无线电测向基本知识
无线电测向原理
无线电测向原理无线电测向是一种利用无线电波进行信号测向的技术,它可以用于确定信号的方向和位置。
无线电测向技术在军事、民用通信、天文学等领域都有着重要的应用。
本文将介绍无线电测向的原理及其在实际中的应用。
首先,我们来了解一下无线电测向的基本原理。
无线电测向的基本原理是利用天线接收信号,并通过对接收到的信号进行分析,确定信号的方向和位置。
在实际的应用中,通常会使用多个天线来接收信号,通过对比不同天线接收到的信号强度和相位差异,可以计算出信号的方向和位置。
无线电测向技术主要包括两种方法,一种是方位测向,另一种是距离测向。
方位测向是通过对接收到的信号进行方位角的测量,确定信号的方向;而距离测向则是通过对接收到的信号进行距离的测量,确定信号的位置。
这两种方法可以单独应用,也可以结合起来进行综合测向。
在实际的无线电测向系统中,通常会采用多种测向技术相结合的方式,以提高测向的准确度和可靠性。
例如,可以通过使用多个天线阵列来实现高精度的方位测向;同时结合多普勒效应来实现距离测向。
这样可以在不同的环境和条件下,实现更加灵活和精准的测向。
无线电测向技术在军事领域有着广泛的应用。
在军事侦察、雷达导航、通信干扰监测等方面,都需要使用无线电测向技术来获取目标的方向和位置信息。
同时,在民用通信领域,无线电测向技术也可以用于无线电定位、无线电导航等应用。
此外,无线电测向技术还可以应用于天文学领域,用于天体信号的测向和观测。
总的来说,无线电测向技术是一种重要的信号测向技术,它可以通过对接收到的无线电信号进行分析,确定信号的方向和位置。
在实际的应用中,无线电测向技术可以应用于军事、民用通信、天文学等多个领域,具有着重要的意义和价值。
随着无线电技术的不断发展,无线电测向技术也将会得到进一步的完善和应用。
无线电测向原理
无线电测向原理
无线电测向原理是一种通过测量无线电信号到达接收器的方向来确定信号发射源位置的技术。
该原理基于电磁波传播的特性,利用接收器接收到的信号的方向性信息来定位信号源。
无线电测向原理的关键在于利用多个接收器或天线阵列来接收同一个信号。
通过测量接收到信号的时间差和信号强度的变化,可以计算出信号的到达角度。
这种测向方式被称为时差测向和幅度比测向。
时差测向是基于接收到信号的时间差来测量信号到达的角度。
当信号到达不同的接收器或天线时,会产生微小的时间差。
通过计算这些时间差,可以确定信号的到达角度。
幅度比测向则是基于接收到信号的强度变化来测量信号到达的角度。
当信号到达不同的接收器或天线时,由于传播路径的不同,信号的强度会发生变化。
通过计算这些幅度变化,可以确定信号的到达角度。
无线电测向原理常用于无线电定位、无线电导航、无线电干扰源定位等领域。
它的应用范围广泛,可以用于定位无线通信设备、监测无线电信号、解决无线电干扰问题等。
总的来说,无线电测向原理通过测量接收到的信号的方向性信息来确定信号发射源的位置。
它是一种基于电磁波传播特性的技术,可以在无线通信、定位、干扰源定位等领域发挥重要作用。
小升初无线电测向
小升初无线电测向无线电测向是一种利用无线电信号的传播特性来确定信号源位置的技术。
在小升初考试中,无线电测向也是一个重要的考点。
下面,我们来了解一下关于无线电测向的基本知识。
一、无线电测向的原理无线电测向是利用无线电信号传播时的信号强度、相位差等特性来确定信号源的位置。
当一个无线电信号源发出信号时,信号会在空间中传播并到达接收器。
通过接收机测量到的信号参数,例如信号强度、相位差等,结合接收机的方向性,可以计算出信号源的位置。
二、无线电测向的应用无线电测向在现实生活中有着广泛的应用。
最常见的应用就是无线电定位系统,例如GPS系统。
通过多个接收器接收到的信号强度差异,可以确定接收器所在的位置。
此外,无线电测向还可以用于电磁波辐射监测、通信干扰定位等领域。
三、无线电测向的方法无线电测向主要有三种方法:信号强度测向、相位测向和多基站测向。
1. 信号强度测向:这是最简单也是最常用的测向方法。
通过测量信号强度,比较不同接收器的信号强度差异来确定信号源的位置。
但是由于信号的传播受到环境等因素的影响,信号强度测向的精度较低。
2. 相位测向:相位测向是通过测量接收到的信号相位差来确定信号源的位置。
相位测向的精度较高,但需要较为复杂的算法和设备支持。
3. 多基站测向:多基站测向是利用多个接收器同时接收信号,并通过测量不同接收器之间的信号时差来确定信号源的位置。
多基站测向的精度较高,但需要多个接收器的支持。
四、无线电测向的局限性无线电测向虽然在定位和测向方面有着广泛的应用,但也存在一些局限性。
首先,信号的传播受到环境等因素的影响,如建筑物、地形等会对信号传播产生阻碍或反射,影响测向的精度。
其次,测向设备的成本较高,对设备的要求也较高,限制了无线电测向的推广应用。
无线电测向是一种通过测量无线电信号参数来确定信号源位置的技术。
在小升初考试中,了解无线电测向的原理、应用和方法是很重要的。
希望通过本文的介绍,可以为大家对无线电测向有一个初步的了解。
无线电测向原理
无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。
无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。
下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。
首先,无线电测向的基本原理是基于电磁波的传播特性。
当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。
利用这些变化,可以通过信号处理技术确定信号的方向。
其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。
天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。
接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。
信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。
显示器则用于显示测向结果,通常以图形或数字的形式呈现。
最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。
干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。
方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。
跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。
综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。
它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。
无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。
无线电测向原理
无线电测向原理无线电波在均匀介质 (如空气)中,具有直线传播的特点。
只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。
无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
一、无线电波的发射与传播无线电波既看不见,也摸不着,却充满了整个空间。
广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。
无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。
无线电波的频率范围很宽,频段不同,特性也不尽相同。
我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。
(一)无线电波的发射过程无线电波是通过天线发射到空间的。
当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。
其相互间的关系,如图2-1-1所示。
如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。
如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。
从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。
图2-1-1 无线电波的发射(二)无线电波的特性l.无线电波的极化交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。
空间传播的无线电波都是极化波。
当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。
天线平行于地平面时,天线辐射的无线电波的电场平行于地面称水平极化波。
无线电测向基本技巧
无线电测向基本技术短距离无线电测向的基本方法和基本技术,可归纳为下列几个方面:一、收测电台信号1、收听电台信号当不了解被收听电台信号的强度时,如在起点收听首台或找到某台后收测下号台(应迅速离开该台十余米),可将音量旋到最大,边转动测向机,边调整频率旋钮,听到信号后,首先辩认台号是不是你现在需要寻找的电台呼号,然后缓慢地左右细调,使声音最大,音调悦耳。
最后,将音量旋钮旋至适当位置,进行测向。
2、测出电台方向线的基本方法:(1)80米波段测向的基本方法:单向—双向法:按下单向开关,使本机大音面作环向扫动,同时旋转频率钮,当耳机内出现需要测收的电台信号且声音最大时,测向机大音面所指方向即为电台方向。
这一过程称测单向。
由于大音面是一个较大的扇面,难以准确地确定电台方向线,因此在单向测完后要松开单向开关,用磁性天线的小音点(即磁棒)对着电台并左右摆动,声音最小时磁棒所指方向,即为电台的准确方向。
后面的这个过程称为测双向。
双向—单向法:先不按单向开关,用磁性天线收到电台信号后,水平旋转测向机,找出小音点(或称哑点线)获得电台所在直线,然后按下单向开关并转动测向机90°,在此位置上,反复迅速的旋转测向机180°,比较声音大小,声音大时,本机单向大音面所指的方向,即为电台的方向。
最后再用双向小音点瞄准。
(2)2米波段测向的基本方法:单向法(也叫主瓣一次测向法):当2米波段测向机收到电台信号后,转动天线360,依靠尖锐的主瓣方向图(此时引向器的前引伸方向声音最大),即可明确地测出电台方向线。
若发现主瓣与后瓣难以分清(在前后两个方向上声音大小差不多),可将测向机音量关小,举过头顶,在主、后瓣两个方向上翻转天线(见图,应注意保持天线所在面与地面的平行),反复对比两边的音量大小,防止测反方向。
此法多用于三元八木天线。
二、方向跟踪沿测向机批示的电台方向,边跑边测,直接接近并找到电台的方法叫方向跟踪。
由于80米波段测向机双向小音点方向线清晰准确,因此跟踪时多使用此方向线。
无线电测向基础知识
无线电测向基础知识
1、认识测向机
2、80米波段测向机持机方法
右手握机,大拇指靠近“单、双向开关”,其它四指握向测向机,手背一面是大音面;松肩、垂肘,测向机举至胸前,距人体约25厘米左右,尽量保持测向机与地面垂直。
调整测向机时,用右手调整各旋钮和扳动各开关(单、双向开关由右手大拇指控制)。
测单向时,为了测线准确,找准方位物,允许将持机臂伸直,将测向机抬高与眼平,进行“瞄准”。
3、测向机的信号
4、测向机的使用
(1)当磁棒轴线的垂直方向对着电台时耳机声音最大,此时磁性天线正对着电台的那个面称大音面,或大音点。
利用大音面我们可粗略确定信号源所在的方向(面)。
(2)当磁棒轴线正指电台时,耳机声音最小或完全无声,此时称小音点或哑点。
利用哑点可以精确地得到电台的位置。
无线电测向原理、基本技术
无线电测向原理人们常用“狐狸的尾巴藏不住”这句话来形容秘密事物的破绽之处。
隐蔽电台也有一条藏不住的尾巴-发射天线,因为无论将电台如何隐蔽,天线终究要伸向空间。
因此,运动员可依靠手中测向机的指引,将隐蔽电台找到。
由此看来,无论是发射机或测向机都有一个极其重要的组成部分,即天线。
天线是一个能量转换器,它可将发射机馈给的高频电能转换为向空间辐射的电磁能,也可将空间传播的电磁能转换为高频电能输送到接收机。
前者称为发射天线,后者称为接收天线。
常用的天线有直立天线、环形天线、磁性天线、八木天线等。
磁性天线就是将线圈绕在铁氧体制成的磁棒上,160米和80米波段测向机多采用这种天线。
磁性天线的工作原理:“双向”测定:在用小型晶体管收音机收听中波广播时,常常会有这样的现象:收音机在某个方向时声音小,转动一个角度后,声音却变大了。
其原因就在于收音机采用了具有方向性的天线――磁性天线。
测向时,运动员借助测向机的磁性天线以及与它们相配合的直立天线来确定电台的方向。
磁性天线平行于地面放置,并接收垂直极化波;电波从左向右传播,其磁场方向(图中虚线所示)必定垂直于电波传播方向并与地面平行;磁棒轴线与电波传播方向的夹角为θ。
则磁性天线的输出感应电势E磁随θ的变化而变化。
当磁棒轴线对准电台,磁棒轴线与电波传播方向平行(θ=0°、θ=180°),磁场方向与磁棒轴线垂直,即磁力线与天线线圈截面平行,磁力线无法顺着磁棒穿过线圈,线圈中没有变化的磁力线,线圈感应电势为零,即e磁=0。
耳机声音最小,甚至完全没有声音,此时磁性天线正对着电台的那个面,称小音面或小音点、哑点;当磁棒轴线与电台的面成一定的角度,磁场方向也与磁棒成一定的角度,会有部分磁力线穿过线圈,线圈中有一定感应电势输出,即e磁为某一定值,耳机声音不是最小,音量会随着角度的变化而变化。
所以,在测向运动中,只要旋转测向机的磁性天线,找出“哑点”(或小音点),发射台必定位于磁棒轴线所指的直线上,也就是说,利用磁性天线可确定电台所在的直线,但不能确定在直线的哪一边,这就是通常所说的测“双向”。
无线电测向基础原理.
1 无线电测向基础1.1 示向度为了确定某个目标的方位,必须确定连接该目标至已知坐标的点的直线同某个起始方向(起始线之间的夹角。
例如,在点X 上有一个须要确定方位的目标,而点A 的地理坐标已知,那么,点X 和点A 的连线同地理正北方向之间的夹角A a 称为示向度(图1-1。
这就是说,示向度是以已知地理坐标的观测点A 的地球子午线的指北方向沿顺针方向旋转至点A 与被测目标连线所转过的角度。
其取值范围:0≤示向度<360°。
无线电测向是用无线电技术手段确定来波..的示向度。
请注意,无线电测向设备所测定的是来波..的示向度(到达角,由于电波传播中可能出现的不正常现象会导致其等相位面畸变,因而来波的到达角未必是其辐射源所在的方位。
图1-1 测向与定位1.2 交会定位只在一个已知地理坐标的点测向,只能得到一条方位线,而不能得到一个定位点。
为了实现定位,必须产生两条或两条以上相互独立的方位线。
例如,点X 有一个须要确定位置的目标,而点A 与点B 的地理坐标已知,那么,由点A 和点B 测得示向度A a 和B a 与相应的方位线A LOP 和B LOP ,方位线A LOP 与B LOP 的交点,就认为是目标位置(图1-1。
如果用n 条方位线交会定位,那么,由于测向误差的影响,在目标真实位置W 周围将得出最多可达m 个交会点。
m 由下式得出:21(-=n n m (1-1a式中,n ——用于交会定位的方位线的条数。
目标真实位置w 仅以一定的概率位于这些交点所构成的多边形内。
这个概率121--=n n n p (1-2式中,n ——用于交会定位的方位线的条数。
n p 随着用于交会定位的方位线的条数的增多而增大。
表1-1是根据式(1-2制得的。
表1-1 目标位于方位线交点多边形内的概率与方位线条数的关系1.3 电磁波电磁场是相互联系着的电场与磁场的总和。
由发射天线辐射出来的无线电波的电磁场是行波场:电磁场的相位随着电波传播的路程成比例地变化,而幅度变化比较小。
无线电测向基础知识
无线电测向基础知识嘿,朋友们!今天咱来聊聊无线电测向这玩意儿。
你说这无线电测向像不像捉迷藏啊?只不过我们要找的不是人,而是那看不见摸不着的无线电信号!想象一下,你站在一片广阔的地方,手里拿着个测向仪,就像拿着个神奇的魔法棒,要去探寻那神秘的无线电信号从哪儿来。
这多有意思呀!无线电测向可不光是好玩哦,它还特别有用呢!比如说在野外探险的时候,如果迷路了,通过无线电测向说不定就能找到回家的路呢,这可比瞎转悠靠谱多了吧!那怎么才能玩好无线电测向呢?首先得熟悉你手里的那个测向仪,就像熟悉你的好朋友一样。
知道它的各种功能,怎么调呀,怎么看呀。
这就好比你要和朋友一起完成一个任务,你得先知道朋友擅长啥,对吧?然后呢,得学会听信号。
那信号的声音可不一样哦,有的强,有的弱,有的声音尖,有的声音闷。
你得仔细听,用心去分辨,就像分辨不同人的声音一样。
这可需要点耐心和细心呢,要是马马虎虎的,那可就找不到啦!还有啊,得会判断方向。
这就像你在迷宫里找出口,得知道往哪儿走。
通过听信号的强弱变化,来判断信号源的大致方向。
这可不简单哦,但只要多练习,你肯定能掌握的。
你说这无线电测向是不是很神奇?它能让我们像侦探一样,通过一些小小的线索,找到隐藏在空气中的秘密。
在玩无线电测向的过程中,还能锻炼我们的身体呢!你得跑来跑去呀,一会儿这边,一会儿那边,不知不觉就运动了。
而且还能锻炼我们的思维能力,让我们的脑子转得更快,更聪明。
哎呀,这无线电测向真的是太棒啦!它让我们既能享受探索的乐趣,又能学到好多知识和技能。
朋友们,快来一起加入无线电测向的大家庭吧,让我们一起在无线电的世界里尽情玩耍,尽情探索!总之,无线电测向就是这么一个有趣又有用的东西,你还在等什么呢?赶紧行动起来吧!。
无线电测向的方法
无线电测向技术简介测定电波来波方向,往往需要以几个位置不同的测向站(台)组网测向,用各测向站的示向度(线)进行交汇。
条件允许时,也可以用移动测向站,在不同位置依次分时交测。
无线电测向的方法无线电测向一般有以下几种方法:2.1、幅度比较式测向体制幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。
幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。
存在间距误差和极化误差,抗波前失真的能力受到限制。
频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。
2.2、干涉仪测向体制干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。
在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,其数学公式与幅度比较式测向的公式十分相似。
相关干涉仪测向:是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。
干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。
该体制极化误差不敏感。
干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。
干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。
例如:可以是三角形,也可以是五边形,还可以是L形等。
无线电测向运动
无线电测向基础教程丹徒高级中学第一章无线电测向概述第一节无线电测向运动的起源与发展无线电测向运动是科技体育项目之一,也是业余无线电活动的主要内容。
它类似于众所周知的捉迷藏游戏,但它是寻找能发射无线电波的小型信号源(即发射机),是无线电捉迷藏,是现代无线电通讯技术与传统捉迷藏游戏的结合。
大致过程是:在旷野、山丘的丛林或近郊、公园等优美的自然环境中,事先隐藏好数部信号源,定时发出规定的电报信号。
参加者手持无线电测向机,测出隐藏电台的所在方向,采用徒步方式,奔跑一定距离,迅速、准确地逐个寻找出这些信号源。
以在规定时间内,找满指定台数、实用时间少者为优胜。
通常,我们把事先巧妙隐藏起来的信号源比喻成狡猾的狐狸,故此项运动又称无线电“猎狐”或抓“狐狸”。
无线电测向的起源与发展无线电学是在物理学的发展过程中分离出来的个一学科。
它是从19世纪末兴起,经过无数科学家的辛勤劳动,积累了大量的实验和理论研究成果,逐渐发展起来的。
让我们简单地回顾一下无线电的发展历史。
1864年,英国科学家麦克斯韦总结了前人的工作,第一次提出了“电磁理论”。
在导体中来回振荡的交流电可以朝空间辐射出电磁波,而这些波会以光的速度向外传播。
当然,在未被实践证明之前,这还仅仅是一种预言。
但这是一个划时代的科学论断。
麦克斯韦的理论在当时曾受到一些著名科学家的怀疑,因为人们并没有看见过“电磁波”。
许多科学家前方百计做实验去证明它或否定它。
到23年之后,德国科学家赫兹在1887年成功地进行了用人工方法产生电磁波的实验,从而在实践上证明了“无线电”的存在。
在赫兹的实验中,收发之间不过是一墙之隔,通信距离是微不足道的。
但它确实证明了不用电线连通就可以传播电信号。
赫兹实验的成功,激发了许多人从事扩大通信距离的尝试。
既然一墙之隔能够成功,通信距离扩大到几米、几十米、几百米甚至更远一些,行不行呢?从事这种实验的人是数不胜数的,其中有代表性的是俄国的波波夫和意大利的马可尼。
无线电测向原理
无线电测向原理一、导言随着无线电技术的不断发展和应用的广泛推广,无线电测向原理作为无线通信领域的重要技术,已经在许多领域发挥了重要作用。
本文将围绕无线电测向原理展开全面、详细、完整且深入的探讨。
二、无线电测向原理概述无线电测向原理是通过测量和分析无线电信号的特性来判断信号源的方位和位置的技术。
它利用接收到的无线电信号的强度、到达时间差、多普勒效应等特征参数,运用三边测量、多边测量等方法进行位置定位。
无线电测向原理可以应用于通信系统的无线网络规划与优化、无线电频谱监测、无线电定位和导航等领域。
2.1 无线电测向原理的基本流程无线电测向原理的基本流程包括信号接收、信号测量和信号处理三个步骤。
首先,无线电接收器接收到信号源发出的无线电信号;然后,通过测量信号的强度、到达时间差和多普勒效应等参数,得到信号源的位置信息;最后,通过信号处理算法对测量得到的信号参数进行分析和处理,得出信号源的方位和位置。
2.2 无线电测向原理的关键技术在无线电测向原理中,有一些关键技术对于实现高精度的测向结果非常重要。
2.2.1 天线阵列技术天线阵列技术是无线电测向原理中常用的一种技术,它通过使用多个天线元件组成的阵列,来实现对信号的方向敏感性。
通过对不同天线元件接收到的信号进行加权、相位差分析等处理,可以较准确地确定信号的方向。
2.2.2 超宽带技术超宽带技术是一种通过在时间域上产生极短脉冲信号来实现测向的技术。
它具有带宽宽、抗干扰能力强的特点,可以实现对信号的高精度测向。
2.2.3 多传感器数据融合技术多传感器数据融合技术是指将来自多个不同传感器的数据进行集成和处理,以提高测向精度和鲁棒性。
通过利用不同传感器的特点和优势,可以更好地抑制噪声、提高信号检测和估计的性能。
三、无线电测向原理的应用领域无线电测向原理作为一项重要的技术,已经在许多领域得到了广泛的应用。
3.1 通信系统无线网络规划与优化在通信系统的无线网络规划与优化中,无线电测向原理可以用于确定基站的布设位置和方位,优化无线网络的覆盖范围和质量。
无线电测向基础原理.
1 无线电测向基础1.1 示向度为了确定某个目标的方位,必须确定连接该目标至已知坐标的点的直线同某个起始方向(起始线之间的夹角。
例如,在点X 上有一个须要确定方位的目标,而点A 的地理坐标已知,那么,点X 和点A 的连线同地理正北方向之间的夹角A a 称为示向度(图1-1。
这就是说,示向度是以已知地理坐标的观测点A 的地球子午线的指北方向沿顺针方向旋转至点A 与被测目标连线所转过的角度。
其取值范围:0≤示向度<360°。
无线电测向是用无线电技术手段确定来波..的示向度。
请注意,无线电测向设备所测定的是来波..的示向度(到达角,由于电波传播中可能出现的不正常现象会导致其等相位面畸变,因而来波的到达角未必是其辐射源所在的方位。
图1-1 测向与定位1.2 交会定位只在一个已知地理坐标的点测向,只能得到一条方位线,而不能得到一个定位点。
为了实现定位,必须产生两条或两条以上相互独立的方位线。
例如,点X 有一个须要确定位置的目标,而点A 与点B 的地理坐标已知,那么,由点A 和点B 测得示向度A a 和B a 与相应的方位线A LOP 和B LOP ,方位线A LOP 与B LOP 的交点,就认为是目标位置(图1-1。
如果用n 条方位线交会定位,那么,由于测向误差的影响,在目标真实位置W 周围将得出最多可达m 个交会点。
m 由下式得出:21(-=n n m (1-1a式中,n ——用于交会定位的方位线的条数。
目标真实位置w 仅以一定的概率位于这些交点所构成的多边形内。
这个概率121--=n n n p (1-2式中,n ——用于交会定位的方位线的条数。
n p 随着用于交会定位的方位线的条数的增多而增大。
表1-1是根据式(1-2制得的。
表1-1 目标位于方位线交点多边形内的概率与方位线条数的关系1.3 电磁波电磁场是相互联系着的电场与磁场的总和。
由发射天线辐射出来的无线电波的电磁场是行波场:电磁场的相位随着电波传播的路程成比例地变化,而幅度变化比较小。
无线电测向基本常识
无线电测向基本常识1、无线电测向的特点在景色宜人的公园、森林、丘陵、原野,手持测向机奋力奔跑着,跟踪搜寻“狡猾的狐狸”(隐蔽电台)。
没有别人的帮助,完全凭借手中测向机的导引,凭借自己掌握的测向技术,经过独立的思考、判断,去揭开一层层神秘的面纱,揪出深藏的“狐狸”,去享受胜利的喜悦,这就是无线电测向活动。
人们不甘落后,奋力向上的品质,使参加这项活动的人无不争先恐后,出于强烈的竞争意识,无线电测向运动又是一项竞技体育项目。
由“国防体育”、“军事体育”,到人们公认的“科技体育”,无线电测向运动始终以自己独特的魅力影响着广大群众。
它集体育、科技、娱乐等为一体,使参加活动的人在锻炼体魄、掌握知识、休闲娱乐、培养品质、磨练意志等多方面得到收益。
无论是十几岁的孩子,还是6、70岁的老人,都可以因时、因地、根据各种情况组织无线电测向活动和比赛。
2、如何组织无线电测向活动开展无线电测向运动场地可繁可减、设台数可多可少、距离可长可短,可根据不同的情况进行变化。
我国目前竞赛的形式主要有两种。
一种是按照国际标准组织的“长距离测向”,一种是根据我国情况由我国无线电测向工作者自己创造的“短距离测向”。
“长距离测向”的场地选择在面积为10平方公里左右,地形略有起伏(高、差在200米以内),树木较多,通透力较差的地形。
“短距离测向”的场地可以选择在城市的公园、市郊和较大的校园。
以下按照这两种测向的模式介绍开展无线电测向活动的方法。
(1)长距离测向正式比赛设5部隐蔽电台,1—5号台的呼号是MOE、MOI、MOS、MOH、MO5,按照顺序循环发射,每次工作一分钟。
终点信标台呼号为MO,均拍发摩尔斯电码。
各隐蔽台距起点的直线距离不小于750米,各台之间不小于400米。
运动员自己确定找台顺序,最佳台序的直线距离为4—7公里。
运动员实际跑的距离约6—10公里。
参加比赛的运动员统一到达起点,在预备区内准备和休息,测向机交裁判员集中保管。
每5分钟出发一批运动员,每人的出发批次在赛前抽签确定。
无线电测向及应用
无线电测向及应用无线电测向是一种通过测量无线电信号到达接收器的力度和方向来确定发送器位置的技术。
它是一个重要的无线通信工程技术,在军事、民用通信、航空航天等领域都有广泛的应用。
下面我将介绍一些关于无线电测向的基本原理、常用方法和应用领域。
无线电测向的基本原理是通过接收器接收到的信号的力度和到达时间差来确定信号的来源方向。
在无线电测向系统中,通常会使用多个接收天线,将接收到的信号和信号到达时间差进行计算和分析,从而确定信号的方向。
这些接收天线可以以不同形式布置,如线性阵列、圆形阵列等。
常见的无线电测向方法包括干扰测向、信标测向和多普勒测向。
干扰测向是指通过对干扰信号的特征进行测量和分析,确定其来源方向。
这种方法通常用于无线电窃听、干扰源定位等应用。
信标测向是通过接收到的信标信号的力度和到达时间差来确定信标的位置。
这种方法通常用于无线定位系统、定位导航系统等应用。
多普勒测向是通过测量接收到的信号频率的变化,确定信号源的速度、运动方向和位置。
这种方法通常用于雷达、航空航天等应用。
在军事领域,无线电测向被广泛应用于通信情报获取、电子战、空中战术等领域。
通过对敌方通信无线电信号进行测向分析,可以确定敌方通信的位置和通信线路,为军事作战提供情报支持。
在电子战中,无线电测向可以用于探测和定位敌方无线电干扰源,采取相应的对抗措施。
在空中战术中,无线电测向可以用于确定敌方无线电信号的来源,对敌方通信进行干扰和破坏。
在民用通信领域,无线电测向被应用于定位导航、安全防范、频谱管理等方面。
定位导航系统如GPS可以通过无线电测向和测距原理进行卫星定位,实现精确定位和导航功能。
安全防范系统如无线电监控系统可以通过无线电测向和监测原理对可疑信号进行定位和跟踪,保障安全防范工作。
频谱管理系统通过无线电测向对无线电信号进行监测和测量,实现对频谱资源的合理管理和利用。
在航空航天领域,无线电测向被应用于飞行导航、空中交通控制等方面。
无线电测向基本知识
无线电测向运动做为〜项克技体育项日,同其它克技体育项目一样,具有鮮朗的克技特征。
具体来说,一是参加者必、须共同連守统一的克癱规则,二是克界活动表现出强烈的克争特点,三是每一个参加者在躱前和克癱过程中要采取一糸列措施,力求使自己的体力、智力、技术在比界中得到最好的表现和发挥,以创凌优异成绩,庄倒对手,夺取胜利。
克技体育的这些特点表朗它不同于娱乐和游戏,也不同于健身体育和康复体育。
它要求参加者从事糸统的科学的训练,全面拿握各种技术,锻炼并提嵩自己的体力和智力去适应运动克癱的需要。
无賤,技术训练是任何一项克技体育运动员训练的重要彖之一。
无线电测向运动对参加者的运动素质的要求无疑是很為的。
以往曾有人以为,只要运动素质发畏全面,体力充沛,跑得快,便可以成为优秀测向运动员。
近几年,随着克赛规则的修改,测向技术及相关理论的发很,特别是通过历年优秀运动员的观疼和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提需运动成绩的基础,测向技术水平才是创凌优异成绩的关键。
在这一章里,将•按起点技术、途术、近台区技术、地形学知识的顺序,向读者介绍无线色测向的各种技术。
下一章再介绍技术训练的方法。
往学习有关技术,投入训练之前,先粗略地了鮮一下无线电测向技术构成是有好处的。
知道了总的轮廊,在学习一个单项技术时,可以了鮮它莊整体技术中所处的地住;在学习一项综合技术(例如近台区测向丿时,可以知道它是由哪些基本技术或单项技术所构成。
这样,既可以提需运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更纟统。
无线电测向技术如果以克癱过程的先后分,可以划为以下三项:(1丿起.点测向包括起点前技术、起.点测向、禽开起.点三部分。
(2)變中测向包括耆找台及找台顺序的确定、到住技术、途中跑及道路选择三部分。
(3)近台区测向近台区测向包含彖较多,许多基本技术和单项技术都可能在近台区得到综合运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电测向基本知识(总12页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除无线电测向运动做为一项竞技体育项目,同其它竞技体育项目一样,具有鲜明的竞技特征。
具体来说,一是参加者必须共同遵守统一的竞赛规则,二是竞赛活动表现出强烈的竞争特点,三是每一个参加者在赛前和竞赛过程中要采取一系列措施,力求使自己的体力、智力、技术在比赛中得到最好的表现和发挥,以创造优异成绩,压倒对手,夺取胜利。
竞技体育的这些特点表明它不同于娱乐和游戏,也不同于健身体育和康复体育。
它要求参加者从事系统的科学的训练,全面掌握各种技术,锻炼并提高自己的体力和智力去适应运动竞赛的需要。
无疑,技术训练是任何一项竞技体育运动员训练的重要内容之一。
无线电测向运动对参加者的运动素质的要求无疑是很高的。
以往曾有人以为,只要运动素质发展全面,体力充沛,跑得快,便可以成为优秀测向运动员。
近几年,随着竞赛规则的修改,测向技术及相关理论的发展,特别是通过历年优秀运动员的观察和统计结果的分析,使越来越多的测向运动爱好者转而赞同这样一种观点:运动素质是运动和发挥技术、提高运动成绩的基础,测向技术水平才是创造优异成绩的关键。
在这一章里,将按起点技术、途中技术、近台区技术、地形学知识的顺序,向读者介绍无线电测向的各种技术。
下一章再介绍技术训练的方法。
在学习有关技术,投入训练之前,先粗略地了解一下无线电测向技术构成是有好处的。
知道了总的轮廓,在学习一个单项技术时,可以了解它在整体技术中所处的地位;在学习一项综合技术(例如近台区测向)时,可以知道它是由哪些基本技术或单项技术所构成。
这样,既可以提高运动员参加枯燥的基本技术训练的自觉性,也有助于教练员把训练安排得更合理、更系统。
无线电测向技术如果以竞赛过程的先后分,可以划为以下三项:(1)起点测向包括起点前技术、起点测向、离开起点三部分。
(2)途中测向包括首找台及找台顺序的确定、到位技术、途中跑及道路选择三部分。
(3)近台区测向近台区测向包含内容较多,许多基本技术和单项技术都可能在近台区得到综合运用。
主要的有沿方向线跟踪、交叉定点、比音量、无信号找台、搜索等。
还有一些技术内容,例如指北针和地图使用、体力分配、复杂条件下对干扰、反射等特殊情况的处理等,难于划入上述三阶段中的某一阶段,但也必须掌握。
无线电测向技术如果以从易到难、先单项后综合的顺序划分,可视为包含以下内容:(1)使用和掌握测向机包括持机方法、收测电台信号技术的训练及掌握测向机性能。
收测电台信号技术包括:信号的辨认、调谐和抗干扰接收、测出电台方向线的步骤等。
掌握测向机性能包括:学会使用增益旋钮和衰减开关,了解测向机一般检查和简单故障的应急处理方法。
(2)基本技术包括测向技术、地图和指北针的使用和越野技术。
测向技术的内容有:原地和移动中测记电台方向线;参照实地方位物按方向线前进;利用测向机的音量、指向、强度变化等判断关键距离(如近台区、一轮信号奔跑距离)和电台设置位置(如高低、向背);近台区技术(方向跟踪、交叉定点、比音量、无信号找台、搜索);测向点的选择:识别和排除环境等因素对方向的影响。
地图与制北针的使用包括:地图的识读,分析、记背以及现地对照;指北针的安装、使用及利用指北针按方向线行进。
标绘电台方向线和地图上的远距离交叉。
越野技术包括:越野奔跑技术和体力分配;选择道路的基本原则。
(3)专项技术包括确定首找台和找台顺序、到位技术、近台区测向和识图越野。
(4)综合技术包括综合运用各种技术的能力、体力和竞技状态的调整和心理控制及心理训练。
第二节无线电测向原理一、无线电波的发射随着科学技术的不断发展,人们与“无线电”的关系越来越密切了。
播送广播节目和电视节目的广播电台和电视台,是通过发射到空间的无线电波把声音和图象神奇地传诵到千家万户的,这个道理已成为人们的常识。
让我们再来简单地回顾一下发射和接收过程:广播电台(电视台)首先把需要向外发射声音和图象变为随声音和图象变化的电信号,然后用一中频率很高、功率很强的交流电做为“运载工具”,将这种电信号带到发射天线上去。
再通过天线的辐射作用,把载有电信号的高频交流电转变为同频率的无线电波(或称电磁波),推向空间,并象水波一样,不断向四周扩散传播,其传播的速度在大气中为每秒30万公里。
在电波所能到达的范围内,只要我们将收音机、电视机打开,通过接收天线将这种无线电波接收下来,再经过接收机大放大、解调等各种处理,把原来的电信号从“运载工具”中分离出来,逼真地还原成发射时的声音和图像,我们就能在远隔千里的地方收听(收看)到广播电台(电视台)播出的节目。
无线电测向也是利用类似的途径和方式实现的,只是它所发射的仅仅是一组固定重复的莫尔斯电报信号。
电台的发射功率小,信号能到达的距离也极为有限。
一般在10公里以内。
下面,我们紧密结合无线电测向,介绍一些有关的无线电波的基础知识。
1. 无线电波的传播途径无线电波按传播途径可分为以下四种:天波——由空间电离层反射而传播;地波——沿地球表面传播;直射波——由发射台到接收台直线传播;地面反射波——经地面反射而传播。
无线电测向竞赛的距离通常都在10公里以内,所以,除用于远距离通信的天波外,其它传播方式都与测向有关,160米和80米波段测向,主要使用地波;2米波段测向,主要使用直射波和地面发射波。
2. 无线电波在传播中的主要特性无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,其传播的情况是非常复杂的。
它虽具有一定的规律性,但对它产生影响的因素却很多。
无线电波在传播中的主要特性如下:(1)直线传播均匀媒介质(如空气)中,电波沿直线传播。
无线电测向就是利用这一特性来确定电台方位的。
(2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。
图2-1所示的射线由第一种介质射向第二中介质,在分界面上出现两种现象。
一种是射线返回第一种介质,叫做反射;另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。
一般情况下反射和折射是同时发生的。
入射角等于反射角,但不一定等于折射角。
反射和折射给测向准确性带来很大的不良影响;反射严重是,测向机误指反射体,给接近电台造成极大困难。
(3)绕射电波在传播途中,有力图饶过难以穿透的障碍物的能力。
绕射能力的强弱与电波的频率有关,又和障碍物大小有关。
频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。
工作于80米波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。
2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。
因此,测向点的选择就成为测向爱好者随时都要考虑的一大问题。
(4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向机收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。
这种现象称为波的干涉。
产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断电台距离造成错觉。
2米波段测向中,这种现象比较常见。
另外,如图2-2所示,天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。
反之,距电台愈近,单位面积上获得的能量愈大。
在距电台数十米以内,电场强度的变化十分剧烈,反映在测向机耳机中的音量变化也格外明显。
这一特点有助于测向运动员在接近电台后判断电台的距离及其位置。
3.天线的架设与电波传播形式的关系当发射天线垂直于地面时,天线辐射电磁波的电场也垂直于地面,我们称它“垂直极化波”;当天线平行于地面时,天线辐射电磁波的电场也平行于地面,我们叫它“水平极化波”。
160米波段和80米波段,规定发射垂直极化波,因而要求发射天线必须垂直架设;2米波段规定发射水平极化波,因而要求发射天线必须水平架设。
二、无线电测向机的组成与特点无线电测向机是测向运动员在训练与比赛中赖以测向隐蔽电台方位的工具,根据工作波段的不同,测向机的电路和外形结构也不尽相同。
但一部测向机,无论是简是繁,是大是小,都是由测向天线、收信机和指示器三部分组成的。
其方框图如图2-3所示。
1.测向天线测向天线接收被测电台发出的无线电信号,并对来自不同方向的电波产生不同的感应电势。
这是测向机不同于一般收音机的主要区别。
目前测向运动中,160米波段测向机使用磁性天线以及与它相配合的直立天线;80米波段测向机多数也用磁性天线加直立天线(过去也有用环形天线加直立天线的,但因环形天线体积大,不易看准方向线,已很少使用);2米波段测向机使用八木天线。
2.收信机收信机对测向天线送来的感应电势进行放大解调等一系列处理,最后把所需信号送入指示器。
一般测向机的收信部分与普通收音机基本相似,但根据测向的特殊需要,它还应具备以下特点:(1)为保证远距离收到隐蔽状态下的小功率电台信号,应有较高的灵敏度。
但为使近距离测向时信号不致阻塞,(信号过强时出现的现象)保持良好的方向性,以及能准确判断电台距离,收信机必须有整机放大量调整和衰减信号装置。
(2)测向机的音量应随天线感应电势的大小发生明显的变化。
收音机中为提高音量稳定而设置的自动音量控制电路,不能用语测向机。
(3)测向机的外形结构设计应适应剧烈运动的需要,即坚固、防雨、防震、便于携带和操作。
(4)除天线外,其余部件不得接收电波,以防破坏测向机的方向性。
因此,应使用金属外壳将整机屏蔽。
3、指示器指示器将天线对不同方向电波的反应显示出来.目前,测向机都采用耳机作指示器,通过它将电信号还原成声音,依靠耳机中声音大小判断电台方向。