方形(含详细参考答案)

B.2 7
C. 5
D.10
3. (2018?大连) 如图,菱形 ABCD 中,对角线 AC ,BD 相交于点 O,若 AB=5,
AC=6 ,则 BD 的长是( )
A.8
B.7
C. 4
D.3
4. (2018?贵阳) 如图,在菱形 ABCD 中, E 是 AC 的中点, EF∥ CB,交 AB 于 点 F,如果 EF=3,那么菱形 ABCD 的周长为( )
21.(2018?盐城) 在正方形 ABCD 中,对角线 BD 所在的直线上有两点 E、F 满足 BE=DF,连接 AE、 AF、 CE、 CF,如图所示. ( 1)求证: △ABE ≌△ ADF; ( 2)试判断四边形 AECF 的形状,并说明理由.
或 600 时,利用等边三角形或直角三角形的相关知识解决的题目】
三、正方形:
1、定义:有一组邻边相等的
是正方形,或有一个角是直角的

正方形
2、性质:⑴正方形四个角都
都是
角,
⑵正方形四边条都
⑶正方形两对角线


每条对角线平分一
组内角
3、判定:⑴先证是矩形,再证
⑵先证是菱形,再证
【名师提醒: 1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特
使平行
18. ( 2018?株洲) 如图,矩形 ABCD 的对角线 AC 与 BD 相交点 O,AC=10,P、
Q 分别为 AO 、AD 的中点,则 PQ 的长度为

19.(2018?武汉)以正方形 ABCD 的边 AD 作等边 △ADE ,则∠ BEC 的度数是 .
三、解答题 20. (2018?柳州) 如图,四边形 ABCD 是菱形,对角线 AC, BD 相交于点 O, 且 AB=2 . ( 1)求菱形 ABCD 的周长; ( 2)若 AC=2,求 BD 的长.

2024年中考数学二轮复习模块专练—矩形和菱形(含答案)

2024年中考数学二轮复习模块专练—矩形和菱形(含答案)

2024年中考数学二轮复习模块专练—矩形和菱形(含答案)一、矩形1.矩形的性质(1)矩形具有平行四边形的所有性质;(2)矩形的特殊性质:四个角都是直角,对角线相等,矩形是轴对称图形;2.矩形的判定(1)直接判定:三个角是直角的四边形是矩形;(2)在平行四边形的基础上判定有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;二、菱形1.菱形的性质(1)菱形具有平行四边形的所有性质;(2)菱形的特殊性质:四条边都相等,对角线垂直,每条对角线平分一组对角,菱形的面积等于对角线乘积的一半,菱形是轴对称图形;2.菱形的判定(1)直接判定:四条边相等的四边形是菱形;(2)在平行四边形的基础上判定有一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形;《义务教育数学课程标准》2022年版,学业质量要求:1.理解矩形和菱形的概念;试卷第2页,共12页2.探索并证明矩形和菱形的性质定理和判定定理;3.理解矩形和菱形之间的关系;【例1】(2023·辽宁丹东·统考中考真题)1.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,60ABD ∠=︒,AE BD ⊥,垂足为点E ,F 是OC 的中点,连接EF,若EF =,则矩形ABCD 的周长是()A.B.4+C.8D.8【变1】(2022·四川巴中·统考中考真题)2.如图,▱ABCD 中,E 为BC 边的中点,连接AE 并延长交DC 的延长线于点F ,延长EC 至点G ,使CG =CE ,连接DG 、DE 、FG.(1)求证:△ABE ≌△FCE ;(2)若AD =2AB ,求证:四边形DEFG是矩形.【例1】(2023·山东聊城·统考中考真题)3.如图,在ABCD Y 中,BC 的垂直平分线EO 交AD 于点E ,交BC 于点O ,连接BE ,CE ,过点C 作CF BE ∥,交EO 的延长线于点F ,连接BF .若8AD =,5CE =,则四边形BFCE 的面积为..【变1】(2023·内蒙古·统考中考真题)4.如图,在菱形ABCD 中,对角线,AC BD 相交于点O ,点,P Q 分别是边BC ,线段OD 上的点,连接,,AP QP AP 与OB 相交于点E .(1)如图1,连接QA .当QA QP =时,试判断点Q 是否在线段PC 的垂直平分线上,并说明理由;(2)如图2,若90APB ∠=︒,且BAP ADB ∠=∠,①求证:2AE EP =;②当OQ OE =时,设EP a =,求PQ 的长(用含a 的代数式表示).【例1】(2023·湖北随州·统考中考真题)5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,,DE AC CE BD .(1)求证:四边形OCED 是菱形;(2)若32BC DC ==,,求四边形OCED 的面积.试卷第4页,共12页【变1】(2023·黑龙江·统考中考真题)6.如图,在平面直角坐标系中,菱形AOCB 的边OC 在x 轴上,60AOC ∠=︒,OC 的长是一元二次方程24120x x --=的根,过点C 作x 轴的垂线,交对角线OB 于点D ,直线AD 分别交x 轴和y 轴于点F 和点E ,动点M 从点O 以每秒1个单位长度的速度沿OD 向终点D 运动,动点N 从点F 以每秒2个单位长度的速度沿FE 向终点E 运动.两点同时出发,设运动时间为t秒.(1)求直线AD 的解析式.(2)连接MN ,求MDN △的面积S 与运动时间t 的函数关系式.(3)点N 在运动的过程中,在坐标平面内是否存在一点Q .使得以A ,C ,N ,Q 为项点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.一、选择题(2023·湖北襄阳·统考中考真题)7.如图,矩形ABCD 的对角线相交于点O ,下列结论一定正确的是()A .AC 平分BAD ∠B .AB BC =C .AC BD =D .AC BD ⊥(2023·湖南·统考中考真题)8.如图,菱形ABCD 中,连接AC BD ,,若120∠=︒,则2∠的度数为()A .20︒B .60︒C .70︒D .80︒(2023·河北·统考中考真题)9.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A .42︒B .43︒C .44︒D .45︒(2023·四川德阳·统考中考真题)10.如图,ABCD Y 的面积为12,6AC BD ==,AC 与BD 交于点O .分别过点C ,D 作BD ,AC 的平行线相交于点F ,点G 是CD 的中点,点P 是四边形OCFD 边上的动点,则PG 的最小值是()A .1B .32C .32D .3(2023·浙江绍兴·统考中考真题)】11.如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在试卷第6页,共12页整个过程中,四边形1212E E F F 形状的变化依次是()A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形12.如图,在矩形ABCD 中,对角线,AC BD 交于点O ,4AB =,B C =,垂直于BC 的直线MN 从AB 出发,沿BC当直线MN 与CD 重合时停止运动,运动过程中MN 分别交矩形的对角线,AC BD 于点E ,F ,以EF 为边在MN 左侧作正方形EFGH ,设正方形EFGH 与AOB 重叠部分的面积为S ,直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是()A.B.C.D .二、填空题(2023·四川内江·统考中考真题)13.出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD 中,5AB =,12AD =,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF AC ⊥,EG BD ⊥,垂足分别为点F ,G ,则EF EG +=.(2023·山东滨州·统考中考真题)14.如图,矩形ABCD 的对角线,AC BD 相交于点O ,点,E F 分别是线段,OB OA 上的点.若,5,1,3AE BF AB AF BE ====,则BF 的长为.(2023·甘肃武威·统考中考真题)15.如图,菱形ABCD 中,60DAB ∠=︒,BE AB ⊥,DF CD ⊥,垂足分别为B ,D ,若6cm AB =,则EF =cm .(2023·山东济南·统考中考真题)16.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,试卷第8页,共12页折痕CP 交AD 于点P .若30ABC ∠=︒,2AP =,则PE 的长等于.三、解答题(2023·湖南怀化·统考中考真题)17.如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F.(1)证明:BOF DOE ≌△△;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.(2023·山东青岛·统考中考真题)18.如图,在ABCD Y 中,BAD ∠的平分线交BC 于点E ,DCB ∠的平分线交AD 于点F ,点G ,H 分别是AE 和CF的中点.(1)求证:ABE CDF △≌△;(2)连接EF .若EF AF =,请判断四边形GEHF 的形状,并证明你的结论.(2023·黑龙江大庆·统考中考真题)19.如图,在平行四边形ABCD 中,E 为线段CD 的中点,连接AC ,AE ,延长AE ,BC 交于点F ,连接DF ,90ACF ∠=︒.(1)求证:四边形ACFD 是矩形;(2)若13CD =,5CF =,求四边形ABCE 的面积.(2023·贵州·统考中考真题)20.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AE BD ,DE BA ∥,AE 与DE 相交于点E.下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE CD ⊥.小红:由题目的已知条件,若连接CE ,则可证明CE DE =.(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若23CB AD AC ==,求AC 的长.(2023·湖南湘西·统考中考真题)21.如图,四边形ABCD 是平行四边形,BM DN ,且分别交对角线AC 于点M ,N ,连接,MD BN .试卷第10页,共12页(1)求证:DMN BNM ∠=∠;(2)若BAC DAC ∠=∠.求证:四边形BMDN 是菱形.(2023·四川广安·统考中考真题)22.如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x -,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N.(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.(2023·山东烟台·统考中考真题)23.【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C 为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.经过推理、计算可求出线段CQ 的长.请你任选其中一种方案求线段CQ 的长.(2023·湖北恩施·统考中考真题)24.如图,在矩形ABCD 中,点E 是AD 的中点,将矩形ABCD 沿BE 所在的直线折叠,C D ,的对应点分别为C ',D ¢,连接AD '交BC '于点F .(1)若70DED '∠=︒,求DAD '∠的度数;''的形状,并说明理由.(2)连接EF,试判断四边形C D EF试卷第12页,共12页参考答案:1.D【分析】根据矩形的性质得出OA OB =,即可求证ABO 为等边三角形,进而得出点E 为OB中点,根据中位线定理得出2BC EF ==易得30CBD ∠=︒,求出tan 4CD BC BCD =⋅∠=,即可得出矩形的周长.【详解】解:∵四边形ABCD 是矩形,∴OA OB =,∵60ABD ∠=︒,∴ABO 为等边三角形,∵AE BD ⊥,∴点E 为OB 中点,∵F 是OC 的中点,若EF =,∴2BC EF ==∵60ABD ∠=︒,∴30CBD ∠=︒,∴tan 43CD BC BCA =⋅∠=⨯=,∴矩形ABCD 的周长()()2248BC CD =+==,故选:D .【点睛】矩形主要考查了矩形的性质,等边三角形的判定和性质,中位线定理,解直角三角形,解题的关键是掌握矩形的对角线相等,等边三角形三线合一,三角形的中位线平行于第三边且等于第三边的一半,以及解直角三角形的方法和步骤.2.(1)见解析答案第2页,共42页【分析】(1)由平行四边形的性质推出∠EAB =∠CFE ,利用AAS 即可判定△ABE ≌△FCE ;(2)先证明四边形DEFG 是平行四边形,【详解】(1)证明:∵四边形ABCD 是平行四边形,再证明DF =EG ,即可证明四边形DEFG 是矩形.∴AB CD ,∴∠EAB =∠CFE ,又∵E 为BC 的中点,∴EC =EB ,∴在△ABE 和△FCE 中,EAB CFE BEA CEF EC EB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCE (AAS);(2)证明:∵△ABE ≌△FCE ,∴AB =CF ,∵四边形ABCD 是平行四边形,∴AB =DC ,∴DC =CF ,又∵CE =CG ,∴四边形DEFG 是平行四边形,∵E 为BC 的中点,CE =CG ,又∵AD =BC =EG =2AB ,DF =CD +CF =2CD =2AB ,∴DF =EG ,∴平行四边形DEFG 是矩形.【点睛】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE ≌△FCE 是解题的关键.3.24【分析】根据平行线的性质可得BEO CFO ∠=∠,根据垂直平分线的性质可得BO CO =,90BOE COF ∠=∠=︒,根据全等三角形的判定和性质可得BE CF =,OE OF =,根据平行四边形的判定和菱形的判定可推得四边形BFCE 为菱形,根据勾股定理求得3OE =,根据菱形的性质即可求得四边形BFCE 的面积.【详解】∵CF BE ∥,∴BEO CFO ∠=∠,∵BC 的垂直平分线EO 交AD 于点E ,∴BO CO =,90BOE COF ∠=∠=︒,∴BOE COF ≌,∴BE CF =,OE OF =,∴四边形BFCE 为平行四边形,又∵OE OF =,BO CO =,90BOE COF ∠=∠=︒,∴平行四边形BFCE 为菱形,∵8AD =,∴8BC =,答案第4页,共42页∴142OC BC ==,在Rt EOC △中,3OE ===,故菱形BFCE 的面积为111282324222BC EF BC EO ⨯⨯=⨯⨯=⨯⨯⨯=,故答案为:24.【点睛】本题考查了平行线的性质,垂直平分线的性质,全等三角形的判定和性质,平行四边形的判定,菱形的判定和性质,勾股定理,熟练掌握以上判定和性质是解题的关键.4.(1)点Q 在线段PC 的垂直平分线上(2)①证明见解析,②=PQ 【分析】(1)根据菱形的性质及垂直平分线的判定证明即可;(2)①根据菱形的性质得出AB BC CD DA ===,再由各角之间的关系得出30BAP ABD CBD ∠=∠=∠=︒,由含30度角的直角三角形的性质求解即可;③连接QC .利用等边三角形的判定和性质得出2,3AE a AP a ==,再由正切函数及全等三角形的判定和性质及勾股定理求解即可.【详解】(1)解:如图,点Q 在线段PC 的垂直平分线上.理由如下:连接QC .∵四边形ABCD 是菱形,对角线,AC BD 相交于点O ,,BD AC OA OC⊥=∴QA QC ∴=.QA QP = ,QC QP ∴=,∴点Q 在线段PC 的垂直平分线上.(2)①证明:如图,∵四边形ABCD 是菱形,AB BC CD DA ∴===,ABD ADB ∴∠=∠,CBD CDB ∠=∠,BD AC ⊥ ,ADO CDO ∴∠=∠,ABD CBD ADO ∴∠=∠=∠.BAP ADB ∠=∠ ,BAP ABD CBD ∴∠=∠=∠.AE BE ∴=,90APB ∠=︒ ,90BAP ABP ∴∠+∠=︒,30BAP ABD CBD ∴∠=∠=∠=︒.在Rt BPE △中,90,30EPB PBE ∠=︒∠=︒ ,12EP BE ∴=.AE BE = .12EP AE ∴=,2AE EP ∴=;答案第6页,共42页②如图,连接QC .,60AB BC ABC =∠=︒ ,∴ABC 是等边三角形.∵90APB ∠=︒,∴BP CP EP a ==,,2,3AE a AP a∴==在Rt APB 中,90APB ∠=︒,tan AP ABP BP ∠=,BP ∴=.CP BP ∴==AO CO = ,,AOE COQ OE OQ ∠=∠=,AOE COQ ∴△≌△,2,AE CQ a EAO QCO ∴==∠=∠.AE CQ ∴∥,90APB ∠=︒ ,90QCP ∴∠=︒.在Rt PCQ △中,90QCP ∠=︒,由勾股定理得222PQ PC CQ =+,2222)(2)7PQ a a ∴=+=PQ ∴=.【点睛】题目主要考查菱形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质及解直角三角形,理解题意,综合运用这些知识点是解题关键.5.(1)见解析(2)3【分析】(1)先根据矩形的性质求得OC OD =,然后根据有一组邻边相等的平行四边形是菱形分析推理;(2)根据矩形的性质求得OCD 的面积,然后结合菱形的性质求解.【详解】(1)解:∵ DE AC CE BD ∥,∥,∴四边形OCED 是平行四边形,又∵矩形ABCD 中,OC OD =,∴平行四边形OCED 是菱形;(2)解:矩形ABCD 的面积为326BC DC ⋅=⨯=,∴OCD 的面积为13642⨯=,∴菱形OCED 的面积为3232⨯=.【点睛】本题考查矩形的性质、菱形的判定,属于中考基础题,掌握矩形的性质和菱形的判答案第8页,共42页定方法,正确推理论证是解题关键.6.(1)y x =+(2)2290292t t t S t t -+≤≤⎪=⎨⎪-+-≤⎪⎩;(3)存在,点Q的坐标是3,22⎛⎫ ⎪ ⎪⎝⎭或(.【分析】(1)过点A 作AH OC ⊥于H ,解方程可得6OC =,然后解直角三角形求出CD 、OH 和AH 的长,得到点A 、D 的坐标,再利用待定系数法求出解析式即可;(2)首先证明EOD △是等边三角形,求出DO DF ==,然后分情况讨论:①当点N 在DF 上,即0t ≤≤过点N 作NP OB ⊥于P ,②当点N 在DE 上,即t <≤过点N 作NT OB ⊥于T ,分别解直角三角形求出NP 和NT ,再利用三角形面积公式列式即可;(3)分情况讨论:①当AN 是直角边时,则CN EF ⊥,过点N 作NK CF ⊥于K ,首先求出CN ,然后解直角三角形求出CK 和NK ,再利用平移的性质得出点Q 的坐标;②当AN 是对角线时,则90ACN ∠=︒,过点N 作NL CF ⊥于L ,证明∠=∠NCF NFC ,可得3CL FL ==,然后解直角三角形求出NL ,再利用平移的性质得出点Q 的坐标.【详解】(1)解:解方程24120x x --=得:16x =,22x =-,∴6OC =,∵四边形AOCB 是菱形,60AOC ∠=︒,∴6OA OC ==,1302BOC AOC ∠=∠=︒,∴tan 3063CD OC =⋅︒=⨯∴(6,D ,过点A 作AH OC ⊥于H ,∵60AOH ∠=︒,∴132OH OA ==,sin 606AH OA =⋅︒=⨯,∴(A ,设直线AD 的解析式为()0y kx b k =+≠,代入(A,(6,D得:36k b k b ⎧+=⎪⎨+=⎪⎩解得:k b ⎧=⎪⎨⎪=⎩∴直线AD的解析式为y x =+(2)解:由(1)知在Rt COD中,CD =30DOC ∠=︒,∴2OD CD ==90903060EOD DOC ∠=︒-∠=︒-︒=︒,∵直线3y x =-+y 轴交于点E ,∴OE =,∴OE OD =,∴EOD △是等边三角形,∴60OED EDO BDF ∠=∠=∠=︒,ED OD ==∴30OFE DOF ∠=︒=∠,∴DO DF ==答案第10页,共42页①当点N 在DF上,即0t ≤≤由题意得:DM OD OM t =-=,2DN t =,过点N 作NP OB ⊥于P ,则()sin sin 604262NP DN PDN DN t =⋅∠=⋅︒=⨯=-,∴()()21169222S DM NP t t t =⋅=-=-+;②当点N 在DE上,即t <≤时,由题意得:DM OD OM t =-=,2DN t =-过点N 作NT OB ⊥于T ,则(sin sin 60246NT DN NDT DN t =⋅∠=⋅︒=-⨯,∴()21169222S DM NT t t t =⋅=--=-+-综上,22909t t S t t -+≤≤=⎨⎪+-≤⎪⎩;(3)解:存在,分情况讨论:①如图,当AN 是直角边时,则CN EF ⊥,过点N 作NK CF ⊥于K ,∵30NFC ∠=︒,OE =,∴60NCK ∠=︒,12OF ==,∴1266CF =-=,∴132CN CF ==,∴13cos 60322CK CN =⋅︒=⨯=,sin 60322NK CN =⋅︒=⨯=,∴将点N 向左平移32个单位长度,再向下平移2个单位长度得到点C ,∴将点A 向左平移32Q ,∵(A ,∴3,22Q ⎛⎫ ⎪ ⎪⎝⎭;②如图,当AN 是对角线时,则90ACN ∠=︒,过点N 作NL CF ⊥于L ,∵OA OC =,60AOC ∠=︒,∴AOC 是等边三角形,∴60ACO ∠=︒,∴180609030NCF NFC ∠=︒-︒-︒=︒=∠,∴132CL FL CF ===,∴tan 303NL CL =⋅︒=,∴将点C 向右平移3N ,∴将点A 向右平移3Q ,∵(A,∴(6,Q;∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是32⎛⎝⎭或(.【点睛】本题考查了解一元二次方程,菱形的性质,解直角三角形,待定系数法的应用,等边三角形的判定和性质,含30︒直角三角形的性质,二次函数的应用,矩形的判定和性质以及平移的性质等知识,灵活运用各知识点,作出合适的辅助线,熟练掌握数形结合思想与分类讨论思想的应用是解题的关键.7.C【分析】根据矩形的对角线相等,以及矩形与菱形性质的区别判断即可.【详解】解:由矩形ABCD的对角线相交于点O,根据矩形的对角线相等,可得AC BD=.故选:C.【点睛】本题主要考查了矩形的性质,关键是掌握矩形的性质.8.C【分析】根据菱形的性质可得,BD AC AB CD⊥∥,则1,290ACD ACD∠=∠∠+∠=︒,进而即可求解.【详解】解:∵四边形ABCD是菱形答案第12页,共42页∴,BD AC AB CD ⊥∥,∴1,290ACD ACD ∠=∠∠+∠=︒,∵120∠=︒,∴2902070∠=︒-︒=︒,故选:C .【点睛】本题考查了菱形的性质,熟练掌握是菱形的性质解题的关键.9.C【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .答案第14页,共42页【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.10.A【分析】先证明OC OD =,四边形OCFD 是菱形,如图,连接OF ,GP ,而点G 是CD 的中点,可得G 为菱形对角线的交点,OF CD ⊥,当GP CF ⊥时,GP 最小,再利用等面积法求解最小值即可.【详解】解:∵ABCD Y ,6AC BD ==,∴ABCD Y 是矩形,∴OC OD =,∵OC DF ∥,DO CF ∥,∴四边形OCFD 是菱形,如图,连接OF ,GP ,而点G 是CD的中点,∴G 为菱形对角线的交点,OF CD ⊥,∴当GP CF ⊥时,GP 最小,∵ABCD Y 即矩形ABCD 的面积为12,6AC BD ==,∴3OC OD ==,11234OCD S =⨯= ,∴26OCD OCFD S S == 菱形,∴13642CGF S =⨯= ,由菱形的性质可得:3CF =,∴13322GP ⨯⨯=,∴1GP =,即GP 的最小值为1.故选A【点睛】本题考查的是平行四边形的性质,矩形的性质与判定,菱形的判定与性质,垂线段最短的含义,理解题意,利用数形结合的方法解题是关键.11.A【分析】根据题意,先证四边形1212E E F F 是平行四边形,再判断特殊位置(,,E F O 三点重合时,,E F 分别为,OD OB 的中点时,当,F E 分别与,D B 重合时)四边形1212E E F F 的形状,即可求解.【详解】解:∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB =,∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==,∴1221E F E F =,∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒,答案第16页,共42页∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥,∴1221E F E F ∥,∴四边形1212E E F F 是平行四边形;如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===,即1212E E E F =,∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD中,2,AB AD ==连接AE ,AO ,∵602ABO BO AB ,∠=︒==,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE ==根据对称性可得1AE AE ==∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形,∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选A .答案第18页,共42页【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.12.B【分析】求出MN 在O 点左侧时的两段图象,即可得出结论.【详解】解:当MN 在O 点左侧,即:2t <时:①当正方形EFGH 的边GH 在AOB的外部时,重叠部分为矩形,如图:设,HE FG 分别交AB 于点,I K ,∵垂直于BC 的直线MN 从AB 出发,沿BC∴IE FK ==,∵在矩形ABCD 中,4AB =,B C =∴8AC ==,∴4OA OB AB ===,∴ABO 为等边三角形,∴60OAB OBA ∠=∠=︒,∴tan 60AI BK IE t ==÷︒=,∴42IK t =-,∴()242S IK IE t =⋅=-=-+,图象为开口向下的一段抛物线;②当正方形EFGH 的边GH 在AOB 的内部时,与AOB 重叠部分即为正方形EFGH ,如图:由①可知:42EF IK t ==-,∴()242S t =-,图象是一段开口向上的抛物线;当MN 过点O 时,即2t =时,,E F 重合,此时,0S =;综上:满足题意的只有B 选项,故选B .【点睛】本题考查动点的函数图象问题.解题的关键是确定动点的位置,利用数形结合和分类讨论的思想进行求解.13.6013##8413【分析】连接OE ,根据矩形的性质得到12BC AD ==,AO CO BO DO ===,90ABC ∠=︒,根据勾股定理得到13AC ==,求得132OB OC ==,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,四边形ABCD 是矩形,90ABC ∴∠=︒,12BC AD ==,AO CO BO DO ===,答案第20页,共42页5AB = ,12BC =,13AC ∴==,132OB OC ∴==,111115121522222BOC BOE COE ABC S S S OB EG OC EF S ∴=+=⨯⋅+⋅==⨯⨯⨯= ,∴113113113()15222222EG EF EG EF ⨯+⨯=⨯+=,6013EG EF ∴+=,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14【分析】过点,A B 分别作,BD AC 的垂线,垂足分别为,N M ,等面积法证明AM BN =,进而证明Rt Rt AME BNF ≌,Rt Rt AMB BNA ≌,根据全等三角形的性质得出ME FN =,BM AN =,根据已知条件求得1EM =,进而勾股定理求得,AM AE ,进而即可求解.【详解】解:如图所示,过点,A B 分别作,BD AC 的垂线,垂足分别为,N M,∵四边形ABCD 是矩形,∴BC AD =,∵11,22ABC ABD S AB BC S AB AD =⨯=⨯ ,∴=ABC ABD S S ,∴1122AC BN BD AM ⨯=⨯,∴AM BN =,∵BF AE =,∴Rt Rt AME BNF≌∴ME FN=设ME FN =x=在Rt ,Rt AMB BNA 中,AB BA AM BN=⎧⎨=⎩∴Rt Rt AMB BNA≌∴BM AN =,∴BE ME AF FN-=+∴31x x-=+解得:1x =∴2BM AN ==在Rt ABM 中,AM ===在Rt AME △中,AE ===∴BF AE =.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.15.【分析】根据菱形的性质,含30︒直角三角形的性质,及三角函数即可得出结果.【详解】解:在菱形ABCD 中,60DAB ∠=︒,答案第22页,共42页160,302DAB DCB BAC DAC DCF DAB ∴∠=∠=︒∠=∠=∠=∠=︒,DF CD ⊥Q ,90DFC ∴∠=︒,9060DFC DCF ∴∠=︒-∠=︒,在Rt CDF △中,12DF CF =,603030,ADF DFC DAF ∠=∠-∠=︒-︒=︒Q ,FAD ADF ∴∠=∠11,23AF DF CF AC ∴===同理,13CE AC =,13EF AC AF CE AC ∴=--=,12EF AE ∴=,在Rt ABE △中,cos 30AB AE ===︒12EF AE ∴==故答案为:【点睛】本题考查了菱形的性质,含30︒直角三角形的性质,及三角函数等知识,熟练掌握菱形的性质是解题的关键.16【分析】过点A 作AQ PE ⊥于点Q ,根据菱形性质可得75DAC ∠=︒,根据折叠所得30E D ∠=∠=︒,结合三角形的外角定理得出45QAP ∠=︒,最后根据cos 45PQ AP =⋅︒=tan 30AQ EQ ==︒【详解】解:过点A 作AQ PE ⊥于点Q ,∵四边形ABCD 为菱形,30ABC ∠=︒,∴AB BC CD AC ===,30ABC D ∠=∠=︒,∴()118030752DAC ∠=︒-︒=︒,∵CPE △由CPD △沿CP 折叠所得,∴30E D ∠=∠=︒,∴753045EPA ∠=︒-︒=︒,∵AQ PE ⊥,2AP =,∴cos 45PQ AP =⋅︒=AQ PQ ==,∴tan 30AQ EQ ==︒∴PE EQ PQ =+=.【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.17.(1)见解析(2)见解析【分析】(1)根据矩形的性质得出AD BC ∥,则12,34∠=∠∠=∠,根据O 是BD 的中点,可得BO DO =,即可证明()AAS BOF DOE ≌△△;(2)根据BOF DOE ≌△△可得ED BF =,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.答案第24页,共42页【详解】(1)证明:如图所示,∵四边形ABCD 是矩形,∴AD BC ∥,∴12,34∠=∠∠=∠,∵O 是BD 的中点,∴BO DO =,在BOF 与DOE 中1234BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS BOF DOE ≌△△;(2)∵BOF DOE≌△△∴ED BF =,又∵ED BF∥∴四边形EBFD 是平行四边形,∵EF BD⊥∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.18.(1)见解析(2)矩形,证明见解析【分析】(1)由平行四边形的性质得出AD BC ∥,AB CD =,BAD DCB ∠=∠,B D ∠=∠,证出DAE AEB ∠=∠,DFC BCF ∠=∠,由ASA 证明BAE DCF ≌△△,即可得出结论;(2)由全等三角形的性质得出AE CF =,AEB DFC =∠∠,证出AE CF ∥,由已知得出GE FH ∥,GE FH =,即可证出四边形FGEH 是平行四边形.【详解】(1)解:证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AB CD =,BAD DCB ∠=∠,B D ∠=∠,∴DAE AEB ∠=∠,DFC BCF ∠=∠,∵BAD ∠和DCB ∠的平分线AE 、CF 分别交BC 、AD 于点E 、F ,∴12BAE DAE BAD ∠=∠=∠,12BCF DCF DCB ∠=∠=∠,∴BAE DCF ∠=∠,在BAE 和DCF 中,B D AB CD BAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BAE DCF ≌ .(2)证明:∵BAE DCF ≌△△,∴AE CF =,AEB DFC =∠∠,∴AEB BCF ∠=∠,∴AE CF ∥,∵点G 、H 分别为AE 、CF 的中点,∴GE FH ∥,GE FH =,答案第26页,共42页∴四边形FGEH 是平行四边形∵EF AF =,G 为AE 的中点,∴GF AE ⊥,∴四边形FGEH 是矩形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定与性质;熟练掌握平行四边形的性质与判定,证明三角形全等是解决问题的关键.19.(1)证明,见解析(2)45【分析】(1)根据平行四边形的性质,得AD BC ∥,根据平行线的性质,得DAF AFC ∠=∠,ADC DCF ∠=∠;再根据E 为线段CD 的中点,全等三角形的判定,则ADE FCE ≅△△,根据矩形的判定,即可;(2)过点E 作EG AC ⊥于点G ,根据勾股定理,求出DF 的长,再根据四边形ABCE 的面积等于ABC AEC S S + ,即可.【详解】(1)∵四边形ABCD 是平行四边形,∴AD BC ∥,∴DAF AFC ∠=∠,ADC DCF ∠=∠,∵E 为线段CD 的中点,∴DE CE =,∴ADE FCE ≅△△,∴AE EF =,∴四边形ACFD 是平行四边形,∵90ACF ∠=︒,∴平行四边形ACFD 是矩形.(2)过点E 作EG AC ⊥于点G ,∵四边形ABCD 是平行四边形,∴AD BC =,∵四边形ACFD 是矩形,∴AD CF =,∴5AD BC CF ===,∵13CD =,∴12DF ==,∴四边形ABCE 的面积等于ABC AEC S S + ,∵111253022ABC S AC BC =⨯⨯=⨯⨯= ,12ACE S AC GE =⨯⨯ ,∵点E 是对角线的中心,∴1522GE AD ==,∴1151215222ACE S AC GE =⨯⨯=⨯⨯= ,∴平行四边形ABCD 的面积为:301545+=.【点睛】本题考查矩形,平行四边形,全等三角形的知识,解题的关键是矩形的判定和性质,平行四边形的判定和性质,全等三角形的判定和性质.答案第28页,共42页20.(1)见解析(2)【分析】(1)选择小星的说法,先证四边形AEDB 是平行四边形,推出AE BD =,再证明四边形AEBC 是矩形,即可得出BE CD ⊥;选择小红的说法,根据四边形AEBC 是矩形,可得CE AB =,根据四边形AEDB 是平行四边形,可得DE AB =,即可证明CE DE =;(2)根据BD CB =,23CB AC =可得43CD AC =,再用勾股定理解Rt ACD △即可.【详解】(1)证明:①选择小星的说法,证明如下:如图,连接BE,AE BD ,DE BA ∥,∴四边形AEDB 是平行四边形,∴AE BD =,BD CB =,∴AE CB =,又 AE BD ,点D 在CB 的延长线上,∴AE CB ∥,∴四边形AEBC 是平行四边形,又 90C ∠=︒,∴四边形AEBC 是矩形,∴BE CD ⊥;②选择小红的说法,证明如下:如图,连接CE ,BE ,由①可知四边形AEBC 是矩形,∴CE AB =,四边形AEDB 是平行四边形,∴DE AB =,∴CE DE =.(2)解:如图,连接AD ,BD CB =,23CB AC =,∴243CD CB AC AC ==,∴43CD AC =,在Rt ACD △中,222AD CD AC =+,∴(22243AC AC ⎛⎫=+ ⎪⎝⎭,解得AC =答案第30页,共42页即AC的长为【点睛】本题考查平行四边形的判定与性质,矩形的判定与性质,勾股定理等,解题的关键是掌握平行四边形和矩形的判定方法.21.(1)见解析(2)见解析【分析】(1)连接BD ,交AC 于点O ,证明BOM DON ≌△△,推出四边形BMDN 为平行四边形,得到BN DM ,即可得证;(2)先证明四边形ABCD 是菱形,得到AC BD ⊥,进而得到MN BD ⊥,即可得证.【详解】(1)证明:连接BD ,交AC 于点O,∵四边形ABCD 是平行四边形,∴OB OD =,∵BM DN ,∴MBO NDO ∠=∠,又BOM DON ∠=∠,∴BOM DON ≌△△,∴BM DN =,∴四边形BMDN 为平行四边形,∴BN DM ,∴DMN BNM ∠=∠;(2)∵四边形ABCD 是平行四边形,∴BC AD ∥,∴BCA DAC ∠=∠,∵BAC DAC ∠=∠,∴BAC BCA ∠=∠,∴AB BC =,∴四边形ABCD 是菱形,∴AC BD ⊥,∴MN BD ⊥,∴平行四边形BMDN 是菱形.【点睛】本题考查平行四边形的判定和性质,菱形的判定和性质.熟练掌握相关知识点,是解题的关键.22.(1)223y x x =+-(2)ABCN S 四边形最大值为758,此时302P ⎛⎫- ⎪⎝⎭,(3)()01Q -,或()01Q -或(01Q --,【分析】(1)先根据二次函数对称轴公式求出2b =,再把()10B ,代入二次函数解析式中进行求解即可;(2)先求出()30A -,,()03C -,,则4AB =,3OC =,求出直线AC 的解析式为3y x =--,设()0P m ,,则()3M m m --,,()223N m m m +-,,则23MN m m =--;再由ABC ACN ABCN S S S =+△△四边形得到23375228ABCN S m ⎛⎫=-++ ⎪⎝⎭四边形,故当32m =-时,ABCN S 四边形最大,答案第32页,共42页最大值为758,此时点P 的坐标为302⎛⎫- ⎪⎝⎭;(3)分如图3-1,图3-2,图3-3,图3-4,图3-5,图3-6所示,MC 为对角线和边,利用菱形的性质进行列式求解即可.【详解】(1)解:∵二次函数2y x bx c =++的对称轴为直线=1x -,∴12b -=-,∴2b =,∵二次函数经过点()10B ,,∴210b c ++=,即120c ++=,∴3c =-,∴二次函数解析式为223y x x =+-;(2)解:∵二次函数经过点()10B ,,且对称轴为直线=1x -,∴()30A -,,∴4AB =,∵二次函数223y x x =+-与y 轴交于点C ,∴()03C -,,∴3OC =;设直线AC 的解析式为y kx b '=+,∴303k b b ''-+=⎧⎨=-⎩,∴13k b =-⎧⎨=-'⎩,∴直线AC 的解析式为3y x =--,设()0P m ,,则()3M m m --,,()223N m m m +-,,∴()223233MN m m m m m =---+-=--;∵1143622ABC S AB OC =⋅=⨯⨯= ,∴ABC ACNABCN S S S =+△△四边形ABC AMN CMNS S S =++△△△11622AP MN OP MN =⋅+⋅+()213362m m =⨯--+23375228m ⎛⎫=-++ ⎪⎝⎭,∵302-<,∴当32m =-时,ABCN S 四边形最大,最大值为758,∴此时点P 的坐标为302⎛⎫- ⎪⎝⎭;(3)解:设()0P m ,,则()3M m m --,,()223N m m m +-,,∵PM x ⊥轴,∴PM y ∥轴,即MN CQ ∥,∴MN CQ 、是以M 、N C Q 、、为顶点的菱形的边;如图3-1所示,当MC 为对角线时,∵3OA OC ==,。

多边形证明(复习讲义)(三角形、平行四边形、矩形、正方形、菱形)(解析)-中考数学重难点题型专题汇总

多边形证明(复习讲义)(三角形、平行四边形、矩形、正方形、菱形)(解析)-中考数学重难点题型专题汇总

题型四--多边形证明(三角形、平行四边形、矩形、正方形、菱形)(复习讲义)【考点总结|典例分析】考点01三角形全等及性质一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形5.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).6.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.7.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.8.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.四、等边三角形(1)定义:三条边都相等的三角形是等边三角形.(2)性质:等边三角形的各角都相等,并且每一个角都等于60°.(3)判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.五、直角三角形与勾股定理9.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.10.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .2.如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E.求证:∠A =∠D .【答案】证明:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF ,∴△ABC≌△DEF(SAS),∴∠A =∠D .3.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.4.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.【答案】证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE =BC .5.(2022·浙江省杭州市)如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM 上,EF ⊥AC 于点F ,连接CM ,CE.已知∠A =50°,∠ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.【答案】(1)证明:∵∠ACB =90°,点M 为边AB 的中点,∴MC =MA =MB ,∴∠MCA =∠A ,∠MCB =∠B ,∵∠A =50°,∴∠MCA =50°,∠MCB =∠B =40°,∴∠EMC =∠MCB +∠B =80°,∵∠ACE =30°,∴∠MEC =∠A +∠ACE =50°,∴∠MEC =∠EMC ,∴CE =CM ;(2)解:∵AB =4,∴CE =CM =12AB =2,∵EF ⊥AC ,∠ACE =30°,∴FC =CE ⋅cos30°=3.6.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.7.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE.(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒ ,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒ ,60ACB ∠=︒∴,CE BC = ,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC = ,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠,在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒.三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.8.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出∠ADE ,再利用平行线的性质求出∠ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1) BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2) 65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.9.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.【答案】见解析【分析】由,⊥⊥DE AC DF AB 得出90DEC DFB ∠=∠=︒,由SAS 证明DEC DFB ≌,得出对应角相等即可.【详解】证明:∵,⊥⊥DE AC DF AB ,∴90DEC DFB ∠=∠=︒.在DEC 和DFB △中,,,,DE DF DEC DFB CE BF =⎧⎪∠=∠⎨⎪=⎩∴DEC DFB ≌,∴B C ∠=∠.【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.10.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.考点02相似六、相似三角形的判定及性质11.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.12.性质(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.13.判定(1)有两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.【方法技巧】判定三角形相似的几条思路:(1)条件中若有平行线,可采用相似三角形的判定(1);(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.七、相似多边形14.定义对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.15.性质(1)相似多边形的对应边成比例;(2)相似多边形的对应角相等;(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.八、位似图形16.定义如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.27.性质(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或–k ;(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.18.找位似中心的方法将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.19.画位似图形的步骤(1)确定位似中心;(2)确定原图形的关键点;(3)确定位似比,即要将图形放大或缩小的倍数;(4)作出原图形中各关键点的对应点;(5)按原图形的连接顺序连接所作的各个对应点.11.(2021·云南中考真题)如图,在ABC 中,点D ,E 分别是,BC AC 的中点,AD 与BE 相交于点F ,若6BF ,则BE 的长是______.【答案】9【分析】根据中位线定理得到DE=12AB,DE∥AB,从而证明△DEF∽△ABF,得到12DE EFAB BF==,求出EF,可得BE.【详解】解:∵点D,E分别为BC和AC中点,∴DE=12AB,DE∥AB,∴△DEF∽△ABF,∴12 DE EFAB BF==,∵BF=6,∴EF=3,∴BE=6+3=9,故答案为:9.【点睛】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明△DEF∽△ABF.12.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AE AC的值.【分析】由平行线得三角形相似,得出AB•DE,进而求得AB,DE,再由相似三角形求得结果.【解析】∵BC∥DE,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC ,即4AB =DE 4=AE AC ,∴AB •DE =16,∵AB+DE =10,∴AB =2,DE =8,∴AE AC =DE BC =84=2,故答案为:2.13.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH =⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,∴DEH FEH ∠=∠,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.14.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE ﹣DE =2EC ,记∠BAF =α,∠FAE =β,求tan α+tan β的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC =x ,证明△ABF ∽△FCE ,可得AB CF =BF EC ,由此即可解决问题.(3)首先证明tan α+tan β=BF AB +EF AF =BF AB +CF AB =BF+CF AB =BC AB ,设AB =CD =a ,BC =AD =b ,DE =x ,解直角三角形求出a ,b 之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB+∠EFC =90°,∠EFC+∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF ∽△FCE .(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF==2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)2=a−x∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=考点03多边形十、多边形20.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.21.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2360°. 22.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.15.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.16.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是()A .72°B .36°C .74°D .88°【答案】A【分析】根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒-︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.17.(2021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B.对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C.过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D.三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.18.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.19.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯-=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.20.(2021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒-︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.21.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2)×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2)×180°”考点04平行四边形十一、平行四边形的性质23.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“ ”表示.24.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.25.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.26.平行四边形中的几个解题模型(1)如图①,AE 平分∠BAD ,则可利用平行线的性质结合等角对等边得到△ABE 为等腰三角形,即AB=BE .(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB ;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD ≌△COB,△AOB ≌△COD ;根据平行四边形的中心对称性,可得经过对称中心O 的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE ≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E 为AD 上一点,根据平行线间的距离处处相等,可得S △BEC =S △ABE +S △CDE .(4)如图④,根据平行四边形的面积的求法,可得AE ·BC=AF ·CD .十二、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.十三、矩形的性质与判定27.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S △ABD =4S △AOB .(如图)28.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.十四、菱形的性质与判定29.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.30.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.十五、正方形的性质与判定31.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;=4S△AOB.(3)面积=边长×边长=2S△ABD32.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.十六、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等(8)有三个角都是直角.十七、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4.22.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.23.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.24.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD ,∠ADC=∠ABC ,根据SAS 证明△BEC ≌△DFC ,可得CE=CF .【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.25.(2021·四川自贡市·中考真题)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE ,AB ∥CD ,故四边形DEBF 是平行四边形,即可得到答案.【详解】∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,又E 、F 分别是边AB 、CD 的中点,∴DF=BE ,又AB ∥CD ,∴四边形DEBF 是平行四边形,∴DE=BF .考点:1.矩形的性质;2.全等三角形的判定.26.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.。

中考数学复习专题20 矩形(解析版)

中考数学复习专题20 矩形(解析版)

专题20 矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

2.矩形的性质:(1)矩形的四个角都是直角;(2)矩形的对角线平分且相等。

3.矩形判定定理:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形。

4.矩形的面积:S矩形=长×宽=ab【例题1】(2019广西桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则ADAB的值为()A.65B.2C.32D.3【答案】B【解析】由折叠可得,AE OE DE==,CG OG DG==,E∴,G分别为AD,CD的中点,设2CD a=,2AD b=,则2AB a OB==,DG OG CG a===,3BG a=,2BC AD b==,90C∠=︒,Rt BCG∴∆中,222CG BC BG+=,即222(2)(3)a b a+=,专题知识回顾专题典型题考法及解析222b a ∴=, 即2b a =,∴2b a =,∴AD AB的值为2 【例题2】(2019贵州省安顺市) 如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点D 为斜边BC 上的一个动点,过D 分别作DM ⊥AB 于点M ,作DN ⊥AC 于点N ,连接MN ,则线段MN 的最小值为 .【答案】512 【解析】连接AD ,即可证明四边形AMDN 是矩形;由矩形AMDN 得出MN =AD ,再由三角形的面积关系求出AD 的最小值,即可得出结果.连接AD ,如图所示:∵DM ⊥AB ,DN ⊥AC ,∴∠AMD =∠AND =90°,又∵∠BAC =90°,∴四边形AMDN 是矩形;∴MN =AD ,∵∠BAC =90°,AB =3,AC =4,∴BC =5,当AD ⊥BC 时,AD 最短,此时△ABC 的面积=21BC •AD =21AB •AC , ∴AD 的最小值=125AB AC BC ⋅=, ∴线段MN 的最小值为512。

2021中考数学真题分类专题19 矩形菱形正方形(共42题含解析)

2021中考数学真题分类专题19 矩形菱形正方形(共42题含解析)

专题18矩形菱形正方形(共42题)一、单选题1.(2021·四川成都市·中考真题)如图,四边形ABCD是菱形,点E,F分别在,BC DC边上,添加以下条件不能判定ABE ADF≌的是()A.BE DF=B.BAE DAF∠=∠C.AE AD=D.AEB AFD∠=∠2.(2021·四川遂宁市·中考真题)如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE 沿DE翻折,点C恰好落在AB边上的F处,则CE的长是()A.1B.43C.32D.533.(2021·重庆中考真题)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O做ON△OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B2C.2D.24.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)下列命题是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形6.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH 的值为( )A .32B .2C .3107D .3557.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+ 8.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A .60°B .65°C .75°D .80°9.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B .3C .2D .5210.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52B 95C .3D 6511.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形12.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD的值为( )A .12B .22C .32D .33二、填空题13.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;△车轮做成圆形,应用了“圆是中心对称图形”;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;△地板砖可以做成矩形,应用了“矩形对边相等”.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 的中点,点F 在CD 上,且CF =3BF ,AE ,BF 相交于点G ,则AGF 的面积是________.15.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.16.(2021·江苏扬州市·中考真题)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.17.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.18.(2021·山东泰安市·中考真题)如图,将矩形纸片ABCD 折叠(AD AB >),使AB 落在AD 上,AE 为折痕,然后将矩形纸片展开铺在一个平面上,E 点不动,将BE 边折起,使点B 落在AE 上的点G 处,连接DE ,若DE EF =,2CE =,则AD 的长为________.19.(2021·江苏连云港市·中考真题)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.20.(2021·四川南充市·中考真题)如图,点E 是矩形ABCD 边AD 上一点,点F ,G ,H 分别是BE ,BC ,CE 的中点,3AF =,则GH 的长为________.21.(2021·四川凉山彝族自治州·中考真题)菱形ABCD 中,对角线10, 24AC BD ==,则菱形的高等于___________.22.(2021·重庆中考真题)如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,12AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)23.(2021·四川遂宁市·中考真题)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:△ABF DBE ∠=∠;△ABF DBE ∽;△AF BD ⊥;△22BG BH BD =;△若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)24.(2021·湖北十堰市·中考真题)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为_______.25.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).26.(2021·湖北黄冈市·中考真题)如图,正方形ABCD 中,1AB =,连接AC ,ACD ∠的平分线交AD 于点E ,在AB 上截取AF DE =,连接DF ,分别交CE ,AC 于点G ,H ,点P 是线段GC 上的动点,PQ AC ⊥于点Q ,连接PH .下列结论:△CE DF ⊥;△DE DC AC +=;△3EA AH =;△PH PQ +的最小值是22.其中所有正确结论的序号是_____.27.(2021·湖南衡阳市·中考真题)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从---,点Q的运O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O A D O ---.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如动路线为O C B O-段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为__________图2所示,当点P在A D厘米.28.(2021·湖南株洲市·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,△和CBD为“大三斜”组共十三只(图△中的“様”和“隻”为“样”和“只”).图△为某蝶几设计图,其中ABD件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线∠=︒,则DCPADQDQ对称,连接CP、DP.若24∠=___________度.29.(2021·江苏苏州市·中考真题)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若5DF =,则对角线BD 的长为______.(结果保留根号)30.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形△的边BC 及四边形△的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.三、解答题31.(2021·四川广安市·中考真题)如图,四边形ABCD 是菱形,点E 、F 分别在边AB 、AD 的延长线上,且BE DF =.连接CE 、CF .求证:CE CF =.32.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且22AD =,求四边形AFDE 的面积.33.(2021·浙江金华市·中考真题)已知:如图,矩形ABCD 的对角线,AC BD 相交于点O ,120,2BOC AB ∠=︒=.(1)求矩形对角线的长.(2)过O 作OE AD ⊥于点E ,连结BE .记ABE α∠=,求tan α的值.34.(2021·江苏连云港市·中考真题)如图,点C 是BE 的中点,四边形ABCD 是平行四边形. (1)求证:四边形ACED 是平行四边形;(2)如果AB AE =,求证:四边形ACED 是矩形.35.(2021·四川凉山彝族自治州·中考真题)如图,在四边形ABCD 中,90ADC B ∠=∠=︒,过点D 作DE AB ⊥于E ,若DE BE =.(1)求证:DA DC =;(2)连接AC 交DE 于点F ,若30,6ADE AD ∠=︒=,求DF 的长.36.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.37.(2021·四川自贡市·中考真题)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.⨯的正方形网格中,网格线的交点称为格点,B在格点上,38.(2021·浙江嘉兴市·中考真题)如图,在77每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.∠是锐角,E是BC边上的动点,将射线39.(2021·浙江丽水市·中考真题)如图,在菱形ABCD中,ABCAE 绕点A 按逆时针方向旋转,交直线CD 于点F .(1)当AE BC EAF ABC ,时,△求证:AE AF =;△连结BD EF ,,若25EF BD =,求ABCD AEF菱形SS的值; (2)当12EAF BAD ∠=∠时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连结AC MN ,,若42AB AC ==,,则当CE 为何值时,AMN 是等腰三角形.40.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.41.(2021·四川眉山市·中考真题)如图,在等腰直角三角形ABC 中,90ACB ∠=︒,25AC BC ==边长为2的正方形DEFG 的对角线交点与点C 重合,连接AD ,BE .(1)求证:≌ACD BCE ;(2)当点D 在ABC 内部,且90ADC ∠=︒时,设AC 与DG 相交于点M ,求AM 的长; (3)将正方形DEFG 绕点C 旋转一周,当点A 、D 、E 三点在同一直线上时,请直接写出AD 的长.42.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.AC于点P,N(如图3),MN,PN存在一定的数[探究3]在探究2的条件下,射线DB分别交'AD,'量关系,并加以证明.2021年中考数学真题分项汇编【全国通用】专题18矩形菱形正方形(共42题)一、单选题1.(2021·四川成都市·中考真题)如图,四边形ABCD 是菱形,点E ,F 分别在,BC DC 边上,添加以下条件不能判定ABE ADF ≌的是( )A .BE DF =B .BAE DAF ∠=∠C .AE AD = D .AEB AFD ∠=∠【答案】C【分析】 根据三角形全等判定定理SAS 可判定A ,三角形全等判定定理AAS 可判定B ,三角形全等判定定理可判定C ,三角形全等判定定理AAS 可判定D 即可.【详解】解: △四边形ABCD 是菱形,△AB =AD ,△B =△D ,A . 添加BE DF =可以,在△ABE 和△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE ADF ≌(SAS ),故选项A 可以;B .添加 BAE DAF ∠=∠可以,在△ABE 和△ADF 中BAE DAF B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △ABE ADF ≌(AAS );故选项B 可以;C . 添加AE AD =不可以,条件是边边角故不能判定;故选项C 不可以;D . 添加AEB AFD ∠=∠可以,在△ABE 和△ADF 中BEA DFA B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △ABE ADF ≌(SAS ).故选项D 可以;故选择C .【点睛】本题考查添加条件判定三角形全等,菱形性质,掌握三角形全等判定定理,菱形性质是解题关键. 2.(2021·四川遂宁市·中考真题)如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是( )A .1B .43C .32D .53【答案】D【分析】 设CE =x ,则BE =3-x 由折叠性质可知,EF =CE =x ,DF =CD =AB =5,所以AF =4,BF =AB -AF =5-4=1,在Rt △BEF中,由勾股定理得(3-x )2+12=x 2,解得x 的值即可.【详解】解:设CE =x ,则BE =3-x ,由折叠性质可知,EF =CE =x ,DF =CD =AB =5在Rt △DAF 中,AD =3,DF =5,△AF =22534-=,△BF =AB -AF =5-4=1,在Rt △BEF 中,BE 2+BF 2=EF 2,即(3-x )2+12=x 2,解得x =53, 故选:D .【点睛】本题考查了与矩形有关的折叠问题,熟练掌握矩形的性质以及勾股定理是解题的关键.3.(2021·重庆中考真题)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 做ON △OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B 2C .2D .2【答案】C【分析】 先证明()MAO NDO ASA ≅,再证明四边形MOND 的面积等于,DAO 的面积,继而解得正方形的面积,据此解题.【详解】解:在正方形ABCD 中,对角线BD △AC ,90AOD ∴∠=︒ON OM ⊥90MON ∴∠=︒AOM DON ∴∠=∠又45,MAO NDO AO DO ∠=∠=︒=()MAO NDO ASA ∴≅MAO NDO S S ∴=四边形MOND 的面积是1,1DAO S ∴=∴正方形ABCD 的面积是4,24AB ∴=2AB ∴=故选:C .【点睛】本题考查正方形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.4.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心【答案】C【分析】根据中点的定义,直角三角形的性质,三线合一以及外心的定义分别判断即可.【详解】解:A 、直角三角形斜边上的中线等于斜边的一半,故为真命题;B 、等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合,故为真命题;C 、若在同一条直线上AB =BC ,则点B 是线段AC 的中点,故为假命题;D 、三角形三条边的垂直平分线的交点叫做这个三角形的外心,故为真命题;故选C.【点睛】本题考查了中点的定义,直角三角形的性质,三线合一以及外心的性质,属于基础知识,要熟练掌握.5.(2021·四川泸州市·中考真题)下列命题是真命题的是()A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【答案】B【分析】A、根据平行四边形的判定定理作出判断;B、根据矩形的判定定理作出判断;C、根据菱形的判定定理作出判断;D、根据正方形的判定定理作出判断.【详解】解:A、对角线互相平分的四边形是平行四边形;故本选项错误,不符合题意;B、对角线互相平分且相等的四边形是矩形;故本选项正确,符合题意;C、对角线互相垂直的平行四边形是菱形;故本选项错误,不符合题意;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误,不符合题意;故选:B.【点睛】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.6.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若2AE BE,则CGBH的值为()A .32B 2C .3107D .355【答案】C【分析】如图,设BH 交CF 于P ,CG 交DF 于Q ,根据题意可知BE =PC =DF ,AE =BP =CF ,根据2AE BE =可得BE =PE =PC =PF =DF ,根据正方形的性质可证明△FDG 是等腰直角三角形,可得DG =FD ,根据三角形中位线的性质可得PH =12FQ ,CH =QH =CQ ,利用ASA 可证明△CPH △△GDQ ,可得PH =QD ,即可得出PH =13BE ,可得BH =73BE ,利用勾股定理可用BE 表示长CH 的长,即可表示出CG 的长,进而可得答案. 【详解】如图,设BH 交CF 于P ,CG 交DF 于Q ,△由四个全等的直角三角形和一个小正方形组成的大正方形ABCD ,△BE =PC =DF ,AE =BP =CF ,△2AE BE =,△BE =PE =PC =PF =DF ,△△CFD =△BPC ,△DF //EH ,△PH 为△CFQ 的中位线,△PH =12QF ,CH =HQ , △四边形EPFN 是正方形,△△EFN =45°,△GD △DF ,△△FDG 是等腰直角三角形,△DG =FD=PC ,△△GDQ =△CPH =90°,△DG //CF ,△△DGQ =△PCH ,在△DGQ 和△PCH 中,GDQ CPH DG PC DGQ PCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△DGQ △△PCH ,△PH =DQ ,CH =GQ ,△PH =13DF =13BE ,CG =3CH , △BH =BE +PE +PH =73BE , 在Rt △PCH 中,CH =22221()3PC PH BE BE +=+=103BE , △CG =10BE ,△10310773CG BE BH BE ==.故选:C .【点睛】本题考查正方形的性质、全等三角形的判定与性质、三角形中位线的性质及勾股定理,熟练掌握相关性质及判定定理是解题关键.7.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+【答案】A【分析】 依次求出OE =OF =OG =OH ,利用勾股定理得出EF 和OE 的长,即可求出该四边形的周长.【详解】△HF △BC ,EG △AB ,△△BEO =△BFO =90°,△△A =120°,△△B =60°,△△EOF =120°,△EOH =60°,由菱形的对边平行,得HF △AD ,EG △CD ,因为O 点是菱形ABCD 的对称中心,△O 点到各边的距离相等,即OE =OF =OG =OH ,△△OEF =△OFE =30°,△OEH =△OHE =60°,△△HEF =△EFG =△FGH =△EHG =90°,所以四边形EFGH 是矩形;设OE =OF =OG =OH =x ,△EG =HF =2x ,()2223EF HG x x x ==-=,如图,连接AC ,则AC 经过点O ,可得三角形ABC 是等边三角形,△△BAC =60°,AC =AB =2,△OA =1,△AOE =30°,△AE =12, △x =OE =2213122⎛⎫-= ⎪⎝⎭△四边形EFGH 的周长为EF +FG +GH +HE =332322323322x x +=⨯+⨯=+, 故选A .【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力.8.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A .60°B .65°C .75°D .80°【答案】C【分析】 根据斜边中线等于斜边一半,求出△MPO =30°,再求出△MOB 和△OMB 的度数,即可求出AMP ∠的度数.【详解】解:△四边形ABCD 是正方形中,△△MBO =△NDO =45°,△点O 为MN 的中点△OM =ON ,△△MPN =90°,△OM =OP ,△△PMN =△MPO =30°,△△MOB =△MPO+△PMN =60°,△△BMO =180°-60°-45°=75°,180753075AMP ∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了正方形的性质和直角三角形的性质、等腰三角形的性质,解题关键是熟练运用相关性质,根据角的关系进行计算.9.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B 3C .2D .52【答案】B【分析】根据菱形的基性质,得到△P AE =30°,,利用勾股理求出AC =23则AP =23+PC ,PE =12AP 312PC ,由△PCF =△DCA =30°,得到PF =12PC ,最后算出结果. 【详解】解:△四边形ABCD 是菱形且△ABC =120°,AB =2,△AB=BC =CD =DA =2,△BAD =60°,AC △BD ,△△CAE =30△,△AC △BD ,△CAE =30°,AD =2,△AC =2222-1=23, △AP =23+PC ,在直角△AEP 中,△△P AE =30°,AP =23+PC ,△PE =12AP =3+12PC , 在直角△PFC 中,△△PCF =30°,△PF =12PC , △PE PF -=3+12PC -12PC =3, 故选:B .【点睛】本题主要考查了菱形的基本性质、勾股定理的应用以及在直角三角形中,30°角所对的直角边等于斜边的一半,关键会在直角三角形中应用30°.10.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52B 95C .3D 65 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,△6AB =,M 是AD 边上的一点,:1:2AM MD =,△2AM =,4DM =,△将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,△90BNE C ∠=∠=︒,AB AN BC ==,△Rt BNE Rt BCE ≌(HL),△NE CE =,△2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,△3NE DE ==,5ME =,△NF CD ⊥,90MDE ∠=︒,△MDE NFE ∽, △25EF NF NE DE MD ME ===, △125NF =,95EF =, △65DF =,△22655DN DF NF =+=, 故选:D .【点睛】 本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.11.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形【答案】C【分析】ABP 是特殊三角形,取决于点P 的某些特殊位置,按其移动方向,逐一判断即可.【详解】解:连接AC ,BD ,如图所示.△四边形ABCD 是菱形,△AB =BC =CD =DA ,△D =△B .△△B =60°,△△D =△B =60°.△ABC 和ADC 都是等边三角形.点P 在移动过程中,依次共有四个特殊位置:(1)当点P 移动到BC 边的中点时,记作1P . △ABC 是等边三角形,1P 是 BC 的中点, △1AP BC ⊥.△190APB ∠=︒. △1ABP 是直角三角形.(2)当点P 与点C 重合时,记作2P . 此时,2ABP 是等边三角形;(3)当点P 移动到CD 边的中点时,记为3P . △ABC 和ADC 都是等边三角形, △3306090P AB ∠=︒+︒=︒.△3ABP 是直角三角形.(4)当点P 与点D 重合时,记作4P . △4AB AP =,△4ABP 是等腰三角形.综上,ABP 形状的变化过程中,依次出现的特殊三角形是:直角三角形→等边三角形→直角三角形→等腰三角形.故选:C【点睛】本题考查了菱形的性质、直角三角形的判定、等腰三角形的判定、等边三角形的性质与判定等知识点,熟知特殊三角形的判定方法是解题的关键.12.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD的值为( )A .12B .22C 3D 3【答案】D【分析】设AC 与BD 的交点为O ,由题意易得1,2ABD CBD ABC AB BC ∠=∠=∠=,,,AC BD BO DO AO CO ⊥==,进而可得△ABC 是等边三角形,3BO AO =,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:△四边形ABCD 是菱形, △1,2ABD CBD ABC AB BC ∠=∠=∠=,,,AC BD BO DO AO CO ⊥==, △60ABC ∠=︒,△△ABC 是等边三角形,△30,ABO AB AC ∠=︒=, △12AO AB =, △223OB AB AO OA =-=, △23,2BD OA AC AO ==, △323AC BD OA== 故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;△车轮做成圆形,应用了“圆是中心对称图形”;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;△地板砖可以做成矩形,应用了“矩形对边相等”.【答案】△【分析】根据直线的性质,圆的性质,特殊四边形的性质分别判断即可.【详解】解:△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故正确;△车轮做成圆形,应用了“同圆的半径相等”,故错误;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的四边相等”,故错误;△地板砖可以做成矩形,应用了“矩形的四个角是直角,可以密铺”,故错误;故答案为:△.【点睛】本题考查了直线的性质,圆的性质,特殊四边形的性质,都属于基本知识,解题的关键是联系实际,掌握相应性质定理.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD 上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.【答案】5611. 【分析】延长AG 交DC 延长线于M ,过G 作GH △CD ,交AB 于N ,先证明△ABE △△MCE ,由CF =3DF ,可求DF =1,CF =3,再证△ABG △△MFG ,则利用相似比可计算出GN ,再利用两三角形面积差计算S △DEG 即可.【详解】解:延长AG 交DC 延长线于M ,过G 作GH △CD ,交AB 于N ,如图,△点E 为BC 中点,△BE =CE ,在△ABE 和△MCE 中,ABE MCE BE CEAEB MEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABE △△MCE (ASA ),△AB =MC =4,△CF =3DF ,CF +DF =4,△DF =1,CF =3,FM =FC +CM =3+4=7,△AB∥MF ,△△ABG =△MFG ,△AGB =△MGF ,△△ABG △△MFG , △47AB GN MF GH ==, △4GN GH +=, △1628,1111GN GH ==, S △AFG =S △AFB -S △AGB =1111165644422221111AB HN AB GN ⋅-⋅=⨯⨯-⨯⨯=,故答案为5611.【点睛】本题考查了正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,掌握正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,熟练运用相似比计算线段的长是解题关键.15.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.【答案】15【分析】连接AF ,NE ,NF ,证明出△AOE △ADC ,利用对应边成比例求出OE =355,再根据勾股定理求出BF 的长,利用勾股定理求出EF 25=,再根据折叠的性质,得到NF =NE ,最后得出结果.【详解】解:如图所示,连接AF ,NE ,NF ,△点F 与点E 重合,△MN △EF ,设EF 与AA’交于点O ,由折叠的性质得到OA =OA’=3,令BF =x ,则FC =8-x ,由勾股定理的:22222OF AF OA FC CO =-=- , △△AOE =△ADC ,△OAE =△DAC△△AOE△ADC , △OE AF DC AC = , 由勾股定理得到:224845+= ,△445OE , △OE 35,△OA ,△OC = △22222OF AF OA FC CO =-=-,△222224(8)x x +-=-- , 解得:1x =,△BF 的长为1.设B’N =m ,B’F =1,则22222213(4)NF m NE m =+==+- ,解得:m =1,则FN ,△EF =△MF故答案为:1【点睛】本题主要考查了折叠的性质和勾股定理的应用,关键在于画出图形,利用三角形相似和勾股定理求出各边的长度,特别注意点F 与点E 重合用到垂直平分线的性质.16.(2021·江苏扬州市·中考真题)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.【答案】125【分析】根据矩形的性质得到GF△AB,证明△CGF△△CAB,可得72xAB=,证明△ADG△△BEF,得到AD=BE=34x,在△BEF中,利用勾股定理求出x值即可.【详解】解:△DE=2EF,设EF=x,则DE=2x,△四边形DEFG是矩形,△GF△AB,△△CGF△△CAB,△44437GF CFAB CB===+,即247xAB=,△72x AB=,△AD+BE=AB-DE=722xx-=32x,△AC=BC,△△A=△B,又DG=EF,△ADG=△BEF=90°,△△ADG△△BEF(AAS),△AD=BE=1322x⨯=34x,在△BEF中,222BE EF BF+=,即222334x x⎛⎫+=⎪⎝⎭,解得:x=125或125-(舍),△EF=125,故答案为:125.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,全等三角形的判定和性质,等边对等角,解题的关键是根据相似三角形的性质得到AB的长.17.(2021·云南中考真题)已知ABC的三个顶点都是同一个正方形的顶点,ABC∠的平分线与线段AC 交于点D.若ABC的一条边长为6,则点D到直线AB的距离为__________.【答案】332或626或632-【分析】将△ABC放入正方形中,分△ABC=90°,△BAC=90°,再分别分AB=BC=6,AC=6,进行解答.【详解】解:△△ABC三个顶点都是同一个正方形的顶点,如图,若△ABC=90°,则△ABC的平分线为正方形ABCD的对角线,D为对角线交点,过点D作DF△AB,垂足为F,当AB=BC=6,则DF=12BC=3;当AC=6,则AB=BC232△DF=12BC=322;如图,若△BAC=90°,过点D作DF△BC于F,△BD平分△ABC,△△ABD=△CBD,AD=DF,。

人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案

人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案

人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【分析】在平面直角坐标系中,根据点的坐标画出四边形 ABCD , 再根据图形特点进行判断. ∴∠BAC=90°,
∵PE⊥AB,PF⊥AC, ∴四边形 AFPE 是矩形, ∴EF=AP. ∵M 是 EF 的中点,
∴AM= AP,
根据直线外一点到直线上任一点的距离,垂线段最短, 即 AP⊥BC 时,AP 最短,同样 AM 也最短, ∴当 AP⊥BC 时,△ABP∽△CBA,
【分析】①如图,过 H 作 HM⊥BC 于 M,根据角平分线的性质可以得到 DH=HM,而在 Rt△BHM 中 BH>HM,所以容易判定①是错误的; ② 设 HM=x,那么 DH=x,由于∠ABC=90°,BD⊥DC,BD=DC,由此得到∠DBC=45°,而 AD ∥CB,由此可以证明△ADB 是等腰直角三 角形,又 CE 平分∠BCD,∠BDC=∠ABC=90°,由此 可以证明△DCH∽△EBC,再利用相似三角形的性质可以推出∠BEH=∠DHC,然后利用 对顶角 相等即可证明∠BHC=∠BEH,接着得到 BH=BE,然后即可用 x 分别表示 BE、EN、CD,又由 EN∥DC 可以得到△DCH∽△NEH,再利用 相似三角形的性质即可结论②; ③利用(2)的结论可以证明△ENH∽△CBE,然后利用相似三角形的性质和三角形的面积公式即 可证明结论③.此题比较复杂,综合性很强,主要考查了梯形的性质,相似三角形的判定和性质 以及等腰直角三角形的性质. 【答案】B 【考点】等腰三角形的判定与性质,勾股定理,三角形中位线定理,梯形 【解析】【解答】∵CA 是∠BCD 的平分线,
A、7 B、10 C、13 D、14
A、①② B、②③ C、①③ D、①②③ 6、如图所示,四边形 ABCD 是梯形,AD∥BC,CA 是∠BCD 的平分线,且 AB⊥AC,AB=4,
AD=6,则 tanB=( )
8、如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线 EF 交 BC 于点 D , 交 AB 于点 E , 且 BE=BF , 添加一个条件,仍不能证明四边形 BECF 为正方形的是( ).
(1)图①,若将纸片 ACB 的一角沿 EF 折叠,折叠后点 A 落在 AB 边上的点 D 处,且使 S 四边形 ECBF=3S△EDF , 求 AE 的长; (2)如图②,若将纸片 ACB 的一角沿 EF 折叠,折叠后点 A 落在 BC 边上的点 M 处,且使 MF∥ CA. ①试判断四边形 AEMF 的形状,并证明你的结论; ②求 EF 的长; (3)如图③,若 FE 的延长线与 BC 的延长线交于点 N,CN=1,CE= ,求 的值.
AD=8cm,AB=6cm,AE=4cm.则△EBF 的周长是________cm.
三、解答题(共 2 题;共 15 分)
18、已知:如图,△ABC 中,∠ABC=90°,BD 是∠ABC 的平分线,DE⊥AB 于点 E , DF⊥ BC 于点 F . 求证:四边形 DEBF 是正方形.
(1)求证:AC2=CD•BC; (2)过 E 作 EG⊥AB,并延长 EG 至点 K,使 EK=EB. ①若点 H 是点 D 关于 AC 的对称点,点 F 为 AC 的中点,求证:FH⊥GH; ②若∠B=30°,求证:四边形 AKEC 是菱形. 21、如图,已知△ABC 中,AB=AC,把△ABC 绕 A 点沿顺时针方向旋转得到△ADE,连接 BD,


∴,Biblioteka ∴AP 最短时,AP=4.8
∴当 AM 最短时,AM=
故选 B.
=2.4.
【分析】先求证四边形 AFPE 是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短, 利用相似三角形对应边成比例即可求得 AP 最短时的长,然后即可求出 AM 最短时的长. 【答案】B 【考点】等腰三角形的性质,直角梯形,相似三角形的判定与性质 【解析】【解答】①如图,过 H 作 HM⊥BC 于 M,
【答案】A 【考点】三角形内角和定理,等腰三角形的判定与性质,平行四边形的判定与性质,梯形 【解析】 【解答】∵DE//AB,∠B=70°, ∴∠DEC=∠B=70°. 又∵∠C=40°, ∴∠CDE=70°. ∴CD=CE. ∵AD//BC,DE//AB, ∴四边形 ABED 是平行四边形. ∴BE=AD=3. ∴CD=CE=BC-BE=BC-AD=10-3=7. 故选 A.
A、2 B、2 C、
D、 7、如图,在△ABC 中,AD 平分∠BAC , 按如下步骤作图: 第一步,分别以点 A、D 为圆心,以大于 AD 的长为半径在 AD 两侧作弧,交于两点 M、N; 第二步,连接 MN 分别交 AB、AC 于点 E、F; 第三步,连接 DE、DF . 若 BD=6,AF=4,CD=3,则 BE 的长是( ).
答案解析
一、单选题
【答案】D 【考点】平行四边形的判定,菱形的判定,矩形的判定,正方形的判定,命题与定理 【解析】【解答】A.两条对角线相等且互相平分的四边形是矩形,故本选项错误; B.两条角线互相垂直平分且相等的四边形是正方形,故本选项错误; C.两条对角线相互垂直平分的四边形是菱形,故本选项错误; D.两条对角线互相平分的四边形是平行四边形,本选项正确; 故选 D. 【分析】解答本题的关键是熟练掌握通过对角线判定四边形是平行四边形或特殊平行四边形,必 需具备互相平分的前提。 【答案】B 【考点】坐标与图形性质,菱形的判定与性质 【解析】【解答】图形如图所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴ OA=OC , OB=OD , ∴四边形 ABCD 为平行四边形,∵BD⊥AC , ∴四边形 ABCD 为 菱形,故选 B.
∵ = =1, ∴DF=EF=2, 在 Rt△ADF 中,AF= 则 AC=2AF=8 ,
19、如图,四边形 ABCD 中,AB∥CD,AB≠CD,BD=AC.
CE 交于点 F.
(1)求证:AD=BC;
(1)求证:△AEC≌△ADB;
(2)若 AB=2,∠BAC=45°,当四边形 ADFC 是菱形时,求 BF 的长. 22、如图,已知一个直角三角形纸片 ACB,其中∠ACB=90°,AC=4,BC=3,E、F 分别是 AC、 AB 边上点,连接 EF.
∵CE 平分∠BCD,BD⊥DC ∴DH=HM, 而在 Rt△BHM 中 BH>HM, ∴BH>HD, ∴所以容易判定①是错误的; ②∵CE 平分∠BCD, ∴∠DCE=∠BCE,而∠EBC=∠BDC=90°, ∴∠BEH=∠DHC, 而∠DHC=∠EHB, ∴∠BEH=∠EHB, ∴BE=BH, 设 HM=x,那么 DH=x, ∵BD⊥DC,BD=DC, ∴∠DBC=∠ABD=45°, ∴BH= x=BE, ∴EN=x, ∴CD=BD=DH+BH=( +1)x,
A、(3,1) B、(3, ) C、(3, ) D、(3,2)
二、填空题(共 5 题;共 5 分)
13、已知梯形的上底长为 a , 中位线长为 m , 那么这个梯形的下底长为________. 14、如图,在等腰梯形 ABCD 中,AC⊥BD,AC=6cm,则等腰梯形 ABCD 的面积为 ________cm2 .
即 = +1, ∵EN∥DC, ∴△DCH∽△NEH, ∴ = = +1,即 CH=( +1)EH,正确; ③由②得∠BEH=∠EHB, ∵EN∥DC, ∴∠ENH=∠CDB=90°, ∴∠ENH=∠EBC,
∴△ENH∽△CBE, ∴EH:EC=NH:BE,





, 正确;
所以正确的只有②③. 故选 B.
【分析】根据平行线的性质,得∠DEC=∠B=70°,根据三角形的内角和定理,得∠CDE=70°,再 根据等角对等边,得 CD=CE.根据两组对边分别平行,知四边形 ABED 是平行四边形,则 BE=AD=3,从而求解. 【答案】B 【考点】垂线段最短,直角三角形斜边上的中线,矩形的判定与性质,相似三角形的判定与性质 【解析】 【解答】连结 AP,在△ABC 中,AB=6,AC=8,BC=10,
( )
12、矩形 OABC 在平面直角坐标系中的位置如图所示,点 B 的坐标为(3,4),D 是 OA 的中 点,点 E 在 AB 上,当△CDE 的周长最小时,点 E 的坐标为( )
A、②③ B、③④ C、①②④ D、②③④ 11、如图,CB=CA,∠ACB=90°,点 D 在边 BC 上(与 B、C 不重合),四边形 ADEF 为正方 形,过点 F 作 FG⊥CA,交 CA 的延长线于点 G,连接 FB,交 DE 于点 Q,给出以下结论: ①AC=FG;②S△FAB:S 四边形 CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC, 其中正确的结论的个数是( )
中考数学复习专题练习:矩形、菱形、正方形
一、单选题(共 12 题;共 24 分)
1、下列命题中,正确的命题是( ) A、两条对角线相等的四边形是矩形 B、两条角线互相垂直且相等的四边形是正方形 C、两条对角线相互垂直的四边形是菱形 D、两条对角线互相平分的四边形是平行四边形
2、平面直角坐标系中,四边形 ABCD 的顶点坐标分别是 A(-3,0)、B(0,2)、C(3, 0)、D(0,-2),四边形 ABCD 是( ).
(2)若 E、F、G、H 分别是 AB、CD、AC、BD 的中点,求证:线段 EF 与线段 GH 互相垂直平 分.
17、如图,将矩形 ABCD 沿 GH 对折,点 C 落在 Q 处,点 D 落在 E 处,EQ 与 BC 相交于 F.若
四、综合题(共 3 题;共 35 分)
20、如图,在四边形 ABCD 中,AC 平分∠BCD,AC⊥AB,E 是 BC 的中点,AD⊥AE.
∴∠DCA=∠ACB, 又∵AD∥BC, ∴∠ACB=∠CAD, ∴∠DAC=∠DCA, ∴DA=DC, 过点 D 作 DE∥AB,交 AC 于点 F,交 BC 于点 E, ∵AB⊥AC, ∴DE⊥AC(等腰三角形三线合一的性质), ∴点 F 是 AC 中点, ∴AF=CF, ∴EF 是△CAB 的中位线, ∴EF= AB=2,
相关文档
最新文档