用LINGO解决非线性规划问题

合集下载

(整理)lingo超经典案例.

(整理)lingo超经典案例.

Lingo超经典案例大全LINGO是Linear Interactive and General Optimizer的缩写,即“交互式的线性和通用优化求解器”。

Lingo超强的优化计算能力在很多方面(线性规划、非线性规划、线性整数规划、非线性整数规划、非线性混合规划、二次规划等)比matlab、maple等强得多,Lingo编程简洁明了,数学模型不用做大的改动(或者不用改动)便可以直接采用Lingo语言编程,十分直观。

Lingo模型由4个段构成:(1)集合段(sets endsets);(2)数据段(data enddata);(3)初始段(init endinit);(4)目标与约束段。

Lingo的五大优点:1. 对大规模数学规划,LINGO语言所建模型较简洁,语句不多;2. 模型易于扩展,因为@FOR、@SUM等语句并没有指定循环或求和的上下限,如果在集合定义部分增加集合成员的个数,则循环或求和自然扩展,不需要改动目标函数和约束条件;3. 数据初始化部分与其它部分语句分开,对同一模型用不同数据来计算时,只需改动数据部分即可,其它语句不变;4. “集合”是LINGO有特色的概念,它把实际问题中的事物与数学变量及常量联系起来,是实际问题到数学量的抽象,它比C语言中的数组用途更为广泛。

5. 使用了集合以及@FOR、@SUM等集合操作函数以后可以用简洁的语句表达出常见的规划模型中的目标函数和约束条件,即使模型有大量决策变量和大量数据,组成模型的语句并不随之增加.一、求解线性整数规划、非线性整数规划问题:1.线性整数规划:model:max=x1+x2;x1+9/14*x2<=51/14;-2*x1+x2<=1/3;@gin(x1);@gin(x2);end求得x1=3,x2=1,最大值为4.运用matlab求时可以发现有两组解:x1=3,x2=1和x1=2,x2=2。

通过验证也可知这两组解均满足。

实验利用Lingo求解整数规划和非线性规划问题

实验利用Lingo求解整数规划和非线性规划问题

三、Lingo 循环编程举例
例5 用Lingo循环编程语句求解线性规划模型
max z 72x1 64x2
x1 x2 50, 132xx1 1180x0,2 480, x1 0, x2 0.
三、划 模型
max z 72x1 64x2
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign(person,task):a,x; ENDSETS DATA: a=1100,800,1000,700,
600,500,300,800, 400,800,1000,900, 1100,1000,500,700; ENDDATA min=@sum(assign:a*x); @for(person(i):@sum(task(j):x(i,j))=1); @for(task(j):@sum(person(i):x(i,j))=1); @for(assign(i,j):@bin(x(i,j))); END
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目的函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6、指派问题
企业在各地有4项业务,选定了4位业务员去处理。因为 业务能力、经验和其他情况不同,4业务员去处理4项业 务旳费用(单位:元)各不相同,见下表:
(3) 集合旳循环函数 集合旳循环函数能够使全部旳元素反复完毕某些操作.
函数
函数功能
• 形成集合全部元素需满足旳约
@for
束条件
• 计算集合中元素所在体现式旳
@sum

用LINGO软件求解“非线性规划”问题

用LINGO软件求解“非线性规划”问题
用 LINGO 软件求解“非线性规划”问题
丁老师(超盾博客) 一. 选址问题(选取位置,使总运量最小)
例 某工程,6个工地同时开工,每个工地的位置 M i (ai , bi ) ,距离值(单位:km)、水泥日
需求量 d (t) (单位:吨)由下表给出:
Mi
M1
M2
M3
M4
M5
M6
ai
1.25 8.75 0.5 5.75
[obj]min = @sum( link(i, j) : c(i, j) * ( ( p(i) - a(j) )^2 + ( q(i)
- b(j) )^2 )^(1/2) );
! 先变i后变j;
@for( demand(j) : [demand_con]@sum( supply(i) : c(i, j) ) = d(j); );
(2) 从P调 c1 j 吨水泥到 M j ,从Q调 c2 j 吨水泥到 M j (1表示P,2表示Q),j = 1, … ,6.
∑ “总吨·公里”的表示方法:“总: ; 吨:c; 公里:两点间距”,目标函数是“非
线性”的,根据上述“总吨·公里”的表示方法得到“非线性”规划模型:
min f = c11 ( p1 − 1.25)2 + ( p2 −1.25)2 + c12 ( p1 − 8.75)2 + ( p2 − 0.75)2 + c13 ( p1 − 0.5)2 + ( p2 − 4.75)2 + c14 ( p1 −1.25.75)2 + ( p2 − 5)2 + c15 ( p1 − 3)2 + ( p2 − 6.5)2 + c16 ( p1 − 7.25)2 + ( p2 − 7.75)2 + c21 (q1 −1.25)2 + (q2 − 1.25)2 + c22 (q1 − 8.75)2 + (q2 − 0.75)2 + c23 (q1 − 0.5)2 + (q2 − 4.75)2 + c24 (q1 − 5.75)2 + (q2 − 5)2 + c25 (q1 − 3)2 + (q2 − 6.5)2 + c26 (q1 − 7.25)2 + (q2 − 7.75)2

非线性整数规划模型(LINGO代码实现)

非线性整数规划模型(LINGO代码实现)

⾮线性整数规划模型(LINGO代码实现)⾮线性整数规划模型LINGO讲解分析:第⼀步:确定决策变量问题是确定调运⽅案,使得总运输费⽤最⼩。

⽽总运输费⽤=货物运量*货物单价,题⽬给了货物单价了,我们求货物运量即可,这⾥的货物运量则是我们的决策变量。

第⼆步:确定⽬标函数和约束条件上图第⼀⾏就是我们的⽬标函数,下⾯三⾏是我们的约束条件,在满⾜约束条件的前提下,软件会不断遍历Xij所有可能的值,然后z也会根据Xij的变化⽽产⽣不同的值,这个时候⽤⼀个min函数取所有可能值当中的最⼩值,即可。

第三步:⽤LINGO代码实现model:title 最少运费问题;sets:!集合的定义,WH是集合的名字,W1..W6是集合的长度,⼀般写成1..6,相当于创建了⼀个能放六个元素的容器WH,是抽象的,是虚⽆的,是⼀种声明,告诉我们“:”后⾯的变量是⼀个什么类型的变量,显然,后⾯的AI是⼀个确确实实有六个数的数组,是具体的,是实在WH/W1..W6/:AI;!集合的名称、集合内的成员、集合的属性(可以看成是与改集合有关的变量或常量,相当与数组);VD/V1..V8/:DJ;links(WH,VD):C,X;!以WH和VD为基础,衍⽣集合。

相当于把两个向量结合在⼀起,形成⼀个⼆维数组,有⾏和列,C和X这两个变量是实在的具体的⼆维数组,只不过后⾯C我们赋值了,X是通过系统根据约束条件和⽬标函数⾃⼰赋值的;endsetsdata:!数据段;AI=60,55,51,43,41,52;DJ=35,37,22,32,41,32,43,38;C=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;enddatamin=@sum(links(I,J):c(i,j)*x(i,j)); !⽬标函数.links我们上线提到了,是⼀个6X8的集合名;@for(WH(i):@sum(VD(j):x(i,j))<=AI(I));!约束条件.@for⼀出,你就要知道这⼀⾏写的就是约束条件了;@for(vd(j):@sum(WH(i):x(i,j))=DJ(j));!约束条件.;end。

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。

•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。

实验目的•了解运筹学的基本原理和应用。

•掌握LINGO软件的使用方法。

•运用LINGO进行优化建模和求解实际问题。

实验内容1.使用LINGO进行线性规划的建模和求解。

2.使用LINGO进行整数规划的建模和求解。

3.使用LINGO进行非线性规划的建模和求解。

4.使用LINGO进行多目标规划的建模和求解。

实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行建模,设定目标函数和约束条件。

•运行LINGO求解线性规划问题。

2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。

•使用LINGO进行整数规划的建模和求解。

3. 非线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行非线性规划的建模和求解。

4. 多目标规划•确定多个目标函数和相应的权重。

•使用LINGO进行多目标规划的建模和求解。

实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。

结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。

•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。

讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。

•提出对于实验内容或方法的建议和改进方案。

参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。

致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。

以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。

实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。

LINGO软件简介

LINGO软件简介

LINGO 软件简介LINGO 软件是一个处理优化问题的专门软件,它尤其擅长求解线性规划、非线性规划、整数规划等问题.一个简单示例有如下一个混合非线性规划问题:⎪⎩⎪⎨⎧≥≤≤+++---+为整数2132121321322212121,;0,,210022..15023.027798max x x x x x x x x x x t s x x x x x x x .LINGO 程序模型:max =98x1+277x2-x1^2-0.3x1x2-2x2^2+150x3; x1+2x2+2x3<=100; x1<=2x2;gin x1;gin x2; Lingo 默认变量非负注意:binx 表示x 是0-1变量;ginx 表示x 是整数变量;bndL,x,U表示限制LxU ;freex 表示取消对x 的符号限制,即可正、可负.结果:Global optimal solution found.Objective value: 9561.200 Extended solver steps: 0 Total solver iterations: 45 Variable Value Reduced CostX1 6.000000 -76.70000X2 31.00000 -151.2000X3 16.00000 -150.0000Row Slack or Surplus Dual Price1 9561.200 1.0000002 0.000000 0.0000003 56.00000 0.000000———————— 非常简单在LINGO 中使用集合为了方便地表示大规模的规划问题,减少模型、数据表示的复杂程度,LINGO 引进了“集合”的用法,实现了变量、系数的数组化下标表示.例如:对⎪⎪⎩⎪⎪⎨⎧==-++-==≤++∑=.,,;10)0(;4,3,2,1),()())()1()(;4,3,2,1,20)(..)}(20)(450)(400{min4,3,2,1均非负INV OP RP INV I I DEM I OP I RP I INV I INV I I RP t s I INV I OP I RP I求解程序:model :sets :mark/1,2,3,4/:dem,rp,op,inv;也可以vmark/1..4/:dem,rp,op,inv;endsetsmin=sum mark:400rp+450op+20inv;也可以markI:400rpI+450opI+20invI;for markI: rpI<40;for markI|Igt1: invI=invI-1+rpI+opI-demI;inv1=10+rp1+op1-dem1;data:dem=40,60,75,35;enddataend上面程序在model…end之间有1集合定义、2数据输入和3其他三部分内容.集合定义部分从sets:到endsets:定义了一个指标集合mark可以理解为数组下标及其范围和其4个属性dem、rp、op、inv用此向量的数组变量.数据输入部分从data:到enddata依次给出常量dem的值.其他部分:给出优化目标及约束.一般而言,LINGO中建立优化模型的程序可以由五部分组成,或称为五段section:1集合段SETS:这部分以“SETS:”开始,以“ENDSETS”结束,作用在于定义必要的集合变量SET及其元素member,含义类似于数组的下标和属性attribute,含义类似于数组.2目标与约束段:这部分实际上定义了目标函数、约束条件等,但这部分没有段的开始和结束标记;该段一般常用到LINGO内部函数,尤其是和集合相关的求和函数SUM和循环函数FOR等.3数据段DATA:这部分以“DATA:”开始,以“ENDDATA”结束,作用在于对集合的属性数组输入必要的常数数据.格式为:attribute属性=value_list常数列表;常数列表中的数据之间可以用逗号、空格或回车符分隔.如果想要在运行时才对参数赋值,可以在数据段使用输入语句,其格式为“变量名=;”,但仅限对单个变量赋值,而不能用于属性变量数组的单个元素.4初始段INIT:这部分以“INIT:”开始,以“ENDINIT”结束,作用在于对集合的属性数组定义初值因为求解算法一般是迭代算法,提供一个较好的初值,能提高计算效果.定义初值的语句格式为:attribute属性=value_list常数列表;这与数据段中的用法类似.5计算段CALC:这部分以“CALC:”开始,以“ENDCALC”结束,作用在于对一些原始数据进行预处理加工,使其成为模型直接需要的数据.该段中通常是计算赋值语句.基本集合与派生集合为了处理二维数组变量等有多个下标的问题,LINGO引入了“派生集”的概念.我们把直接列出元素的指标集合叫“基本集合”,而基于其他集合派生出来的二维或多维指标集合称为“派生集”.派生集的定义格式为:派生集名原始集合1,原始集合2,…,原始集合n:属性变量列表;实际上就是笛卡儿积的意思,即:派生集={i1,i2, (i)n| i1集合1, i2集合2,…, in集合n}.1一个应用例子布局问题:某些建筑工地的位置用平面坐标a,b表示及水泥日用量d已知.现有A、B两临时料场位于P5,1、Q2,7,日储量20.问A、B两料场分别向各工地运输多少吨水泥,使总吨公里数最小若重新安排两料场的位置,应怎样安排才能使总吨公里数最小这样安排可节省多少吨公里设工地位置ai ,bi,水泥日用量为dii=1,2,…,6;料场位置xi,yi,日储量ej,j=1,2;从料场j向工地i运送量为cij.该问题的数学模型为:LINGO求解程序为:MODEL:sets:Imark/1..6/:a,b,d;Jmark/1,2/:x,y,e;IJmarkImark,Jmark:c;endsetsdata:Location for demand需求点位置;a=1.25,8.75,0.5,5.75,3,7.25;b=1.25,0.75,4.75,5,6.5,7.75;Quantities of the demand and supply供需量;d=3,5,4,7,6,11;e=20,20;enddatainit:Initial location for the supply初始点;x,y=5,1,2,7;endinitObjective function目标;OBJ min=sum IJmarki,j: ci,jxj-ai^2+yj-bi^2^1/2; demand contraints需求约束;for Imarki:DEMAND_CON SUM Jmarkj:ci,j=di;; supply constrains供给约束;for Jmarkj:SUPPLY_CON SUM Imarki:ci,j<=ej;;for Jmark: free x;free y;;2一个动态规划的例子:最短路问题从S城市到T城市之间找一条最短路径,道路情况如下:数学模型为:LINGO求解程序:model:sets:cities/s,a1,a2,a3,b1,b2,c1,c2,t/:L; 属性Li表示城市S到城市i的最优行驶路线的里程;roadscities,cities/ 派生集合roads表示的是网络中的道路;s,a1 s,a2 s,a3 由于并非所有城市间都有道路直接连接,所以将路具体列出;a1,b1 a1,b2 a2,b1 a2,b2 a3,b1 a3,b2b1,c1 b1,c2 b2,c1 b2,c2 属性Di,j是城市i到城市j的直接距离已知;c1,t c2,t/:D;endsetsD= 6 3 36 5 8 67 46 7 8 95 6;L=0,,,,,,,,; 因为Ls=0;enddatafor citiesi|igt index s: 这行中"indexs"可以直接写成"1";Li=min roadsj,i:Lj+Dj,i;; 这就是最短路关系式;endVariable ValueL S0.000000L A16.000000L A23.000000L A33.000000L B110.00000L B27.000000L C115.00000L C216.00000L T20.00000最短路径为: S-〉A3-〉B2-〉C1-〉T3指派问题设有6个人做6件事.其中cij表示第i人做第j事的收益;设第i人做第j事时xij =1,否则xij=0.该问题的规划模型:说明:其中“-”表示某人无法做该事.可令其为-表示绝对不行或0领薪不用干活LINGO求解程序:MODEL:sets:Imark/1..6/:i;Jmark/1..6/:j;IJmarkImark,Jmark:c,x;endsetsdata:第i人做第j事的收益;c=20,15,16,5,4,717,15,33,12,8,69,12,18,16,30,1312,8,11,27,19,14-99,7,10,21,10,32-99,-99,-99,6,11,13;enddataOBJ max=sum IJmarki,j: cx;每人做一项工作;for Imarki: SUM Jmarkj:xi,j=1;;每事一人做;for Jmarkj: SUM Imarki:xi,j=1;;for IJmark: bin x;本约束可以不要,因为有解时必为0或1; END4生产与销售计划问题某公司用两种原油A 和B 混合加工成两种汽油甲和乙.甲、乙两种汽油含原油A 的最低比例分别为50%和60%,每吨售价分别是4800元和5600元.该公司现有原油A 和B 的库存量分别为500吨和1000吨,还可以从市场上买到不超过1500吨的原油A.原油A 的市场价为:购买量不超500吨时单价为10000元/吨;购买量超过500吨但不超1000吨时,超过500吨部分单价为8000元/吨;购买量超过1000吨部分的单价是6000元/吨.该公司应如何安排原油的采购和加工以获得最大利润数学模型: 设原油A 用于生产甲、乙两种汽油的数量分别是x11和x12,原油B 用于生产甲、乙两种汽油的数量分别是x21和x22;购买原油A 的数量是x 吨,采购支出为cx 千元/吨.为了处理分段函数cx,将原油采购量x 分解为对应价格10千元/吨的采购量x1、对应对应价格8千元/吨的采购量x2和对应价格6千元/吨的采购量x3,它们应满足:0)500(21=-x x 表示要么x1=500要么x2=0,即x1的量不达到500时x2=00)500(32=-x x 表示要么x2=500要么x3=0,即x2的量不达到500时x3=0此时采购支出3216810)(x x x x c ++=模型改变为:LINGO 求解程序:model :init:x1=500;x2=500;x3=0;x12=1500;x22=1000;x11=0;x21=0;endinitmax=4.8x11+4.8x21+5.6x12+5.6x22-10x1-8x2-6x3; x11+x12<=x+500;x21+x22<=1000;0.5x11-0.5x21>=0;0.4x12-0.6x22>=0;x=x1+x2+x3;x1-500x2=0;x2-500x3=0;bnd0,x1,500;bnd0,x2,500;bnd0,x3,500;。

lingo解非线性规划

lingo解非线性规划

在LINGO中使用LINDO模型
优化建模
④ 运行程序的LINGO报告窗口(如下图)
注:LINGO不询问是否进行敏感性分析,敏感性分析 需要将来通过修改系统选项启动敏感性分析后,再调 用“REPORT|RANGE”菜单命令来实现。现在同样可 以把模型和结果报告保存在文件中。
优化建模
一个简单的LINGO程序
例 直接用LINGO来解如下二次规划问题:
Max98x127x72x120.3x1x22x22 1
s.t. x1x2100
2
x12x2
3
x1,x20 为整数
4
输入窗口如下:
程序语句输入的备注:
max=98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2;
优化建模
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数。
IN(V0)10
加上变量的非负约束
优化建模
注:LINDO中没有数组,只能对每个季度分别定义变量, 如正常产量就要有RP1,RP2,RP3,RP4 4个变量等。 写起来就比较麻烦,尤其是更多(如1000个季度)的时候。
记四个季度组成的集合QUARTERS={1,2,3,4}, 它们就是上面数组的下标集合,而数组DEM,RP,OP, INV 对集合QUARTERS中的每个元素1,2,3,4分别对应于 一个值。LINGO正是充分利用了这种数组及其下标的关 系,引入了“集合”及其“属性”的概念,把 QUARTERS={1,2,3,4}称为集合,把DEM,RP,OP, INV称为该集合的属性(即定义在该集合上的属性)。
集合及其属性
• QUARTERS集合的属性
• DEM
• RP
优化建模

用Lingo软件编程求解规划问题解决方案

用Lingo软件编程求解规划问题解决方案
Lingo软件特点
Lingo软件具有直观易用的界面,提供丰富的函数库和求解算法, 能够高效地求解大规模复杂规划问题。
Lingo软件应用
Lingo软件被广泛应用于各个领域的规划问题求解,如金融、物流、 制造等。
解决方案目标与意义
解决方案目标
通过Lingo软件编程求解规划问题, 旨在获得满足约束条件的最优解,使 得目标函数达到最优。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
THANKS
感谢观看
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
Lingo还提供了丰富的数据输入/输出功能,支持Excel、数据库等多种数据格式,方便用户进行数据处理 和分析。
结果分析
根据求解结果,分析每种产品的生产量是否符合预期,并评估总成本是否达到最小化。 同时,可以对不同方案进行比较,选择最优方案。
敏感性分析
通过改变某些参数或约束条件,观察求解结果的变化,以评估方案的稳定性和可行性。
06
总结与展望
研究成果总结
成功构建了规划问题的数学模型
通过深入研究规划问题的本质,我们成功构建了能够准确 描述问题的数学模型,为后续的求解工作奠定了坚实的基 础。
学习和使用。
02
Lingo语言基本语法
学习Lingo语言的基本语法和规则,如变量定义、函数定义、约束条件

LINGO的使用方法说明大全

LINGO的使用方法说明大全

LINGO的使用简介LINGO软件是美国的LINGO系统公司开发的一套专门用于求解最优化问题的软件包.LINGO除了能够用于求解线性规划和二次规划外,还可以用于非线性规划求解、以及一些线性和非线性方程(组)的求解等.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,即可以求解整数规划,而且执行速度快.LINGO是用来求解线性和非线性优化问题的简易工具.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果.在这里仅简单介绍LINGO的使用方法.LINGO(Linear INteractive and General Optimizer )的基本含义是交互式的线性和通过优化求解器.它是美国芝加哥大学的 Linus Schrage 教授于1980年开发了一套用于求解最优化问题的工具包,后来经过完善成何扩充,并成立了LINDO系统公司.这套软件主要产品有:LINDO,LINGO,LINDO API和What’sBest.它们在求解最优化问题上,与同类软件相比有着绝对的优势.软件有演示版和正式版.正式版包括:求解包(solver suite)、高级版(super)、超级版(hyper)、工业版(industrial)、扩展版(extended).不同版本的LINGO对求解问题的规模有限制,如附表3-1所示.附表3-1 不同版本LINGO对求解规模的限制版本类型总变量数整数变量数非线性变量数约束数演示版 300 30 30 150求解包 500 50 50 250高级版 2000 200 200 1000超级版 8000 800 800 4000工业版 32000 3200 32000 16000扩展版无限无限无限无限3.1 LINGO程序框架LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络最优化问题和最大最小求解问题,以及排队论模型中最优化等问题.一个LINGO程序一般会包括以下几个部分:(1) 集合段:集部分是LINGO模型的一个可选部分.在LINGO模型中使用集之前,必须在集部分事先定义.集部分以关键字“sets:”开始,以“endsets”结束.一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分.一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须先定义.(2)数据段:在处理模型的数据时,需要为集部分定义的某些元素在LINGO求解模型之前为其指定值.数据部分以关键字“data:”开始,以关键字“enddata"结束.(3) 目标和约束段:这部分用来定义目标函数和约束条件等.该部分没有开始和结束的标记.主要是要用到LINGO的内部函数,尤其是与集合有关的求和与循环函数等.(4)初始段:这个部分要以关键字“INIT:”开始,以关键字“ENDINIT"结束,它的作用是对集合的属性定义一个初值.在一般的迭代算法中,如果可以给一个接近最优解的初始值,会大大减少程序运行的时间.(5)数据预处理段:这一部分是以关键字“CALC:”开始,以关键字“ENDCALC”结束.它的作用是把原始数据处理成程序模型需要的数据,它的处理是在数据段输入完以后、开始正式求解模型之前进行的,程序语句是按顺序执行的.3.2 LINGO中集合的概念在对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等.LINGO允许把这些相联系的对象聚合成集(sets).一旦把对象聚合成集,就可以利用集来最大限度地发挥LINGO建模语言的优势.现在将深入介绍如何创建集,并用数据初始化集的属性.3.2。

Lingo软件在求解数学优化问题的使用技巧

Lingo软件在求解数学优化问题的使用技巧
3*x2+2*y2+z2<=800;
3*x3+2*y3+z3<=375;
END
得到的解如下:
X1=200,Y1=0,Z1=0;
X2=58.33333, Y2=312.5,Z2=0;
X3=0,Y3=187.5,Z3=0;
最大总净收益为253333.3元。
3.公司在各地有4项业务,选定了4位业务员去处理。由于业务能力、经验和其它情况不同,4业务员去处理4项业务的费用(单位:元)各不相同,见下表:
常见的集合函数如下:
@FOR(set_name:constraint_expressions)对集合(set_name)的每个元素独立地生成约束,约束由约束表达式(constraint_expressions)描述。
@MAX(set_name:expression)返回集合上的表达式(expression)的最大值。
=
返回如下情形下的净现值:单位时段利率为 ,第 个时段支付单位费用,即:
=
(5)概率函数
@PSN(X)标准正态分布的分布函数。
@PSL(X)单位正态线性损失函数(即返回 的期望值,其中Z为标准正态随机变量)
@PPS(A,X)均值为A的Possion分布的分布函数(当X不是整数时,采用线性插值进行计算)。
(4)初始化部分(INIT):这部分以“INIT:”开始,以“END INIT”结束。作用在于对集合的属性(数组)定义初值。格式为:attribute=value_list。由于非线性规划求解时,通常得到的是局部最优解,而局部最优解受输入的初值影响。通常可改变初值来得到不同的解,从而发现更好的解。
编写LINGO程序要注意的几点:
@PPL(X)Possion分布的线性损失函数(即返回 的期望值,其中Z为Possion分布随机变量)

用LINGO解决非线性规划问题

用LINGO解决非线性规划问题

注意比较:
当去掉第二个约束条件y<=0.5时,最小值 为-3 当x=0, y=1时;
当去掉所有约束条件无条件最值时,最小
值为-5 当x=1, y=2时;
15
三、用LINGO解决非线性规划问题
例3 求解非线性规划问题:
16
三、用LINGO解决非线性规划问题
17
三、用LINGO解决非线性规划问题
18
X1+ 3X2<=18;
X1,X2为决策变量;
2X1+ X2<=16;
4X2<=20; 第二到四行均为约束条件
8
二、用LINGO解决基本的线性规划问题
我们编辑程序并求解后,得到LINGO Model窗口、 Solution report窗口和Solver status窗口如下:
9
二、用LINGO解决基本的线性规划问题
6

二、用LINGO解决基本的线性规划问题
例1 求解如下的线性规划模型:
m ax z 50 x1 70 x2 ,
x1 3 x2 1 8,
2 x 1 x 2 1 6 ,
4x2 20,
x 1 , x 2 0
7
二、用LINGO解决基本的线性规划问题
我们编辑一个LINGO程序:
MAX=50X1+70X2; 目标函数;
三、用LINGO解决非线性规划问题
例4 求解二次规划问题:
直接使用LINGO最大化过程:
max=98x1+277x2-x1^2-0.3x1x2-2x2^2; x1 + x2 <= 100; x1 <= 2x2; ginx1;ginx2;
19
三、用LINGO解决非线性规划问题

Lingo在飞行管理中的应用

Lingo在飞行管理中的应用

Lingo在飞行管理中的应用Lingo是一种用于线性和非线性优化问题的软件系统,同时也被广泛应用于航空和飞行管理领域。

在飞行管理中,Lingo主要用于优化航班调度、飞机分配以及航班路径规划等问题,以提高航空公司的运输效率、降低成本和提高服务质量。

下面将介绍Lingo在飞行管理中的应用。

一、航班调度与飞机分配航班调度和飞机分配是影响航空公司运作效率的两个关键因素。

航班调度决定了航班的时间表和航线,而飞机分配则关乎飞机的规划和调度。

Lingo可以通过建立数学模型和优化算法,有效地解决这些问题。

例如,一个航空公司需要优化其各个机场之间的直达航线,同时避免航班冲突和飞行时间过长。

使用Lingo,可以通过确定机场之间的距离、飞机速度和飞行高度等因素,并采用优化算法,得到最优的航班路径和时间表。

此外,航空公司还可以利用Lingo优化高峰期的航班计划,以实现更优的航班调度和飞机分配方案。

二、航班路径规划航班路径规划是另一个重要的问题,它涉及到飞行计划、飞行高度和飞机速度等因素。

使用Lingo,可以建立数学模型,考虑到飞行器的性能、飞行时间和燃油成本等因素,并采用优化算法,以获得最优的航班路径。

这有助于实现航班安全和有效运输,同时降低成本和对环境的影响。

三、航空物流管理航空物流管理涉及到货运航班、货物跟踪、库存管理等方面。

使用Lingo可以帮助航空公司优化货运航班、货物分配和货物跟踪等方面的问题。

例如,确定最佳的货运航班路径、货物的装载方式等,以达到运输效率的最大化。

Lingo在飞行管理中的应用范围广泛,可以帮助航空公司实现航班调度、飞机分配、航班路径规划和物流管理等方面的优化,以提高运输效率和服务质量,降低成本和对环境的影响。

LINGO求解非线性规划

LINGO求解非线性规划
2 ij
2
( yi 0 y j 0 vt(sini sin j ))
按题意,约束条件为:
2 dij (t )
2
64 1 i, j 6 , i j | i | / 6 , i 1,2,6
题目给出的目标是“要求飞机飞行方向角调整的 幅度尽量小”,,对调整的幅度,可以用向量i 的范数来表示,故目标函数有两者表示方式:
三、问题的分析 当前各架飞机的位置及飞行方向
160
5
140
3 1
120
100
80
2
60
4
40 20
0 0 20 40 60 80 100 120 140 160 180
画飞机位置图的MATLAB程序: x=[150,85,150,145,130,0]; y=[140,85,155,50,150,0]; scatter(x,y,30,'r','filled'); axis([-10,195,-10,170]); grid on; hold on; plot([0,160,160,0,0],[0,0,160,160,0],'b'); zt=[243,236,220.5,159,230,52]; zt1=zt*pi/180; b=40; x1=x+b*cos(zt1); y1=y+b*sin(zt1); for n=1:6 plot([x(n),x1(n)],[y(n),y1(n)],'k'); end 以文件名feiji.m存盘
if k~=j tx=x1(j)-x1(k); ty=y1(j)-y1(k); dl=sqrt(tx*tx+ty*ty); if dl<=8 fprintf('\ni=%d j=%d n=%d',j,k,n); end end end end x=x1;y=y1; pause(0.1); end 经过计算可知,如果不调整飞行方向,飞机6和5 先发生碰撞,然后6和3发生碰撞。

lindo_lingo的使用

lindo_lingo的使用

二、用LINDO求解整数规划(IP) LINDO求解整数规划 IP) 求解整数规划(
例 3 如下IP问题: 如下IP问题 问题: min 15x11+19x21+26x31+19x41+18x12+23x22+17x32+2 1x42+24x13+22x23+16x33+23x43+24x14+18x24+19 x34+17x44 ST x11+x12+x13+x14=1 x21+x22+x23+x24=1 x31+x32+x33+x34=1 x41+x42+x43+x44=1 x11+x21+x31+x41=1 x12+x22+x32+x42=1 x13+x23+x33+x43=1 x14+x24+x34+x44=1 end int 16
下面我们就用LINDO 来解这一优化问题。 下面我们就用LINDO 来解这一优化问题
输入语句: max(不区分大小写,min) x1+x2+x3+x4 ST(大写或写subject to) x5+x6+x7+x8>=250000 x1+x5<=380000 x2+x6<=265200 x3+x7<=408100 x4+x8<=130100 2.85x1-1.42x2+4.27x318.49x4>=0 2.85x5-1.42x6+4.27x718.49x8>=0 16.5x1+2.0x2-4.0x3+17x4>=0 7.5x5-7.0x6-13.0x7+8.0x8>=0 end

LINGO用法

LINGO用法

LINGO 操作入门LINGO 是用来求解线性和非线性优化问题的简易工具。

LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。

当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。

>=和<=可写成>和<一个表达式可写成多行,如 min=2*x1 +3*x2;LINGO WINDOWS 命令文件菜单(File Menu ) 1. 新建(New )从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。

在这个新的“Model”窗口中能够输入所要求解的模型。

2. 打开(Open )从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。

这个文件可能是一个Model 文件。

3. 保存(Save)从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。

4. 另存为...(Save As ...) 从文件菜单中选用“另存为...”命令或按F5键可以将当前活动窗口中的内容保存为文本文件,其文件名为你在“另存为...”对话框中输入的文件名。

lingo解非线性规划ppt课件

lingo解非线性规划ppt课件
设 DEM: 需求量(为已知) RP: 正常生产的产量 OP: 加班生产的产量 INV: 库存量 总费用:四个季度的(生产费用+加班费用+库存费用)
第一季度 第二季度 第三季度 第四季度 40 60 75 25
优化建模
DEM,RP,OP,INV对每个季度都应该有一个对应的值,也就说他们都应该是 一个由4个元素组成的数组,其中DEM是已知的,而RP,OP,INV是未知数。
• 状态行(最左边显 示“Ready”,表示 “准备就绪”)
• 当前时间
在LINGO中使用LINDO模型
•Lindo程序 :
max 2x+3y st 4x+3y<10 3x+5y<12 end 请大家仔细区分它们的不同。 •Lingo 程序:
优化建模
• 简单程序举例: 求z=2x+3y在约束条件4x+3y<=10,3x+5y<=12下的最大值
优化建模
课堂练习: 求解下列模型
max z x1 x 2 ; 2 x1 x 2 6 ; 4 x1 5 x 2 20 ; x , x 0, 且为整数 1 2
m in f (x )2 (x2 2)2 1, x 2) (x 1 3 2 2 x st 1 x 2 50 x 1 2x 2 4 0 x 1, x 2 0
最小成本=78450
优化建模
全局最优解 RP=(40,40,40,25), OP=(0,10,35,0)
• Lingo模型的基本结构
优化建模
(1)集合段(SETS): sets: Quarters/1,2,3,4/:DEM,RP,OP,INV,I; endsets 或者 sets: Quarters/1..4/:DEM,RP,OP,INV,I; endsets (2)目标与约束段: min=@sum(Quarters:400*RP+450*OP+20*INV); @For(quarters(I):RP(I)<40); @For(Quarters(I)|I#GT#1: INV(I)=INV(I-1)+RP(I)+OP(I)-DEM(I);); INV(1)=10+RP(1)+OP(1)-DEM(1);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
二、用LINGO解决基本的线性规划问题
我们编辑程序并求解后,得到LINGO Model窗口、 Solution report窗口和Solver status窗口划问题
通过此例我们对LINGO有了一个基本的认识,下 面我们来总结一下LINGO语法规定: 1. 求目标函数的最大值或最小值分别用MAX=…… 或MIN=……来表示; 2. 每个语句必须以分号“;”结束,每行可以有多 个语句,语句可以跨行; 3. 变量名称必须以字母(A-Z)开头,由字母、数 字(0-9)和下划线所组成,长度不超过32个字符,不 区分大小写;
11
二、用LINGO解决基本的线性规划问题
8. 变量界定函数: @BND(L,x,U),即L<=x<=U; 注意:没有想象中的的@SLB函数与@SUB函数; @BIN(x),限制x仅取整数0或1; 注意:不是@INT(x)函数; @FREE(x),取消对x的符号限制;
@GIN(x),限制x仅取非负整数。
16
三、用LINGO解决非线性规划问题
17
三、用LINGO解决非线性规划问题
18
三、用LINGO解决非线性规划问题
例4 求解二次规划问题:
直接使用LINGO最大化过程:
max=98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2; x1 + x2 <= 100; x1 <= 2*x2; @gin(x1);@gin(x2);
12
三、用LINGO解决非线性规划问题
例2 求解二次规划问题:
MODEL: MIN=x^2+y^2-2*x-4*y; !目标函数; x+y<=1; !x,y为决策变量; y<=0.5; !第二、三行均为约束条件; end
13
三、用LINGO解决非线性规划问题
14
三、用LINGO解决非线性规划问题
21
LINGO软件基本功能
1
LINGO软件简介 一、LINGO介绍 二、 用LINGO解决基本的线性规划问题 三、 用LINGO解决非线性规划问题
2
一、LINGO介绍
LINGO 是 美 国 LINDO 系 统 公 司 Lindo System Inc开发的求解数学规划系列软件中 的一个,还有LINDO,GINO,What’s best 等等,它的主要功能是求解大型线形、非线形 和整数规划的问题。在此主要介绍 LINGO 如 何求解规划问题,所使用的 LINGO 为 V12.0 版。
19
三、用LINGO解决非线性规划问题
20
三、用LINGO解决非线性规划问题
结果是: 当x1=35,x2=65时最大利润为11077.50, 【说明:在LINGO11版本中执行上述同样程序 后,其结果是:当 x1=36,x2=64取得最大 利润11076.80,怀疑是旧版本的算法在数值不 均衡时引起的计算错误。不过当采用最小化目 标函数时,却并不出错!】
10
二、用LINGO解决基本的线性规划问题
4. 可以给语句加上标号,例如[OBJ] MAX=50*X1+70*X2(乘号*不能省略); 5. 以!开头,以“;”结束的语句是注释语句,显 示为绿色; 6. 如果对变量的取值范围没有做特殊说明,则所有 默认的决策变量均为非负数; 7. LINGO模型以语句一般以“MODEL:”开头,以 “END”结束,对于比较简单的模型,这两语句可以省 略 8. 变量界定函数(见下页)
4
一、LINGO介绍
LINGO的主要功能特色为: 1. 既能求解线性规划问题,也有一定求解非 线性规划问题的能力; 2. 输入模型简练直观; 3. 运行速度快、计算能力强;
5
一、LINGO介绍
LINGO的主要功能特色为: 4. 内置建模语言,提供几十个内部函数,从 而能以较少的语句,较直观的方式描述较大规 模的优化模型; 5. 将集合的概念引入编程语言,很容易将实 际问题转换为LINGO模型; 6. 能方便地与Excel、数据库等其他软件交换 数据。
结果是:当 x=0.5 , y=0.5 时取得最小值,最 小值为-2.5
注意比较: 当去掉第二个约束条件y<=0.5时,最小 值为-3 (当x=0, y=1时); 当去掉所有约束条件(无条件最值)时,最 小值为-5 (当x=1, y=2时); 15
三、用LINGO解决非线性规划问题
例3 求解非线性规划问题:
3
一、LINGO介绍
LINGOV12.0版可用于求以下各类最优化数学模型: LP Linear Program 线性规划 QP Quadratic Program 二次规划 ILP Integer Linear Program 整数线性规划 IQP Integer Quadratic Program 整数二次规划 PILP Pure Integer Linear Program 纯整数线性规划 PIQP Pure Integer Quadratic Program 纯整数二次规划 NLP Nonlinear Program 非线性规划 INLP Integer Nonlinear Program 整数非线性规划 PINLP Pure Integer Nonlinear Program 纯整数非线性规划
6
二、用LINGO解决基本的线性规划问题
例1 求解如下的线性规划模型:
max z 50 x1 70 x2 , x1 3x2 18, 2 x x 16, 1 2 4x2 20, x1 , x2 0
7
二、用LINGO解决基本的线性规划问题
我们编辑一个LINGO程序: MAX=50*X1+70*X2; !目标函数; X1+ 3*X2<=18; !X1,X2为决策变量; 2*X1+ X2<=16; 4*X2<=20; !第二到四行均为约束条件
相关文档
最新文档