概率论与数理统计答案(东华大学出版)第二章 (1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 离散型随机变量及其分布律

第二节 一维离散型随机变量及其分布律习题

1、 一个口袋里有6只球,分别标有数字-3、-3、1、1、1、2,从中任取一个球,用ξ表示

所得球上的数字,求ξ的分布律。

解答:因为ξ只能取-3、1、2,且分别有2、3、1个,所以ξ的分布律为:

2、 在200个元件中有30个次品,从中任意抽取10个进行检查,用ξ表示其中的次品数,

问ξ的分布律是什么?

解答:由于200个元件中有30个次品,只任意抽取10个检查,因此10个元件中的次品数可能为0、1、2到10个。当次品数ξ为k 时,即有k 个次品时,则有10-k 个正品。所以:

ξ的分布律为:1030170

10

200

{},0,1,,10k k C C P k k C ξ-=== 。 3、 一个盒子中有m 个白球,n m -个黑球,不放回地连续随机地从中摸球,直到取到黑球

才停止。设此时取到的白球数为ξ,求ξ的分布律。

解答:因为只要取到黑球就停止,而白球数只有m 个,因此在取到黑球之前,所取到的白球数只可能为0m 中的任意一个自然数。设在取到黑球时取到的白球数ξ等于k ,则第

1k +次取到是黑球,以i A 表示第i 次取到的是白球;_

i A 表示第i 次取到的是黑球。则ξ的

分布律为:

__

12112111{}()()(|)(|)11,0,1,,11k k k k P k P A A A A P A P A A P A A A m m m k n m k m n n n k n k

ξ++===--+-=⋅⋅⋅⋅=--+- 。

4、 汽车沿街道行驶,要通过3个有红绿灯的路口,信号灯出现什么信号相互独立,且红绿

灯显示时间相等。以ξ表示该车首次遇到红灯前已通过的路口数,求ξ的分布律。 解答:因为只有3个路口,因此ξ只可能取0、1、2、3,其中{3}ξ=表示没有碰到红灯。以i A 表示第i 个路口是红灯,因红绿灯显示时间相等,所以()1/2i P A =,又因信号灯出现什么信号相互独立,所以123,,A A A 相互独立。因此ξ的分布律为:

_

11{0}()2

P P A ξ===

, _

_

12121{1}()()()4

P P A A P A P A ξ====

, {2}P ξ==_

_

_

_

1231231()()()()8

P A A A P A P A P A ==

, _

_

_

_

_

_

123123{3}()()()()1/8P P A A A P A P A P A ξ====。

5、 一实习生用同一台机器制造3个同种零件,第i 个零件是不合格品的概率为

1

,(1,2,3)1

i p i i =

=+。用ξ表示3个零件合格品的个数,求ξ的分布律。 解答:因为利用同一台机器制造3个同种零件,因此可认为这3个零件是否合格是相互独立的,以i A 表示第i 个零件是合格的,则()1/(1)i P A i =+。因ξ表示零件的合格数,因此ξ的分布律为:

_

_

_

_

_

_

1231231111{0}()()()()(1)(1)(1)2344

P P A A A P A P A P A ξ====---=,

______

12312312311

{1}()()()24

P P A A A P A A A P A A A ξ==++=,

___

1231231236

{2}()()()24

P P A A A P A A A P A A A ξ==++=,

1231

{3}()24

P P A A A ξ===。

6、 设随机变量ξ的分布律为{},0,1,2,!

k

P k c

k k λξ=== ,式中λ为大于0的常数。试

确定常数c 的值。 解答:因{},0,1,2,!

k

P k c

k k λξ=== 如果是随机变量ξ的分布律,则应该满足如下两个

条件:1、对任意的k ,{}0P k ξ=≥,因此可得0c ≥;2、0

1{}k P k ξ∞

==

=∑0

!k

k c k λ∞

==∑ce λ=,

所以可得c e

λ

-=。

7、 设在每一次试验中,事件A 发生的概率为0.3,当A 发生次数不少于3时,指示灯发出

信号。(1)若进行5次独立试验,求指示灯发出信号的概率;(2)若进行7次独立试验,求指示灯发出信号的概率。 解答:因为进行的是独立试验,所以如进行n 次试验,则事件A 在n 次试验中发生的次数ξ服从参数为n 和()0.3p P A ==的二项分布。因为当A 在n 次试验中发生次数不少于3时,指示灯发出信号。因此,{}{3}P P ξ=≥发出信号3

{}n k P k ξ==

=∑3

0.30.7n

k k n k n

k C

-==∑。第

一小题中的n 等于5,第二小题中的n 等于7。计算即可。

8、 某交换台有50门分机,各分机是否呼叫外线相互独立,在单位时间内呼叫外线的概率

都是10%,问在单位时间内至少有3门以上的分机需要外线的概率是多少?

解答:同上一题,因为各分机是否呼叫外线相互独立,因此在单位时间里呼叫外线的分机束缚从参数为50和0.1的二项分布。所以所求的概率等于{3}1{0}P P ξξ≥=-={1}P ξ-=

{2}P ξ-=5049482

50*4910.950*0.9*0.10.90.12

=---

。 9、 把一个试验独立重复地做n 次,设在每次试验中事件A 出现的概率为p ,求在这n 次试

验中A 至少出现一次的概率是多少。

解答:同上一题,n 次试验中A 出现的次数服从参数为n 和p 的二项分布。因此,所要求的概率等于{1}1{0}1(1)n P P p ξξ≥=-==--。

10、 甲乙两选手轮流射击,直到有一个命中为止,若甲命中率为0.6,乙命中率为0.7,

如果甲首先射击,求: (1) 两人射击总次数ξ的分布律; (2) 甲射击次数1ξ的分布律; (3) 乙射击次数2ξ的分布律。

解答:因为轮流射击,直到有一个命中为止,且由甲首先射击。因此可以看到,如果由甲射中,则总的射击次数应为奇数,乙比甲少射一次,而由乙射中的话,则甲、乙两人射击次数相同。且可以知道,乙可能没有射击。而由题意可知,每次是否射中是相互独立的。令i A 表示甲第i 次射击时射中,则()0.6i P A =(1,2,i = );令i B 表示乙第i 次射击时射中,则

()0.7(1,2,)i P B i == 。由此可知:

(1)_

_

_

_

_

_

111111{21}()()()()k

k

k k k P k P A B A B A P A P B P A ξ+=+== 0.12*0.6k

=,

0,1,k =

_____

111111{2}()()()()k

k k k P k P A B A B P A P B P B ξ-=== 10.12*0.28k -=,1,2,k =

(2) ______

_

_

111111111

1{}()()()()()k

k k k k k P k P A B A B P A B B A P A P B P

B ξ--==+= +_

_

1

11111()

()()0.88*0.12,1,2,k k k P A P B P A k ---==

(3) __

_

_

_

_

_

_

121111111

1{}()()()()()k

k k k k k P k P A B A B P A B B A P A P B P

B ξ-+

==+=

相关文档
最新文档