初三数学上册圆的知识点总结—全面

合集下载

九年级圆的全部知识点归纳

九年级圆的全部知识点归纳

九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。

在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。

本文将对九年级学习中的圆相关知识点进行归纳总结。

一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。

2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。

3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。

4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。

5. 弧:圆上的两点间的部分称为弧。

6. 弦:圆上任意两点之间的线段称为弦。

二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。

即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。

2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。

3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。

4. 弦切定理:一条弦上的两个切线所截的弧相等。

5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。

三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。

2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。

利用弧度可以简便地描述与计算圆的相关问题。

3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。

4. 平行弦定理:平行弦所对应的圆心角相等。

5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。

四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。

比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。

总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。

数学初三圆的知识点总结

数学初三圆的知识点总结

数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。

这个距离称为圆的半径,而给定的那个点叫做圆心。

1.2 相关术语(1)圆心:圆的中心点。

(2)半径:圆心到圆上任一点的距离。

(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。

(4)弧长:圆上一部分的长度。

(5)圆周:圆的边界。

(6)扇形:由圆心和圆上两点组成的区域。

(7)弦:圆上连接两点的线段。

(8)切线:与圆相切的直线。

1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。

二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。

它的值是一个无理数,约等于3.14159。

圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。

2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。

(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。

2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。

(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。

(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。

(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。

2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。

(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。

三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。

(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。

九上圆知识点总结

九上圆知识点总结

九上圆知识点总结一、圆的概念圆是平面上的一组点,到某一点的距离等于常数,这个常数就是圆的半径。

圆由圆心和圆周上的所有点构成,圆的概念是平面几何学中最基本的概念之一。

二、圆的性质1. 圆的圆心:圆心是圆的中心点,任意一条通过圆心的线段都等于圆的直径。

2. 圆的直径:圆的直径是通过圆心,且两端点在圆周上的线段,它的长度等于圆周的两倍。

3. 圆周:圆周是由无数个点构成的曲线,这些点到圆心的距离都等于圆的半径。

4. 圆的半径:半径是圆心到圆周上任意一点的距离,它的长度是一个固定值。

5. 弧长和弧度:圆周上任意两点之间的曲线段称为弧,弧对应的圆心角称为弧度。

弧长等于半径乘以弧度。

6. 圆的面积:圆形的面积是圆的面积,它等于π乘以半径的平方。

三、圆的相关定理和公式1. 直角三角形中圆的应用:在直角三角形中,圆的直径是斜边,这可用来求解直角三角形的边长和面积。

2. 确定圆的位置:通过圆心和半径可以唯一确定一个圆。

3. 弧长和扇形面积:弧长和扇形面积的计算公式均基于圆的半径和圆心角。

4. 圆外切四边形:圆外切四边形的性质和面积计算公式。

5. 正多边形内接圆:正多边形的内接圆心角和边数的关系。

四、圆的主要解题方法1. 几何画图法:在解题过程中,仔细画出几何图形,有助于理清问题的思路。

2. 数学归纳法:利用数学归纳法总结出一般规律,有助于解决一般情况的问题。

3. 利用已知性质和定理:通过已知定理和性质来解决问题,例如圆心角的性质等。

五、圆的延伸应用1. 圆的信息化应用:在计算机图形学、地图绘制等领域,圆的概念和运算被广泛应用。

2. 圆的工程应用:在建筑设计、地理测量、轮胎制造等领域,圆的性质和计算方法也发挥了重要作用。

六、习题训练1. 针对圆的相关定理和公式,通过大量的练习来掌握圆的性质和计算方法。

2. 利用解题方法和技巧,解决实际问题和复杂题目,提高解题能力和应用能力。

通过九上学期的学习,我们对圆的概念、性质、定理和应用有了更深入的了解,掌握了圆周、直径、半径、弧长、扇形面积等相关知识,为将来的学业打下了坚实的基础。

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。

下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。

2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。

3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。

直径的长度是圆直径的两倍。

直径用d表示。

4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。

半径的长度是直径的一半。

半径用r表示。

5. 弧 (Arc):圆上两点之间的一段路径叫做弧。

6. 弦 (Chord):圆上两点之间的线段叫做弦。

7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。

二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。

2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。

弧长等于半径乘以弧的弧度。

3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。

4. 切线定理:切线与半径的关系是垂直。

5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。

6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。

7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。

8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。

三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。

2. 圆的构造:通过给定圆的半径或直径可以构造圆。

3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。

4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。

初三数学上圆的知识点归纳总结

初三数学上圆的知识点归纳总结

初三数学上圆的知识点归纳总结圆是数学中的一个重要几何图形,它在中级教育学校数学中的进修中起着极为重要的作用。

精通好圆的知识点,不仅可以援助我们解决实际问题,还能够培育我们的逻辑思维和几何直观能力。

下面就让我们来总结一下初三数学上圆的知识点。

一、圆的基本观点1. 圆的定义:平面上到一个确定点距离相等的点的集合叫做圆。

2. 圆的元素:圆心和半径。

圆心是确定圆位置的点,用字母O表示;半径是圆心到圆上任意一点的距离,用字母r表示。

二、圆的性质1. 圆上任意两点的距离等于半径的长度。

2. 圆的半径相等。

3. 圆的直径是通过圆心的由圆上一点到另一点的线段,它的长度等于半径的两倍。

4. 圆的周长等于2πr,其中π≈3.14,r是圆的半径。

5. 圆的面积等于πr²。

6. 同余圆:圆心和半径均相等的两个圆。

7. 相似圆:两个圆半径成正比的状况。

三、圆的位置干系1. 同心圆:具有同一圆心但半径不同的若干圆。

2. 相交圆:具有交叉部分的两个圆。

3. 内切圆:一个圆与一个三角形的内切圆相切,内切圆的圆心和三角形的心里重合。

4. 外切圆:一个圆与一个三角形的外接圆相切,外接圆的圆心和三角形的外心重合。

四、圆的识别和绘制1. 裁定圆的方法:依据给定的条件,裁定是否符合圆的定义。

2. 绘制圆的方法:知道圆心和半径后,可以利用直尺和圆规等工具绘制圆。

五、圆的运算1. 加减圆:将两个圆的面积相加或相减。

2. 圆的比较:比较两个圆的面积大小。

六、圆的直观应用1. 圆的三等分:将一个圆等分成三等分,可以通过先画一个正三角形,再通过圆心作为顶点毗连正三角形的另外两个顶点,这样就可以将圆等分为三等分。

2. 圆的乘方:当我们需要求解一个圆的面积时,可以利用圆的半径进行计算。

3. 圆的弧长:若果我们需要计算圆上某一个弧的长度,可以利用圆的半径和圆心角的大小进行计算。

以上就是初三数学上圆的知识点的归纳总结,精通好这些知识点,能够援助我们解决浩繁实际问题,并在数学进修中取得好的效果。

初三数学圆知识点总结完整版

初三数学圆知识点总结完整版

初三数学圆知识点总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2 下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

九年级上册数学圆知识点总结

九年级上册数学圆知识点总结

九年级上册数学圆知识点总结
九年级上册数学圆知识点总结:
1. 圆的定义:圆是由平面上距离一个固定点(圆心)相等的所有点构成的集合。

2. 圆的元素:圆心、半径、直径、弦、圆弧、圆周。

3. 圆的性质:
- 圆心角:位于圆心的角,它所对应的弧度是1弧度。

圆心角的大小与所对应的弧度的弧长成正比。

- 弦长和圆心角:在同一个圆上的两个圆心角相等的弦所对应的弦长也相等。

- 弦的性质:相等的弧所对应的弦相等;一个圆只有一个直径,且直径是圆的最长弦。

- 弧度制:以圆心角所对应的弧长和半径长度的比值作为圆周角的单位,记作“rad”。

- 弧的长度:弧长等于圆周长的一部分。

4. 圆的位置关系:
- 圆内切:两个圆恰好内切,即两个圆的圆心距离等于两个圆半径之和。

- 圆外切:两个圆恰好外切,即两个圆的圆心距离等于两个圆半径之差。

- 圆的内外切:一个圆和一个直角三角形的两条直角边分别与该圆内切或外切。

5. 弦与弧的关系:
- 弦的垂直性质:圆上的两条直线垂直的充分必要条件是它们所对应的圆上的弦垂直。

- 弧的垂直性质:圆上的两条弦垂直的充分必要条件是它们所对应的圆上的弧垂直。

6. 圆的切线:
- 切线的定义:通过圆上一点且与圆相切的直线称为圆的切线。

- 切线的判定:过圆外一点引圆的半径,以这条半径为斜线作弧上另一点的切线,该切线与引半径垂直。

这些是九年级上册数学圆的一些基本知识点总结,包括圆的定义、性质、位置关系、弦与弧的关系以及切线相关内容。

希望对你的学习有帮助!。

初三圆的知识点总结

初三圆的知识点总结

初三圆的知识点总结圆是初中数学中的重要概念之一,而初三阶段则是圆的学习重点。

在初三阶段,学生需要掌握圆的定义、性质、相关定理和应用。

下面我们来总结一下初三圆的知识点。

一、圆的定义和性质1. 圆的定义圆是由平面上到定点的距离等于定长的所有点构成的集合。

定点叫圆心,定长叫半径。

通常记作圆O,圆心为O,半径为r。

2. 圆的性质(1)圆的直径、半径、弧长和圆心角的关系:一个圆的直径是圆的一条弧上的两个端点,直径等于圆的半径的两倍。

(2)圆的周长公式:圆的周长等于2πr,其中r为圆的半径。

(3)圆的面积公式:圆的面积等于πr²,其中r为圆的半径。

(4)切线定理:在圆上的切线和半径垂直,切点、圆心和切线上的半径构成直角三角形。

二、圆的相关定理1. 圆心角定理定理:在同一个圆或等圆上的圆心角等于其对应弧所对的圆周角的一半。

结论:圆心角相等的弧是等弧。

2. 弧长定理定理:在同一个圆或等圆上,相等圆心角所对的弧相等,反之,相等弧对应的圆心角相等。

3. 弧度和角度定理:弧长与半径之比叫做弧度制下的角度。

1弧度(rad)=57.3°。

结论:弧长l=rθ,其中θ为弧度。

4. 正弦定理和余弦定理正弦定理:在一个三角形ABC中,a/sinA=b/sinB=c/sinC。

余弦定理:在一个三角形ABC中,a²=b²+c²-2bc*cosA。

5. 切线定理定理:在圆上的切线和半径垂直。

6. 切线与弦的关系定理:在圆上,如果一条切线和一条弦相交,那么切线和弦的交点与圆心的连线垂直。

三、圆的相关应用1. 圆的相关应用(1)圆的插值:根据圆的相关性质和定理求出圆的周长、面积及其相关角度。

(2)圆的相关推理:利用圆的性质和相关定理解决与圆相关的问题。

2. 圆的实际应用(1)工程中的车轮和齿轮。

(2)地理中的经纬度。

(3)天文中的星座和行星轨道。

(4)生活中的钟面和圆形的器物。

以上就是初三圆的知识点总结,希望对你的学习有所帮助。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级上圆的知识点总结

九年级上圆的知识点总结

九年级上圆的知识点总结圆是初中数学中非常重要的一个图形,在九年级上册的数学学习中占据着重要的地位。

接下来,让我们系统地总结一下圆的相关知识点。

一、圆的定义圆可以看作是平面内到定点的距离等于定长的所有点组成的图形。

这个定点称为圆心,定长称为半径。

另外,圆也可以由一条线段绕着它的一个端点在平面内旋转一周,另一个端点所形成的封闭曲线所构成。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做弧。

弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的性质1、圆是轴对称图形,其对称轴是任意一条过圆心的直线。

2、圆也是中心对称图形,其对称中心是圆心。

四、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

五、圆心角、弧、弦的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等。

六、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

七、圆内接四边形的性质圆内接四边形的对角互补。

八、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:1、点在圆外⇔ d > r ;2、点在圆上⇔ d = r ;3、点在圆内⇔ d < r 。

九年级圆知识点总结归纳完整版

九年级圆知识点总结归纳完整版

九年级圆知识点总结归纳完整版圆是初中数学中一个重要的几何概念,它有着广泛的应用。

本文将对九年级圆的相关知识点进行总结和归纳,帮助同学们更好地理解和掌握这一内容。

一、圆的定义圆是平面上的一个几何图形,由与其内部距离相等的所有点组成。

其中,距离圆心最远的点称为圆上的点,这个距离称为半径,用字母r表示。

圆上的任意两点之间的距离称为弦,圆的直径是一条穿过圆心并且与圆上的两点相接的弦,直径的长度是半径的两倍。

二、圆的性质1. 圆的周长公式:C = 2πr,其中C是圆的周长,r是圆的半径,π是一个无理数,近似值为3.14或22/7。

周长是圆上一周的长度,也可以说是圆的边界长度。

2. 圆的面积公式:A = πr²,其中A是圆的面积。

面积是圆所包围的平面区域的大小。

3. 切线的性质:切线是与圆只有一个交点的直线。

圆与切线相切时,切线与半径的夹角是直角。

4. 弦的性质:圆的直径是最长的弦,且直径平分圆。

如果两弦在圆内或圆上的交点连线通过圆心,则交线垂直于这两条弦。

三、圆的定位1. 圆的内切和外切:当一个圆与一个三角形的三条边都相切时,该圆称为三角形的内切圆;当一个圆与一个三角形的每条边的延长线相切时,该圆称为三角形的外切圆。

2. 圆的相似:两个圆的半径之比等于两个圆的周长之比,它们是相似的。

四、圆的推理与证明1. 直径在同一直线上的圆是同心圆:当两个圆的直径重合时,它们是同心圆。

2. 圆内接四边形的性质:一个四边形能够内切于一个圆的充要条件是,这个四边形的对角线互相垂直。

3. 正多边形外接圆的性质:一个正n边形可以内切与一个圆的充要条件是,这个正n边形的对角线互相垂直。

五、圆的应用1. 圆与三角形的应用:可以利用圆的性质来解决三角形的推理证明题,如证明三角形内切圆的性质、利用相似三角形证明圆的性质等。

2. 圆的平移、旋转和镜像:圆可以通过平移、旋转和镜像等变换来进行操作,这在解决几何问题时有着重要的作用。

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的认识1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长的点的集合)2.圆的表示方法:①圆心用字母O表示,半径用字母r表示;②弧用弧长表示,扇形用圆心角表示;③圆是一种曲线图形,圆上任意一点P到圆心的距离OP都等于半径r;④圆心角是指顶点在圆心上的角,圆心角的一边与圆相交,另一边与圆相切或相割;⑤在同圆或等圆中,能够互相重合的弧叫做等弧;⑥半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

1.圆的各部分名称及性质:①圆心:将圆对折,两个折痕相交于一点,这一点叫做圆心。

圆心一般用字母O表示。

圆心决定圆的位置。

②半径:连接圆心到圆上任意一点的线段叫做半径。

半径用字母r表示。

圆的半径决定圆的大小。

半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

③直径:通过圆心且两个端点都在圆周上的线段叫做圆的直径。

直径用字母d表示。

直径是半径的2倍,同一个圆内所有的直径都相等。

直径是圆中最长的线段。

④弦:连接圆上任意两点的线段叫做弦。

在同一个圆内最长的弦是直径。

直径是最长的弦。

⑤弧:经过圆上任意两点间的部分叫做弧。

在同一个圆内,能够互相重合的弧叫做等弧。

等弧只有在同一个圆里才能出现。

⑥扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

顶点在圆心上的扇形叫做圆心扇形,顶点在圆周上的扇形叫做圆周扇形。

在同一个圆里,由过一条弧的中点且垂直于这条弧所平分的那条弦与这条弧所组成的图形叫做弓形。

弓形的弧小于半圆的弧,弓形的弦大于半圆的弦。

二、点和圆的三种位置关系1.点和圆的三种位置关系:设⊙O的半径为r,点P到圆心的距离OP为d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.1.确定圆的条件:不在同一直线上的三个点确定一个圆.常用符号“(1)P (2)r (3)”表示.即要确定一个圆必须知道它的和圆的半径.若已知三点的位置关系是①②③,则可确定一个圆,若位置关系是①③,则可确定无数个圆;若是位置关系②,则不能确定一个圆,应先找出这三点所在直线的垂线段的中垂线,再根据垂径定理作出中垂线,它和三点确定的直线外一点和以该点为圆心,垂线段的长度为半径确定一个唯一的圆.若是位置关系③,则根据从直线外一点向这条直线所作的垂线段最短,确定垂足的位置,再根据垂径定理作出中垂线,它和三点确定的直线外一点和以该点为圆心,垂线段的长度为半径确定一个唯一的圆.若是位置关系①②,则以不共线的三点为三个顶点作三个三角形,这三个三角形的三条边分别两两相交且交点不重合的三个交点为三个圆心,以各顶点到相应交点的距离为半径作三个圆,这三个圆的公共部分即为以不共线的三点确定的圆的三个交点组成的图形,简称“三交圆”.若是位置关系①③,则以不共线的三点为三个顶点作三个三角形,这三个三角形的三条边分别两两相交且交点不重合的三个交点为三个圆心,以各顶点到相应交点的距离为半径作三个圆,这三个圆的公共部分即为以不共线的三点确定的圆的三个交点组成的图形,简称“三交圆”.若是位置关系②③,则不能确定一个唯一的圆.若是位置关系①②③也不能确定一个唯一的确定的唯一的确定的确定的确定的确定的确定的。

九年级上册圆知识点最全

九年级上册圆知识点最全

九年级上册圆知识点最全圆是几何学中的重要概念之一,其知识点在九年级上册学习中占据了很大的比重。

下面将全面介绍九年级上册关于圆的各个知识点,包括定义、性质、定理等内容,帮助学生更好地理解和掌握圆的相关知识。

1. 圆的定义圆是由平面上与一个确定点的距离相等的所有点组成的图形。

圆由圆心和半径确定,其中圆心是一个固定的点,半径是从圆心到圆上任意一点的距离。

2. 圆的符号表示圆常用一个字母加一个圆圈表示,例如圆O可以表示为⭕(O)。

3. 圆的性质(1) 在同一个平面上,圆内任意两点都与圆心的距离相等。

(2) 圆上所有的点与圆心的距离都相等。

(3) 圆的半径相等的两个圆是同心圆。

4. 圆的元素(1) 圆心:圆的中心点,通常用字母O表示。

(2) 圆的半径:圆心到圆上任意一点的距离,通常用字母r表示。

(3) 圆的直径:过圆心的两个相对点之间的距离,通常用字母d表示,直径等于半径的两倍。

(4) 圆的弦:圆上的两个点之间的线段,通常用字母AB表示。

(5) 圆的弧:圆上两个点之间的部分,通常用字母AB表示。

弧也可以表示为一段曲线。

(6) 圆的切线:与圆相切且在切点处与圆相切的线段。

5. 圆的定理(1) 圆的四个组成部分:半径、直径、弦、弧。

(2) 在同一个圆中,半径相等,直径是两倍的半径。

(3) 在同一个圆中,位于原弦之间且两弦的端点相连的两个弧是相等的。

(4) 在同一个圆中,位于圆心角上的弧是原弦的两倍。

(5) 位于圆心角上的弧大于位于同一个圆上其他的弧。

(6) 圆与定点的直线相交,相交点到圆心的距离等于定点到圆心的距离。

6. 圆的应用圆的应用非常广泛,涉及到生活的各个方面。

在建筑设计中,圆形的窗户、圆顶等都可以为建筑增添美感和独特性。

在数学科研中,圆的性质和定理被广泛应用于几何学的研究和解决问题。

此外,圆的概念也运用在电子、通信、机械等众多领域,为各种设备和技术的实现提供了基础。

以上是九年级上册关于圆的知识点的全面介绍,希望通过这篇文章的阅读,学生们能够更好地理解和掌握圆的相关知识,并能在学习和生活中灵活应用,进一步提升数学水平。

九年级上册数学圆知识点总结

九年级上册数学圆知识点总结

九年级上册数学圆知识点总结
九年级上册数学圆的知识点总结:
1. 圆的定义:圆是由平面上到定点的所有点构成的集合,其中的一个定点称为圆心,到圆心的距离称为半径。

2. 圆的元素:圆心、半径、直径、弦、弧、圆周、扇形、圆心角、半径角等。

3. 圆的性质:
- 圆的圆心到圆上任意一点的距离相等。

- 圆的直径是圆上两个相对点的最长弦,其长度等于半径的两倍。

- 圆的直径的中点即为圆心。

- 圆的弦的中点与圆心连线垂直。

- 圆的弧与该弧所对的圆心角度数相等。

- 全等圆弧所对的圆心角度数相等。

4. 圆的周长和面积:
- 圆的周长公式:C = 2πr,其中r为圆的半径,π约等于3.14。

- 圆的面积公式:A = πr^2,其中r为圆的半径,π约等于3.14。

5. 圆的切线:
- 切线是与圆只有一个公共点的直线。

- 切线与半径垂直,并且与切点的切线上半径是直角。

6. 弦的性质:
- 直径是弦的特殊情况,即直径是经过圆心的弦。

- 两条弦相等的条件是:它们所夹的圆心角相等。

7. 弧的性质:
- 弧长等于弧所对的圆心角度数除以360°乘以圆周长。

- 弧长等于半径乘以弧所对圆心角的弧度数。

这些是九年级上册数学圆的基本知识点总结,希望对你有帮助!。

九年级上圆的知识点总结

九年级上圆的知识点总结

九年级上圆的知识点总结圆是初中数学中的重要内容之一,也是中考的必考知识点。

在九年级上册的数学学习中,我们对圆的相关知识有了较为深入的了解。

下面就让我们来一起总结一下九年级上圆的知识点。

一、圆的基本概念1、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

2、圆的表示方法通常用“⊙”表示圆,后面加上圆心的字母,如⊙O 表示以 O 为圆心的圆。

3、弦连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

4、弧圆上任意两点间的部分叫做弧。

弧分为优弧和劣弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

5、等圆和等弧能够完全重合的两个圆叫做等圆。

在同圆或等圆中,能够互相重合的弧叫做等弧。

二、圆的基本性质1、圆的对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

圆也是中心对称图形,圆心是它的对称中心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

圆周角定理的推论:(1)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

(2)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。

切线的性质:圆的切线垂直于经过切点的半径。

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)

最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)

最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)名师总结:中考数学圆的知识点考点一:圆的相关概念1.圆的定义:在平面内,以一个固定点为圆心,以固定距离为半径,绕圆心旋转一周所形成的图形叫做圆。

2.圆的几何表示:以圆心为中心的圆记作“⊙O”,读作“圆O”。

考点二:弦、弧等与圆有关的定义1.弦:连接圆上任意两点的线段。

2.直径:经过圆心的弦,等于半径的2倍。

3.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

4.弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,用符号“⌒”表示。

大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

考点三:垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

推论2:圆的两条平行弦所夹的弧相等。

考点四:圆的对称性1.圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2.圆的中心对称性:圆是以圆心为对称中心的中心对称图形。

考点五:弧、弦、弦心距、圆心角之间的关系定理1.圆心角:顶点在圆心的角叫做圆心角。

2.弦心距:从圆心到弦的距离叫做弦心距。

3.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

考点六:圆周角定理及其推论1.圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

初三数学上册圆的知识点总结—全面

初三数学上册圆的知识点总结—全面

初三数学上册圆的知识点总结—全面

章节知识点一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合; 2
、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
二、点与圆的位置关系
1、点在圆内d
r 点C 在圆内;2、点在圆上d
r 点B 在圆上;3、点在圆外d r 点A 在圆外;
三、直线与圆的位置关系
1、直线与圆相离
d r 无交点;2、直线与圆相切d r 有一个交点;
3、直线与圆相交d r 有两个交点;四、圆与圆的位置关系
外离(图1)
无交点d R r ;外切(图2)有一个交点d R r ;相交(图3)
有两个交点R r d R r ;内切(图4)有一个交点d R r ;内含(图5)无交点d R r ;d r d=r r d
r d d C B A O。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


章节知识点一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合; 2
、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
二、点与圆的位置关系
1、点在圆内d
r 点C 在圆内;2、点在圆上d
r 点B 在圆上;3、点在圆外d r 点A 在圆外;
三、直线与圆的位置关系
1、直线与圆相离
d r 无交点;2、直线与圆相切d r 有一个交点;
3、直线与圆相交d r 有两个交点;四、圆与圆的位置关系
外离(图1)
无交点d R r ;外切(图2)有一个交点d R r ;相交(图3)
有两个交点R r d R r ;内切(图4)有一个交点d R r ;内含(图5)无交点d R r ;d r d=r r d
r d d C B A O。

相关文档
最新文档