带电粒子在有界磁场中运动的分析方法
带电粒子在有界磁场中运动时间问题的解题策略
带电粒子在有界磁场中运动时间问题的解题策略作者:冯守灿来源:《中学物理·高中》2013年第10期求解带电粒子在有界磁场中运动时间问题是磁场中一种常见题型,求解粒子运动时间的基本方法是:根据粒子圆周运动的周期T和轨道所对应的圆心角,并根据求得。
除粒子运动时间计算问题之外,还有磁场中粒子运动时间的定性分析问题,比如:不同粒子在磁场中运动时间的比较以及粒子在磁场中运动时间的最值问题,此类问题除了用常规方法求解之外,还可以结合题目所给条件,从不同角度加以分析判断,效果更好,现结合实例从两方面分析如下:1、如何求解粒子在磁场运动时间1.1利用周期和圆心角求时间例1、如图所示,有界匀强磁场的磁感应强度B=2×10-8 T;磁场宽度L=0.2 m、一带电粒子电荷量q=-3.2×10-19 C,质量m=6.4×10-27 kg,以v=4×104 m/s的速度沿OO′垂直射入磁场,在磁场中偏转后从右边界射出.求:(1)大致画出带电粒子的运动轨迹;(画在题图上)(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子在磁场中运动时间?解析:(1)轨迹如图.(2)带电粒子在磁场中运动时,由牛顿运动定律,有qvB=mv2R R=mvqB=6.4×10-27×4×1043.2×10-19×2×10-3 m=0.4 m.(3)带点粒子在磁场中运动的周期为设粒子在磁场中运动对应的圆心角为,由上图可知:所以粒子在磁场中运动的时间为1.2利用周期和速度偏转角求时间例2、如图所示,一束电子(质量为m,电量为e)以速度v0沿水平方向由S点射入垂直于纸面向里,磁感应强度为B,而宽度为d的匀强磁场。
射出磁场时的速度方向与竖直边界成30°,则穿过磁场所用的时间是多少?解析:已知初速度和末速度的方向,易得速度的偏转角,由几何知识可知:粒子运动的圆弧对应的圆心角等于粒子速度的偏转角。
带电粒子在有界磁场中的轨迹确定的几种方法 人教
2、物理和几何方法
例2:如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的电量和质量之比q/m。
解:
由几何知识:
粒子的运动半径:r=L/2sinθ
2、如图所示,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。O是MN上的一点,从O点可以向磁场区域发射电荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两
个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力和粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O点射入磁场的时间间隔。
过a、b两点分别作平行x轴
和y轴的平行线且交于P点;
P
二、确定带电粒子在磁场中运动轨迹的方法
一、带电粒子在匀强磁场中的运动规律
1、物理方法:
3、几何方法:
2、物理和几何方法:
作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。
作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。
△t=t1 -t2=2Tθ/π=
4m
Bq
.arccos( )
LBq
2mv
OMP、ONP
周期为:T=2πm/qB
思 考 题
思 考 题
3、如图所示,在xoy平面内有垂直坐标平面且范围足够大的匀强磁场,磁感应强度为B,一带正电荷量q的粒子,质量为m,从O点以某一初速度射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求:粒子的初速度。
带电粒子在有界匀强磁场中运动的临界问题
分析方法:
(1)找圆心的集合, 画各个v方向的圆, 找临界圆
(2)先画某个v方向 上的圆,再将圆绕入 射点旋转,找临界圆 (“硬币法”)
应用2.如图所示,真空室内存在匀强磁场,磁场方向垂
直于纸面向里,磁感应强度的大小B=0.60T,磁场内有
O
几何法求半径(抓住弦、弧、半
径、角度的关系;
3、找回旋角 确定运动时间
(α单位为弧度) S为弧长
类型一:给定有界匀强磁场,研究带电粒子运动情况
情景1:带正电粒子入射速度方向确定,而大小变化,垂直进入无
界匀强磁场后所有可能的运动轨迹,这些轨迹有什么共同点
粒子进入单
边磁场时,入
射速度与边 界夹角等于
a
b
L
C s
解答:
DB
a
A
D
Bb
R L 2R
C s
情景3 :入射粒子的速度大小、方向都改变,那会是什么情况?
如图所示,两个同心圆为匀强磁场的内外边界,内半径为R1,外 半径为R2,磁场方向垂直纸面向里,已知带正电粒子的电荷为q, 质量为m,匀强磁场的磁感应强度为B,带正电的粒子以某一速 度v从内边界上的A点射入磁场区域。
y
已知圆的一条弦,以此弦为 直径的圆的面积是最小的
30°
a
v
R
r O’
O
b
x
v 60°
思考:若磁场区域是矩形,求最小的矩形面积
小结
带电粒子在有界磁场中运动时,经常会有极 值与临界问题的出现。--找临界圆是关键
类型一:给定有界磁场,研究带电粒子运动情况
情景1:入射速度方向确定,而大小变化
带电粒子在有界匀强磁场中的运动归类解析
带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
专题:带电粒子在有界磁场中的运动
专题:带电粒子在有界磁场中的运动三维目标:一、知识与技能(1)掌握求解带电粒子在有界磁场中的圆运动的基本方法:找圆心、求半径、求周期、确定圆心角,熟练运用草图描绘带电粒子运动的轨迹,应用几何知识求解问题;(2)培养学生的分析、解决问题的能力,应用数学知识求解物理问题的能力。
二、过程与方法讲解与学生练习相结合三、情感、态度与价值观进行思维方法教育训练,培养辩证唯物主义观点.【重难点】一.处理有界磁场问题的一般方法:①解答有关运动电荷在有界匀强磁场中的运动问题时,可以将有界磁场视为无界磁场让粒子能够做完整的圆周运动。
②根据边界条件确定粒子运动的路径,进而确定粒子圆周运动的圆心。
③作好辅助线,充分利用圆的有关特性和公式定理、 圆的对称性等几何知识表达出粒子运动的半径与偏转角度。
④根据牛顿第二定律,列出动力学方程从而解出有关的物理量。
二.确定圆心常用的方法:①圆心必在洛仑兹力所在的直线上,两个位置洛仑兹力方向的交点即为圆心位置。
②速度方向的垂线一定经过圆心,则任意两条速度垂线的交点既为圆心。
③弦的垂直平分线与速度垂线的交点。
三.粒子在磁场中运动时间的确定:①利用圆心角α与弦切角的关系,或者利用四边形内角和等于2π计算出圆心角α的大小,由公式2t T απ=可求出粒子在磁场中的运动时间. ②利用弧长与线速度的关系确定时间。
【典型例题】一、带电粒子在“单边磁场区域”中的运动例题1:如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面里,磁场的磁感应强度为B ;一带正电的粒子以速度V0从O 点射入磁场中,入射方向在xy 平面内,与x 轴正方向的夹角为θ;若粒子射出磁场的位置与O 点的距离为L 。
求①该粒子的电荷量和质量比②粒子在磁场中的运动时间。
二、带电粒子在“圆形磁场区域”中的运动例题2:在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图所示. 一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿-x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为 B ,该粒子仍从 A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度 B 多大?此次粒子在磁场中运动所用时间 t是多少?三、带电粒子在“长方形磁场区域”中的运动例3. 如图所示,一带正电的质子从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使粒子能射出两板间,试求磁感应强度B 的大小(质子的带电量为e ,质量为m )。
带电粒子在有界磁场中运动(超经典)..
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图T动态分析T找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。
)二、常见题型(B为磁场的磁感应强度,V。
为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率V。
垂直匀强磁场射入,入射方向与CD边界夹角为9。
已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。
的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
带电粒子在有界磁场中的加速运动
带电粒子在有界磁场中的加速运动带电粒子在有界磁场中的运动是一个重要的物理现象,在理论物理和应用领域都有广泛的研究。
磁场对带电粒子施加力的作用下,使其在磁场方向上受到加速运动,并呈现出一系列特征和规律。
本文将对带电粒子在有界磁场中的加速运动进行探讨。
一、洛伦兹力和带电粒子加速运动洛伦兹力是描述带电粒子在磁场中运动的基本力学定律。
当一个带电粒子以速度v进入磁场时,它会受到磁场力的作用,该力的方向垂直于磁场方向和粒子的速度方向,符合右手定则。
这个力被称为洛伦兹力,用F表示。
洛伦兹力的数学表达式为F = qvBsinθ,其中q是带电粒子的电荷量,v是带电粒子的速度,B是磁场的磁感应强度,θ是速度方向和磁场方向之间的夹角。
根据洛伦兹力公式,可以看出带电粒子在磁场中的加速运动与速度的大小、粒子的电荷量和磁感应强度等因素有关。
速度的大小越大,洛伦兹力的大小也越大;电荷量越大,洛伦兹力也越大;磁感应强度越大,洛伦兹力也越大。
二、带电粒子的轨迹带电粒子在有界磁场中的加速运动会使其沿特定轨迹运动。
根据洛伦兹力的方向以及带电粒子的起始速度和初始位置,可以推导出带电粒子的轨迹。
对于带电粒子在有界磁场中的运动,有两种典型的轨迹,即圆形轨迹和螺旋线轨迹。
1. 圆形轨迹当带电粒子的速度与洛伦兹力垂直时,其轨迹为圆形。
这是因为洛伦兹力的作用方向垂直于速度方向,使得粒子受到一个向心力,使其维持圆形的轨迹。
2. 螺旋线轨迹当带电粒子的速度与洛伦兹力有一个非零的夹角时,其轨迹为螺旋线。
带电粒子在磁场力的作用下不仅会维持圆形运动,还会沿着磁场方向进行螺旋运动。
这是因为洛伦兹力的方向会随着带电粒子的运动而不断改变,使得粒子沿着螺旋线运动。
三、带电粒子加速运动的应用带电粒子在有界磁场中的加速运动不仅有理论上的重要性,还在实际应用中发挥着重要作用。
1. 粒子加速器带电粒子在磁场中的加速运动是粒子加速器工作的基本原理。
通过施加电场和磁场,可以对带电粒子进行加速和聚焦,使其能够达到较高的能量和较高的速度。
带电粒子在有界磁场中运动的临界问题极值问题和多解问题
R1sin30°+2l =R1
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
由几何关系知
OA= AS2-OS2 AS=2r′ OS=r′ OC=r′ 解得 OA= 3L,OC=L 故被电子打中的区域长度为
AC=OA+OC=(1+ 3)L.
【答案】
BeL (1) 2m
(2)(1+ 3)L
题后反思 (1)审题应首先抓住“速率相等”⇒即轨迹圆半径相 等,其次“各个方向发射”⇒轨迹不同.然后作出一系 列轨迹圆. (2)注意粒子在磁场中总沿顺时针方向做圆周运动, 所以粒子打在左边和右边最远点的情形不同.
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:
带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。
类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。
【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A .使粒子的速度v <BqL 4mB .使粒子的速度v >5BqL4mC .使粒子的速度v >BqL mD .使粒子的速度BqL 4m <v <5BqL4m【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。
轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。
【解答】 AB类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙图甲 ①②入射点 入射方向入射速度大出射点出射方向 ① ② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着板从右边穿出时,圆心在O 点,有 r 12=L 2+(r 1-L 2)2 , 得 r 1=5L4由 r 1=mv 1Bq ,得 v 1=5BqL 4m ,所以v >5BqL4m时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=L4由 r 2=mv 2Bq ,得 v 2=BqL 4m ,所以v <BqL4m时粒子能从左边穿出.类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定 这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为 圆心,以mvr qB=为半径的圆。
带电粒子在有界磁场中的运动(上课)
三.在圆形磁场区中的运动
例6 、 如图所示,纸面内存在着一半径为R的圆形匀强磁 场,磁感应强度为B,一质量为m、带电量为q的负粒 子从A点正对着圆心O以速度v垂直磁场射入,已知当 粒子射出磁场时,速度方向偏转了θ。求粒子在磁场 中运动的轨道半径r。(不计重力)
R
A
O
解:如图所示做辅助线, 连接两圆圆心 因为速度方向偏转了θ 所以圆O1中的圆心角为θ
θ
例3、 如图所示,在y<0的区域内存在匀强磁场, 磁场方向垂直于xy平面并指向纸面外,磁感应强度 为B,一带正电的粒子以速度V0从O点射入磁场,入 射方向在xy平面内,与x轴正方向的夹角为θ,若粒 子射出磁场的位置与O点的距离为L,求粒子运动的 半径和运动时间。
y o
x
解:如图所示作辅助线, 由几何知识可得: L sin
× ×
×
×
×
+ ×
四.在中空磁场区的运动
例7 、
如图所示,在无限宽的匀强磁场B中有一边长 为L的正方形无磁场区域。在正方形的四条边上分 布着八个小孔。每个小孔到各自最近顶点的距离 都为L/3。一质量为m、带电量为q的正粒子垂直 匀强磁场从孔A射入磁场,试问粒子再次回到A点 的时间。 A
解:经分析粒子运动过程可知,粒子经过四次圆周运动 四次匀速直线运动后回到出发点。 每次圆周运动的时间为四分之三个周期, 即
故 d
R
d sin
例5 、
如图所示,长为L的水平极板间,有垂直纸面向 里的匀强磁场,磁感应强度为B,板间距离也为L, 板不带电,现有质量为m、电量为q的带正电粒子 (不计重力)从左边极板间中点处垂直磁感线以速 度v水平射入磁场,为使粒子能够打在极板上,则 粒子的速度应满足什么关系?
带电粒子在有界磁场中的运动
带电粒子在有界磁场中的运动带电粒子在磁场中的运动一直是物理界研究的热门话题之一。
当带电粒子在磁场中运动时,它会受到洛伦兹力的影响,这个力的方向垂直于磁场的方向和粒子的速度方向,并且它的大小与粒子电荷的大小、粒子运动速度和磁场强度有关。
在有界磁场中,带电粒子的运动会受到限制,并且会形成某些特定的运动轨迹,这些轨迹的特征与磁场的形状和强度有关。
以下是对有界磁场中带电粒子运动的探讨。
一、磁场的基本概念磁场是指由带电粒子或磁化物质产生的物理现象。
磁场的大小与磁场中带电粒子的数量、粒子的电荷和速度、以及磁场的强度和形状有关。
磁场有两个重要的特征:方向和大小。
磁场的方向是指磁场力线的方向,如果一个带电粒子在磁场中运动,则它会沿着磁场力线运动。
磁场的大小用磁感应强度或磁场强度来描述,这些量的单位是特斯拉(T)或高斯(G)。
二、带电粒子在磁场中的运动当带电粒子进入磁场中时,它会受到洛伦兹力的作用,这个力的大小与带电粒子的电荷和速度有关,方向垂直于磁场的方向和粒子的速度方向。
由于这个力的方向与带电粒子的速度方向垂直,所以带电粒子会在垂直磁场方向上产生一定的偏移,这个偏移的大小与带电粒子的速度和磁场强度有关。
如果带电粒子的速度和磁场方向垂直,则它会产生一个圆周运动。
在圆周运动中,带电粒子的速度保持不变,而其运动方向会随着磁场方向的改变而改变。
圆周运动的半径与带电粒子的速度和磁场强度有关,可以用以下公式来计算:r =mv/qB,其中,m是带电粒子的质量,v是带电粒子的速度,q 是带电粒子的电荷,B是磁场强度。
当速度和磁场方向不垂直时,则带电粒子会既在垂直于磁场的方向上运动,也在磁场方向上运动。
在这种情况下,带电粒子的轨迹可以用螺旋线来描述。
三、有界磁场中带电粒子的运动在有界磁场中,带电粒子的运动会受到磁场的限制。
在一个有限大小的磁场中,带电粒子不可能一直进行圆周运动或螺旋线运动。
带电粒子的轨迹将会在磁场边界处进行反射,在某些情况下,带电粒子的哪些轨迹是允许的,哪些轨迹是禁止的,这与磁场的形状和强度有关。
带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图→动态分析→找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。
)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。
已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m 的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。
【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
带电粒子在有界磁场中运动的分析方法
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。
例1.如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断正确的是( B )A.电子在磁场中运动的时间越长,其轨迹越长B.电子在磁场中运动的时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线一定重合D.电子的速率不同,它们在磁场中运动的时间一定不相同例2.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的( )A.带电粒子的比荷B.带电粒子在磁场中运动的周期C.带电粒子的初速度D.带电粒子在磁场中运动的半径解析:由带电粒子在磁场中运动的偏向角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得磁场宽度l =R sin 60°=mv 0qB sin 60°,又未加磁场时有l =v 0t ,所以可求得比荷q m =sin 60°Bt,A 项对;周期T =2πm qB可求出,B 项对;但初速度未知,所以C 、D 项错. 答案:AB例3.如右图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度v 1沿截面直径入射,粒子飞入磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度v 2从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )A .半径之比为3∶1 B.速度之比为1∶ 3C .时间之比为2∶3 D.时间之比为3∶2答案:AC1.如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量均相同的正、负离子,从O 点以相同的速度射入磁场中,射入方向均与边界成 角。
(教师版)带电粒子在磁场中运动之磁场最小范围问题剖析 - 副本
1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。
1.给定有界磁场(1)确定入射速度的大小和方向,判定带电粒子出射点或其它1. 【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O 点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。
有界磁场下带电粒子的轨迹方程推导
有界磁场下带电粒子的轨迹方程推导在物理学中,电磁场是一种用来描述电荷或电流产生的物理现象的数学模型。
有界磁场是一种限制在一定区域内的磁场,它对带电粒子的运动轨迹产生影响。
本文将推导有界磁场中带电粒子的轨迹方程。
1. 假设我们有一个有界磁场,磁感应强度为B,该磁场位于xy平面上,且只在某一区域内存在。
2. 假设一个带电粒子带电量为q,质量为m。
该粒子在有界磁场中运动,我们关注其运动轨迹。
3. 由洛伦兹力定律可知,在磁场中,带电粒子受到的洛伦兹力为F=qvB,其中v为粒子的速度。
4. 由牛顿第二定律F=ma可知,粒子在磁场中的加速度a为a=qvB/m。
5. 假设粒子在x和y方向上的速度分别为vx和vy,则有vx' = a*t = B*q*vy/m 和 vy' = -a*t = -B*q*vx/m,其中t为时间。
6. 将以上两个微分方程相加得到vx'' = -B^2*q*vx/m 和 vy'' = -B^2*q*vy/m。
7. 进一步,我们可以得到粒子在x和y方向上的加速度分别为vx'' = -omega^2x 和 vy'' = -omega^2y,其中omega = B*q/m。
8. 这是一个简单谐振动的微分方程,解的一般形式为x =A*cos(omega*t + phi) 和 y = B*sin(omega*t + psi),其中A、B、phi和psi为常数。
9. 所以带电粒子在有界磁场中的轨迹方程为:x = A*cos(omega*t + phi)y = B*sin(omega*t + psi)通过以上推导,我们得到了带电粒子在有界磁场中的轨迹方程,即x = A*cos(omega*t + phi)和y = B*sin(omega*t + psi)。
在这个方程中,A、B、phi和psi是确定粒子在磁场中具体轨迹的常数。
专题 带电粒子在有界匀强磁场中运动的多解问题
量为m,电量为q的带正电粒子(不计重力),
从左边极板间中点处垂直磁场以速度v平行极板
Lv
射入磁场,欲使粒子不打在极板上,则入射速
+q , m
B
度v应满足什么条件?
L 原因3.临界状态不唯一形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
原因1.磁场方向不确定形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
例2. 如图,在第I象限范围内有垂直xOy平面的匀强磁场B。质量为
m、电量大小为q的带电粒子(不计重力),在xOy平面里经原点O射
入磁场中,初速度为v0,且与x轴成60º角,
y
试分析计算:
B
带电粒子在磁场中运动时间多长?
60º v
原因2.带电粒子电性不确定形成多解
60º
O 120º
x
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题
的原因?
O
例3.如图,长为L的水平不带电极板间有垂直纸
面向内的匀强磁场B,板间距离也为L,现有质
例4.如图所示,边长为l的等边三角形ACD内、外分布着方向相反
的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿
∠CAD的平分线方向发射不同速度的粒子,粒子质量均为m,电
荷量均为+q,不计粒子重力。则粒子以下列
哪一速度发射时不能通过D点
qBl A. 4m
qBl B. 2m
√3qBl Cபைடு நூலகம் 4m
例1.如图所示,A点的粒子源在纸面内沿垂直OQ方向向上射出一束带负 电荷的粒子,粒子重力忽略不计.为把这束粒子约束在OP之下的区域, 可在∠POQ之间加垂直纸面的匀强磁场.已知OA间的距离为s,粒子比荷 为 q/m ,粒子运动的速率为v,OP与OQ间夹角为30°.则所加磁场的磁感 应强度B满足条件?
定性比较带电粒子在有界磁场中运动时间的方法
定性比较带电粒子在有界磁场中运动时间的方法作者:邓思平来源:《广东教育·高中》2014年第11期有界匀强磁场是指只在局部空间存在的匀强磁场.带电粒子垂直磁场方向从磁场边界进入,由于入射速度和磁感应强度的可变性,造成它在磁场中运动的圆弧轨迹各不相同,对应的运动时间也各不相同.定性比较带电粒子在有界磁场中运动时间的方法有两种.一种是通过比较圆心角的大小来比较时间的长短,适用于磁感应强度不变的情况,其计算公式是t=·T;另一种是通过比较弧长(弦长)的长短来比较时间的长短,适用于速度大小不变的情况,其计算公式是t=.从教学实践来看,由于求解磁场中运动时间的计算题练习量较大,学生运用第一种方法的意识比较到位.而第二种方法往往多用于定性分析,不经常用来定量计算,学生往往重视不够,训练不多,不能形成意识.本文拟就这两种方法的应用范围和选择依据通过实例进行分析,以期帮助读者掌握比较此类运动时间的方法.一、其它不变,仅入射粒子的速率改变的情况,适用公式t=·T.【例1】如图所示圆形区域(图1-A)和矩形区域(图1-B)内,有垂直于纸面方向的匀强磁场,一束质量和带电量都相同的带电粒子,以不相等的速率,沿着相同的方向,垂直边界射入匀强磁场中,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子在磁场中只受磁场力的作用,试比较三条轨迹①②③对应运动时间的长短.【解析】同一粒子在匀强磁场中做匀速圆周运动的周期与速率无关,当粒子的速率改变时,周期不变,在磁场中的运动时间t与偏转角度θ(圆心角)成正比,宜用公式t=·T.比较图1-A所示区域中三条轨迹①②③对应的圆心角,发现θ1=θ2=π>θ3,则运动时间t1=t2>t3.比较图1-B所示区域中三条轨迹①②③对应的圆心角,发现θ1>θ2>θ3,则运动时间t1>t2>t3.二、其它不变,仅磁感应强度B的大小发生变化的情况,适用公式t=.若将例1的条件更改成带电粒子的入射速度相同,且满足前一粒子射出磁场时,后一粒子才进入,每一个粒子进入时的磁场不同.依旧比较三条轨迹①②③对应运动时间的长短时,就会发现,第③条轨迹对应的磁场的磁感应强度B最弱,运动周期T最大,但偏转角度θ最小,公式t=·T已经不能直接用来判断时间的长短.若注意到粒子的入射速度相同,而三条轨迹①②③的长度不同,那么公式t=正适合用来比较运动时间的长短.比较粒子在两个磁场区域中运动时间的结果均为t1【例2】如图2-A所示在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有一小孔C,一带电量为+q、质量为m的带电粒子(重力忽略不计),以速度v0从小孔C处向着圆心射入磁场.已知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.若施加的磁感应强度B合适时,此粒子能在最短的时间内从小孔C处射出,求粒子与筒壁的碰撞次数.【解析】初看这道题,涉及到时间,很多学生自然地想到了周期公式T=,认为B越大,则T越小,从而认为B越大越好.殊不知,B越大时,根据r=,带电粒子运动的轨道半径也将越小,这就意味着带电粒子与筒内壁碰撞次数将增多,情形如图B、C、D所示从几何知识容易得到,碰撞的最小次数必须是3次.碰撞次数越多,则轨道半径r越小,带电粒子的轨迹长度也将越长,所以图2-B所示的带电粒子的轨迹长度即三段弧长总和s最短;而粒子在运动过程中,速率不变,从而根据公式t=,得到时间t必然最短.三、其它不变,仅粒子入射方向可以任意的情况,适用公式t=.【例3】如图所示圆形区域(图3-A)和条形区域(图3-B)内,有垂直于纸面方向的匀强磁场,一束电子(电荷量为-e,质量为m)自点O以速率v射入磁感应强度为B的匀强磁场中,圆形区域的半径为d,条形区域的宽度也为d.已知d①用最长时间穿过圆形磁场区域的粒子的出射位置;②以最短时间穿过条形磁场区域的粒子的出射位置.【解析】由于电子运动速率相同,则不同方向射入的电子的运动半径相同,由几何知识可知,轨迹弧均为劣弧,弧长与弦长成正比.在图3-A中,弦OP最长,对应弧长也最长,由t=可知时间最长.在图3-B中,弦OP最短,对应弧长也最短,由t=可知时间最短.本题也可用比较圆心角的方法来判断,但较为繁琐.四、结论从以上列举的三种情况及相关实例的解析来看,比较带电粒子在有界匀强磁场中的运动时间时,要依据具体情况选择判断公式.总之,定性比较磁场中运动时间时,若入射速率相同,优先选用公式t=;若入射速率不同,只能选用公式t=·T.(作者单位:梅州市梅县区高级中学)责任编校李平安。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在有界磁场中运动的分析方法一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算2利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定3若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
4a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
5a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。
二、带电粒子在有界磁场中运动类型的分析(一)轨迹的确定(1)确定入射速度的大小和方向,判定带电粒子出射点或其它6【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O 点射入磁场,入射方向在xy平面内,与x 轴正向的夹角为θ。
若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。
解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图6所示的轨迹运动,从A点射出磁场,O、A间的距离为l,射出时速度的大小仍为v0,射出方向与x7轴的夹角仍为θ。
由洛仑兹力公式和牛顿定律可得,,(式中R为圆轨道的半径)解得R=mv0/qB①圆轨道的圆心位于OA的中垂线上,由几何关系可得l/2=Rsinθ②联立①、②两式,解得。
8点评:本题给定带电粒子在有界磁场中运动的入射点和出射点,求该粒子的电量和质量之比,也可以倒过来分析,求出射点的位置。
在处理这类问题时重点是画出轨迹图,根据几何关系确定轨迹半径。
(2)确定入射速度的方向,而大小变化,判定粒子的出射范围【例2】如图7所示,矩形匀强磁场区域的长为L,宽为L/2。
磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v 的取值范围?910解析:(1)带电粒子射入磁场后,由于速率大小的变化,导致粒子轨迹半径的改变,如图所示。
当速率最小时,粒子恰好从d 点射出,由图可知其半径R 1=L/4,再由R 1=mv 1/eB ,得当速率最大时,粒子恰好从c 点射出,由图可知其半径R 2满足,即R 2=5L/4,再由R 2=mv 2/eB ,得电子速率v的取值范围为:。
点评:本题给定带电粒子在有界磁场中运动的入射速度的方向,由于入射速度的大小发生改变,从而改变了该粒子运动轨迹半径,导致粒子的出射点位置变化。
在处理这类问题时重点是画出临界状态粒子运动的轨迹图,再根据几何关系确定对应的轨迹半径,最后求解临界状态的速率。
(3)确定入射速度的大小,而方向变化,判定粒子的出射范围【例3】(2004年广东省高考试题)如图8所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16cm 处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比q/m=5.0×107C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。
解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有qvB=mv2/R,由此得R=mv/qB,代入数值得R=10cm。
可见,2R>l>R,如图9所示,因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是α粒子能打中的左侧最远点。
为定出P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于Q点,过Q作ab的垂线,它与ab的交点即为P1。
,再考虑N的右侧。
任何α粒子在运动中离S的距离不可能超过2R,以2R为半径、S 为圆心作圆,交ab于N右侧的P2点,此即右侧能打到的最远点。
由图中几何关系得,所求长度为P1P2=NP1+NP2,代入数值得P1P2=20cm。
点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。
但由于入射速度的方向发生改变,从而改变了该粒子运动轨迹图,导致粒子的出射点位置变化。
在处理这类问题时重点是画出临界状态粒子运动的轨迹图(对应的临界状态的速度的方向),再利用轨迹半径与几何关系确定对应的出射范围。
2.给定动态有界磁场(1)确定入射速度的大小和方向,判定粒子出射点的位置【例4】(2006年天津市理综试题)在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。
一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。
如图11所示,粒子由A点射入,由C 点飞出,其速度方向改变了90°,则粒子轨迹半径r=R,又,则粒子的荷质比为。
(2)粒子从D点飞出磁场速度方向改变了60°角,故AD弧所对圆心角60°,粒子做圆周运动的半径,又,所以,粒子在磁场中飞行时间:。
点评:本题给定带电粒子在有界磁场中运动的入射速度的大小和方向,但由于有界磁场发生改变(包括磁感应强度的大小或方向的改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。
在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,再利用轨迹半径与几何关系确定对应的出射点的位置。
(二)已知入射速度和出射速度,判定动态有界磁场的边界位置【例5】(1994年全国高考试题)如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。
重力忽略不计。
解析:质点在磁场中作半径为R的圆周运动,qvB=(Mv2)/R,得R=(MV)/(qB)。
根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。
如图13所示,过a点作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O′点就是圆周的圆心。
质点在磁场区域中的轨道就是以O′为圆心、R为半径的圆(图中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上。
在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。
所以本题所求的圆形磁场区域的最小半径为:,所求磁场区域如图13所示中实线圆所示。
点评:本题给定带电粒子在有界磁场中运动的入射速度和出射速度的大小和方向,但由于有界磁场发生改变(磁感应强度不变,但磁场区域在改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。
在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,确定临界状态的粒子运动轨迹图,再利用轨迹半径与几何关系确定对应的磁场区域的位置。
综上所述,运动的带电粒子垂直进入有界的匀强磁场,若仅受洛仑兹力作用时,它一定做匀速圆周运动,这类问题虽然比较复杂,但只要准确地画出运动轨迹图,并灵活运用几何知识和物理规律,找到已知量与轨道半径R、周期T的关系,求出粒子在磁场中偏转的角度或距离以及运动时间不太难。
3.(2007年武汉市理综模拟试题)如图16所示,现有一质量为m、电量为e的电子从y轴上的P(0,a)点以初速度v0平行于x轴射出,为了使电子能够经过x轴上的Q(b,0)点,可在y轴右侧加一垂直于xoy平面向里、宽度为L的匀强磁场,磁感应强度大小为B,该磁场左、右边界与y轴平行,上、下足够宽(图中未画出)。
已知,L<b。
试求磁场的左边界距坐标原点的可能距离。
(结果可用反三角函数表示)答案:⑴当r>L时(r为电子的轨迹半径),磁场左边界距坐标原点的距离为:(其中);(2)当r≤L时,磁场左边界距坐标原点的距离为:。
最小磁场面积1、磁场范围为圆形例1 一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)。
试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达点所经历的时间;(3)点的坐标。
解析:(1)由题可知,粒子不可能直接由O点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。
可知,其离开磁场时的临界点与O点都在圆周上,到圆心的距离必相等。
如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。
由,得。
弦长为:,要使圆形磁场区域面积最小,半径应为的一半,即:,面积(2)粒子运动的圆心角为1200,时间。