卷积
卷积的运算法则
卷积是信号处理和图像处理中常用的一种运算法则。
在离散情况下,卷积可以被定义为两个离散序列的线性组合。
以下是卷积的运算法则:
1. 线性性质:卷积具有线性性质,即对于输入序列的线性组合,卷积的结果等于每个输入序列与相应权重进行卷积后再相加。
2. 交换律:卷积运算满足交换律,即输入序列的卷积可以交换顺序,不影响最终结果。
3. 结合律:卷积运算满足结合律,即多个输入序列的卷积可以按照不同的分组方式进行计算,最终结果保持一致。
4. 分配律:卷积运算满足分配律,即输入序列与一个常数的乘积先进行卷积运算,等于将输入序列进行卷积后再与该常数相乘。
这些运算法则使得卷积在信号处理和图像处理中非常有用。
通过卷积运算,可以实现信号的平滑、滤波、特征提取等操作。
在深度学习中,卷积神经网络(Convolutional Neural Network, CNN)利用卷积运算对图像进行特征提取和模式识
别,取得了很大的成功。
卷积的物理意义与最简单解释
卷积的物理意义与最简单解释卷积是一个在信号处理、图像处理、机器学习等领域广泛应用的数学概念。
它描述了两个函数在某个特定空间(如时间、频率等)上的相互作用。
下面从多个方面解释卷积的物理意义和最简单的理解。
1. 信号处理应用:在信号处理中,卷积常被用于描述一个信号通过一个线性时不变系统后的输出。
这个输出是输入信号与系统响应函数的卷积结果。
2. 线性时不变系统:对于线性时不变系统,其输出信号是输入信号与系统冲激响应的卷积。
卷积的交换性和分配性使系统具有“叠加性”,即多个信号输入或系统多个冲激响应输出的总和可表示为单一卷积操作。
3. 滤波与平滑操作:卷积可以用于实现滤波操作,例如,卷积一个图像与一个平均滤波器可以平滑图像中的噪声。
这里,滤波器函数描述了如何将邻近像素值结合来产生一个新的像素值。
4. 积分与加权求和:从离散角度理解,卷积操作可以看作是对输入序列与权重序列进行加权求和。
这些权重通常由系统冲激响应或滤波器函数定义,并通过平移与输入序列的对应元素相乘来实现。
5. 反转与平移操作:在进行卷积操作时,通常将其中一个函数反转并沿时间或空间轴平移,这与滑动平均的概念类似,但它是一个更加一般的操作。
6. 响应叠加效应:卷积可以理解为多个响应的叠加。
例如,在图像处理中,一个像素的输出值可能是其周围像素值的加权和,这种加权和是通过卷积操作实现的。
7. 关联与相似性:卷积也被用于测量两个信号之间的关联或相似性。
例如,在卷积神经网络中,卷积操作被用于提取输入数据的局部特征,这些特征通过训练过程与特定任务关联。
8. 简化理解为“叠加”:在最简单的理解下,卷积可以被看作是一种“叠加”操作。
它描述了如何将一个函数(如输入信号或图像)通过另一个函数(如系统冲激响应或滤波器)进行转换。
这个转换是通过将后者在前者的每一个位置上进行加权并求和来实现的。
总之,卷积的物理意义非常广泛,涉及到信号处理、图像处理、机器学习等多个领域。
卷积的原理及应用实验
卷积的原理及应用实验简介卷积是一种常用的数学运算方法,广泛应用于信号处理、图像处理、神经网络等领域。
本文将介绍卷积的基本原理,并结合实验案例,说明卷积在实际应用中的重要性和效果。
卷积的基本原理卷积是一种数学运算,通过将两个函数(信号)重叠并相乘、求和得到一个新的函数(信号)。
在离散情况下,卷积的计算公式如下:\[ y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] \]其中,\(x[n]\) 和 \(h[n]\) 分别表示输入信号和卷积核(或滤波器),\(y[n]\) 表示卷积运算的结果。
卷积的过程卷积的过程可以简单概括为以下几个步骤: 1. 将卷积核翻转180度; 2. 将翻转后的卷积核与输入信号进行逐点相乘; 3. 对每个相乘得到的结果进行求和,得到卷积的结果。
卷积的作用卷积在信号处理和图像处理中具有重要的作用,主要有以下几个方面: - 滤波器:通过设置合适的卷积核,可以实现对信号的滤波效果,例如低通滤波器、高通滤波器等; - 特征提取:通过卷积运算,可以提取出输入信号中的特征信息,用于后续的分类、识别等任务; - 图像处理:在图像处理领域,卷积被广泛应用于图像的模糊、锐化、边缘检测等操作。
卷积的应用实验为了更好地理解卷积的原理和应用,我们将通过一个实验案例进行说明。
实验目的本实验旨在通过实际操作,展示卷积运算在图像处理中的应用效果,并通过代码的编写,深入理解卷积的原理。
实验步骤1.导入图像处理库和相关工具包;2.读取待处理的图像,并转换成灰度图像;3.设计合适的卷积核,例如边缘检测滤波器;4.对灰度图像进行卷积运算,得到处理后的图像;5.展示原始图像和处理后的图像进行对比。
实验结果通过实验,我们可以观察到卷积运算对图像的影响,例如边缘检测滤波器可以突出图像中的边缘信息,使图像更加清晰。
具体实验结果可以参考以下代码:import cv2import numpy as np# 读取图像并转换成灰度图像image = cv2.imread('input.jpg')gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 设计卷积核(边缘检测)kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])# 进行卷积运算result = cv2.filter2D(gray_image, -1, kernel)# 展示原始图像和处理后的图像cv2.imshow('Original Image', gray_image)cv2.imshow('Result Image', result)cv2.waitKey(0)cv2.destroyAllWindows()实验结果展示了经过边缘检测滤波器处理后的图像,可以明显看到边缘信息被突出出来。
常用卷积公式总结
常用卷积公式总结卷积是数字信号处理和图像处理中常用的一种运算方式,广泛应用于图像滤波、特征提取等领域。
本文将总结常用的卷积公式,便于读者在实践中快速掌握卷积运算的要点和技巧。
1. 一维离散卷积公式一维离散卷积是卷积的最基本形式,适用于处理一维序列。
给定两个长度为N和M的离散序列f和g,卷积结果序列h的长度为N+M-1。
卷积公式如下:h[i] = sum(f[j]*g[i-j], j=0 to min(i, M-1))其中,h[i]表示卷积结果的第i个元素。
2. 二维离散卷积公式二维离散卷积常用于图像处理中,用于实现图像的滤波、边缘检测等操作。
给定两个大小分别为N1×N2和M1×M2的二维矩阵F和G,卷积结果矩阵H的大小为(N1+M1-1)×(N2+M2-1)。
卷积公式如下:H[i, j] = sum(sum(F[p, q]*G[i-p, j-q], p=0 to M1-1), q=0 to M2-1)其中,H[i, j]表示卷积结果的第(i, j)个元素。
3. 常见卷积核形状在实际应用中,常见的卷积核形状有以下几种:•方形卷积核:使用方形的矩阵作为卷积核,可以实现简单的模糊、锐化、边缘检测等操作。
•高斯卷积核:采用高斯函数生成的卷积核,可以实现图像的平滑与去噪。
•锐化卷积核:用于增强图像的边缘、细节等特征。
•Sobel卷积核:用于边缘检测,可以检测图像中的水平和垂直边缘。
•Laplace卷积核:用于图像锐化和边缘检测,可以实现对图像的细节增强。
4. 卷积的性质卷积具有一些重要的性质,可以帮助我们简化卷积运算。
•交换性质:f g = g f,表示两个序列的卷积结果是相同的。
•结合性质:(f g)h = f(g h),表示多个序列进行卷积的顺序不影响最终结果。
•分配性质:f(g+h) = f g + f*h,表示卷积运算对于序列的加法操作分配。
5. 快速卷积算法常规的卷积运算需要计算大量的乘法和加法,计算复杂度较高。
卷积计算(图解法)
an4 a7
1 a
,
6 n 10
2021/3/11
0,
10 n 8
(4)相加:把所有的乘积累加起来,即得y(n)。
2021/3/11
1
计算卷积时,一般要分几个区间分别加以 考虑,下面举例说明。
例 已知x(n)和h(n)分别为:
1, 0 n 4 x(n) 0, 其它
an , 0 n 6
和 h(n)
0,
其它
a为常数,且1<a,试求x(n)和h(n)的卷积。
2021/3/11
5
x(m)
(3)在4<n≤6区间上
4
y(n) x(m)h(n m)
m0
m 04
h(n-m)
4
4
1 anm an am
m0
m0
m
n-6 0
46 n
an 1 a(14) an4 a1n
1 a1
1 a
2021/3/11
6
x(m)
(4)在6<n≤10区间上
n
y(n) x(m)h(n m)
2021/3/11
2
解 参看图,分段考虑如下:
x(m)
n 04
h(m)
n 06
h(n-m)
(1)对于n<0;
n-6 n
(2)对于0≤n≤4;
(3)对于n>4,且n-6≤0,即4<n≤6;
(4)对于n>6,且n-6≤4,即6<n≤10;
(5)对于(n-6)>4,即n>10。
2021/3/11
m
3
(1) n<0
§3.8 卷积特性(卷积定理)
1 时间函数的乘积 各频谱函数卷积的 2π 倍.
卷积定理揭示了时间域与频率域的运算关系, 卷积定理揭示了时间域与频率域的运算关系,在通信 时间域 的运算关系 系统和信号处理研究领域中得到大量应用. 系统和信号处理研究领域中得到大量应用.
二.应用
用时域卷积定理求频谱密度函数. 用时域卷积定理求频谱密度函数.
§3.8卷积特性(卷积定理) 3.8卷积特性(卷积定理)
卷积定理 卷积定理 卷积定理的应用 卷积定理的应用
一.卷积定理
时域卷积定理 时域卷积定理 若 f1(t ) F (ω) , f2 (t ) F2 (ω) 1 则 f1(t ) f2 (t ) F (ω) F2 (ω) 1 时域卷积对应频域频谱密度函数乘积. 时域卷积对应频域频谱密度函数乘积. 频域卷积定理 频域卷积定理 若 f1 (t ) F1 (ω), f2 (t ) F2 (ω) 1 则 f1(t ) f2 (t ) F (ω) F2 (ω) 1 2 π +∞ 其 中 F (ω) F2(ω) = ∫ F (u)F2(ω u)du 1 ∞ 1
的傅里叶变换. 求∫ f (τ ) dτ的傅里叶变换.
t ∞
1 F(ω) ∫∞ f (τ )dτ F(ω) πδ(ω) + jω =π F(0)δ (ω) + jω g(t ) 求系统的响应. 求系统的响应. f (t )
t
∫
t
∞
f (τ ) dτ = ∫∞ f (τ )u(t τ ) dτ = f (t ) u = f (t ) h(t ) G(ω) = F(ω)H(ω) g(t ) = F 1[G(ω)]
将时域求响应,转化为频域求响应. 将时域求响应,转化为频域求响应.
�
第二章第3讲 卷积
[ f () * f ()]d f (t) * f ()d f (t) * f ()d
1 2 1 2 2 1
t
t
t
证明:
[ f ( ) * f
1 t 1
t
2
( )]d [ f1 ( ) f 2 ( )d ]d
[ f1 (t )u(t t1 )] [ f 2 (t )u(t t2 )]
信号与系统 同济大学汽车学院 魏学哲 weixzh@
g (t ) f1 ( )u( t1 ) f 2 (t )u(t t2 )d
结合律应用于系统分析,相当于串联系统的冲激响 应,等于串联的各子系统冲激响应的卷积
信号与系统 同济大学汽车学院 魏学哲 weixzh@
卷积的微分与积分
df2 (t ) df1 (t ) d [ f1 (t ) * f 2 (t )] f1 (t ) * f 2 (t ) * dt dt dt
t t2
t1
f1 ( ) f 2 (t )d
t1 t t2
t
积分限是: 例:
f1(t ) 2e u(t )
g (t )
f 2 (t ) u(t ) u(t 2)
求
f1 ( ) f 2 (t )d
信号与系统 同济大学汽车学院 魏学哲 weixzh@
f1( ) 1 f2(1-) 2
f1( ) 1 f2(2-) 2
f1( )
f2(3-)
2
c
c
c
c
-1
0
f1() f2(-)
卷积公式的例子
卷积公式的例子
卷积公式的应用非常广泛,以下是5个具体的例子:
1. 丢骰子:有两枚骰子,求两枚骰子点数加起来为4的概率。
可以把它写成卷积的形式:(f∗g)(4)=∑m=13f(4−m)g(m)。
2. 做馒头:假设馒头的生产速度是f(t),腐败函数为g(t),那么一天后生产出来的馒头总量就是f(t)和g(t)的卷积,即馒头生产出来之后,会随时间不断腐败。
3. 信号处理:如果一个系统对输入信号的响应是g(t),那么在t=0时刻有一个输入,这个输入将随时间按g(t)的规律衰减,这也是卷积的应用。
4. 图像处理:在图像处理中,卷积常常用来进行滤波操作。
比如,有一个滤波器h,和一幅图像f,那么滤波后的图像g就是f和h的卷积。
5. 物理学:在物理学中,卷积被用来描述两个函数之间的关系。
例如,如果一个力在时间上作用于一个物体,那么该物体在时间上的位移就是该力和单位冲激响应的卷积。
卷积的原理
卷积的原理
卷积是信号处理和图像处理中常用的一种运算方法,广泛应用于图像处理、语音处理、神经网络等领域。
下面是卷积的原理解释:
1.基本概念:卷积是通过将两个函数进行相乘然后积分得到的一
种数学运算。
在离散信号处理中,卷积运算将两个离散信号进行逐点乘积累加。
2.运算过程:对于离散信号的卷积运算,首先需要将两个信号进
行翻转。
然后,将其中一个信号按照一个步长(通常为1)从左到右滑动,并将其与另一个信号相乘,再将乘积进行累加得到卷积结果的一个点。
随着步长的增加,卷积结果的每个点都是通过相应位置上的两个信号进行乘积累加得到。
3.特性与应用:卷积具有交换律、结合律等性质,在信号处理中
常用于平滑滤波、边缘检测、特征提取和信号去噪等方面。
在神经网络中,卷积层通过使用卷积运算学习图像的特征,进而实现图像分类、目标检测和图像生成等任务。
需要注意的是,卷积在不同的领域和上下文中,可能存在一些细微的变化和差异。
以上是基本的卷积原理的解释,具体的应用和实现方式可能因具体领域和算法而有所不同。
卷积的作用
卷积的作用卷积是一种在数学和信号处理中广泛应用的操作,它在图像处理、音频处理、自然语言处理等领域发挥着重要的作用。
本文将介绍卷积的基本概念、作用和应用。
首先,我们来了解一下卷积的基本概念。
卷积是一种在两个函数之间进行操作的数学方法,通常用符号*表示。
在离散情况下,卷积可以表示为两个序列之间的乘积和。
在连续情况下,卷积可以表示为两个函数之间的积分。
卷积的基本公式如下所示:(f*g)(t) = ∫f(τ)g(t-τ)dτ (连续情况)(f*g)(n) = Σf(k)g(n-k) (离散情况)在图像处理中,卷积可以应用于图像的滤波、边缘检测、模糊等操作。
通过卷积操作,我们可以将一个图像与一定的卷积核进行卷积运算,从而改变图像的特征。
例如,在进行边缘检测时,我们可以使用卷积核对图像进行卷积操作,从而突出图像中的边缘信息。
同样,在进行图像模糊时,我们可以使用不同的卷积核对图像进行卷积运算,从而实现不同程度的模糊效果。
在音频处理中,卷积可以应用于音频的滤波、声音增强等操作。
通过对音频信号与一定的卷积核进行卷积运算,我们可以改变音频信号的频域特性。
例如,在进行音频滤波时,我们可以使用不同的卷积核对音频信号进行卷积操作,从而实现不同频率范围的滤波效果。
同样,在进行音频增强时,我们可以使用不同的卷积核对音频信号进行卷积运算,从而增强特定频率范围的声音。
在自然语言处理中,卷积可以应用于文本的特征提取、情感分析等任务。
通过对文本进行卷积操作,我们可以提取文本的局部特征。
例如,在进行情感分析时,我们可以使用卷积操作对文本进行特征提取,从而识别文本中的情感倾向。
同样,在进行文本分类时,我们可以使用卷积操作对文本进行特征提取,从而实现文本的分类。
除了上述应用之外,卷积还被广泛应用于图像识别、语音识别、自动驾驶等领域。
在图像识别中,卷积神经网络(CNN)通过多层卷积操作实现对图像的特征提取和分类。
而在语音识别和自动驾驶中,卷积操作用于对音频和图像数据进行处理和分析,从而实现语音或图像的识别和控制。
卷积的定义和概念
卷积的定义和概念 简单定义:卷积是分析数学中⼀种重要的运算。
设:f(x),g(x)是R1上的两个可积函数,作积分:可以证明,关于⼏乎所有的实数x,上述积分是存在的。
这样,随着x的不同取值,这个积分就定义了⼀个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。
容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。
这就是说,把卷积代替乘法,L1(R1)空间是⼀个代数,甚⾄是巴拿赫代数。
卷积与傅⾥叶变换有着密切的关系。
利⽤⼀点性质,即两函数的傅⾥叶变换的乘积等于它们卷积后的傅⾥叶变换,能使傅⾥叶分析中许多问题的处理得到简化。
由卷积得到的函数f*g⼀般要⽐f和g都光滑。
特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。
利⽤这⼀性质,对于任意的可积函数f,都可以简单地构造出⼀列逼近于f的光滑函数列fs,这种⽅法称为函数的光滑化或正则化。
卷积的概念还可以推⼴到数列、测度以及⼴义函数上去。
定义:卷积是两个变量在某范围内相乘后求和的结果。
如果卷积的变量是序列x(n)和h(n),则卷积的结果,其中星号*表⽰卷积。
当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中⼼翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。
另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。
如果卷积的变量是函数x(t)和h(t),则卷积的计算变为,其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表⽰卷积。
参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械⼯业出版社2012年发⾏。
卷积
g (t) * g (t)
=
o t o
=
t
o
t
第四节 卷积
4 常用信号的卷积公式
常 用 信 号 的 卷 积 公 式
第四节 卷积
1 F f x 2
f ( x )e i x d x,
5 卷积定理
则 证:
若
F [ f1 ( x )] F1 ( ) 和 F [ f 2 ( x )] F2 ( )
第四节 卷积
2、卷积的图解法(特别适用于求某时刻点上的卷积值)
f1 (t ) * f 2 (t ) f1 ( ) f 2 (t )d
卷积过程可分解为四步:
(1)换元: t换为τ→得 f1(τ), f2(τ) (2)反转平移:由f2(τ)反转→ f2(–τ)右移t → f2(t-τ) (3)乘积: f1(τ) f2(t-τ) (4)积分: τ从 –∞到∞对乘积项积分。 注意:t为参变量。
F [ f1 ( x ) f 2 ( x )] 2 F1 ( ) F2 ( )
0
0
f 2 (t ) f1 (t ) t t t
0
f 2 ( ) f1 (t t0 )d f1 (t t0 )* f 2 (t )
推论: 若f1(t)*f2(t)=y(t), 则
f1 (t t1 ) f 2 (t t2 ) y(t t1 t2 )
( 1) t t g (t ) 2 2
0 ( 1) ( 1) g t g t t 2 2 t
常见的卷积公式
常见的卷积公式一、卷积公式的基本概念与原理在数字信号处理中,卷积公式是一种常见且重要的数学工具,用于描述信号之间的运算关系。
它可以用于图像处理、音频处理、信号滤波等多个领域。
本文将介绍常见的卷积公式及其应用。
卷积的定义是一种数学运算符,表示两个函数之间的运算。
在离散领域中,常用的卷积公式可以表示为:\[y[n]=\sum_{m=-\infty}^{\infty} x[m]h[n-m]\]其中,\(x[n]\)是输入信号,\(h[n]\)是卷积核或滤波器,\(y[n]\)是输出信号。
该公式实质上是对输入信号和卷积核进行长度为无穷的求和运算,得到输出信号的每个采样值。
二、一维离散卷积常见的一维离散卷积公式可以简化为:\[y[n]=\sum_{m=-\infty}^{\infty} x[m]h[n-m]\]其中,\(x[n]\)和\(h[n]\)都是长度为N的一维离散信号。
对于每个输出采样点,需要将输入信号和卷积核进行相应位置的乘积运算,然后再将乘积结果相加得到输出值。
三、二维离散卷积对于二维离散信号,卷积公式可以表示为:\[y[m,n]=\sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty} x[k,l]h[m-k,n-l]\]其中,\(x[k,l]\)和\(h[k,l]\)分别表示输入信号和卷积核的二维离散采样值。
在计算输出信号的每个采样点时,需要将输入信号和卷积核进行逐点乘积运算,再将所有乘积结果相加得到输出值。
四、卷积核的选择与应用在实际应用中,卷积核的选择对于信号处理结果具有重要影响。
不同的卷积核可以实现不同的信号处理效果,如平滑、锐化、边缘检测等。
常见的卷积核包括高斯核、均值核、边缘检测核等。
高斯核常用于图像平滑操作,能够减小图像中的噪声。
均值核可以实现简单的平均滤波,用于去除图像中的噪声。
边缘检测核常用于图像边缘提取,可以突出图像中的边缘部分。
卷积公式详解(一)
卷积公式详解(一)卷积公式详解什么是卷积?卷积是一种数学运算符号,广泛应用于信号处理、图像处理和深度学习等领域。
它用于描述两个函数之间的关系,通常用符号“*”表示。
卷积的定义给定两个函数 f(x) 和 g(x),它们的卷积定义为:∞(τ)g(x−τ)dτ(f∗g)(x)=∫f−∞或者对于离散的情况,定义为:∞(m)g(n−m)(f∗g)(n)=∑fm=−∞其中,−∞到+∞或者−∞到+∞的积分或者求和表示函数的有效范围。
卷积的意义卷积运算在信号处理和图像处理中具有重要的意义。
它可以用于信号的平滑、信号的去噪、边缘检测等。
在深度学习中,卷积神经网络(CNN)利用卷积运算对图像进行特征提取和分类。
卷积公式的解释卷积公式 (f ∗g )(n )=∑f ∞m=−∞(m )g (n −m ) 表示函数 f 和 g 的有效范围内,对两个函数进行对位相乘后的求和。
首先,函数 f(m) 和 g(n-m) 表示在不同位置的函数 g 与函数 f 的对应值,对这些对应值进行相乘,然后将乘积求和得到最终的结果。
求和的范围是在整个函数 f(m) 和 g(n-m) 的有效范围内,即对所有的 m 求和。
卷积的性质卷积具有一些重要的性质,如交换律、结合律和分配律等。
这些性质使得卷积在信号处理和深度学习中非常有用。
1.交换律:f ∗g =g ∗f 2.结合律:(f ∗g )∗ℎ=f ∗(g ∗ℎ) 3.分配律:f ∗(g +ℎ)=f ∗g +f ∗ℎ卷积的应用卷积在很多领域都有广泛的应用,下面列举几个常见的应用场景:• 信号平滑:通过卷积可以对信号进行平滑处理,去除噪声和不必要的波动。
• 信号滤波:卷积可以对信号进行滤波,如低通滤波、高通滤波等。
•图像处理:卷积在图像处理中被广泛应用,如边缘检测、图像增强等。
•深度学习:卷积神经网络(CNN)利用卷积运算对图像进行特征提取和分类。
总结通过本文的解释,我们了解了卷积的定义、意义和公式。
计算卷积的方法
详细描述了系统传递函数的计算过程,包括系统传递 函数的定义、系统函数的表示、系统传递函数的计算 步骤以及计算实例。
详细描述
系统传递函数是描述线性时不变系统动态特性的数学模 型,可以通过系统的输入输出关系来计算。具体来说, 假设有一个线性时不变系统,其输入为x(t),输出为y(t), 系统的传递函数可以通过以下步骤得到:首先根据系统 的输入输出关系列出微分方程,然后通过拉普拉斯变换 求解微分方程,得到传递函数H(s)。
04
卷积的特性
时移性
总结词
卷积的结果可以通过将其中一个信号进 行时间平移来获得。
VS
详细描述
卷积运算具有时移性,即当一个信号在时 间上平移时,其与另一个信号的卷积结果 也会相应地发生平移。这种特性在信号处 理和控制系统等领域中非常重要,因为它 允许我们通过改变输入信号的时间位置来 控制输出信号的时间响应。
滤波器
滤波器
卷积在信号处理中常常用于实现滤波器功能。通过设计特定 的滤波器系数(相当于冲激响应),可以对输入信号进行滤 波处理,提取出需要的信号成分或者抑制不需要的噪声干扰 。
IIR滤波器和FIR滤波器
在数字信号处理中,滤波器可以分为无限冲激响应(IIR)滤波 器和有限冲激响应(FIR)滤波器。IIR滤波器具有反馈结构,可 以实现对信号的递归处理;而FIR滤波器没有反馈结构,只能实 现线性相位响应。
计算卷积的方法
• 卷积的定义 • 卷积的物理意义 • 计算卷积的方法 • 卷积的特性 • 卷积的计算实例
01
卷积的定义
数学定义
数学上,卷积是一种二元运算,表示为 *。 对于两个函数 f 和 g,它们的卷积定义为
(f * g)[n] = sum_{k=-infty}^{+infty} f[k] g[n-k])
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原点处的篩选性质有
f x * ( x) f x d f x
任意函数和位于 x 0 处的脉冲函数的卷积得到
f x * ( x x0 ) f x x0 d f x x0
rff ( x)
f f x d f ( x) f ( x)
自相关有一个重要性质:它的模在原点处最大,即
r ff x r ff 0
这个性质常常用来作为图象(信号)识别的判据
互相关与自相关比较
互相关在两函数有相似性时出现峰值,自相关则会在位移到重叠时出现极大值
光学信息技术原理及应用
(二)
--上海理工大学光电学院
学习内容:
复习脉冲函数(δ函数) (定义,性质,物理含义)
光学中几种常见的函数 矩形函数,阶跃函数,三角函数等
δ函数的概念和定义
空间δ函数的图示
z δ(x,y) δ(x+a) δ(x) δ(x-a)
y
0
x
-a
0
a
x
δ函数的基本性质和物理意义
其它常用函数和傅立叶变换
矩形函数
rect(x)
1
-1/2
0
1/2
x
Sinc 函数
Sinc(x/a) 主瓣宽度: 2a
描述单缝和矩孔的夫琅 和费衍射振幅分布, 其平方 表示衍射光强
-3a
-2a -a 0
a
2a
3a
x
梳状函数
Comb(x)=∑δ(x-n) (n=-∞ —— ∞) Comb(x)
-5 -4 -3 -2 -1 0
1 1 F step x f x 2 j 2 f x
(6)符号函数
1, sgn x 0 , 1 ,
F sgn x 1 j f x
x0 x0 x0
用于改变极性 (正负号)
常用函数及其傅里叶变换(3)
(7)矩形函数
sin a f x x F ect a sinc af x a a f x a
F cos 2 f0 x
(4)正弦函数
F sin 2 f0 x
1 f x f0 f x f0 2
常用函数及其傅里叶变换(2)
(5)阶跃函数
1, 1 step x , 2 0 ,
x0 x0 x0
用于表示开关
(0 x 1) (其它) (0 x 1) (其它)
卷积过程图示(2)
卷积过程的两个效应
展宽 平滑化:被积函数经过卷积 运算,其微细结构在一定程 度上被消除,函数本身的起 伏变得平缓圆滑。
卷积运算定理
1、交换律
f x * h( x) hx * f x
2、分配律
这个性质有助于对于重复的物理结构的描述,如光栅、双缝等
卷积的物理意义----透镜的非相干成象
理想的物象关系是点点对应,物象共轭。 实际成象时产生一个弥散斑。由物点和附近的无数个点共同产生
如果每个点的贡献只与该点与物点的距离有关,与具体象(高斯 物点所成的)的位置无关
像点的总光能表示为
vx wx* h( x) vx * hx wx * hx
3、结合律
vx * wx* h( x) vx* wx * hx
这几个定律不难证明。
包含δ函数的卷积----函数的移位
任意函数和脉冲函数的卷积:
f x * ( x) f x d
x 1, rect a 0 ,
a 表示狭缝 2 其它 x
(8)三角形函数
x x 1 , tri a a 0 ,
x a 表示矩形光 其它
瞳OTF
sin 2 a f x x 2 F tri a sinc af x a 2 a a f x
常用函数及其傅里叶变换(4)
(9)梳状函数 combx
n
x n 用来表示光栅,抽样
F comb x comb f x
(10)高斯函数 exp x 2
用于表示激光光束光强分布
F exp x 2 exp f x 2
1
2
3
4
5
x
常用函数及其傅里叶变换(1)
(1)常数c
F c c f x
F x x0 exp j 2 f x x0
(2) 函数
(3)余弦函数
cos 2f 0 x
sin 2f 0 x
1 f x f0 f x f0 2
f x f x0 hx x0 dx0
相关运算
两个函数的互相关定义为:
rfg ( x)
f g x d f ( x) g ( x)
与卷积的差别在于相关运算中后一个函数取复共轭,且不需要折叠,不 满足交换律。互相关运算是两个函数间相似性的度量。 函数本身的自相关定义为
第三讲 卷积与相关的概念
卷积的定义
• 对于两个复值函数 其卷积定义为
f (x)
和
h(x)
,
g ( x)
f hx d
f ( x ) * h( x )
• 式中*表示卷积运算。
卷积过程图示(1)
原函数 折叠 位移 相乘—得到被积函数
1 f ( x) 0 1 h x 2 0