圆柱圆锥常考题型归纳1
圆柱圆锥常考题型
1、把一个圆柱的侧面沿高展开得到一个边长为厘米的正方形,它的侧面积是多少?2、一个无盖的圆柱形铁皮水桶,高8分米,底面直径是高的3倍。
做这个水桶大约要用多少铁皮?3、一个圆柱体,它的底面半径是2分米,高10分米,它的侧面积是多少平方分米?4、压路机的滚筒是一个圆柱,它的横截面半径是5分米,长是2米,它滚动100周压过的路面有多大?5、广告公司制作了一个底面直径是米,高米的圆柱形灯箱。
它的侧面最多可以张贴多大面积的海报?6、一个圆柱,底面周长是厘米,高是25厘米,求它的侧面积。
7、一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
8、一个圆柱体的侧面积是平方厘米,底面半径4厘米,它的高是多少9、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?10、一个圆柱形油桶,装满了油,把桶里的油倒出3/4 ,还剩20升,油桶高8分米,油桶的底面积是多少平方分米11、把一个棱长是6分米的正方形木块,削成一个最大的圆柱,需要削去多少立方分米的木块?12、一根长2米的圆木,截成两段后,表面积增加了24平方厘米,这根圆木原来的体积是多少?13、一根圆柱形木材长15米,把它截成三段,表面积增加了平方米,截后的每段木材的体积是多少?14、一个底面直径是6厘米的茶杯里,装有7厘米高的水,放入一块小石头,水面上升到10厘米,这个石头的体积是多少立方厘米15、把一个长、宽、高分别是9cm、7cm、3cm的长方体铁块和一个棱长是5cm 的正方体铁块,熔铸成一个圆柱体。
这个圆柱体的底面直径是20cm,高是多少厘米?16、在一只底面半径为20厘米的圆柱形小桶里,有一半径为10厘米的圆柱形钢材浸没在水中。
当钢材从桶里取出后,桶里的水下降了3厘米。
求这段钢材的长。
17、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米。
瓶内现有饮料多少立方分米?18、在一底面半径为30厘米的圆柱形容器内,有一半径为20厘米的圆柱形钢材浸没在水中。
圆锥圆柱体常考题型归纳
圆锥圆柱体常考题型归纳
本文旨在归纳圆锥和圆柱体的常见考题类型,为学生提供备考参考。
1. 圆锥体的体积计算问题
求解圆锥体的体积是常考题类型之一。
一般来说,我们可以用以下公式计算圆锥体的体积:
V = (1/3) * π * r^2 * h
其中,V表示圆锥体的体积,r表示底面半径,h表示高。
2. 圆锥体的表面积计算问题
求解圆锥体的表面积也是常考题类型之一。
一般来说,我们可以用以下公式计算圆锥体的表面积:
S = π * r * (r + l)
其中,S表示圆锥体的表面积,r表示底面半径,l表示斜高。
3. 圆柱体的体积计算问题
求解圆柱体的体积也是常考题类型之一。
一般来说,我们可以用以下公式计算圆柱体的体积:
V = π * r^2 * h
其中,V表示圆柱体的体积,r表示底面半径,h表示高。
4. 圆柱体的表面积计算问题
求解圆柱体的表面积也是常考题类型之一。
一般来说,我们可以用以下公式计算圆柱体的表面积:
S = 2 * π * r^2 + 2 * π * r * h
其中,S表示圆柱体的表面积,r表示底面半径,h表示高。
5. 圆锥与圆柱体的比较问题
比较圆锥和圆柱体的体积或表面积的大小也是常考题类型之一。
学生需要利用已知条件,比较两者的大小关系,并给出合理的解释。
以上是圆锥和圆柱体的常见考题类型的归纳,希望对学生备考
有所帮助。
新人教版六年级下册圆柱与圆锥常见题型归纳整理
圆柱圆锥常见题型归纳一、公式转换1.基本公式:①圆柱的相关计算公式:底面积:S底=底面周长:C==。
圆柱侧面积=×(文字)S侧===。
(字母)逆推公式有:C=。
h=。
圆柱的表面积:S=2S底+S侧=。
圆柱的体积:V柱==逆推公式有:S=h=②圆锥的相关计算公式a.底面积:S底=πR2b.底面周长:C=πd=2πRc体积:V=1/3πR2h逆推公式有:S=h=③圆柱和圆锥的关系:1.等底等高的情况下,圆柱体积是圆锥体积的倍。
2.等底等高的情况下,圆锥体积是圆柱体积的。
3.等底等高的情况下,圆锥体积比圆柱体积少。
4.等底等高的情况下,圆柱体积比圆锥体积多倍。
5.圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。
6.圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。
2.题型总结①直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积。
半径变化导致底面周长,侧面积,底面积,体积的变化。
两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体积之比。
②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。
⑥不规则物体求体积(倒置、拼切)⑤等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1 3二、基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果4.要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。
小升初必备:圆柱与圆锥典型及易错题型分析
小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。
练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。
A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。
1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。
(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。
圆柱圆锥题型整理
圆柱和圆锥题型总结一、瓶子正倒放不论是正放还是倒放,瓶子的容积不变,正放酒的高度加上倒放时空余部分的高度,就是瓶子的高度一个容积为2500ml的饮料瓶,当瓶子正放时瓶内的饮料高为16cm,把瓶盖拧紧倒立,无饮料的部分高为4cm,瓶中有饮料多少L?有一种酒瓶,容积为286立方厘米,当瓶口向上时,瓶内酒的高度是18厘米,当瓶口向下时,余下部分的高度是4厘米,瓶内酒有多少毫升?一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示,它的容积为26.4cm3,瓶子正放时,瓶内药水液面高6cm,瓶子倒放时,空余部分高2cm,则瓶内药水的体积是多少立方厘米?一满瓶饮料,爸爸喝了一些后液面高度是10cm,若把瓶盖拧紧后倒置放平,空余部分高8cm,已知饮料瓶的内直径是6cm,这瓶饮料原有多少毫升?二、切割问题1.圆柱切割一个圆柱形木块按图甲中的方式切成形状、大小四块,表面积增加了96cm2,按图乙的方式切成形状、大小相同的三块,表面积增加了50.24cm2,若把它削成一个最大的圆锥,体积减少多少立方厘米?把一个高为5cm的圆柱从直径处沿高剖成两个半圆柱,这两个半圆柱的表面积比原来增加80cm2,原来圆柱的体积是多少立方厘米?2.削成最大的圆柱(圆锥)三、浸水问题1、完全浸没物体体积=水上升体积一个高40厘米的圆柱形水桶,底面半径是20厘米,这个桶盛有半桶水,小红将一块石头完全浸入水桶中,水面比原来上升了3厘米,这块石头的体积是多少?在一个底面直径是40厘米的圆柱形水桶里,浸没了一根半径是10厘米的圆柱形铁块.当铁块从水桶里取出后,水面下降了8厘米,这根圆柱形铁块的长是多少厘米?一个圆柱形容器内,放有一个长方体铁块,现在打开一个水龙头往容器中注水3分钟,水恰好没过铁块的顶面;又过了18分钟后,水灌满了容器.已知容器的高度是50cm,铁块的高度是20cm,那么铁块的底面积与容器底面积的比是多少?在一个底面直径10厘米圆柱体形杯中装有水,水里浸没一个底面半径是2厘米的圆锥形铅锤,当铅锤取出时,水面下降2厘米,铅锤的高是多少厘米?一个底面半径是6厘米的圆柱形容器(厚度不计)里面装有一些水,水中浸没着一个高9厘米的圆锥形铅锥.当铅锤从水中取出后,水面下降了0.5厘米.这个铅锤的底面积是多少?一个圆柱形铁盒,底面半径是10厘米,高是18.84厘米,现在圆柱形铁盒正立在桌上,铁盒中盛有部分水,水面高度是12.56厘米.如果往这个铁盒中放入若干个长3.14厘米,宽1.57厘米,高1厘米的长方体铁块,至少加入多少个铁块后,使水刚好不外溢?一个底面直径为20厘米的圆柱形容器中装有水,水中放着一个底面直径为12厘米,高为5厘米的圆锥体铅锤,当铅锤从水中取出后,容器中水面高度下降了几厘米?有一个底面积是300平方厘米,高10厘米的圆柱体容器,里面盛有5厘米深的水。
小学数学圆柱圆锥考点总结
圆柱圆锥常考题型归纳一、公式转换1、圆的知识圆的周长=直径×π=2×半径×πC=πd= 2πr逆推公式有:直径=圆的周长÷πd = C÷π半径=圆的周长÷π÷2r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2S 表=S 侧+2S 底(3)圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V 柱÷S圆柱的底面积=圆柱的体积÷高h=V 柱÷S3( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。
( 2 )半个圆柱的表面积= 侧面积÷2 +一个底面积+直径×高(3)14圆柱的表面积=侧面积÷4+半个底面积+直径×高4、圆锥的体积=底面积×高×1 3V 锥= 13 Sh逆推公式有:圆锥的高=圆锥的体积×3÷底面积h=V 锥×3÷S圆锥的底面积=圆锥的体积×3÷高S= V 锥×3 ÷h1.基本题型1,一个圆柱的侧面积是 25.12 平方厘米,底面半径是 2 厘米,求该圆柱的表面积是多少?2.一个圆柱型粮囤,底面半径是 4 米,高 2 米,若每立方米粮食重 500 千克,求该粮囤能装多少千克粮食?2.把体积是 282.6 平方厘米的铁块熔铸成底面半径为 6 平方厘米的圆锥型零件,求该零件高是多少?二、切割问题,表面积增加或减少1.基本公式:增加的面数+每个面的面积=增加的表面积切割面(增加的面)=底面1、切割、拼接表面积增加、减少问题。
新人教版六年级下册圆柱与圆锥常见题型归纳整理
圆柱圆锥常见题型归纳一、公式转换1.基本公式:①圆柱的相关计算公式:底面积:S底=底面周长:C= = 。
圆柱侧面积= ×(文字)S侧= = = 。
(字母)逆推公式有:C= 。
h= 。
圆柱的表面积:S=2S底+S侧= 。
圆柱的体积:V柱= =逆推公式有:S= h=②圆锥的相关计算公式a.底面积:S底=πR2b.底面周长:C=πd=2πRc 体积:V= 1/3πR2 h逆推公式有:S= h=③圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。
2. 等底等高的情况下,圆锥体积是圆柱体积的。
3. 等底等高的情况下,圆锥体积比圆柱体积少。
4. 等底等高的情况下,圆柱体积比圆锥体积多倍。
5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。
6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。
2.题型总结①直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积。
半径变化导致底面周长,侧面积,底面积,体积的变化。
两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体积之比。
②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。
⑥不规则物体求体积(倒置、拼切)⑤等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变1的问题,注意不要乘以3二、基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。
六年级人教版圆柱圆锥常考题型
六年级人教版圆柱圆锥常考题型
圆柱和圆锥是小学数学中比较重要的几何图形之一。
对于六年级人教版学生来说,掌握圆柱和圆锥的相关常考题型,可以提高做题的效率,也有助于对相关数学概念的理解和掌握。
下面,让我们来看看圆柱和圆锥常考题型有哪些。
一、圆柱的求解题型
1. 求圆柱的侧面积和总面积
圆柱的侧面积是指圆柱的侧面展开得到的矩形的面积,总面积包括侧面积和底面积。
计算圆柱的侧面积和总面积,需要掌握圆柱的相关概念和公式。
2. 求圆柱的体积
圆柱的体积是指圆柱的空间容积,计算圆柱的体积需要掌握圆柱的相关概念和公式。
二、圆锥的求解题型
1. 求圆锥的侧面积和总面积
圆锥的侧面积是指圆锥的侧面展开得到的扇形的面积,总面积包括侧面积和底面积。
计算圆锥的侧面积和总面积,需要掌握圆锥的相关概念和公式。
2. 求圆锥的体积
圆锥的体积是指圆锥的空间容积,计算圆锥的体积需要掌握圆锥的相关概念和公式。
三、圆柱和圆锥的应用题型
1. 求柱体或锥体的密度
柱体或锥体的密度是指柱体或锥体的质量与其体积之比。
计算柱体或锥体的密度需要掌握相关概念和公式。
2. 求柱体或锥体的重心
柱体或锥体的重心是指柱体或锥体所有点的平均位置,计算柱体或锥体的重心需要掌握相关概念和公式。
以上就是圆柱和圆锥常考题型的一些内容。
在做相关数学题目时,需要注意掌握相关概念和公式,多思考,多实践,才能够更好地理解和掌握圆柱和圆锥的知识,提高做题的效率和准确性。
圆柱圆锥8大必考题型整理
圆柱(锥)常考题型一:“转”出来的问题1.转动长方形ABCD,生产圆柱①和②(1)圆柱①是以()或()为轴转动形成的。
高是()cm,底面半径是()cm。
(2)圆柱②是以()或()为轴转动形成的,高是()cm,底面半径是()cm。
2.拿一张三条边分别长5cm、12cm 和13cm 的直角三角形硬纸粘在木棒上,像图上这样转动,转出的圆锥的体积是()立方厘米。
抖音3451209463.下面的立体图形是下面的那个平面图形旋转得到的()。
4.如图,四边形ABCD 是直角梯形,以AB 边所在的直线为轴,将梯形绕这个轴旋转一周,得到一个立体图形,这个立体图形的体积是?抖音3451209461.用一张边长是62.8cm的正方形铁皮卷成一个圆柱形水桶侧面,要给这个水桶侧面配一个底面,至少需要多少平方厘米的铁皮?2.如图,一张长为12.56cm,宽6.28cm的长方形纸分别沿长和宽围成不同的圆柱形纸筒,那么①和②的体积分别是?抖音3451209461.下面各图是圆柱侧面展开图的是()2.一个圆柱的侧面展开后是一个长25.12cm,宽12.56cm 的长方形。
这个圆柱的底面半径是多少cm?3.如下图,圆锥侧面剪开后是一个()。
A、长方形B、三角形C、扇形25.12cm 12.56cm 抖音3451209464.有一块长方形塑料板,剪下两个圆以及一个长方形正好可以做成一个圆柱。
这个圆的底面半径是2cm,那么长方形塑料板的面积是多少平方厘米?5.如图,阴影部分的两个圆和一个长方形铁皮,正好可以做成一个油桶,求油桶的容积。
抖音345120946圆柱(锥)常考题型四:“切”出来的问题1.一个圆柱,如果高减少2cm,表面积减少18.84平方厘米,这个圆柱的底面积是多少平方厘米?2.把一个底面半径为1cm,高6cm 的圆柱形木料,将它截成3个小圆柱(如图所示),这些小圆柱形木料的表面积比原来增加了多少平方厘米?抖音3451209463.如图,将一个高8厘米的圆柱形木料沿底面直径垂直切成两部分,这时表面积比原来增加了96平方厘米。
圆柱圆锥常考题型汇总
六年级数学下册——圆柱与圆锥常考题型汇总
1、(横切问题)把一根长2m的圆柱形木料锯成三段,表面积增加了100.48cm3,这段木料的体积?
2、(纵切问题)一个底面直径是4cm,高是5cm的圆柱,沿着底面直径切开,表面积增加多少平方厘米?
3、(叠加问题)将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面是多少平方米?
4、(整体代换法的应用)一个圆锥的高和底面半径都等于一个正方体的棱长,已知正方体的体积是90立方厘米,求这个圆锥的体积?
5、(圆柱体转换成长方体)将一个高为8cm的圆柱沿着底面直径平均切成若干等份,在拼成一个与它等底等高的长方体后,表面积增加了80cm2 ,求原来圆柱的体积?
6、(水中浸物)一个圆柱水槽,底面半径是8厘米,水槽中完全浸没着一块铁,当铁块取出时,水面下降了5厘米。
这块铁的体积是多少?
7、(熔铸问题)把一块高12cm,横截面半径是3cm的圆柱形钢坯铸成一块底面半径是6cm的圆锥形钢坯,这个钢坯的高是多少?
8、(旋转问题)
(1)以3厘米这条边为轴,旋转后得到的立体图形体积是多少?
(2)以4厘米这条边为轴,旋转后得到的立体图形体积是多少?
(3)以斜边为轴,旋转后得到的立体图形体积是多少?
9、(压路机问题)
(1)一台压路机的滚筒宽5m,直径为1.8m,如果它滚动了20周压路的面积是多少平方米?
(2)一台压路机的滚筒长1.2m,底面直径为0.8m的圆柱,如果它分钟转5圈,那么它每分钟前进多少米?每分钟压过的面积是多少米?。
【六年级好题分享】圆柱圆锥题型详细分类
姓名:【六年级好题分享】圆柱圆锥题型详细分类:题型一:展开圆柱的情况1、圆柱的底面周长和高相等时,展开后的侧面一定是个()2、一个圆柱体,两底直径的距离是10厘米,底面周长是31.4厘米,把这个圆柱体的侧面展开得到一个长方形,长方形的周长是()3、把一个圆柱的侧面展开,是一个边长9.42分米的正方形,这个圆柱的底面直径是()4、一个圆柱形的纸筒,它的高是3.14分米,底面直径是1分米,这个圆柱形纸筒的侧面展开图是()5、把一张长6分米、宽3分米的长方形卷成一个圆柱,并把圆柱直立在桌子上,它的侧面积是多少?6、一个圆柱的侧面展开后恰好是一个正方形,这个圆柱的底面直径和高的比是()将圆柱切开分析增加的表面积1、圆柱两个底面的直径()。
把一个底面积为6.28立方厘米的圆柱,切成两个圆柱,表面积增加()2、把一根圆柱形木料锯成四段,增加的底面有()个。
3、一根圆柱形有机玻璃棒,体积是54立方厘米,底面积是4立方厘米,把它平均截成5段,每段长()厘米。
4、一个高为9发呢么的圆柱,沿着底面直径切成相等的两部分,表面积增加了72平方分米,这个圆柱的体积是多少?3、把两个圆柱合并把两个底面直径都是4厘米,长都是4分米的圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?题型二:求表面积、体积、侧面积和底面积1、表面积一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?2、体积A、一个底面直径是40厘米的圆柱形玻璃杯装有一些水,一个底面直径是20厘米,高为15厘米的圆锥形铅锤完全没入水中,当取出铅锤后,杯里的水面下降多少?B、有一个圆柱形储粮桶,容积是3.14立方米,桶深2米,把这个装满稻谷后再在上面把稻谷堆成一个高0.3米的圆锥。
这个储粮桶的稻谷体积是多少立方米?(得数保留两位小数)C、一个装满小麦的粮囤,上面是一个圆锥形,下面是一个圆柱形。
圆柱与圆锥(能力提升题)
圆柱与圆锥(能力提升题)专项一:圆柱、圆锥切割问题例1:把一个圆柱沿底面直径竖直切成2块,表面积增加了24cm²。
若平行于底面切成三块,表面积增加了50.24cm²。
若削成一个最大的圆锥,则体积减少多少立方厘米?分析:这类问题要弄清楚增加或减少的表面积或体积是哪一部分,与原图形的什么量有关系。
由平行于底面切割的条件,可以求出底面积,进而求出底面半径;根据沿底面直径切割的条件,可以求出底面直径乘高的结果,再根据前面求出的半径,可以求出圆柱的高,进而求得圆柱的体积,也就可以求出体积减少多少了。
解答圆柱的底面积:50.24÷4=12.56(cm)r²:12.56÷3.14=4(cm²)r=2cm圆柱的高:24÷2÷(2×2)=3(cm圆柱的体积:3.14×2²×3=37.68(cm³)减少的体积:37.68×(1-)=25.12(cm³)反馈练习把一个圆柱沿两条垂直的底面直径竖直切成4块,表面积增加了192cm²;平行于底面切成两块,表面积增加了56.52cm²,原来圆柱的体积是多少立方厘米?2.若把一个圆柱平行于底面切去2cm厚,则表面积减少50.24cm²,体积变成原来的。
如果将这个圆柱切成一个最大的圆锥,那么圆锥的体积是多少立方厘米?专项二:利用比的知识解决圆柱、圆锥问题例2:一个圆柱和一个圆锥底面半径的比是2∶1,高的比是1∶3,它们的体积和是31.4cm³。
圆柱和圆锥的体积各是多少立方厘米?分析:解决此类实际问题,通常需要根据题目中给出的已知量的比,求出未知量的比或未知量与已知量的比,然后再结合已知量求出未知量。
根据“圆柱和圆锥底面半径的比是2∶1”可知,圆柱和圆锥底面积的比是2²∶1²=4∶1。
圆柱与圆锥典型及易错题型
圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米= 0.05米沙堆的底面半径:25.12+ (2x3.14)=25.12+6.28=4 (米)1沙堆的体积:x3.14x42x1.8 = 3.14x16x0.6 = 3.14x9.6 = 30.144 (立方米)所铺沙子的长度:30.144+ (8x0.05)=30.144+0.4 = 75.36 (米).答:能铺75.36米。
【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的1底面半径,用公式:C+2n=r,要求沙堆的体积,用公式:V= nr2h,最后用沙堆的体积+ (公路的宽x铺沙的厚度)=铺沙的长度,据此列式解答.2.工地上有一个圆锥形的沙堆,高是1.5 米,底面半径是6 米,每立方米的沙约重1.7 吨。
这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14x62x1.5x x1.7=3.14x18x1.7=56.52x1.7,96 (吨)答:这堆沙约重96吨。
1【解析】【分析】圆锥的体积=底面积x高x ,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。
3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。
这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。
【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。
4.一个圆柱体容器的底面直径是16 厘米,容器中盛有10 厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?【答案】解:3.14x (16“)2x3= 3.14x64x3= 200.96x3= 602.88 (立方厘米)答:圆锥形铁块体积是602.88立方厘米。
圆柱与圆锥典型及易错题型
圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个底面半径为12厘米的圆柱形杯中装有水,手里浸泡了一个底面直径是12厘米,高是18厘米的圆锥体铁块,当铁块从杯中取山来时,杯中的水面会下降多少厘米??【答案】解: ×3.14×(12÷2)2×18÷(3.14×122)= ×3.14×36×18÷(3.14×144)=1.5(厘米)答:桶内的水将下降1.5厘米。
【解析】【分析】水面下降部分水的体积就是圆锥的体积,根据圆锥的体积公式先计算出圆锥体铁块的体积,也就是水面下降部分水的体积。
用水面下降部分水的体积除以杯子的底面积即可求出水面下降的高度。
2.将一根底面直径是20厘米,长1米的圆木沿着直径劈成相等的两半。
每半块木头的表面积和体积是多少?【答案】解:1米=100厘米,表面积:3.14×(20÷2)2+[3.14×20×100]÷2+20×100=5454(平方厘米)体积:3.14×(20÷2)2×100÷2=15700(立方厘米)答:每半块木头的表面积是5454平方厘米,体积是15700立方厘米。
【解析】【分析】根据题意,劈开的每半块木头的表面积是原来木头的表面积的一半增加了一个切面的面积,据此代入公式解答即可;劈开的每半块木头的体积是原来木头的体积的一半,据此代入公式解答即可;圆柱表面积S=2×底面积+侧面积=2×3.14×r2+3.14×d×h;截面面积S=dh;体积V=3.14×r2×h。
3.计算下面圆柱的表面积。
(单位:厘米)【答案】解:3.14×(4÷2)²×2+3.14×4×6=100.48(平方厘米)【解析】【分析】圆柱体的表面积是两个底面积加上一个侧面积,底面积根据圆面积公式计算,用底面周长乘高求出侧面积。
圆柱圆锥常考题型归纳
圆柱圆锥常考题型归纳一,公式转换1.基本公式:圆柱:体积:圆锥:体积:侧面积:底面积:底面积:底面周长:表面积:底面周长:2.基本题型1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?3.把体积是282.6平方厘米的铁块熔铸成底面半径为6平方厘米的圆锥型零件,求该零件高是多少?二,切割问题,表面积增加或减少1.基本公式:增加的面数+每个面的面积= 增加的表面积2.基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?三.放入或拿出物体,水面上升或下降。
1. 基本公式:水面上升(下降)的高度×容器的底面积=物体的体积溢出的水的体积=物体的体积2.基本题型:1.一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?2.一圆柱容器,半径20平方厘米,放入铁块后,水面上升2厘米,求铁块体积?3.在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?4把高为3分米米的圆锥铁块放入装满水的容器中,溢出了3升水,求该圆锥的底面积是多少?四.高增加或减少,侧面积增加或减少问题1.关键点:A.画出展开图B.圆柱底面周长=长方形的长圆柱高=长方形的宽C.当圆柱底面周长=圆柱高时,圆柱展开是一个正方形2.基本题型:1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?五,抓住体积不变类题型1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等2.基本题型:1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?六,圆锥圆柱的转换关系1.基本关系:等底等高:圆柱体积=3圆锥体积等体积:圆锥:底面积(倍)×高(倍)=3倍1圆柱圆锥等底等高,体积相差3立方厘米,求圆柱圆锥体积各是多少?。
圆柱圆锥常见题型归纳训练题
圆柱圆锥常见题型归纳训练题一、公式转换圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。
2. 等底等高的情况下,圆锥体积是圆柱体积的。
3. 等底等高的情况下,圆锥体积比圆柱体积少。
4. 等底等高的情况下,圆柱体积比圆锥体积多倍。
5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。
6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。
基本题型a求表面积:1,一个圆柱的侧面积是平方厘米,底面半径是2厘米,求该圆柱的表面积是多少求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米4逆推求高一个圆柱,表面积是平方厘米,底半径是5厘米,求它的高。
二,切割拼接问题,表面积增加或减少1.基本公式:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh基本题型1,把一长为米的圆柱截成3段后,表面积增加了平方米,求圆柱原来的体积2,把长为20分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少3.圆柱长2米,把它截成相等的4段后,表面积增加了平方厘米,求每段的体积是多少4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少平方分米,求原来每个圆柱的体积是多少立方厘米5、把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少6、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少三.放入或拿出物体,水面上升或下降。
圆柱圆锥常考题型归纳(K12教育文档)
(完整版)圆柱圆锥常考题型归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)圆柱圆锥常考题型归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)圆柱圆锥常考题型归纳(word版可编辑修改)的全部内容。
圆柱圆锥题型归纳一.公式转换1.基本公式:圆柱:体积: 圆锥:体积:侧面积:底面积:底面积:底面周长:表面积:底面周长:2.基本题型1,一个圆柱的侧面积是25。
12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?2。
一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?3.把体积是282。
6平方厘米的铁块熔铸成底面半径为6平方厘米的圆锥型零件,求该零件高是多少?二,切割问题,表面积增加或减少1,把一长为1.6米的圆柱截成3段后,表面积增加了9。
6平方米,求圆柱原来的体积?2.把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3。
圆柱长2米,把它截成相等的4段后,表面积增加了18。
84平方厘米,求每段的体积是多少?4。
把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?三.放入或拿出物体,水面上升或下降.1.一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?2。
一圆柱容器,半径20平方厘米,放入铁块后,水面上升2厘米,求铁块体积?3.在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0。
3厘米,求圆锥的高是多少?4把高为3分米米的圆锥铁块放入装满水的容器中,溢出了3升水,求该圆锥的底面积是多少?四.高增加或减少,侧面积增加或减少问题1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?五,抓住体积不变类题型1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等2.基本题型:1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?六,圆锥圆柱的转换关系1.基本关系:等底等高:圆柱体积=3X 圆锥体积等体积:圆锥:底面积(倍)×高(倍)=3倍圆柱圆锥等底等高,体积相差3立方厘米,求圆柱圆锥体积各是多少?七.直角三角形旋转问题: 1. 以3厘米这条边为轴,旋转后得到的立体图形体积是多少?2.以4厘米这条边为轴,旋转后得到的立体图形体积是多少?3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱圆锥题型归纳
一.公式转换
1.基本公式:
圆柱:体积:圆锥:体积:
侧面积:底面积:
底面积:底面周长:
表面积:
底面周长:
2.基本题型
1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?
2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?
3.把体积是282.6平方厘米的铁块熔铸成底面半径为6平方厘米的圆锥型零件,求该零件高是多少?
二,切割问题,表面积增加或减少
1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?
2.把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?
3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?
4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?
三.放入或拿出物体,水面上升或下降。
1.一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?
2.一圆柱容器,半径20平方厘米,放入铁块后,水面上升2厘米,求铁块体积?
3.在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?
4把高为3分米米的圆锥铁块放入装满水的容器中,溢出了3升水,求该圆锥的底面积是多少?
四.高增加或减少,侧面积增加或减少问题
1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?
2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?
五,抓住体积不变类题型
1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等
2.基本题型:
1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?
六,圆锥圆柱的转换关系
1.基本关系:等底等高:圆柱体积=3X 圆锥体积
等体积:圆锥:底面积(倍)×高(倍)=3倍
圆柱圆锥等底等高,体积相差3立方厘米,求圆柱圆锥体积各是多少?
七.直角三角形旋转问题:
1. 以3厘米这条边为轴,旋转后得到的立体 图形体积是多少?
2.以4厘米这条边为轴,旋转后得到的立体图形体积是多少?
3.以3厘米这条直角边为轴,旋转后得到的立体图形体积是多少?
3厘米
A。