概率统计练习册习题解答讲解

合集下载

概率统计练习册习题解答[定]

概率统计练习册习题解答[定]

习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :(1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。

解:{},18543,,,=Ω ;{}18,,12,11 =A 。

(2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。

解:{} ,,,=321Ω;{}54321A ,,,,=。

(3)车工生产精密轴干,其长度的规格限是15±0.3。

现抽查一轴干测量其长度,事件A 表示测量长度与规格的误差不超过0.1。

3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A ,B ,C 都发生:解: ABC ;(2) A ,B ,C(3) A 发生,B 与C(4) A ,B ,C 中至少有一个发生:解:C B A ⋃⋃(5)A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2)至少有一个次品;(3)恰好有两个是次品;(4习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P,则)(A P)(AB P)(B A P )(B A P =)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P AB 0.6(3)盒子中有10个球,其中3(4)一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为(5)某寝室住有6名学生,至少有两个同学的生日恰好在同一个月的概率为2.选择题(1)如果A 与B 互不相容,则(C )(A) AB =∅ (B) A B = (C ) AB =Ω (D) A B =Ω(2)设A 、B 是任意两事件,则=-)(B A P ( B 、C )。

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

概率统计练习册习题解答

概率统计练习册习题解答

概率统计练习册习题解答苏州科技学院概率论与数理统计》活页练习册习题解答信息与计算科学系概率论与数理统计教材编写组2013 年12 月习题1-1 样本空间与随机事件1选择题(1)设A,B,C为三个事件,则A,B,C中至少有一个不发生”这一事件可表示为(D)(A)AB IJ AC U BC(B)A U B U C(C )AB CU A B C UA BC(D )AUBUC(2)设三个元件的寿命分别为T1,T2,T3,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件系统的寿命超过t”可表示为(D)A ;T1T2T3kB ITT2T3 t?C :min 汀,T2,T3? t? D;max:T1,T2,T3i >t?2•用集合的形式表示下列随机试验的样本空间「与随机事件A:对目标进行射击,击中后便停止射击,观察射击的次数;事件A表示射击次数不超过5次”。

解:Q = {l,2,3,,}; A = {1,2,3,4,}。

3•设某工人连续生产了4个零件,A i表示他生产的第i个零件是正品(i=123,4 ),试用A表示下列各事件:(1 )只有一个是次品;(2)至多有三个不是次品;卜- A- A3 一A4习题1-2 随机事件的概率及计算1填空题(1)已知 A B,P(A)=0.4,P(B)=0.6,贝P(A)二—0.6,P(AB)二二0 ,P(AB)二0.4。

P(A B)(2)设事件A与B互不相容,P(A) =0.4, P(B) = 0.3,则P(AB)=0.3 ,P(AU B)= 0.6 。

2 •选择题(1)如果P(AB) =0,则(C )(A) A与B互不相容(B) A 与B互不相容(C) P(A_B)二P(A) (D) P(A_B) =P(A) _P(B)(2)两个事件A与B是对立事件的充要条件是(C )(A) P(AB) = P(A) P(B) (B) P(AB) =0 且P(A B) =1(C) AB二•一且 A B 二■1(D) AB 二一3.—批晶体管共40只,其中3只是坏的,今从中任取5只,求(1) 5只全是好的的概率; (2) 5只中有两只坏的的概率; (3) 5只中至多有一只坏的概率P 2=弩(2)C 40=0.03544. ( 1)教室里有r 个学生,求他们的生日都不相同的概率;(2)房间里有四个人,求至少两个人的生日在同一 个月的概率.解:(1)设A 二“他们的生日都不相同”,则P(A)崇;(2)设B 二“至少有两个人的生日在同一个月4112-p 441 96习题1-3 条件概率1.选择题:(1)设A,B为两个相互对立事件, 且P(A) 0,P(B) 0,(B) P(A B) = P(A) (C) P(A B) =0 (D)(A) P(BA)»OP(AB)二 P(A)P(B)(2) —种零件的加工由两道工序组成,第一道工序的废品率为p,第二道工序的废品率为q,则该零件加工的成品率为(|c )(A) 1»q ( B) 1 - pq (C) 1 - p - q pq (D)(1-P) (1-q)2 •填空题:(1)已知P(A) =0.5, P(AUB) =0.6,若A、B 互不相容,贝P(B) = 0 .1_ ;若A、B 相互独立,则P(B)=—0 . 2(2)一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,该射手的命中率2——p=3—。

概率统计参考答案(习题一)

概率统计参考答案(习题一)

概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。

解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。

(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。

则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。

2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。

3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。

解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。

4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。

概率与数理统计习题一答案讲解

概率与数理统计习题一答案讲解

概率与数理统计习题⼀答案讲解概率论与数理统计第⼀章习题参考解答1、写出下列随机试验的样本空间。

(1)枚硬币连掷三次,记录正⾯出现的次数。

(2)记录某班⼀次考试的平均分数(百分制记分)(3)对某⼯⼚出⼚的产品进⾏检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停⽌检查,或检查4个产品就停⽌检查,记录检查的结果。

(4)在单位圆内任取⼀点,记录它的坐标。

解:(1){}3,2,1,0=S ,(2) S ={k/n: k=0,1,2,··· ,100n},其中n 为班级⼈数,(3){}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S ,其中0表⽰次品,1表⽰正品。

(4)(){}1,22<+=y x y x S2、设A 、B 、C 为三事件,⽤A 、B 、C 的运算关系表⽰下列各事件(1)A 、B 、C 中⾄少有⼀个发⽣(2)A 、B 、C 中恰好有⼀个发⽣(3)A 、B 、C 都不发⽣(4)A 、B 、C 中不多于⼀个发⽣(5)A 、B 、C 中不多于两个发⽣解:(1)C B A ?? (2)C B A C B A C B A ??(3)C B A 错解C B A ABC =(4)即⾄少有两个不发⽣C B C A B A ??(5)即⾄少有⼀个不发⽣C B A ABC = 2、指出下列命题中哪些成⽴,哪些不成⽴。

(1)成⽴,(2)不成⽴,(3)不成⽴,(4)成⽴(5)成⽴,(6)成⽴(7)成⽴(8)成⽴ 4、把C B A ??表⽰为互不相容事件的和。

解:()()()ABC CA C BC B AB A ?-?-?- 答案不唯⼀5、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7。

问(1)在什么条件下P (AB )取到最⼤值?最⼤值是多少?(2)在什么条件下P (AB )取到最⼩值?最⼩值是多少?(1)B A ?时,6.0)(=AB P 为最⼤值,因为A 、B ⼀定相容,相交所以A 和B 重合越⼤时P (AB )越⼤(2)S B A =?时,P (AB )=0.3为最⼩值6、若事件A 的概率为0.7,是否能说在10次实验中A 将发⽣7次?为什么?答:不能。

概率复习题自测题解答

概率复习题自测题解答

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n nn n----+--=⋅+⋅=--当n 为偶数时:1122222()112(1)nnn nn P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136xS dx dy --==⎰⎰13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。

答案:首先计算总球数为8个,红球数为5个。

根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。

2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。

答案:首先列出所有可能的结果:正正、正反、反正、反反。

其中正正和正反、反正是至少出现一次正面的情况。

根据概率公式,P(至少一次正面) = 3/4。

3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。

答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。

然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。

根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。

二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。

今天工厂生产了200个零件,求至少有10个次品的概率。

答案:首先确定次品数为10、11、...、20。

使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。

计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。

2. 题目:一个盒子里有10个球,编号为1到10。

随机抽取3个球,求抽取的球的编号之和大于15的概率。

答案:列出所有可能的抽取组合,计算和大于15的组合数。

然后根据概率公式计算概率。

3. 题目:一个班级有50名学生,其中男生30名,女生20名。

随机选取5名学生,求选取的学生中恰好有3名男生的概率。

答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。

三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。

概率统计练习册习题解答(定)

概率统计练习册习题解答(定)

概率统计练习册习题解答(定)习题1-1 样本空间与随机事件A,B,C 为三个事件,则A,B,C 中至少有一个不发 ”这一事件可表示为(D )(A ) ABU AC U BC (B ) AU BUC ( C ) ABC U ABC U ABC ( D )BUC 2)设三个元件的寿命分别为T”T 2,T 3,并联成一个系 ,则只要有一个元件正常工作则系统能正常工作, 件 系统的寿命超过t”可表示为(D )B TT 2T 3t C min T I ,T 2,T 3 t用集合的形式表示下列随机试验的样本空间 机事件A : 1)同时掷三枚骰子,记录三枚骰子的点数之和, 件A 表示 点数之和大于10”。

O2)对目标进行射击,击中后便停止射击,观察射 击的次数;事件A 表示 射击次数不超过5次o3)车工生产精密轴干,其长度的规格限是15±0.3。

现抽查一轴干测量其长度,事件 A 表示测1.选择题(1)设 生AUT i T 2 T 3tTT 2T3t 2. 随( 事 解: =3,4,5, ,18; A = 11,12, ,18解: =簽2,3,- A = ^2,3,4,5量长度与规格的误差不超过0.1。

O3 .设A ,B ,C 为三个事件,用A ,B ,C 的运算关0.3; A= x; x-15 0.1x; x -15 解:系表示下列各事件:(1)A, B, C 都发生:解:ABC;(2)A, B, C都不发生:解:ABC(3)A发生,B与C不发生:解:A§C (或A-B-C);(4)A, B, C中至少有一个发生:解:AuBuC(5)A, B, C中不多于两个发生:解:刁MUJ4.设某工人连续生产了4个零件,人表示他生产的件:(1 ) 只有一个是次品;A( A2A3A4 u A】A? A3A4 u A t A2 A3A4U A!A2A3A4(2)至少有一个次品;A-55uA。

(3)恰好有两个是次品;1.填空题(1)已知AuB, P(A) = 0.4 9 P(B) = 0.6 9贝|| P(A)=_0.6, P(AB)=0.4,P(JU^)=_0.6, P(AB) =_0.2 , P(AB) = 0 9 P(A B)=A P42A3 A4 uA] A2J3 A4 uAj A2A3J4A2 A3A4 u J]J2J3A4<J A}A2A3A4(4)至多有三个不是次品;A, u A2 u A? u A4 0习题1-2机事件的概率及计算第,个零件是正品(i = 1,2,3,4 ), 试用4表示下列各事0.4 o(2)设事件/与B互不相容,P(A) = 0A9 P(B) = 0.3,贝!| P(AB)=0.3 9 P(A\JB)= 0.6 o(3)盒子中有10个球,其中3个红球,接连不放回抽取五次,第一次抽到红球的概率 三次抽到红球的概率 4) 一批产品由45件正品、5件次品组成,现从中 任取3件产品,其中恰有 1件次品的概率为5)某寝室住有6名学生,至少有两个同学的生日 恰好在同一个月的概率为0.3 , 0.3 。

概率统计练习册习题解答

概率统计练习册习题解答

苏州科技学院 《概率论与数理统计》活页练习册习题解答信息与计算科学系 概率论与数理统计教材编写组2013年12月习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t >2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。

解:{} ,,,=321Ω;{}54321A ,,,,=。

3.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P)(AB P=)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P A B 0.62.选择题(1)如果()0P AB =,则( C )(A) A 与B 互不相容 (B) A 与B 互不相容(C) ()()P A B P A -= (D) ()()()P A B P A P B -=- (2) 两个事件A 与B 是对立事件的充要条件是( C )(A ) )()()(B P A P AB P = (B )1)(0)(==B A P AB P 且 (C ) Ω=∅=B A AB 且 (D )∅=AB 3.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率; (3)5只中至多有一只坏的概率。

概率论与数理统计练习册—第一章答案

概率论与数理统计练习册—第一章答案

第一章 概率论的基本概念基础训练I一、选择题1. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( D )。

A )甲种产品滞销,乙种产品畅销;B )甲乙产品均畅销;C )甲种产品滞销;D )甲产品滞销或乙种产品畅销.2、设A ,B ,C 是三个事件,则C B A ⋃⋃表示( C )。

A ) A ,B ,C 都发生; B ) A ,B ,C 都不发生;C ) A ,B ,C 至少有一个发生;D ) A ,B ,C 不多于一个发生3、对于任意事件B A ,,有=-)(B A P ( C )。

A ))()(B P A P -; B ))()()(AB P B P A P +-;C ))()(AB P A P -;D ))()()(AB P B P A P -+。

4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( A ) 。

A ) 3/5;B )3/4;C )2/4;D )3/10.5、抛一枚硬币,反复掷4次,则恰有3次出现正面的概率是( D )。

A ) 1/16B ) 1/8C ) 1/10D ) 1/46、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( A )。

A )B A ,相互独立; B )B A ,互不相容;C )A B ⊃;D ))()()(B P A P B A P +=⋃。

二、填空题1.设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为C B A , “C B A ,,至少有两个发生”表示成BC AC AB ⋃⋃ 。

2.设A 、B 互不相容,4.0)(=A P ,7.0)(=⋃B A P ,则=)(B P 0.3 ;3. 某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是:30%;4.设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则C B A 、、三件事至少有一个发生的概率为:5/8;5. 若A 、B 互不相容,且,0)(>A P 则=)/(A B P 0 ;若A 、B 相互独立,,且,0)(>A P 则=)/(A B P )(B P 。

《概率与数理统计》练习册及答案详解

《概率与数理统计》练习册及答案详解

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B)B.P(A-B)=P(A)-P(B)C.)()(B A P B A P -=D.P(A+B)=P(A)+P(B)4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). A.P(A -B)=P(A)-P(AB) B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B.1)(≤AB P C.P(A+B)=P(A)+P(B) D.P(A-B)≤P(A) 6.若φ≠AB ,则( ).A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ). A. ()B P A P ≤)( B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生 8.下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B..1)(,<Ω≠A P A 则若C.1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( ).A.若诸i A 两两互斥,则∑∑===ni i n i i A P A P 11)()(B.若诸i A 相互独立,则11()1(1())nni i i i P A P A ===--∑∏C.若诸i A 相互独立,则11()()nni i i i P A P A ===∏D.)|()|()|()()(1231211-=Λ=n n ni i A A P A A P A A P A P A P10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ). A.21B.ba +1C.ba a+ D.ba b+ 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( )A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约12.将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ).A.!!N n B. n Nn !C. nn N Nn C !⋅ D.Nn 13.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( ).A.rr P 3651365- B. rr r C 365!365⋅ C. 365!1r -D. rr 365!1-14.设100件产品中有5件是不合格品,今从中随机抽取2件,设=1A {第一次抽的是不合格品},=2A {第二次抽的是不合格品},则下列叙述中错误的是( ). A.05.0)(1=A P B.)(2A P 的值不依赖于抽取方式(有放回及不放回) C.)()(21A P A P =D.)(21A A P 不依赖于抽取方式15.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ). A.C AUB 与B. B A -与CC. C AC 与D. C AB 与16.10张奖券中含有3张中奖的奖券,现有三人每人购买1张,则恰有一个中奖的概率为( ). A.4021 B.407 C. 3.0D. 3.07.02310⋅⋅C17.当事件A 与B 同时发生时,事件C 也随之发生,则( ). A.1)()()(-+≤B P A P C PB.1)()()(-+≥B P A P C PC.P(C)=P(AB)D.()()P C P A B =18.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ). A. A 与B 不相容 B. A 与B 相容 C. A 与B 不独立D. A 与B 独立19.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的 是( ). A.P(A|B)=0B.(|)()P A B P A =C.()()()P AB P A P B =D.P(B|A)>020.已知P(A)=P ,P(B)=q 且φ=AB ,则A 与B 恰有一个发生的概率为( ). A.q p +B. q p +-1C. q p -+1D. pq q p 2-+21.设在一次试验中事件A 发生的概率为P ,现重复进行n 次独立试验 则事件A 至多发生一次的概率为( ). A.n p -1B.n pC. n p )1(1--D. 1(1)(1)n n p np p --+-22.一袋中有两个黑球和若干个白球,现有放回地摸球4次,若至少摸 到一个白球的概率为8180,则袋中白球数是( ). A.2B.4C.6D.823.同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为( ). A.0.5B.0.25C.0.125D.0.37524.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).A.1B.21C.52 D. 32 25.已知11()()(),()0,()(),416P A P B P C P AB P AC P BC ======则事件A,B,C 全不发生的概率为( ). A. 81B. 83C. 85D.87 26.甲,乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( ). A. 0.5B. 0.8C. 0.55D. 0.627.接上题,若现已知目标被击中,则它是甲射中的概率为( ). A.43B.65C.32D.116 28.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ). A.12053 B.199 C.12067 D.1910 29.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ). A.135B.4519 C.157 D.3019 30.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ). A.21 B. 31C.75 D.71 31.今有100枚贰分硬币,其中有一枚为“残币”中华人民共和国其两面都印成了国徽.现从这100枚硬币中随机取出一枚后,将它连续抛掷10次,结果全是“国徽”面朝上,则这枚硬币恰为那枚“残币”的概率为( ).A.1001B. 10099C.1010212+ D.10102992+ 32.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残品的概率分别是0.8,0.1,0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机察看1只,若无残次品,则买下该箱玻璃杯,否则退回,如果顾客确实买下该箱,则此箱中确实没有残次品的概率为( ). A.0.94B.0.14C.160/197D.420418419C C C + 二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω . 2.某商场出售电器设备,以事件A 表示“出售74 Cm 长虹电视机”,以事件B 表示“出售74 Cm 康佳电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 . 3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 .4.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .5.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )=6.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (AB )= .7.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (AB )= .8.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .9.已知A 、B 两事件满足条件P (AB )=P (AB ),且P (A )=p,则P (B )= .10.设A 、B 是任意两个随机事件,则{()()()()}P A B A B A B A B ++++= . 11.设两两相互独立的三事件A 、B 和C 满足条件:φ=A B C ,21)()()(<==C p B p A p ,且已知 169)(=C B A p ,则______)(=A p . 12.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 . 13.袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .14.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 .15.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .16.设10件产品有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是 .17.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 . 18.假设一批产品中一、二、三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率是 .19.一种零件的加工由三道工序组成,第一道工序的废品率为1p ,第二道工序的废品率为2p ,第三道工序的废品率为3p ,则该零件的成品率为.20.做一系列独立试验,每次试验成功的概率为p ,则在第n 次成功之前恰有m 次失败的概率是 .第二章 随机变量及其分布一、选择题1.设A,B 为随机事件,,0)(=AB P 则( ).A..φ=ABB.AB 未必是不可能事件C.A 与B 对立D.P(A)=0或P(B)=02.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( ).A.2-eB.251e-C.241e-D.221e-. 3.设X 服从]5,1[上的均匀分布,则( ). A.4}{ab b X a P -=≤≤ B.43}63{=<<X P C.1}40{=<<X PD.21}31{=≤<-X P4.设),4,(~μN X 则( ). A.)1,0(~4N X μ- B.21}0{=≤X P C.)1(1}2{Φ-=>-μX PD.0≥μ5.设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则( ). A .由于X 是连续型随机变量,则其函数Y 也必是连续型的B .Y 是随机变量,但既不是连续型的,也不是离散型的C .649}2{==y P D.)21,3(~B Y6.设=≥=≥}1{,95}1{),,3(~),,2(~Y P X P p B Y p B X 则若( ). A.2719 B.91C.31D.278 7.设随机变量X 的概率密度函数为(),23X f x Y X =-+则的密度函数为( ).A.13()22X y f ---B.13()22X y f --C.13()22X y f +--D.13()22X y f +-8.连续型随机变量X 的密度函数)(x f 必满足条件( ). A.1)(0≤≤x fB.)(x f 为偶函数C.)(x f 单调不减D.()1f x dx +∞-∞=⎰9.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则( ). A.{0}{0}P X P X ≤=≥ B.)(1)(x F x F --= C.{1}{1}P X P X ≤=≥D.)()(x f x f -=10.设)5,(~),4,(~22μμN Y N X ,记},5{},4{21+≥=-≤=μμY P P X P P 则( ). A.21P P =B.21P P <C.21P P >D.1P ,2P 大小无法确定11.设),,(~2σμN X 则随着σ的增大,}|{|σμ<-X P 将( ). A.单调增大B.单调减少C.保持不变.D.增减不定12.设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( ). A.⎰-=-adx x f a F 0)(1)(B.⎰-=-adx x f a F 0)(21)(C.)()(a F a F =-D.1)(2)(-=-a F a F13.设X的密度函数为01()0,x f x ≤≤=⎪⎩其他,则1{}4P X >为( ). A.78B.14⎰C.141-∞-⎰D.3214.设~(1,4),(0.5)0.6915,(1.5)0.9332,{||2}X N P X Φ=Φ=>则为( ). A.0.2417B.0.3753C.0.3830D.0.866415.设X 服从参数为91的指数分布,则=<<}93{X P ( ). A.)93()99(F F -B.)11(913ee - C.ee 113-D.⎰-939dx e x16.设X 服从参数λ的指数分布,则下列叙述中错误的是( ).A.⎩⎨⎧≤>-=-0,00,1)(x x e x F x λB.对任意的x e x X P x λ-=>>}{,0有C.对任意的}{}|{,0,0t X P s X t s X P t s >=>+>>>有D.λ为任意实数17.设),,(~2σμN X 则下列叙述中错误的是( ). A.)1,0(~2N X σμ-B.)()(σμ-Φ=x x FC.{(,)}()()a b P X a b μμσσ--∈=Φ-Φ D.)0(,1)(2}|{|>-Φ=≤-k k k X P σμ18.设随机变量X 服从(1,6)上的均匀分布,则方程012=++Xx x 有实根的概率是( ). A.0.7B.0.8C.0.6D.0.519.设=<=<<}0{,3.0}42{),,2(~2X P X P N X 则σ( ). A .0.2B.0.3C.0.6D.0.820.设随机变量X服从正态分布2(,)N μσ,则随σ的增大,概率{||}P X μσ-<( ).A.单调增大 B.单调减少 C.保持不变 D.增减不定二、填空题1.随机变量X 的分布函数)(x F 是事件 的概率. 2.已知随机变量X 只能取-1,0,1,2四个数值,其相应的概率依次是cc c c 161,81,41,21,则=c3.当a 的值为 时, ,2,1,)32()(===k a k X p k 才能成为随机变量X的分布列.4.一实习生用一台机器接连独立地制造3个相同的零件,第i 个零件不合格的概率)3,2,1(11=+=i i p i ,以X 表示3个零件中合格品的个数,则________)2(==X p .5.已知X 的概率分布为⎪⎪⎭⎫⎝⎛-4.06.011,则X的分布函数=)(x F .6.随机变量X 服从参数为λ的泊松分布,则X 的分布列为 .7.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=其它,0]6,3[,92]1,0[,31)(x x x f ,若k 使得{}32=≥k X p则k 的取值范围是 . 8.设离散型随机变量X 的分布函数为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<≤-<≤--<=2,21,3211,1,0)(x b a x a x a x x F且21)2(==X p ,则_______,________a b ==.9.设]5,1[~U X ,当5121<<<x x 时,)(21x X x p <<= . 10.设随机变量),(~2σμN X ,则X 的分布密度=)(x f .若σμ-=X Y ,则Y 的分布密度=)(y f .11.设)4,3(~N X ,则}{=<<-72X p .12.若随机变量),2(~2σN X ,且30.0)42(=≤<X p ,则_________)0(=≤X p .13.设)2,3(~2N X ,若)()(c X p c X p ≥=<,则=c . 14.设某批电子元件的寿命),(~2σμN X ,若160=μ,欲使80.0)200120(=≤<X p ,允许最大的σ= .15.若随机变量X的分布列为⎪⎪⎭⎫⎝⎛-5.05.011,则12+=X Y 的分布列为 .16.设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}= .17.设随机变量X服从(0,2)上的均匀分布,则随机变量Y=2X 在(0,4)内的概率密度为()Y f y = .18.设随机变量X服从正态分布2(,)(0)N μσσ>,且二次方程240y y X ++=无实根的概率为1/2,则μ= .第三章 多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( ). A.(X,Y)B.XYC.X+YD.X -Y2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则( ).A.X =YB.0}{==Y X PC.21}{==Y X P D.1}{==Y X P 3.设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( ).A.52,53-==b aB.32,32==b aC.23,21=-=b aD.23,21-==b a4.设随机变量i X 的分布为12101~(1,2){0}1,111424i X i X X -⎛⎫ ⎪===⎪⎝⎭且P 则12{}P X X ==( ).A.0B.41C.21D.15.下列叙述中错误的是( ). A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布 6.设随机变量(X,Y)的联合分布为: 则b a ,应满足( ). A .1=+b aB. 13a b +=C.32=+b aD.23,21-==b a7.接上题,若X ,Y 相互独立,则( ). A.91,92==b aB.92,91==b aC.31,31==b aD.31,32=-=b a8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( ). A.1{,},,1,2,636P X i Y j i j ==== B.361}{==Y X P C.21}{=≠Y X PD.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为⎩⎨⎧≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下面错误的是( ).A.1}0{=≥X PB.{0}0P X ≤=C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为1 10.接上题,设G 为一平面区域,则下列结论中错误的是( ). A.{(,)}(,)GP X Y G f x y dxdy ∈=⎰⎰B.2{(,)}6GP X Y G x ydxdy ∈=⎰⎰C.1200{}6x P X Y dx x ydy ≥=⎰⎰D.⎰⎰≥=≥yx dxdy y x f Y X P ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y Df x y ≠∈⎧=⎨⎩其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( ).A.{,)(,)GP X Y G f x y dxdy ∈=⎰⎰B.⎰⎰-=≤-Gdxdy y x f X Y P ),(1}02{C.⎰⎰=≥-Gdxdy y x h X Y P ),(}02{D.⎰⎰=≥DG dxdy y x h X Y P ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以G S 与D S 分别表示区域G 和D 的面积,则下列叙述中错误的是( ). A.{(,)}DGS P X Y D S ∈=B.0}),{(=∉G Y X PC.GDG S S D Y X P -=∉1}),{(D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X 分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ). A.211X X Y += B.},max{212X X Y = C.213X X Y +=D.},min{211X X Y =14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0⎩⎨⎧>≤=⎩⎨⎧>≤=YX YX V Y X Y X U 则==}{V U P ( ).A.0B.41C.21D.4315.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( ).A.),(~211σμN X B ),(~221σμN X C.若0=ρ,则X,Y 独立 D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( ).A.))(,(~22121σσμμ+++N Y XB.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,22Y X Z +=则Z 服从的分布是( ).A .N (0,2)分布 B.单位圆上的均匀分布 C.参数为1的瑞利分布 D.N (0,1)分布18.设随机变量4321,,,X X X X 独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{D P ( ).A.0.1344B.0.7312C.0.8656D.0.3830 19.已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N20.已知sin(),0,,(,)~(,)40,C x y x y X Y f x y π⎧+≤≤⎪=⎨⎪⎩其他则C 的值为( ). A.21B.22C.12-D.12+ 21.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( ) A.7265 B.727 C.721 D.727122.为使⎩⎨⎧≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( ).A.0B.6C.10D.1623.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Y h 所确定的随机变量( ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立 24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( ).A.21B.31C.41D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则Y X +( ).A.服从泊松分布B.仍是离散型随机变量C.为二维随机向量D.取值为0的概率为0 26.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( ).A.Z 也服从]1,0[上的均匀分布B.0}{==Y X PC.Z 服从]2,0[上的均匀分布D.)1,0(~N Z27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( ).A.)1(414--e B.414e - C.43414+-e D.21 28.设⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( ). A. 0.4 B.0.5 C.0.6 D.0.8 29.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( ).A.1-eB.2-eC.11--eD.21--e 30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae-+++-+-=,则A 为( ).A.3π B.π3C.π2D.2π31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( ). A.481 B.21C.121D.24132.设12,,,n X X X 相独立且都服从),(2σμN ,则( ). A.12n X X X === B.2121()~(,)n X X X N nnσμ+++C.)34,32(~3221+++σμN XD.),0(~222121σσ--N X X33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积为,,D G S S ,则{(,)}P x y D ∈=( ). A.GDS S B.G G D S S C.⎰⎰D dxdy y x f ),( D.⎰⎰Ddxdy y x g ),(二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率:(1);____________________),(=<≤≤c Y b X a p (2);____________________),(=<<b Y a X p (3);____________________)0(=≤<a Y p (4).____________________),(=<≥b Y a X p 2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是 .3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则YX ,相互独立当且仅当=ρ .5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为 P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布⎪⎪⎭⎫ ⎝⎛2.08.010,则∑==31i i X X 服从 分布 .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= .8.设某班车起点站上车人数X服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y 表示在中途下车的人数,则在发车时有n个乘客的条件下,中途有m人下车的概率为;二为随机变量(X,Y)的概率分布为 .9.假设一设备开机后无故障工作的时间X服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y的分布函数 .10.设两个随机变量X与Y独立同分布,且P(X=-1)=P(Y=-1)=1/2,P(X=1)=P(Y=1)=1/2,则P(X=Y)= ;P (X+Y=0)= ;P(XY=1)= .第四章 随机变量的数字特征一、选择题1.X 为随机变量,()1,()3E X D X =-=,则2[3()20]E X +=( ). A. 18 B.9 C.30 D. 32 2. 设二维随机向量(X,Y)的概率密度函数为(),0,0(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其它,则()E XY =( ). A. 0 B.1/2 C.2 D. 1 3. (X,Y )是二维随机向量,与0),(=Y X Cov 不等价的是( ).A. EY EX XY E ⋅=)(B. DY DX Y X D +=+)(C. DY DX Y X D +=-)(D. X 与Y 独立 4. X,Y 独立,且方差均存在,则=-)32(Y X D ( ).A.DY DX 32-B. DY DX 94-C. DY DX 94+D. DY DX 32+5. 若X,Y 独立,则( ). A. DY DX Y X D 9)3(-=- B. DY DX XY D ⋅=)(C. 0]}][{[=--EY Y EX X ED. 1}{=+=b aX Y P6.若0),(=Y X Cov ,则下列结论中正确的是( ). A. X,Y 独立B. ()D XY DX DY =⋅C. DY DX Y X D +=+)(D. DY DX Y X D -=-)(7.X,Y 为两个随机变量,且,0)])([(=--EY Y EX X E 则X,Y( ).A. 独立B. 不独立C. 相关D. 不相关 8.设,)(DY DX Y X D +=+则以下结论正确的是( ).A. X,Y 不相关B. X,Y 独立C. 1xy ρ=D. 1xy ρ=- 9.下式中恒成立的是( ).A. EY EX XY E ⋅=)(B. DY DX Y X D +=-)(C. (,)Cov X aX b aDX +=D. 1)1(+=+DX X D10.下式中错误的是( ).A. ),(2)(Y X Cov DY DX Y X D ++=+B. (,)()Cov X Y E XY EX EY =-⋅C. ])([21),(DY DX Y X D Y X Cov --+=D. ),(694)32(Y X Cov DY DX Y X D -+=- 11.下式中错误的是( ).A. 22)(EX DX EX +=B. DX X D 2)32(=+C. b EY b Y E +=+3)3(D. 0)(=EX D12.设X 服从二项分布, 2.4, 1.44EX DX ==,则二项分布的参数为( ).A. 4.0,6==p nB. 1.0,6==p nC. 3.0,8==p nD. 1.0,24==p n13. 设X 是一随机变量,0,,2>==σσμDX EX ,则对任何常数c,必有( ).A. 222)(C EX c X E -=-B. 22)()(μ-=-X E c X EC. DX c X E <-2)(D. 22)(σ≥-c X E 14.()~(,),()D X X B n pE X =则( ). A. n B. p -1 C. p D.p-11 15.随机变量X 的概率分布律为1{},1,2,,,P X k k n n===()D X 则= ( ). A.)1(1212+n B. )1(1212-n C. 2)1(12+n D. 2)1(121-n 16. 随机变量⎪⎩⎪⎨⎧≤>=-0,00,101)(~10x x e x f X x,则)12(+X E =( ). A.1104+ B. 41014⨯+ C. 21 D. 20 17.设X 与Y 相互独立,均服从同一正态分布,数学期望为0,方 差为1,则(X ,Y )的概率密度为( ). A. 22()21(,)2x y f x y e π+-=B. 22()2(,)x y f x y +-=C. 2()2(,)x y f x y +-= D. 2241(,)2x y f x y e π+-=18.X 服从]2,0[上的均匀分布,则DX=( ). A.21 B. 31 C.61D. 121 19.,),1,0(~3X Y N X =则EY=( ).A. 2B.n 43 C. 0 D. n 32 20. 若12,~(0,1),1,2,i Y X X X N i =+=则( ).A. EY=0B. DY=2C.~(0,1)Y ND.~(0,2)Y N 21. 设2(,),(,)X b n p Y N μσ,则( ). A.2()(1)D X Y np p σ+=-+ B.()E X Y np μ+=+ C.22222()E X Y n p μ+=+ D.2()(1)D XY np p σ=-22.将n 只球放入到M 只盒子中去,设每只球落在各个盒中是等可能的,设X 表示有球的盒子数,则EX 值为( ). A. ])11(1[nMM -- B.M n B. ])1(1[n M M - D. n Mn ! 23. 已知X 服从参数为`λ的泊松分布,且[(1)(2)]1E X X --=,则λ为( ).A. 1B.-2C.21D.41 24. 设1X ,2X ,3X 相互独立,其中1X 服从]6,0[上的均匀分布,2X 服从正态分布)2,0(2N ,3X 服从参数为3的泊松分布,记12323Y X X X =-+,则DY=( ).A. 14B.46C.20D. 9 25. 设X 服从参数为1的指数分布,则2()X E X e -+=( ). A. 1 B.0 C. 13D.4326. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ). A. 91≤ B. 31≤ C. 91≥ D. 31≥ 27. 设X,Y 独立同分布,记,,Y X V Y X U +=-=则U 与V 满足( ). A. 不独立 B. 独立 C.相关系数不为0 D. 相关系数为028. 设随机变量1210,,X X X 相互独立,且1,2(1,2,,10)i i EX DX i ===,则下列不等式正确的是( ).A. 21011}1{-=-≥<-∑εεi i X P B. 21011}1{-=-≥<-∑εεi i X PC. 2101201}10{-=-≥<-∑εεi i X P D. 2101201}10{-=-≤<-∑εεi i X P29. 利用正态分布有关结论,⎰∞+∞---+-dx e x x x 2)2(22)44(21π=( ).A. 1B.0C.2D. -1 30.设(X,Y )服从区域},0:),{(a y x y x D ≤≤=上的均匀分布,则||Y X E - 的值为( ).A. 0B.a 21C. a 31D. a 41 31. 下列叙述中正确的是( ). A. 1)(=-DX EX X DB. ~(0,1)NC. 22)(EX EX =D. 22)(EX DX EX +=32.某班有n 名同学,班长将领来的学生证随机地发给每个人,设X 表示恰好领到自己学生证的人数,则EX 为( ). A. 1 B.2n C.2)1(+n n D. nn 1- 33.设X 服从区间]2,1[-上的均匀分布,1,00,()0,1,0X X DY Y X -<⎧⎪===⎨⎪>⎩则.A.32 B. 31 C. 98D. 1 34.某种产品表面上的疵点数服从泊松分布,平均每件上有1个疵点,若规定疵点数不超过1的为一等品,价值10元;疵点数大于1不多于3的为二等品,价值8元;3个以上者为废品,则产品的废品率为( ). A.e 38 B. e 381- C. e 251- D. e25 35. 接上题,任取一件产品,设其价值为X, 则EX 为( ). A.e 376 B. e316C. 9D. 6 36. 设⎩⎨⎧<<=其他,010,2)(~x x x f X ,以Y 表示对X 的三次独立重复观察中“21≤X ”出现的次数,则DY=( ).A . 169 B. 916 C. 43 D. 3437. 设(X,Y)为连续型随机向量,其联合密度为),(y x f ,两个边缘概 率密度分别为()X f x 与()Y f y ,则下式中错误的是( ). A. ()X EX xf x dx +∞-∞=⎰ B. ⎰⎰+∞∞-+∞∞-=dxdy y x xf EX ),( C. ⎰⎰+∞∞-+∞∞-=dxdy y x f y EY ),(22D. ()()()X Y E XY xyf x f y dxdy +∞+∞-∞-∞=⎰⎰二、填空题1.随机变量X 服从参数为λ的泊松分布,且2)(=X D ,则{}==1X p .2.已知离散型随机变量X 可能取到的值为:-1,0,1,且2()0.1,()0.9E X E X ==,则X 的概率密度是 .3.设随机变量2~(,)X N μσ,则X 的概率密度()f x =EX = ;DX = .若σμ-=X Y ,则Y 的概率密度()f y =EY = ;DY = .4.随机变量~(,4)X N μ,且5)(2=X E ,则X 的概率密度函数(24)0.3,p X <<=为 .5.若随机变量X服从均值为3,方差为2σ的正态分布,且(24)0.3,P X <<=则(2)P X <= .6.已知随机变量X 的分布律为:则()E X = ,()D X = ,(21)E X -+= . 7.设4,9,0.5,(23)_____________XY DX DY D X Y ρ===-=则.8.抛掷n 颗骰子,骰子的每一面出现是等可能的,则出现的点数之和的方差为 .9.设随机变量X 和Y 独立,并分别服从正态分布(2,25)N 和(3,49)N ,求随机变量435Z X Y =-+的概率密度函数为 . 10.设X 表示10次独立重复射击命中目标的次数,每次击中目标的概率为0.4,则2X 的数学期望E (2X )= .11.已知离散型随机变量X 服从参数为2的泊松分布,则随机变量Z=3X-2的数学期望E (Z )= .第五章 大数定理及中心极限定理一、选择题1. 已知的i X 密度为()(1,2,,100)i f x i =,且它们相互独立,则对任何实数x , 概率∑=≤1001}{i i x X P 的值为( ).A. 无法计算B.100110011001[()]i i i i x xf x dx dx ==≤∑⎰⎰C. 可以用中心极限定理计算出近似值D. 不可以用中心极限定理计算出近似值2. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ).A. 91≤B. 31≤C. 91≥D. 31≥ 3. 设随机变量1X ,210,,X X 相互独立,且1,2(1,2,,10)i i EX DX i ===,则( )A. 21011}1{-=-≥<-∑εεi iXP B. 21011}1{-=-≥<-∑εεi iXPC. 2101201}10{-=-≥<-∑εεi iXP D. 2101201}10{-=-≤<-∑εεi iXP4. 设对目标独立地发射400发炮弹,已知每发炮弹的命中率为0.2由中心极限定理,则命中 60发~100发的概率可近似为( ).A. (2.5)ΦB. 2(1.5)1Φ-C. 2(2.5)1Φ-D. 1(2.5)-Φ5. 设 1X ,2,,n X X 独立同分布,2,,1,2,,,i i EX DX i n μσ===当30≥n 时,下列结论中错误的是( ).A.∑=ni iX1近似服从2(,)N n n μσ分布B.niXn μ-∑近似服从(0,1)N 分布C. 21X X +服从)2,2(2σμN 分布D.∑=ni iX1不近似服从(0,1)N 分布6. 设12,,X X 为相互独立具有相同分布的随机变量序列,且()1,2,i X i =服从参数为2的指数分布,则下面的哪一正确? ( )A.()lim ;n i n X n P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑B. ()2lim ;n i n X n P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑C. ()2lim ;n i n X P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑D. ()2lim ;n i n X P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑ 其中()x Φ是标准正态分布的分布函数.二、填空题1、设n μ是n 次独立重复试验中事件A 出现的次数,p q p A P -==1,)(,则对 任意区间],[b a 有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-<∞→b npq np a P n n μlim = . 2、设n μ是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有⎭⎬⎫⎩⎨⎧>-∞→εμ||lim p n P n n = .3、一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X p = .4、已知生男孩的概率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率= .第六章 样本及抽样分布一、选择题1. 设12,,,n X X X 是来自总体X 的简单随机样本,则12,,,n X X X 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定 2.下列关于“统计量”的描述中,不正确的是( ). A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3. 设总体均值为μ,方差为2σ,n 为样本容量,下式中错误的是( ). A.0)(=-μX E B. 2()D Xnσμ-=C. 1)(22=σS E D. ~(0,1)N4. 下列叙述中,仅在正态总体之下才成立的是( ). A.22211()()nni ii i XX X n X ==-=-∑∑ B. 2S X 与相互独立 C. 22])ˆ([)ˆ()ˆ(θθθθθ-+=-E D E D. 221[()]nii E Xn μσ=-=∑5. 下列关于统计学“四大分布”的判断中,错误的是( ). A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n T F n 则C .若)1(~),1,0(~22x X N X 则D .在正态总体下2212()~(1)nii Xx n μσ=--∑6. 设2,i i X S 表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A. 2221122212~(1,1)SF n n S σσ--B.12~(0,1)NC.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--7. 设总体服从参数为θ1的指数分布,若X 为样本均值,n 为样本容量,则下式中错误的是( ).A.θ=X EB. 2DX nθ=C. ()22(1)n E Xnθ+= D. ()221θ=XE8. 设12,,,n X X X 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量 9. 12,,,n X X X 是来自正态总体)1,0(N 的样本,2,S X 分别为样本均值与样本方差,则( ).A. )1,0(~N XB. ~(0,1)nX NC.221~()ni i X x n =∑ D.~(1)Xt n S- 10. 在总体)4,12(~N X 中抽取一容量为5的简单随机样本,,,,,54321X X X X X 则}15),,,,{max(54321>X X X X X P 为( ).A. )5.1(1Φ-B. 5)]5.1(1[Φ- C. 5)]5.1([1Φ- D. 5)]5.1([Φ 11.上题样本均值与总体均值差的绝对值小于1的概率为( ).A. 1)5.0(2-ΦB. 1)25(2-Φ C. 1)45(2-Φ D. 1)5.2(2-Φ12. 给定一组样本观测值129,,,X X X 且得∑∑====91291,285,45i i i i X X 则样本方差2S 的观测值为 ( ).A. 7.5B.60C.320D. 265 13. 设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为( ).A.a 21 B. a2 C.a +21 D. a 211-14. 设12,,n X X X ,是来自总体)1,0(N 的简单随机样本,则∑=-ni i X X 12)(服从分布为( ).A .)(2n x B. )1(2-n x C. ),0(2n N D. )1,0(nN 15. 设12,,,n x x x 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ).A.161,121,81 B. 161,121,201 C. 31,31,31 D. 41,31,2116. 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从2(,0.2)N a 分布,以n X 表示n 次称量结果的算术平均,则为了使na X P n ,95.0}1.0{≥<-值最小应取作( ). A. 20 B. 17 C. 15 D. 1617. 设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X 和921,,,Y Y Y 分别是来自两总体的简单随机样本,则统计量9iXU =∑( ).A. )9(tB. )8(tC. )81,0(ND. )9,0(N二、填空题1.在数理统计中, 称为样本. 2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 .3.设随机变量n X X X ,,,21 相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni i X n X 11,则EX =;.DX =4.设n X X X ,,,21 是来自总体的一个样本,样本均值_______________=X ,则样本标准差___________=S ;样本方差________________2=S ;样本的k 阶原点矩为 ;样本的k 阶中心矩为 . 5.),,,(1021X X X 是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P . 6.设n X X X ,,,21 是来自(0—1)分布)}1{,1}0{(p X P p X P ==-==的简单随机样本,X 是样本均值,则=)(X E .=)(X D .7.设),,,(21n X X X 是来自总体的一个样本,),,,()()2()1(n X X X 是顺序统计量,则经验分布函数为=)(x F n ⎪⎩⎪⎨⎧_______________________ 8.设),,,(21n X X X 是来自总体的一个样本,称 为统计量;9.已知样本1621,,,X X X 取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ .10.设总体),(~2σμN X ,X 是样本均值,2n S 是样本方差,n 为样本容量,则常用的随机变量22)1(σn S n -服从 分布.11.设n X X X ,,,21 为来自正态总体),(~2σμN X 的一个简单随机样本,则样本均值∑==ni i X n X 11服从 ,又若i a 为常数),2,1,0(n i a i =≠,则∑=ni i i X a 1服从 .12.设10=n 时,样本的一组观测值为)7,4,8,5,4,5,3,4,6,4(,则样本均值为 ,样本方差为 .第七章 参数估计一、选择题1. 设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为( ).(A )X 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )X 2. 设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-n i i X X n 12)(1是( ).)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计3. 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本n X X ,,1 ,a 的最大似然估计为( )(A )},,,max{21n X X X (B )∑=ni i X n 11(C )},,,min{},,,max{2121n n X X X X X X - (D )∑=+ni i X n 111;4. 设总体X 在[a,b]上服从均匀分布,n X X X ,,,21 是来自X 的一个样本,则a 的最大似然估计为( )(A )},,,max{21n X X X (B )X (C )},,,min{21n X X X (D )1X X n -5. 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ).(A )∑=-n i i X X n 12)(1 (B )∑=--n i i X X n 12)(11 (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 6. 设总体分布为),(2σμN ,μ已知,则2σ的最大似然估计量为( ). (A )2S (B )21S nn - (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 7. 设总体X 的密度函数是⎩⎨⎧<<=-其他,010,),(1x ax a x f a (120),,,,n a x x x >是取自总体的一组样本值,则a 的最大似然估计为( ). A. ∑=-ni ixn1lnB. 11ln ni i x n =∑ C. 11ln()ni i x n =-∑ D. ∑=-n i ix n 1ln8. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<-=其他,00),(6)(3θθθx x xx f ,n X X X ,,,21 是来自X 的简单随机样本,则θ的矩估计量为( ).A. XB. X 2C. ),,,max(21n X X XD.∑=ni iX19. 设总体X 的数学期望为μ,方差为2σ,),(21X X 是X 的一个样本, 则在下述的4个估计量中,( )是最优的.(A) 2115451ˆX X +=μ(B) 2124181ˆX X +=μ(C) 2132121ˆX X +=μ(D) 2143121ˆX X +=μ 10. 321,,X X X 设为来自总体X 的样本,下列关于)(X E 的无偏估计中,最有效的为( ).(A ))(2121X X + (B ))(31321X X X ++ (C ))(41321X X X ++ (D ))313232321X X X -+11. 设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是( ).(A )22111ˆ()n i i X X n σ==-∑; (B )22211ˆ()1n i i X X n σ==--∑; (C )22311ˆ()n i i X n σμ==-∑; (D )22411ˆ()1n i i X n σμ==--∑. 12. 设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ).)(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 13. 设)2(,,,21≥n X X X n 是正态分布),(2σμN 的一个样本,若统计量∑-=+-1121)(n i i i X X K 为2σ的无偏估计,则K 的值应该为( )(A )n 21 (B )121-n (C )221-n (D )11-n 14. 下列叙述中正确的是( ).A . 若θˆ是θ的无偏估计,则()2ˆθ也是2θ的无偏估计.B . 21ˆ,ˆθθ都是θ的估计,且)ˆ()ˆ(21θθD D ≤,则1ˆθ比2ˆθ更有效. C . 若21ˆ,ˆθθ都是θ的估计,且2221)ˆ()ˆ(θθθθ-≤-E E ,则1ˆθ优于2ˆθ D . 由于0)(=-μX E ,故.μ=X15. 设n 个随机变量n X X X ,,,21 独立同分布,2σ=X D ,∑==ni i X n X 11,∑=--=ni i X X n S 122)(11,则( ) A. S 是σ的无偏估计量 B. 2S 不是2σ的最大似然估计量。

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

概率统计习题带答案

概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。

3.试验E 为掷2颗骰子观察出现的点数。

每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。

设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。

试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。

问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。

今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。

试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。

试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。

试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。

求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。

概率统计精选练习题及答案

概率统计精选练习题及答案

概率统计精选练习题及答案练题一- 问题:有一袋子里面装有5个红球和3个蓝球,从袋子里随机取两个球,求取出的两个球颜色相同的概率。

- 解答:首先,我们计算取两个红球的概率。

从5个红球中取出2个红球的组合数为C(5, 2) = 10。

总的取球组合数为C(8, 2) = 28。

所以,取两个红球的概率为10/28。

同理,取两个蓝球的概率为C(3, 2)/C(8, 2) = 3/28。

因为取球的过程是相互独立的,所以取出的两个球颜色相同的概率等于取两个红球的概率加上取两个蓝球的概率,即(10/28) + (3/28) = 13/28。

练题二- 问题:某商场每天的顾客数量服从均值为100,标准差为20的正态分布。

求该商场下一个月(30天)的总顾客数量的期望值和标准差。

- 解答:下一个月的总顾客数量等于每天顾客数量的总和。

因为每天的顾客数量服从正态分布,所以总顾客数量也服从正态分布。

总顾客数量的期望值等于每天顾客数量的期望值的总和,即30 * 100 = 3000。

标准差等于每天顾客数量的标准差的总和,即sqrt(30) * 20 ≈ 109.544。

练题三- 问题:某城市的交通事故发生率为每年100起。

求在下一个月内该城市发生至少一起交通事故的概率。

- 解答:在下一个月内,发生至少一起交通事故的概率等于1减去没有发生交通事故的概率。

没有发生交通事故的概率可以用泊松分布来计算。

假设一个月内发生交通事故的平均次数为100/12 ≈ 8.333,那么没有发生交通事故的概率为P(X = 0),其中X服从参数为8.333的泊松分布。

计算得到P(X = 0) ≈ 0.。

所以,在下一个月内该城市发生至少一起交通事故的概率为1 - P(X = 0) ≈ 0.。

以上是概率统计的精选练习题及答案,希望能对您的学习有所帮助。

天津理工大学概率论与数理统计同步练习册答案详解

天津理工大学概率论与数理统计同步练习册答案详解

天津理工大学概率论与数理统计同步练习册答案详解第一章 随机变量 习题一1、写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和Ω= {}1843,,, (2)生产产品直到有10件正品为止,记录生产产品的总件数Ω= {} ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。

用“0”表示次品,用“1”表示正品。

Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,}(4)在单位圆内任意取一点,记录它的坐标Ω= }|),{(122<+y x y x(5)将一尺长的木棍折成三段,观察各段的长度Ω=},,,|),,{(1000=++>>>z y x z y x z y x其中z y x ,,分别表示第一、二、三段的长度(6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U =“在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U =解: ( 1 ) U = { e3 , e4 ,… e10 。

}其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。

i = 3、 4、 …、 10( 2 ) U = { e3 , e4 ,… }其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。

i = 3、 4、 …2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件(3)20>x 与18<x 互不相容 (4)20>x 与22≤x 相容事件(5)20个产品全是合格品与20个产品中只有一个废品 互不相容(6)20个产品全是合格品与20个产品中至少有一个废品 对立事件2 解: 互不相容:φ=AB ; 对立事件 : φ=AB )1( 且 Ω=⋃B A3、设A,B,C 为三事件,用A,B,C 的运算关系表示下列各事件(1)A 发生,B 与C 不发生 - C B A (2)A 与B 都发生,而C 不发生 - C AB(3)A,B,C 中至少有一个发生 -C B A ⋃⋃ (4)A,B,C 都发生 -ABC(5)A,B,C 都不发生 - C B A (6)A,B,C 中不多于一个发生 -C B C A B A ⋃⋃(7)A,B,C 中不多于两个发生-C B A ⋃⋃(8)A,B,C 中至少有两个发生-BC AC AB ⋃⋃4、盒内装有10个球,分别编有1- 10的号码,现从中任取一球,设事件A 表示“取到的球的号码为偶数”,事件B 表示“取到的球的号码为奇数”,事件C 表示“取到的球的号码小于5”,试说明下列运算分别表示什么事件.(1)B A 必然事件 (2)AB 不可能事件 (3)C 取到的球的号码不小于5 (4)C A 1或2或3或4或6或8或10(5)AC 2或4 (6)C A 5或7或9 (7)C B 6或8或10 (8)BC 2或4或5或6或7或8或9或105、指出下列命题中哪些成立,哪些不成立. (1)B B A B A = 成立 (2)B A B A = 不成立 (3)C B A C B A = 不成立 (4)φ=))((B A AB 成立(5)若B A ⊂,则AB A = 成立 (6)若φ=AB ,且A C ⊂,则φ=BC 成立(7)若B A ⊂,则A B ⊂ 成立 (8)若A B ⊂,则A B A = 成立7、设一个工人生产了四个零件,i A 表示事件“他生产的第i 个零件是正品”),,,(4321=i ,用1A ,2A ,3A ,4A 的运算关系表达下列事件.3 (1)没有一个产品是次品; (1) 43211A A A A B =(2)至少有一个产品是次品;(2) 432143212A A A A A A A A B =⋃⋃⋃=(3)只有一个产品是次品;(3) 43214321432143213A A A A A A A A A A A A A A A A B ⋃⋃⋃=(4)至少有三个产品不是次品 4)432143214321432143214A A A A A A A A A A A A A A A A A A A A B ⋃⋃⋃⋃=8. 设 E 、F 、G 是三个随机事件,试利用事件的运算性质化简下列各式 : (1)()()F E F E (2) ()()()F E F E F E (3)()()G F F E 解 :(1) 原式 ()()()()E F F F E F E E E ==(2) 原式 ()()()()E F F E F F E F E F E ===(3) 原式 ()()()()()G E F G F F F G E F E ==9、设B A ,是两事件且7060.)(,.)(==B P A P ,问(1)在什么条件下)(AB P 取到最大 值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少? 解: (1)6.0)(,=⊂AB P B A (2)3.0)(,==⋃AB P S B A 10. 设 事 件 A , B , C 分 别 表 示 开 关 a , b , c 闭 合 , D 表 示 灯 亮 , 则可用事件A ,B ,C 表示:(1) D = A B C ;(2) D = ()C B A 。

概率论与数理统计 第二章 随机变量及其概率分布 练习题 答案详解

概率论与数理统计 第二章 随机变量及其概率分布 练习题 答案详解

第二章 随机变量及其概率分布(概率论与数理统计)练习题答案与提示(答案在最后)1.一盒零件中有9个合格品和3个废品,现从中任取一个零件,如果是废品不再放回,而从其余剩下的零件中另取一个,如此继续下去,直到取得合格品为止,求取出的废品个数ξ的分布律.2.在汽车行进路上有四个十字路口设有红绿灯,假定在第一.第三个路口汽车遇绿灯通行的概率为6.0,在第二.第四个路口通行的概率为5.0,并且各十字路口红绿灯信号是相互独立的.求该汽车在停下时,已通过的十字路口数的概率分布.3.把4个球任意放到3个盒中,每个球都以同样的概率31落到任一个盒中,用ξ表示落到第一个盒中的球的个数,求ξ的分布律.4.设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是01.0,且一台设备的故障能由一个人处理,考虑两种配备维修工人的方案:其一是由4人维护,每人负责20台;其二是由3人共同维护80台.试比较两种方案在设备发生故障时不能及时维修的概率大小.5.设在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里每个人死亡的概率为002.0,每个参加保险的人在每年一月一日付12元保险费,而在死亡时其家属可到保险公司领取赔付费2000元.试问:(1) 一年内保险公司亏本的概率是多少?(2) 一年内保险公司获利不少于10000元的概率是多少? 6.某盒产品中有8件正品,2件次品,每次从中任取一件进行检查,直到取得正品为止.分别按不放回抽样和有放回抽样,求所需抽取次数的分布律.7.从一批有90个正品和10个次品的产品中任取5个,求抽得的次品数ξ的概率分布.8.通过某路口的每辆汽车发生事故的概率为0001.0=p ,假设在某段时间内有1000辆汽车通过此路口,求在此时间内发生两次以上事故的概率.9.设某种晶体管的寿命ξ(单位:小时)的概率密度函数为=)(x f ⎪⎩⎪⎨⎧≤>,100,0,100,1002x x x (1) 若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间少于200小时的概率是多少?(2) 若一个电子仪器中装有三个独立工作的这种晶体管,在使用150小时之后恰有一个管子损坏的概率是多少?10.设随机变量ξ在)6,0(上服从均匀分布,求方程04522=-++ξξx x有实根的概率.11.以下哪个可以是随机变量的分布函数:(1) =)(x F 211x+, (2) =)(x F arctgx π2143+ (3) =)(x F x -e , (4) =)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<.,,,,,1 1112121 03x x xx12.设随机变量ξ的概率分布为==)(k P ξk a2, ,3,2,1=k , 求:(1) 常数a ; (2) )(为偶数ξP ; (3) )5(≥ξP .13.已知ξ的分布律为==)(k P ξkck 6.0, ,3,2,1=k , 求常数c .14.设随机变量ξ的分布律为ξ 0 1 2 P31 61 21 求ξ的分布函数,并求:(1) )21(≤ξP ;(2) )231(≤<ξP ;(3) )231(≤≤ξP .15.设随机变量ξ的分布律为ξ 2- 0 2 3P71 73 72 71求ξ的分布函数.16.一个靶子是一个半径为2米的圆盘,设击中靶上任一同心圆的概率与该圆的面积成正比,并假设每次射击都能中靶,以ξ表示弹着点与圆心的距离,求随机变量ξ的分布函数.17.已知一本书中每页上的印刷错误ξ服从参数为2.0的泊松分布,试求(1) ξ的概率分布;(2) 求每页上印刷错误不多于一个的概率.18.设随机变量ξ的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=,,,,,,, ,41415.0112.010)(x x x x x F求ξ的分布律.19.下列哪一个函数可能成为随机变量ξ的密度函数: (1) =)(x f x-e, +∞<<∞-x ;(2) =)(x f )1(12x +π, +∞<<∞-x ;(3) =)(x f ⎩⎨⎧≤其它;,,,011x(4) =)(x f ⎩⎨⎧<<其它.,,,00sin πx x20.若)(x f ,)(x g 均在同一区间],[b a 上是概率密度函数,证明: (1) )(x f +)(x g 不是这区间上的概率密度函数;(2) 对任一数k (10<<k ),)()1()(x g k x kf -+是这个区间上的概率密度函数.21.已知连续型随机变量ξ的分布函数为⎩⎨⎧<≥+=-000e )(x x B A x F x ,,,λ (0>λ为常数),求:(1) 常数A ,B ;(2) 密度函数)(x f .22.设连续型随机变量ξ的分布函数为⎪⎩⎪⎨⎧≤>+=-,,,,000e )(22x x B A x F x 求:(1) 常数A ,B ;(2) )21(<<ξP ;(3) ξ的密度函数)(x f .23.设随机变量ξ的密度函数为)(x f xc λλ-=e(0>λ为常数),求:(1) 常数c ;(2) ξ的分布函数;(3) )21(<ξP .24.某加油站每周补充油料一次,如果它的周出售量ξ(单位:千加仑)是一个随机变量,密度函数为=)(x f ⎩⎨⎧<<-其它,,,,010)1(54x x 要使在给定的一周内油库被吸光的概率是01.0,这个油库的容量应该是多少千加仑?25.设随机变量ξ的概率密度为=)(x f ,其它,,,,,⎪⎪⎩⎪⎪⎨⎧<≤<<0211102x x x ax 求:(1) 常数a ;(2) 分布函数)(x F ;(3) )35.0(<<ξP .26.某商店出售某种商品,据历史记录分析,每月销售量服从参数为5的泊松分布,问该商店月初应库存多少件此种商品,才能以999.0的概率满足顾客的需要?27.已知某自动车床生产的零件,其长度ξ(单位:厘米)服从正态分布)75.0,50(~2N ξ,如果规定零件长度在5.150±厘米之间的为合格品, 求:(1) 零件的合格率;(2) 生产三只零件,至少有一只是不合格的概率. 28.某数学竞赛中的数学成绩)10,65(~2N ξ,若85分以上者为优秀,试问数学成绩优秀的学生占总人数的百分之几?29.某地抽样调查考生的英语成绩近似服从正态分布,平均成绩为72分,96分以上的占考生总数%3.2,求考生的英语成绩在60分到84分之间的概率.30.设随机变量ξ服从参数为2,p 的二项分布,即),2(~p B ξ,随机变量η),3(~p B ,若95)1(=≥ξP ,求)1(≥ηP . 31.已知ξ服从参数为λ的Poisson 分布,且==)1(ξP )2(=ξP ,求)4(=ξP .32.已知离散型随机变量ξ的分布律为ξ 1 2 3 4 5P 51 51 51 51 51 求:(1) 12+=ξη;(2) 2)2(-=ξη的分布律.33.设随机变量ξ的分布律为ξ 2π-2ππP 2.0 3.0 4.0 1.0求:(1) 2ξη=;(2) ξηcos =的分布律.34.设某球直径的测量值为随机变量ξ,若已知ξ在],[b a 上服从均匀分布,求该球体积36ξπη=的概率密度.35.设)1,0(~N ξ,求ξη=的概率分布密度. 36.设随机变量ξ服从]2,2[ππ-上的均匀分布,求随机变量ξηsin =的分布密度)(x f .答案详解1. ξ 0 1 2 3P 43 4492209 22012. ξ 0 1 2 3 4P 4.0 3.0 12.0 09.0 09.0 3.把一个球放入盒中看作一次试验,每个球落到第一个盒中的概率都为31,4个球放入(3个)盒中可以看作4重贝努里试验,所以落入第一个盒中的球数)31,4(~B ξ,即ξ的分布律为:)(k P =ξ=kk k C -44)32()31(,4,3,2,1,0=k4.按第一种方案,每人负责20台,设每个工人需维修的设备数为ξ,则)01.020(~,B ξ.这里设备发生故障时不能及时维修的事件,也就是一个工人负责的20台设备中至少有两台发生了故障,其概率为)2(≥ξP -=-=)0(1ξP )1(=ξP20002099.001.01⋅⋅-=C 1912099.001.0⋅⋅-C 2.00!02.01--≈e 2.01!12.0--e =-=-2.02.11e 0175231.0.上述近似计算是用了泊松定理,其中参数2.0==np λ.按第二种方案,3名维修工人共同维护80台设备,设需要维修的设备数为η,则)01.080(~,B η,这里设备发生故障时不能及时维修的事件,就是80台中至少有4台发生故障,其概率为)4(≥ηP =∑=--30808099.001.0C 1k k k k∑=--≈308.0!8.01k k e k 00908.0≈,比较计算结果,可见第二种方案发挥团队精神,既能节省人力,又能把设备管理得更好.5.(1) 000069.0, (2) 986305.06.不放回抽样,所需抽取次数的分布律为:ξ 1 2 3P 54 458 451放回抽样,所需抽取次数的分布律为:==P )(k ξ54)51(1⋅-k , ,3,2,1=k7.==)(k P ξ510059010C C C k k -⋅, 5 ,4 ,3 ,2 ,1 ,0=k 8.0045.09.(1) 41, (2) 9410.5.011.(4)12.(1) 1=a , (2) 31, (3) 16113.由分布律的性质可知:∑∞====1)(1k k P ξ∑∞=16.0k kk c ,为了求级数∑∞=16.0k kk 的和,令)(x f =∑∞=1k k k x ,逐项求导,得)(x f '=∑∞=-11k k x =x -11,从而 ⎰'xx x f 0d )(=⎰-x x 0d x 11,即)(x f -)0(f =)1ln(x --,又因)0(f =0,从而)(x f =)1ln(x --,令6.0=x ,得=)6.0(f 25ln 4.0ln =-,从而1)2ln 5(ln --=c14.=)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<212121103100x x x x ,,,,,,, (1) 31; (2) 0; (3) 6115.=)(x F ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<3 ,1,32,76,20,74,02,71,2,0x x x x x 16.=)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤<2,1,20,4,0,02x x xx 17.(1) ==)(k P ξ2.0e !2.0-k k , ,2,1,0=k , (2) 983.0)1(=≤ξP 18. ξ 1- 1 4P 2.0 3.0 0.5 19.(2) 20.略21.(1) 1=A ,1-=B (2) =)(x f ⎩⎨⎧<≥-0,0,0 ,e x x x λλ22.(1) 1=A ,1-=B , (2) 4712.0, (3) =)(x f ⎪⎩⎪⎨⎧≤>-0 ,0,0,e 22x x x x23.(1) 21, (2) =)(x F ⎪⎪⎩⎪⎪⎨⎧≥-<-,0,e 211,0 ,e 21x x x xλλ (3) 2e 1λ--24.设油库的容量为x 千加仑,据题意,01.0)(=>x P ξ,即99.0)(=≤x P ξ,=≤)(x P ξ⎰-xdx 04x )(15=--=5)1(1x 99.0,从而01.0)1(5=-x ,3981.01=-x ,解得6019.0=x (千加仑)25.(1) 1, (2) =)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤<,2,1,21,123,10,2,0,02x x x x x x (3) 875.026.1327.(1) 9545.0, (2) 1304.0 28.%3.229.设考生的英语成绩为ξ,则ξ),72(~2σN ,由题意知,=≥)96(ξP 023.0)729672(=-≥-σσξP , 故977.0)24()2472(=Φ=<-P σσσξ, 查表得,224=σ,所以12=σ,因此,)12,72(~2N ξ,从而所求概率为=≤≤)8460(ξP )1272841272127260(-≤-≤-ξP )1()1(-Φ-Φ=6824.0= 30.=<)1(ξP 94951=-,即94)1(C )0(2002=-==p p P ξ,解得31=p ,从而=≥)1(ηP )1(1<-ηP )0(1=-=ηP =--=3003)1(1p p C 271931.2e 32-32.(1) η 3 5 7 9 11 (2) η 0 1 4 9P 51 51 51 51 51 P 51 52 51 5133.(1) η 0 42π 2πP 3.0 0.6 0.1(2) η 1- 0 1P 1.0 6.0 3.034.=)(y f η⎪⎩⎪⎨⎧≤≤-其它-,0,66,92133323b y a y a b πππ 35.=)(y f η⎪⎩⎪⎨⎧≤>0,0,0,e 222y2y y -π36.ξ的密度函数为=)(x f ξ⎪⎩⎪⎨⎧≤≤-,,0,22,1其它πππx由于x y sin =在]2,2[ππ-内严格单调增加,因此存在反函数y x arcsin =,其导数为:211y x y -=',x y sin =在]2,2[ππ-上的最大值为1,最小值为1-,利用随机变量的单调函数的分布密度的公式,得η的密度函数为:=)(y f η⎪⎩⎪⎨⎧<<-',,0,11)(arcsin )(arcsin 其它,y y y f ξ⎪⎩⎪⎨⎧<<--=其它,0,11,112y yπ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州科技学院《概率论与数理统计》活页练习册习题解答信息与计算科学系概率论与数理统计教材编写组2013年12月习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。

解:{} ,,,=321Ω;{}54321A ,,,,=。

3.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P ,则)(A P )(AB P=)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A P B ==,则()P AB ()P A B 0.6 2.选择题(1)如果()0P AB =,则( C )(A) A 与B 互不相容 (B) A 与B 互不相容(C) ()()P A B P A -= (D) ()()()P A B P A P B -=- (2) 两个事件A 与B 是对立事件的充要条件是( C )(A ) )()()(B P A P AB P = (B )1)(0)(==B A P AB P 且 (C ) Ω=∅=B A AB 且 (D )∅=AB3.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率; (3)5只中至多有一只坏的概率。

4.(1)教室里有r 个学生,求他们的生日都不相同的概率;(2)房间里有四个人,求至少两个人的生日在同一个月的概率.解:(1)设A =“他们的生日都不相同”,则365()365rrP P A =;(2)设B =“至少有两个人的生日在同一个月”,则212223214121141241212441()1296C C P C C C P C P B +++==; 或 412441()1()11296P P B P B =-=-=.习题1-3 条件概率1.选择题:(1)设A ,B 为两个相互对立事件,且0)(>A P ,0)(>B P ,则( C )。

(A )0)(>A B P (B ))()(A P B A P = (C )0)(=B A P (D ))()()(B P A P AB P = (2)一种零件的加工由两道工序组成,第一道工序的废品率为p ,第二道工序的废品率为q ,则该零件加工的成品率为( C )(A ) 1p q -- (B )1pq - (C )1p q pq --+ (D )(1)(1)p q -+- 2.填空题:(1) 已知,6.0)(,5.0)(==B A P A P 若B A 、互不相容,则)(B P B A 、相互独立,则)(B P (2) 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,该射手的命中率___23p =__。

3.为防止意外,在矿内同时安装了两种报警系统A 与B ,每种报警系统都使用时,对系统A 其有效的概率是0.92,对系统B 其有效的概率为0.93,在A 失效的条件下,B 有效的概率为0.85.求:(1)发生意外时,这两种报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。

解:设=A “报警系统A 有效”,=B “报警系统B 有效”(2)因为:862.0988.093.092.0)()()()(=-+=-+=B A P B P A P ABP4.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求:(1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,确无残次品的概率β.解 设A =“顾客买下该箱”,B =“箱中恰有i 件残次品”,0,1,2i =,(1)001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B α==++5.据数据显示,每1000名50岁的低风险男性中,有3名患有结肠癌.如果一名男性患有结肠癌,那么大便隐血检查表明有隐血的可能性是50%,如果一名男性没有患有结肠癌,那么大便隐血检查表明有隐血的可能性是3%.如果对一名低风险男性进行的隐血检查表明有隐血,那么他患有结肠癌的概率是多少?解 设A =“50岁男性患有结肠癌”,B =“大便隐血检查呈隐血” 由题意,003.0)(=A P ,997.0)(=A P ,50.0)(=A B P ,03.0)(=A B P 由贝叶斯公式(1.3.5),047755.003.0997.05.0003.05.0003.0)()()()()()()()()(=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P AB P B A P习题2-1 随机变量及其分布函数1.判断下列函数能否为某随机变量的分布函数.( )10,0,()sin ,0,21,.2x F x x x x ππ⎧<⎪⎪⎪=≤<⎨⎪⎪≥⎪⎩20,0,()ln(1),0.1x F x x x x <⎧⎪=⎨+≥⎪+⎩解:1()F x 是;2()F x 不是,因为2()01F +∞=≠..习题2-2 离散型随机变量1. 填空题(1) 设随机变量X 的分布律为:{},Nak X P == N k , ,2,1=,试确定___1______a =。

(2) 一批产品共100个,其中有10个次品,从中放回取5次,每次取一个,以X 表示任意取出的产品中的次品数,则X(3) 某射手对一目标进行射击,直至击中为止,如果每次射击命中率都是p ,以X表示射击的次数,则X 的分布律为2. 将编号为1,2,3,4的四个球随机地放入3个不同的盒子中,每个盒子所放球的个数不限,以X 表示放球最多的盒子中球的个数,试求X 的分布列及其分布函数()F x .3. 设某城市在一周内发生交通事故的次数服从参数为0.3的泊松分布,试问(1) 在一周内恰好发生2次交通事故的概率是多少? (2) 在一周内至少发生1次交通事故的概率是多少? 解:设一周内发生交通事故的次数为X ,则()3.0~P X 。

(1)(2)4.某人购买某种彩票,若已知中奖的概率为0.001,现购买2000张彩票,试求:(1) 此人中奖的概率;(2)至少有3张彩票中奖的概率(用泊松分布近似计算)。

解:设中奖的彩票数为X ,则(2000,0.001)XB .(1)2000(1)1(0)1(0.999)0.8648P X P X ≥=-==-≈. (2)由于20000.0012⨯=,故(3)1(0)(1)(2)P X P X P X P X ≥=-=-=-=习题2-3连续型随机变量1. 设连续型随机变量X 的密度函数为2,01,()2,12,0,ax x f x x x ⎧≤≤⎪=-<≤⎨⎪⎩其他.试求:(1)常数a 的值;(2)随机变量X 的分布函数;(3)13()22P X <<。

(2)当0x <时,()0F x =;当2x >时,()1F x =. 故,2. 设连续型随机变量X 的分布函数为⎩⎨⎧<≥-=-000)1()(x x e A x F x ,,,试求:(1)系数A ;(2)X 的密度函数;(3)(13)P X <<。

解:(1)由1)(=+∞F 知,Ae A x F x x x =-==-+∞→+∞→)1(lim )(lim 1。

(2)⎩⎨⎧≤>='=-.0,0;0,)()(x x e x F x f x (3)()()311311)1()3()31(-----=---=-=<<e e e e F F X P 。

3. 设K 在(0,5)内服从均匀分布, 求方程02442=+++K Kx x 有实根的概率。

解:所求的概率为:4. 某种型号的电子管寿命X (以小时计)具有以下概率密度210001000()0x f x x⎧>⎪=⎨⎪⎩,,其他, 现有一大批此种管子(设各电子管损坏与否相互独立), 任取5只,问其中至少有2只寿命大于1500小时的概率是多少?从而所求概率为5. 设连续型随机变量~34X N (,),(1)求{}{}2,52>≤<X P X P ;(2)确定常数C 使{}{}C X P C X P >=≤。

(2习题2-4 二维随机变量及其分布1.一箱子装有100件产品,其中一、二、三等品分别为80件,10件,10件。

现从中随机抽取一件,记11,0,X ⎧=⎨⎩若抽到一等品,其他. 210X ⎧=⎨⎩,若抽到二等品,,其他. 试求),(21X X 的联合分布列。

解:2. 完成下列表格3.设二维随机变量),(Y X 的联合密度函数为:2,01,02(,)0x cxy x y f x y ⎧+≤≤≤≤=⎨⎩其他,求:(1)常数c ;(2){1}P X Y +≤;(3)X 和Y 的边缘密度函数。

()()()()()12112212801,010.8;100100,110.1;100100,00.1P X X P X P X X P X P X X ================。

()121,10;P X X ===当10><x x 或时,()0=x f X ;求Y 的边缘密度函数:()()⎰+∞∞-=dxy x f y f Y ,。

当20><y y 或时,()0=y f Y ;4. 设),(Y X 服从}10,20|),{(≤≤≤≤=y x y x G 上的均匀分布,求:(1)),(Y X 的联合概率密度函数;(2)}{2X Y P <;(3)X 和Y 的边缘密度函数。

相关文档
最新文档