带电粒子在有界磁场中的运动(含答案)
带电粒子在有界磁场磁场中的运动
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
带电粒子在有界磁场中的运动
带电粒子在有界磁场中的运动1.带电粒子在有界磁场中运动的三种常见情形(1)直线边界(进出磁场具有对称性,如图2所示)图2(2)平行边界(存在临界条件,如图3所示)图3(3)圆形边界(沿径向射入必沿径向射出,如图4所示)图42.分析带电粒子在匀强磁场中运动的关键(1)画出运动轨迹;(2)确定圆心和半径;(3)利用洛伦兹力提供向心力列方程.[深度思考] 1.当带电粒子射入磁场时速度v大小一定,但射入方向变化时,如何确定粒子的临界条件?2.当带电粒子射入磁场的方向确定,但射入时的速度大小或磁场的磁感应强度变化时,又如何确定粒子的临界条件?答案 1.当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的.在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件.2.当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.例题1.判断下列说法是否正确.(1)带电粒子在磁场中运动时一定会受到磁场力的作用.(×)(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方向不垂直.(×)(3)洛伦兹力和安培力是性质完全不同的两种力.(×)(4)粒子在只受到洛伦兹力作用时运动的动能不变.(√)(5)带电粒子只要速度大小相同,所受洛伦兹力就相同.(×)2.(人教版选修3-1P98第1题改编)下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是()答案B3.(人教版选修3-1P102第3题改编)如图5所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法中正确的是()图5A .组成A 束和B 束的离子都带负电B .组成A 束和B 束的离子质量一定不同C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外答案 C4.质量和电量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图6中虚线所示,下列表述正确的是( )图6A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间答案 A解析 由左手定则可知,N 粒子带正电,M 粒子带负电,A 正确.又r N <r M ,由r =m v qB可得v N <v M ,B 错误.洛伦兹力与速度时刻垂直,不做功,C 错误.粒子在磁场中的运行时间t =θ2πT =T 2,又T =2πm qB,所以t M =t N ,D 错误.。
带电粒子在有界磁场中运动(超经典)..
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图T动态分析T找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。
)二、常见题型(B为磁场的磁感应强度,V。
为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率V。
垂直匀强磁场射入,入射方向与CD边界夹角为9。
已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。
的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
带电粒子在有界磁场区域中的运动
1
图611
2
【解析】如图所示,电子在磁场中沿圆弧ab运动,圆心为C,半径为R,以v表示电子进入磁场时的速度,m、e分别表示电子的质量和电荷量,则 eU =mv2 ① evB=m ② 又tan = ③ 由以上各式得B=
tan
2
五、正方形磁场
2、速度垂直边界
例2、垂直纸面向外的匀强磁场仅限于宽度为d的条形区域内,磁感应强度为B.一个质量为m、电量为q的粒子以一定的速度垂直于磁场边界方向从a点垂直飞入磁场区,如图所示,当它飞离磁场区时,运动方向偏转θ角.试求粒子的运动速度v以及在磁场中运动的时间t.(双边界)
3、速度倾斜于边界
例1如图所示,宽d的有界匀强磁场的上下边界为MN、PQ,左右足够长,磁感应强度为B.一个质量为m,电荷为q的带电粒子(重力忽略不计),沿着与PQ成45°的速度v0射入该磁场.要使该粒子不能从上边界MN射出磁场,关于粒子入射速度的最大值有以下说法:①若粒子带正电,最大速度为(2-)Bqd/m;②若粒子带负电,最大速度为(2+ )Bqd/m;③无论粒子带正电还是负电,最大速度为Bqd/m;④无论粒子带正电还是负电,最大速度为 Bqd/2m。以上说法中正确的是 A.只有① B.只有③ C.只有④ D.只有①②
V
O
b、一个速度方向的垂直线和一条弦的中垂线的交点 O ②半径的确定 应用几何知识来确定! ③运动时间: ⑸粒子在磁场中运动的角度关系----对称思想
带电粒子垂直射入磁场后,将做匀速圆周运动.分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ线间的夹角(也称为弦切角)相等,并有φ=α=2θ=ω·t,如右图所示.应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷.
带电粒子在有界磁场中运动
特点:优弧劣弧加起来,仍是一个整圆,圆越多,圆心角之 和越大,所用的时间越长
如图所示,空间存在着两个匀强磁场,其分界线是半径为R的两 个圆,两侧的磁场方向相反且都垂直于纸面,磁感应强度大小都 是B,外面的磁场范围足够大。现有一质量为m,电荷量为q的带 正电的离子(不计重力),从A点沿OA方向射出,离子后来在两 个磁场间不断地飞进飞出,最后又能返回到A点,求其返回到A 点所需的最短时间及对应的发射速度v
常见的几类问题: 1、磁场边界是直线或圆,边界把轨迹圆分成几段,优弧劣弧所 对应的圆心角的联系。 2、粒子进入有界磁场时,粒子的速度大小不确定,方向确定。 3、粒子进入有界磁场时,粒子的速度大小确定,方向不确定。
qB
磁场是直线边界的情形 1、(01全国),在y<0的区域内存在匀强磁场,磁场方向垂直于xy平 面并指向纸面外,磁感强度为B.一带正电的粒子以速度v0从O点射入 磁场,入射方向在xy平面内,与x轴正向的夹角为θ.若粒子射出磁场 y 的位置与O点的距离为L, q 2v0 sin 求该粒子的电量和质量之比q/m θ x m LB
O
v
第三类问题:粒子进入有界磁场时,粒子的速度大小确定,方向 不确定。 如图5所示,圆形区域的半径为r,和坐标原点相切,内有垂直纸 面的匀强磁场,磁感应强度为B,坐标原点有一个粒子源,以一 定大小的速度v0在纸面内向x>0的各个方向发射质量m,电荷量 q的带负电粒子,不计粒子的重力。已知带电粒子作圆周运动的 y 轨道半径R>r,求带电粒子在磁场中运动的最长时间。
y
带 电 微 粒 A 发 射 装 置
R
v
C
O' x
O
4、(09海南物理)如图,ABCD是边长为a的正方形。质量为 m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射 入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC 边上的任意点入射,都只能从A点射出磁场。不计重力,求: (1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。
1.3.2 专题 带电粒子在有界磁场中的运动 课件-2023年高二物理人教版(2019)
③半径关系:r=R/tanθ=Rtanα
④运动时间:t= 2θT/2 π= θT/ π
(2)不沿径向射入时,速度
o’
方向与对应点半径的夹角
相等(等角进出)
o
•
(3)非径向入射的距离和时间推论:
①若r 轨迹<R边界,当轨迹直径恰好是边界圆的一
条弦,此时出射点离入射点最远,且Xmax=2r,
角(弦切角)相等。若出射点到入射点之间距离为d,则
d=2R
1
t T
2
d=2Rsinθ
t
T
d=2Rsinθ
t T
【例1】水平直线MN上方有垂直纸面向里范围足够大的有界匀强磁场,磁感应强度为B,正、负电子同时从MN边界O点以与MN成45°角的相
同速率v射入该磁场区域(电子的质量为m,电荷量为e),正、负电子间的
射入筒内,射入时的运动方向与MN成30°角。当筒转过90°时,该粒
子恰好从小孔N飞出圆筒。不计重力。若粒子在筒内未与筒壁发生碰撞,
则带电粒子的比荷为(
)
【变式训练】在真空中半径 r =3×10-2m的圆形区域内有一匀强磁场,磁场
的磁感应强度B=0.2 T,方向如图所示,一个带正电的粒子以v0=1×106 m/s
(3)到入射点最远距离:
①和边界相交时,离出射点最远距离是以出射点为端点的直径或半径。
②和边界相切时,离出射点最远的距离是以出射点和切点为端点的弦长。
【例1】(多选)如图所示,圆形区域内有垂直纸面向里的匀强磁场,三个
质量和电荷量相同的带电粒子a、b、c,以不同的速率对准圆心O沿着
带电粒子在有界磁场中的运动
简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0
④
P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出
带电粒子在磁场中的运动(答案)
×××××× × × × × × × × × × Oxy v5.(2009山东威海一中3).如图所示,实线表示在竖直平面内的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线L 做直线运动,L 与水平方向成β角,且α>β,则下列说法中错误的是 ( D ) A.液滴一定做匀速直线运动 B.液滴一定带正电 C.电场线方向一定斜向上 D.液滴有可能做匀变速直线运动3. (2009北京西城区) 如图,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直。
在电磁场区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球。
O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点,Ob 沿水平方向。
已知小球所受电场力与重力大小相等。
现将小球从环的顶端a 点由静止释放。
下列判断正确的是( D )A .当小球运动的弧长为圆周长的1/4时,洛仑兹力最大B .当小球运动的弧长为圆周长的1/2时,洛仑兹力最大C .小球从a 点到b 点,重力势能减小,电势能增大D .小球从b 点运动到c 点,电势能增大,动能先增大后减小12.(07天津理综)19.如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场。
一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正负是(C)A .32vaB 正电荷 B .2v aB 正电荷C .32v aB 负电荷D .2v aB负电荷9.(09年宁夏卷)16. 医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度。
带电粒子在有界磁场中的运动全
• 引言 • 带电粒子在磁场中的基本性质 • 有界磁场中的带电粒子运动 • 实际应用和案例分析 • 结论
01
引言
主题简介
01
带电粒子在有界磁场中的运动是 一个经典问题,涉及到电磁学的 基本原理和粒子动力学的应用。
02
该问题在理论物理、天体物理、 核聚变等领域有广泛的应用,是 理解许多自然现象的基础。
回旋加速器
回旋加速器是一种利用磁场和电场控制粒子运动的加速器,其原理是将粒子在磁场中回旋 加速,通过逐渐增加电场强度来提高粒子的能量。回旋加速器常用于核物理、高能物理等 领域的研究。
核磁共振成像
核磁共振成像
磁场强度
射频脉冲
核磁共振成像是一种基于磁场和射频 脉冲的医学成像技术,其原理是利用 磁场对氢原子核的共振效应,检测人 体内氢原子核的信号,从而获得人体 内部的图像。核磁共振成像具有无辐 射、无创、高分辨率等优点,广泛应 用于医学诊断和治疗。
其他形状轨迹
根据磁场的具体形状和粒子的运动 状态,还可能出现其他形状的轨迹, 如8字形、螺旋形等。
霍尔效应
霍尔电压
当带电粒子在垂直于电流方向的磁场中运动时,会在垂直于电流 和磁场的方向上产生电压,即霍尔电压。
霍尔电流
在霍尔电压的作用下,带电粒子会在垂直于霍尔电压的方向上形 成电流,即霍尔电流。
应用
THANKS
感谢观看
霍尔效应在测量磁场、研究半导体材料等方面有广泛应用。
04
实际应用和案例分析
粒子加速器
粒子加速器
带电粒子在有界磁场中运动时,可以利用磁场对粒子的洛伦兹力来控制粒子的运动轨迹, 从而实现粒子的加速。粒子加速器是现代科学技术中非常重要的实验设备,广泛应用于物 理、化学、生物学等领域。
带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)
带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。
专题:带电粒子在有界磁场中的运动(103张PPT)
R1 R2 B O s2
2m T= Bq
r R tan
t = θ 2 T mv R= Bq
2
θ2
练、某离子速度选择器的原理图如图,在半径为R=10cm
的圆形筒内有B= 1×10-4 T 的匀强磁场,方向平行于轴 线。在圆柱形筒上某一直径两端开有小孔a、b。现有一 束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射, 其中入射角 α =30º ,且不经碰撞而直接从出射孔射出的 αa 离子的速度v大小是 ( ) C
两类典型问题
1.带电粒子在有界匀强磁场中(只受洛 伦兹力)做圆弧运动; 2.带电粒子在磁场中运动时的临界问题 (或多解问题)的讨论
概述 • 1、本类问题对知识考查全面,涉及到力学、 电学、磁学等高中物理的主干知识,对学生 的空间想象能力、分析综合能力、应用数学 知识解决物理问题能力有较高的要求,是考 查学生多项能力的极好的载体,因此成为历 年高考的热点。 • 2、从试题的难度上看,多属于中等难度或 较难的计算题。原因有二:一是题目较长, 常以科学技术的具体问题为背景,从实际问 题中获取、处理信息,把实际问题转化成物 理问题。二是涉及数学知识较多(特别是几 何知识)。
从x轴上的P(a,0)点以速度v,沿与x正方向成60º
的方向射入第一象限内的匀强磁场中,并恰好垂 直于y轴射出第一象限。求匀强磁场的磁感应强 度B和射出点的坐标。
解析 :
r
v
y
B
2a
mv 3 Bq
O′ O a
3 mv 得 B 2aq 射出点坐标为(0, 3 a )
v 60º
x
单边界磁场
练、如图,虚线上方存在磁感应强度为B的磁场, 一带正电的粒子质量m、电量q,若它以速度v沿与 虚线成300、900、1500、1800角分别射入, 1.请作出上述几种情况下粒子的轨迹 2.观察入射速度、出射速度与虚线夹角间的关系 3.求其在磁场中运动的时间。
高三物理粒子在有界磁场中运动试题答案及解析
高三物理粒子在有界磁场中运动试题答案及解析1.一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动.则下列能表示运动周期 T 与半径R之间的图像是()【答案】D【解析】带电粒子在磁场中做匀速圆周运动,根据,,联立可求粒子做圆周运动的周期为,周期与轨道半径r无关,所以A、B、C错误;D正确。
【考点】本题考查带电粒子在磁场中的运动2.如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P(- L,0)、Q(0,-L)为坐标轴上的两个点.现有一电子从P点沿PQ方向射出,不计电子的重力,则.A.若电子从P点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一定为B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为πLC.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2πLD.若电子从P点出发经原点O到达Q点,则nπL(n为任意正整数)都有可能是电子运动的路程【答案】AC【解析】若电子从P点出发恰好经原点O第一次射出磁场分界线,则有运动轨迹如图所示,由几何关系知:半径R=L,则微粒运动的路程为圆周的,即为,A正确;若电子从P点出发经原点O到达Q点,运动轨迹可能如图所示,因此则微粒运动的路程可能为πL,也可能为2πL,BD错误C正确;【考点】本题考查带电粒子在磁场中的运动。
3.如图是某离子速度选择器的原理示意图,在一半径为R 的绝缘圆柱形筒内有磁感应强度为B的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔M、N,现有一束速率不同、比荷均为k的正、负离子,从M孔以α角入射,一些具有特定速度的离子未与筒壁碰撞而直接从N孔射出(不考虑离子间的作用力和重力).则从N孔射出的离子()A.是正离子,速率为kBR/cos αB.是正离子,速率为kBR/sin αC.是负离子,速率为kBR/sin αD.是负离子,速率为kBR/cos α【答案】B【解析】因为离子向下偏,根据左手定则,离子带正电,运动轨迹如图,由几何关系可知r=,由qvB=m可得v=,故B正确.4.(8分)在真空中,半径的圆形区域内有匀强磁场,方向如图所示,磁感应强度B="0.2" T,一个带正电的粒子以初速度从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时与ab的夹角及粒子的最大偏转角.【答案】(1)(2)最大偏转角【解析】(1)粒子射入磁场后,由于不计重力,所以洛伦兹力提供圆周运动需要的向心力,根据牛顿第二定律有.(2)粒子在圆形磁场区域运动轨迹为一段半径R=5cm的圆弧,半径一定要使偏转角最大,就要求这段圆弧对应的弦最长,即为图形区域的直径,粒子运动轨迹的圆心在ab弦的中垂线上,如图所示.由几何关系可知最大偏转角【考点】带电粒子在圆形匀强磁场区域的运动5.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴平行于x轴正方向射入磁场,上的点a(0,L)。
高中物理(新人教版)选择性必修二课后习题:第一章带电粒子在有界磁场或复合场中的运动【含答案及解析】
第一章安培力与洛伦兹力习题课:带电粒子在有界磁场或复合场中的运动课后篇素养形成必备知识基础练1.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出。
∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( ) A.2πr3v 0B.2√3πr3v 0C.πr 3v 0D.√3πr3v 0t=AB ⏜v 0,从题图分析有R=√3r ,则AB ⏜=R ·θ=√3r×π3=√33πr ,则t=AB⏜v 0=√3πr3v 0,故D 正确。
2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点 ( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,一定做曲线运动,C 正确。
3.(多选)长为l 的水平极板间,有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离为l ,极板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是 ( )A.使粒子的速度v<Bql4mB.使粒子的速度v>5Bql4m C.使粒子的速度v>BqlmD.使粒子的速度Bql4m <v<5Bql4m,由题意知,若带正电的粒子从极板左边射出磁场,其在磁场中做圆周运动的半径R<l4,粒子在磁场中做圆周运动,洛伦兹力提供向心力,即qvB=m v 2r可得粒子做圆周运动的半径 r=mvqB粒子不从左边射出,则mv qB<l 4即v<Bql4m带正电的粒子从极板右边射出磁场,如图所示,此时粒子的最大半径为R ,由上图可知R 2=l 2+(R -l 2)2可得粒子做圆周运动的最大半径R=5l 4又因为粒子做圆周运动,洛伦兹力提供向心力,粒子不从右边射出,则mv qB>5l 4即v>5Bql4m,故欲使粒子打在极板上,粒子的速度必须满足v<Bql4m或v>5Bql4m故A 、B 正确,C 、D 错误。
有界磁场(六类)
y
解:如图所示作辅助线,
由几何知识可得:
o
x
sin L
2R
故运动半径为 R L 2 sin
运动时间为 t 2 2 m
qB
练习2如图,在一水平放置的平板MN上方 有匀强磁场,磁感应强度的大小为B,方向
动圆问题
垂直于纸面向里。许多质量为m,带电量
为+q的粒子,以相同的速率v沿位于纸面
B
内的各个方向,由小孔O射入磁场区域,不
y
O
x
解:如图所示作辅助线
By
设两圆切点为A,电子第二次
从B点通过y轴,
A
因为电子的入射方向与x轴
夹角为60°
O
x
则由几何知识可得OA和AB分别对应小圆和大圆的半径。
又因为电子在右边磁场中运动的半径为 r mv
2qB
在左边磁场中运动的半径为 R mv
qB
故电子第二次通过y轴时前进的距离为:
y R r 3mv 2qB
2R
2R O R N
练习3如图,在x轴的下方存在着磁感应强度为B=0.20T、 垂直纸面向里的匀强磁场。y=5cm的上方存在着同样的 匀强磁场。质量m=1.67x10-27kg、电量q=1.6x10-19C的质 子,从原点O以v0=5.0x105m/s的速度沿与x轴30°角斜 向上垂直磁场射入,经过上方和下方磁场的偏转作用 后,正好以相同的速度经过x轴上的某点A。求: (1)粒子在磁场中运动的轨道半径 (2)A点的坐标。
4πm (2)3qB
在中空四边有界磁场区的运动
练习1如图,在无限宽的匀强磁场B中有边长为L的正方形 无磁场区域。在正方形的四条边上分布着八个小孔,每个 小孔到各自最近顶点的距离都为L/3。一质量为m、电量为 +q的粒子,垂直匀强磁场从孔A射入磁场,求粒子再次回 到A点的时间。
2019年高考物理母题题源系列 专题10 带电粒子在磁场中的运动 含答案
母题10 带电粒子在磁场中的运动【母题来源一】 2018年全国普通高等学校招生统一考试物理(北京卷)【母题原题】某空间存在匀强磁场和匀强电场.一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是A. 磁场和电场的方向B. 磁场和电场的强弱C. 粒子的电性和电量D. 粒子入射时的速度【答案】 C【母题来源二】 2018年普通高等学校招生全国统一考试物理(全国II卷)【母题原题】(多选)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称.整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外.已知a、b两点的磁感应强度大小分别为和,方向也垂直于纸面向外.则()A. 流经L1的电流在b点产生的磁感应强度大小为B. 流经L1的电流在a点产生的磁感应强度大小为C. 流经L2的电流在b点产生的磁感应强度大小为D. 流经L2的电流在a点产生的磁感应强度大小为【答案】 AC点睛:磁场强度是矢量,对于此题来说ab两点的磁场强度是由三个磁场的叠加形成,先根据右手定则判断导线在ab两点产生的磁场方向,在利用矢量叠加来求解即可.【命题意图】本题考查带电粒子在匀强磁场中做匀速圆周运动时遵循的规律,涉及向心力、洛伦兹力、圆周运动知识,意在考查考生对物理规律的理解能力和综合分析能力.【考试方向】带电粒子在匀强磁场中做匀速圆周运动问题,是高考考查的重点和热点,可能以选择题单独命题,但更多的是结合其他知识以计算题的形式考查.【得分要点】1、带电体在磁场中的临界问题的处理基本思路(1)画轨迹:即画出运动轨迹,并确定圆心,用几何方法求半径.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.2、带电粒子在有界磁场中运动的几种常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)3、带电粒子在匀强磁场中的运动找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,建立运动时间t和转过的圆心角θ之间的关系是解题的关键.(1)圆心的确定①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图10甲所示,图中P为入射点,M为出射点).②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点). (2)半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.(3)运动时间的确定:电荷在匀强电场和匀强磁场中的运动规律不同.运动电荷穿出有界电场的时间与其入射速度的方向和大小有关,而穿出有界磁场的时间则与电荷在磁场中的运动周期有关.在解题过程中灵活运用运动的合成与分解和几何关系是解题关键;粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:T t πθ2=T (或vR t θ=)【母题1】如图所示,在一边长为d 的正方形区域内,存在垂直纸面向里的匀强磁场,一质量为m 、电荷量为+q 带电粒子从AB 边的中点O 处以速度v 0垂直AB 边进入磁场做圆周运动,则下列关于粒子运动的说法中正确的是A. 若带电粒子恰能从D 点飞出磁场,则粒子做圆周运动的半径应为B. 若带电粒子恰能从D 点飞出磁场,则该匀强磁场的磁感应强度应为C. 若减小该匀强磁场的磁感应强度B ,则该带电粒子在磁场中运动的时间将变长D. 若使带电粒子进入磁场初速度v0增大,则粒子在该磁场中做圆周运动周期也将变大 【答案】 A【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式,周期公式,运动时间公式,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.【母题2】如图,平行金属板上板带正电,下板带负电,板长均为L,板间距为d,两板电势差为U,板间有垂直纸面向里的匀强磁场,磁感应强度大小为B,一带正电的粒子从两板正中间,平行于金属板以速度v0射入,恰好从下板右端点平行于下板射出,若粒子质量为m,带电量为q,所受重力忽略不计,则A. 粒子在板间做匀变速曲线运动B. 粒子通过平行金属板电势能减小C. 粒子射出时速度大小为D. 粒子在板间运动时间为【答案】 B【解析】粒子在复合场中受洛伦兹力和电场力作用,电场力做正功,电势能减小,动能变大,速度变大,则洛伦兹力变大,且洛伦兹力方向不断改变,则粒子不可能做匀变速曲线运动,选项A错误,B正确;由动能定理,解得,选项C错误;粒子恰好从下板右端点平行于下板射出,则,则,粒子在板间运动,水平方向的平均速度小于v t,则在板间运动的时间大于,选项D错误;故选B.【母题3】如图,圆形区域内存在一垂直纸面的匀强磁场,P和Q为磁场边界上的两点.氕核()和氘核()粒子从P点朝向磁场中心射入磁场,且都从Q点射出,不计重力及带电粒子之间的相互作用,关于两粒子在磁场中的运动,下列说法正确的是A. 氘核的半径更大B. 氘核的速率更大C. 氘核的动能更大D. 氘核运动的时间更长【答案】 D点睛:此题关键是知道粒子在圆形磁场中运动,如果入射的速度方向指向圆心,则出离磁场方向一定背离圆心,入射点和出射点相同时,半径一定相同.【母题4】质量和电量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图两种虚线所示,下列表述正确的是A. M带负电,N带正电B. M的速度率小于N的速率C. 洛伦磁力对M做正功、对N做负功D. M的运行时间大于N的运行时间【答案】 A故选A.【母题5】如图所示,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S.某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间后有大量粒子从边界OC射出磁场.已知∠AOC=60°,从边界OC射出的粒子在磁场中运动的最长时间等于(T为粒子在磁场中运动的周期),则从边界OC射出的粒子在磁场中运动的最短时间是()A. B. C. D.【答案】 B【解析】粒子在磁场做匀速圆周运动,粒子在磁场中出射点和入射点的连线即为轨迹的弦.初速度大小相同,轨迹半径相同.设OS=d,当出射点D与S点的连线垂直于OA时,DS弦最长,轨迹所对的圆心角最大,周期一定,则由粒子在磁场中运动的时间最长,如图【点睛】所有粒子的初速度大小相同,轨迹半径相同,当入射点与出射点连线最长时,轨迹的圆心角最大,粒子在磁场中运动的最长.相反连线最短,时间最短.根据几何知识,作出轨迹,确定时间的范围进行选择. 【母题6】如图所示,水平放置的平行金属板A 、B 与电源相连,两板间电压为U ,距离为d .两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 1.圆心为O 的圆形区域内存在垂直于纸面向里的匀强磁场,磁感应强度大小为B 2.一束不计重力的带电粒子沿平行于金属板且垂直于磁场的方向射入金属板间,然后沿直线运动,从a 点射入圆形磁场,在圆形磁场中分成1、2两束粒子,两束粒子分别从c 、d 两点射出磁场.已知ab 为圆形区域的水平直径,∠cOb =60°,∠dOb =120°.不计粒子间的相互作用,下列说法正确的是A. 金属板A 、B 分别接电源的负极、正极B. 进入圆形磁场的粒子的速度大小为1B dUC. 1、2两束粒子的比荷之比为1∶3D. 1、2两束粒子的比荷之比为1∶2 【答案】 C利用几何关系可知2tan2R mv r r B qθ==,,可知2tan2v q m B R θ=,而题图中60120cOb dOb ∠=︒∠=︒,,则1、2两束粒子的比荷之比为1∶3,C 正确D 错误.【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式mvR Bq=,周期公式2m T Bqπ=,运动时间公式2t T θπ=,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.【母题7】(多选)如图所示,两方向相反、磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 分开,三角形内磁场方向垂直纸面向里,三角形顶点A 处由一质子源,能沿∠BAC 的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C 点,质子比荷,则质子的速度可能为A.B.C.D.【答案】 ABD【解析】质子带正电,且经过C 点,其可能的轨迹如图所示:点睛:本题考查带电粒子在磁场中的运动,质子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,根据题意作出质子的运动轨迹是解题的关键,应用数学知识求出质子的可能轨道半径,应用牛顿第二定律求出质子的速度即可解题.【母题8】(多选)如图所示,虚线框中存在垂直纸面向外的匀强磁场B和平行纸面且与竖直平面夹角为45°斜向下的匀强电场E,有一质量为m,电荷量为q的带负电的小球在高为h处的P点从静止开始自由下落,当小球运动到复合场内时刚好做直线运动,那么()A. 小球在复合场中一定做匀速直线运动B. 若换成带正电的小球,小球仍可能做直线运动C. 磁感应强度场强D. 若同时改变小球的比荷与初始下落高度h,小球不能沿直线通过复合场【答案】 ACD【解析】A、小球在复合场中受到竖直向下的重力、与电场强度方向相反的电场力和水平向右的洛伦兹力的作用,如图所示:其中电场力和重力是恒力,而洛伦兹力的大小与小球的速度大小成正比,若小球做的是变速运动,那么洛伦兹力也是变力,小球的合外力方向也要改变,这与题意不符,所以小球在复合场中一定做匀速直线运动.故A正确.B、C、根据小球的平衡条件可得:,,又v2=2gh,联立各式解得磁感应【点睛】本题主要是考查了带电粒子在复合场中运动情况分析;对于此类问题,要掌握粒子的受力特点,如果粒子在电场、磁场和重力场中做匀速圆周运动,则一定是电场力和重力平衡;如果粒子受三种力做的是直线运动,则一定是匀速直线运动.【母题9】如图所示为真空室内研究电子在电场和磁场中运动的简化模型示意图.在xOy 平面边长为3L 的正方形ABCD (AD 边与y 轴重台,0为AD 中点)区域内,存在三个匀强电场,电场I 的场强大小为E ,方向沿x 轴负方向、电场Ⅱ、Ⅲ的场强大小均为2E ,方向分别沿y 轴负方向和y 轴正方向,三个电场沿x 轴方间的宽度均为L.a 、b 两点位于电场I 的左边界y 轴上,距坐标原点O 的距离均为L/2,今在a 点处由静止释放电子.设电子的电量为q ,质量为m ,不计电子所受重力.(1)求电子刚进入电场Ⅱ时的速度大小;(2)求电子离开电场Ⅱ时的位置以及速度方向与x 轴正方向所成夹角的正切值;(3)今在b 点沿y 轴方向安装一荧光屏,为使电子难直打在要光屏上,可在x≥3L 的整个空间区域内加一垂直于xOy 平面的匀强磁场,求所加磁场磁感应强度的大小和方向【答案】xOy 平面向里 【解析】粒子运动的轨迹如图所示:(1)由2012qEL mv = ①得0v =② (2)由L=v 0t ③由图可知R=⑩v=mv=RqB解得【母题10】如图所示,在xoy平面内有以虚线OP为理想边界的匀强电场和匀强磁场区域,OP与x轴成45°角,OP与y轴之间的磁场方向垂直纸面向外,OP与x轴之间的电场平行于x轴向右,电场强度为E,在y 轴上有一点M,到O点的距离为L,现有一个质量为m,带电量为+q的带电粒子从静止经电压为U的电场加速后从M点以垂直y轴的速度方向进入磁场区域(加速电场图中没有画出),不计带电粒子的重力,求(1)从M点进入匀强磁场的带电粒子速度的大小?(2)为使带电粒子刚好不能进入电场区域,则磁感应强度为B应为多大?(3)改变匀强磁场的磁感应强度的大小,使带电粒子沿y轴负方向进入匀强电场,则带电粒子从x轴离开电场时的位置到O点的距离为多少?【答案】(1)(2)(3)(3)由图可知带电粒子沿y轴负方向进入匀强电场时,在磁场中运动的轨道半径为,在电场中做类平抛运动,加速度,y轴方向匀速运动,有:x轴方向匀加速运动,有:联立解得到O点的距离为;。
专题57 带电粒子在磁场中的运动(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题57 带电粒子在磁场中的运动导练目标 导练内容目标1 洛伦兹力的大小方向 目标2 带电粒子在有界磁场中的运动 目标3带电粒子在磁场中运动的多解问题一、洛伦兹力的大小方向 1.洛伦兹力的大小和周期(1)大小:qvB F =(v B ⊥);(2)向心力公式:rmv qvB 2=;(3)周期:22r m T v qB ππ== 2.洛伦兹力的特点(1)利用左手定则判断洛伦兹力的方向,注意区分正、负电荷。
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。
(3)运动电荷在磁场中不一定受洛伦兹力作用。
(4)洛伦兹力永不做功。
3.洛伦兹力的方向 (1)判断方法:左手定则(2)方向特点:洛伦兹力的方向一定与粒子速度方向和磁感应强度方向所决定的平面垂直(B 与v 可以有任意夹角)。
注意:由左手定则判断洛伦兹力方向时,四指指向正电荷运动的方向或负电荷运动的反方向。
【例1】如图所示,光滑的水平桌面处于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B ;在桌面上放有内壁光滑、长为L 的试管,底部有质量为m 、带电量为q 的小球,试管在水平向右的拉力作用下以速度v 向右做匀速直线运动(拉力与试管壁始终垂直),带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是( )A .小球带负电,且轨迹为抛物线B .小球运动到试管中点时,水平拉力的大小应增大至qvBLqBmC .洛伦兹力对小球做正功D .对小球在管中运动全过程,拉力对试管做正功,大小为qvBL 【答案】BD【详解】A .小球能从试管口处飞出,说明小球受到指向试管口的洛伦兹力,根据左手定则判断,小球带正电;小球沿试管方向受到洛伦兹力的分力y F qvB =恒定,小球运动的轨迹是一条抛物线,故A 错误;B .由于小球相对试管做匀加速直线运动,会受到与试管垂直且向左的洛,则拉力应增大伦兹力的分力x y F qv B =小球运动到中点时沿管速度为22y qvB L v m =⨯qvBL F m=持匀速运动,故B 正确;C .沿管与垂直于管洛伦兹力的分力合成得到的实际洛伦兹力总是与速度方向垂直,不做功,故C 错误;D .对试管、小球组成的系统,拉力做功的效果就是增加小球的动能,由功能关系F k W E qvBL =∆=故D 正确;故选BD 。
专题:带电粒子在有界磁场中的运动
mm
qU 1 mv2 2
U 2qB2R2 m
600
r
O2
磁场,入射方向与CD夹角θ,为了使电子能从磁场
的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
d r(1 cos )
C
EB
. v θO
B
D
F
qvB m v2 r
思考:求电子在磁场中运动的 最长时间是多长?
专题:带电粒子在有界 磁场的运动
双边界磁场(一定宽度的无限长磁场)
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v
30°
v
(1)离子的运动半径是多少?
θ
(2)离子射入磁场时速度是多少? O
(3)穿越磁场的时间又是多少?
2
O’
PB
qB
Bq
⑵ 2 vt vt Bq t
r mv m
S
qB
或 t 2 2m 2m 2 qB qB
qB t
2m
3.如图直线MN上方有磁感应强度为B的匀强磁场。正、 负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射 出时相距多远?射出的时间差是多少?
①速度较小时粒子作部分圆周运动
后从原边界飞出;②速度在某一范
围内从侧面边界飞;③速度较大时
粒子作部分圆周运动从另一侧面边
界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
高考物理带电粒子在磁场中的运动题20套(带答案)含解析
高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
带电粒子在有界磁场中的运动
所以 1 —a 1 . 一 B , 一T q —
图 4 圈 5
下 面讨论 粒子 从 AD 边 、 D 边 、 C BC边 射 出 的情
况 , 图 7 示. 如 所
j)带 电粒子 与 边 界 成任 意 角 0 人 磁 场 , 图 1 射 如
5所 示 .
当 ≤ 时 , 子将 从 AD边 射 出 , R 十, 粒 十, 一
中因只有重力做 功, 系统机械能守恒 , 以÷ ; 所 +
厶
两 边 同乘 以 △ , m 得
一m0 A =O t .
上 式对 任意 时刻 附 近 的 微小 间隔 都 成立 , 累
1
1
寺m +m L o g =寺m 5 2 ・ 。 , —2 s . 得 m _
i 带 电粒子 垂直 进入磁 场 , ) 如图 4所示.
D
、
由q譬及 mN. B一 一B  ̄ v q R
a 临界 条件 : R— 时 , 、 当 即 :q d ̄ B l
, ‘ ,
.
图 1
,
轨 迹恰 好
《 例1 如图2 所示, <o 域内 在 的区 存在匀强
磁场 , 场方 向垂 直 x 磁 y平 面并指 向纸 面外 , 感应 强 磁 度为 B .一带 正 电的粒 子 以速 度 从 0 点射 入 磁 场 ,
:兰 J :
子 射 出磁场 的位 置与 0 点 的距 离 为 1 .求 :( )该 粒 1 子 的 电荷 量 和质量 之 比 ;( )该粒 子 在磁 场 中 的运 2
动 时 间?
,
l
0 ,
D
‘
~
◇
湖南 肖永 良
D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在有界磁场中的运动带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。
在历年的高考试题中几乎年年都有这方面的考题。
带电粒子在有界磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。
下面按照有界磁场的形状对这类问题进行分类解析。
1、一个基本思路:定圆心、找半径、画轨迹、求时间(1)圆心的确定:因为洛伦兹力F 指向圆心,根据F ⊥v 画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F 的方向,沿两个洛伦兹力F 画其延长线,两延长线的交点即为圆心。
或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置。
(2)半径的确定和计算:qvB=m R v 2, R=Bqmv 或是利用平面几何关系,求出该圆的可能半径(或圆心角)。
并注意以下两个重要几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt 。
②相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。
(3)粒子在磁场中运动时间的确定:利用回旋角(即圆心角α)与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,由公式qB m T π2=,T t πα2=或vR t θ=。
可求出粒子在磁场中的运动时间。
2、一个重要结论如右图, 带电粒子以速度v 指向圆形磁场的圆心入射,出磁场时速度方向的反向延长线肯定经过圆形磁场的圆心3、一个重要方法 对于一些可向各个方向发射的带电粒子进入有边界的匀强磁场后出射问题,可以用假设移动圆法:假设磁场是足够大的,则粒子的运动轨迹是一个完整的圆,当粒子的入射速度方向改变时,相当于移动这个圆。
当带电粒子在足够大的磁场中以速度v 向某一方向射出时,其运动轨迹都是一个圆;若射出粒子的初速度方向转过θ角时,其运动轨迹相当于以入射点为轴,直径转动θ得到的圆的轨迹,如图所示;用这种方法可以解决: a.带电粒子在磁场中在同一点向各个方向射出的问题。
b.粒子在不同的边界射出的问题。
【例1】 在以坐标原点O 为圆心,半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速率v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷mq ;R(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?点拔:(1)粒子进入磁场后受哪些力?做什么性质的运动?(2)如何确定粒子在磁场中运动的半径、圆心?【例2】 匀强磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O 为中心的一个圆形区域内。
一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速度为v,方向沿x 轴正方向。
后来,粒子经过y 轴上的P 点,此时速度方向与y 轴的夹角为30°,P 到O 点的距离为L ,如图所示,不计重力的影响,求磁场的磁感应强度B 的大小和xy 平面上磁场区域的半径R 。
点拔:(1)粒子做圆周运动的圆心位置大体在哪里?P 点在磁场里还是在磁场外?能否在磁场边界上?(2)粒子离开磁场后做什么运动?该运动轨迹与粒子在磁场中的圆周运动轨迹有什么几何关系?带电粒子在“圆形磁场区域”中的运动【例3】如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ、Ⅱ中,A 2A 4与A 1A 3的夹角为60º。
一质量为m 、带电量为+q 的粒子以某一速度从Ⅰ区的边缘点A 1处沿与A 1A 3成30º角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入Ⅱ区,最后再从A 4处射出磁场。
已知该粒子从射入到射出磁场所用的时间为t ,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
【例4】半径为cm r 10=的匀强磁场区域边界在y 轴右边跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.带电粒子在“长方形磁场区域”中的运动匀强磁场的边界是矩形带电粒子以初速度v 0垂直于磁感线射入匀强磁场时,v 0和磁场边界可能垂直,也可能不垂直(如图1、如图2),匀强磁场的磁感线垂直于纸面,匀强磁场仅存在于矩形区域ABCD 内。
1、v 0和边界垂直.如图1所示,v 0垂直于边界AD .只讨论两种特殊情况.(1)带电粒子从CD 边垂直射出磁场,如图1(a )应满足:AB >r ,MD=r .带电粒子在磁场中的运动轨道为四分之一圆周,在磁场中运动了四分之一周期.A 1 A 3(2)带电粒子从AD 边垂直射出磁场,如图1(b )应满足:AB >r ,MD >2r .带电粒子在磁场中的运动轨道为半个圆周,在磁场中运行了半个周期.2、v 0和边界不垂直:图2中,两个质量为m 、带电量为q 、初速度大小为v 0的完全相同的带电粒子,从同一点M 分别沿着与边界AD 夹α、β(=π-α)角的方向射入匀强磁场,也只讨论两种特殊情况.(1)带电粒子从CD 边垂直射出磁场,如图2(a ).应满足:AB >r (1+cos α)、AM >r (1-sin α)、MD=rsin α.以AD 为=2r ,据此可求带电粒子在磁场中的轨道半径及两粒子在磁场中运动的时间和(半个周期)。
(2)带电粒子从AD 边射出磁场,如图2(b )所示,应满足: AB >r(1+cos α), AD >2r ,且需 AM >r (1-sin α),MD >r (1 + sin α).由几何知识可知,两带电粒子从同一点进入磁场,在磁场中沿不的时间和等于它们做匀速圆周运动的周期.【例5】如图3,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件。
带电粒子在“三角形磁场区域”中的运动【例6】在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.带电粒子在“圆环形磁场区域”中的运动【例7】据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图8所示的是一个截面为内径m R 6.01=、外径m R 2.12=的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的荷质比kg c mq /108.47⨯=,磁场的磁感应强度T B 4.0=,不计带电粒子重力.(1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速图3⨯⨯⨯⨯⨯⨯⨯⨯→∙d L v 图8图5D B度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.(2)若氦核沿磁场区域的半径方向平行于截面从A 点射人磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.(3)若氦核在平行于截面从A 点沿各个方向射人磁场都不能穿出磁场外边界,求氦核的最大速度.带电粒子在“宽度一定的无限长磁场区域”中的运动【例8】如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围。
带电粒子在“单边磁场区域”中的运动 【例9】如图14所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围. 【例10】如图所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。
O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。
已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用。
(1)求所考查的粒子在磁场中的轨道半径;(2)求这两个粒子从O 点射入磁场的时间间隔。
带电粒子在“反向磁场区域”中的运动 【例11】如图所示,M 、N 为两块带等量异种电荷的平行金属板,S 1、S 2为板上正对的小孔,N 板右侧有两个宽度均为d 的匀强磁场区域,磁感应强度大小均为B ,方向分别垂直于纸面向外和向里,磁场区域右侧有一个荧光屏,取屏上与S 1、S 2共线的O 点为原点,向上为正方向建立x 轴。
M 板左侧电子枪发射出的热电子经小孔S 1进入两板间,电子的质量为m ,电荷量为e ,初速度可以忽略。
⑴当两板间电势差为U 0时,求从小孔S 2射出的电子的速度v 0。
⑵求两金属板间电势差U 在什么范围内,电子不能穿过磁场区域而打到荧光屏上。
⑶若电子能够穿过磁场区域而打到荧光屏上,试在答题卡的图上定性地画出电子运动的轨迹。
⑷求电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系。