上海初二八年级(上)数学知识点详细总结,推荐文档

合集下载

上海八年级数学上册知识点

上海八年级数学上册知识点

上海八年级数学上册知识点上海市初中数学课程标准从七年级开始实施,八年级数学上册内容涵盖了数的性质、因式分解、分数、代数式、一次函数、图形的平移、对称、旋转等基础知识。

本文将从知识点的角度,分析八年级数学上册中的重要知识点。

一. 数与式1. 自然数、整数、有理数、无理数、实数的区分自然数:正整数,是人数、物品个数等的记录方式。

整数:包括正整数、0、负整数,是整数封闭性的基础。

有理数:可以表示为两个整数的比,数轴上有间隔。

无理数:数轴上缺少的点,不能化为两个整数的比,如π、√2等。

实数:有理数与无理数的集合。

2. 代数式的定义和判定代数式:由常数,变量及它们的积、和、差、商和幂次运算符号组成的式子。

如:5x-3、(x+1)^2-1代数式的判定:当含有字母的符号变量代表任意实数时,就是代数式,若代表某个确定的数,则不是代数式。

3. 表示式的基本形式表示式:一个代数式中的字母表示的数称为未知数,代数式中未知数出现的次数称为代数式的次数。

其中,一个未知数的代数式称为一元代数式。

表达式的基本形式:常数项、一次项、二次项……m次项的多项式。

其中,一次项的系数是截距,即函数图像与y轴的交点。

二. 因式分解1. 因式分解的定义因式分解:把一个代数式分解成多个因式的乘积的过程。

如:x^2-3x+2=(x-1)(x-2)2. 因式分解的方法分解公因数、提取完全平方、配方法、三项组合公式等。

3. 因式分解的应用求解代数式的值、寻找变量的取值范围、解决实际问题等。

三. 分数1. 分数的定义分数:是一个整体被等分成了若干份,每一份称为一份之一,表示被分的整体中的若干等份中的一份,例如:1/2表示等分后的一份之一,即一个整体中的两份等分之一。

2. 分数的化简和扩展化简分数:把分子和分母都除以相同的因数,使它们互质;扩展分数:使用通分的方法,保持分数的大小不变。

3. 分数的加减乘除分数的加减乘除法需要先进行通分、约分,再按照分数的运算法则进行计算。

上海初二八年级(上)数学知识点详细总结,推荐文档

上海初二八年级(上)数学知识点详细总结,推荐文档

叫做 a 的算术平方根。特别地,0 的算术平方根是 0。
表示方法:记作“ a ”,读作根号 a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的
平方根(或二次方根)。
表示方法:正数 a 的平方根记做“ a ”,读作“正、负根号 a”。
我去人1、一也正般比地就例,函若有数两和个人一变次量!函x,数为y的间概U的念R关扼系可腕以表入示成站y 内kx信 b (不k,存b 为在常数向,k你 0)偶的 同意调剖沙
4
形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。
特别地,当一次函数 y kx b 中的 b=0 时(即 y kx )(k 为常数,k 0),称 y 是
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数 a 的平方根的运算,叫做开平方。
a 0
注意: a 的双重非负性: a 0
3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三
我去次人方根也)。 就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
建议收藏下载本文,以便随时学习! 总件数、利润率=
利润
进价(或成本)
100
0
0
、售价=标价×打折数等;
注意:解应用题时一定不要忘记检验所求的根是否符合实际问题的要求。 第三章 一次函数
一、函数: 一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地就确定了
一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。 二、自变量取值范围

上海八年级上数学知识点汇总

上海八年级上数学知识点汇总

《数学》(八年级上册)知识点总结第十六章二次根式、二次根式计算1、 含有二次根号“、厂”;被开方数a 必须是非负数。

2、 性质:(1) ( a )2 a (a 0)0(a 0)(2) 好 |a 彳 0(a 0)匕 a (a 0)(3) - ab - a ? , b (a 0,b 0) (、a?.b . ab (a 0,b 0))(—b,b(a 0,b 0)(,'b川 °,b 0))3、 化简二次根式:把二次根式被开方数的完全平方因式移到根号外。

例: 、、18 、2 32 3 2。

(字母 因式由根号内移到根号外时,必须考虑字母因式隐含的符号)4、 最简二次根式:化简后的二次根式需同时符合以下两个条件:⑴被开方数中各因式的指数都为 1;⑵被 开方数不含分母。

这样的二次根式叫做最简二次根式。

将一个二次根式化成最简二次根式,有以下两种情况:⑴如果被开方数是分式或分数(包括小数) ,先利用商的自述平方根的性质把它写成分式的形式, 然后再分母有理化;⑵如果被开方数是整式或整数,先将它分解因式或分解质因数,然后把能开方的因式或因数开出来,从而 将式子化简。

化二次根式为最简二次根式的步骤: ⑴把被开方数分解质因数,化为积的形式; ⑵把根号内能开方的的因数移到根号外;⑶化去根号内的分母,若被开方数的因数中有带分数要化成假分数,小数化成分数。

5、 同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二 次根式。

例:•• 18、2 .一 2、1、2。

(判断是不是同类二次根式:首先,要看它们是不是最简二次根式;其次,2看这些最简二次根式的被开方数是否相同)6、 二次根式的加法、减法:⑴化简,化成最简二次根式;⑵合并同类二次根(即将被开方数相同的二次根式的系数进行合并)7、二次根式的乘法、除法:⑴先完成根号内乘除,再化简二次根式;⑵小数化分数,带分数化假分数;⑶ 字母需考虑取值范围(不要忽视隐含条件)。

_沪教版(上海)八年级数学 知识点梳理(最新最全)

_沪教版(上海)八年级数学 知识点梳理(最新最全)

上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。

2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n =≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ; △=24b ac -≥017.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式 第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数18.4函数的表示法1.把两个变量之间的依赖关系用数学式子来表达------解析法2.把两个变量之间的依赖关系用图像来表示------图像法3.把两个变量之间的依赖关系用表格来表示------列表法第十九章 几何证明19.1 命题和证明1.我们现在学习的证明方式是演绎证明,简称证明2.能界定某个对象含义的句子叫做定义3.判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4.数学命题通常由题设、结论两部分组成5.命题可以写成“如果……那么……”的形式,如果后是题设,那么后是结论19.2 证明举例1.平行的判定,全等三角形的判定19.3 逆命题和逆定理1.在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2.如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理19.4线段的垂直平分线1. 线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

(完整word版)上海市沪教版八年级数学上下册知识点梳理

(完整word版)上海市沪教版八年级数学上下册知识点梳理

上海市沪教版八年级数学上册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。

2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a b a b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0) ).0,0(≥≥=⋅b a ab b a=a ≥0,b>0) n ≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ;△=24b ac -≥0 17.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。

上海初二八年级(上)数学知识点详细总结

上海初二八年级(上)数学知识点详细总结

《数学》(八年级上册)知识点总结第一章 实数一、实数的概念及分类1、实数的分类ﻩ正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin 60o等 二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

0≥a 注意:a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

三、二次根式计算1、含有二次根号“”;被开方数a 必须是非负数。

2、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab ()0,0(≥≥=•b a ab b a )(4))0,0(>≥=b a ba b a ()0,0(>≥=b a baba ) 3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外。

(精品word)沪科版八年级数学(上)基础知识总结

(精品word)沪科版八年级数学(上)基础知识总结

第十二章平面直角坐标系小结一、平面内点的坐标特征1、各象限内点P (a , b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0, b>0;第三象限:a<0, b<0;第四象限:a>0, b<0(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。

)2、坐标轴上点P(a,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0, b=0(说明:若P(a,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a,b)在坐标轴上。

)3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:一、三象限:a=b;二、四象限:a=—b二、对称点的坐标特征点P (a,b)关于x轴的对称点是(a,—b);关于y轴的对称点是(一a,b);关于原点的对称点是(一a ,—b)三、点到坐标轴的距离点P (x ,y)到x轴距离为I y I,到y轴的距离为I x I四、(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

五、点的平移坐标变化规律坐标平面内,点P (x ,y)向右(或左)平移a个单位后的对应点为(x+ a, 丫)或(x—a, y);点P (x ,y)向上(或下)平移b个单位后的对应点为(x, y+ "或(x, y —b)。

(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。

简记为“右加左减,上加下减”第十三章一次函数一、确定函数自变量的取值范围1自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0 (即被开方数》0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。

上海八年级全册数学知识点

上海八年级全册数学知识点

上海八年级全册数学知识点全文记录了上海八年级全册重要的数学知识点,帮助学生系统地学习和掌握数学知识,是一份极具参考价值和实用性的文章。

一、有理数1.有理数的定义有理数指的是可以表示为两个整数之比的数。

例如:1、-2、=0.5、0、-3.8等都是有理数。

2.有理数的加减乘除有理数之间可以进行加减乘除等基本运算。

例如:(1)有理数加减法:同号相加、异号相减。

(2)有理数乘法:符号相同为正,符号相异为负。

(3)有理数除法:分子分母同号为正,分子分母异号为负。

3.有理数的绝对值有理数的绝对值是它到0点的距离,可以用符号|a|表示。

例如:|2|=2,|-3.5|=3.5。

4.有理数的大小比较(1)同号比大小:绝对值大的数大。

(2)异号比大小:正数大于负数。

(3)0与其他数比大小:0不是最大的数,0与正整数比大小时,0小于正整数,0与负整数比大小时,0大于负整数。

二、代数式1.代数式的定义代数式是由数字、字母和运算符号等符号组成的,类似数学问题的“代表式”。

例如:3x+5、2x²-3x、abc-4d。

2.常见代数式的展开与因式分解(1)二项式的平方:(a+b)²=a²+2ab+b²(b-a)²=b²-2ab+a²(2)多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd(3)整式的除法:3x+5÷2=1.5x+2.5(4)多项式的加减法:将同类项合并即可。

(5)整式的因式分解:ax2+bx+c=(mx+n)(px+q)三、方程式1.方程式的定义方程式是两个代数式用“=”连接起来的数学式子。

例如:2x+3=9。

2.方程式的解法(1)加减消元法将方程式两边加减同样的数。

(2)化简法将方程式变形为易于解的形式。

(3)代入法将已知数值代入方程式求解。

(4)等式交换法将方程式两边的代数式互换,仍然是一个等价的方程式。

四、平面图形1.正方形正方形是一种特殊的矩形,四边相等,且每个角都是直角。

沪科版八年级数学(上)基础知识总结[1]

沪科版八年级数学(上)基础知识总结[1]

第十二章平面直角坐标系小结一、平面内点的坐标1、各象限内点P(a ,b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。

)2、坐标轴上点P(a ,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。

)3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:一、三象限:a=b;二、四象限:a=-b4、点到坐标轴的距离点P(x ,y)到x轴距离为∣y∣,到y轴的距离为∣x∣5、(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

二、坐标系中的面积问题三、点的平移坐标变化规律坐标平面内,点P(x ,y)向右(或左)平移a个单位后的对应点为(x +a,y)或(x-a,y);点P(x ,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。

第十三章一次函数一、函数1.自变量的取值范围①、分母中有自变量的,取值范围是使分母不为0的数;②自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义。

)2.求函数值二、一次函数1、一般形式:y=k x +b (k 、b 为常数,k ≠0),当b=0时,y=k x (k ≠0),此时y 是x 的正比例函数。

2、画函数图像3、一次函数的图像与性质4、确定一次函数图像与坐标轴的交点 (1)与x 轴交点:)0,(kb,求法:令y=0,得k x +b=0,在解方程,求x ;(2)与y 轴交点:(0,b ),求法:令x=0,求y 。

上海八年级上数学知识点

上海八年级上数学知识点

上海八年级上数学知识点一、知识网络八年级上的数学知识点主要包括代数和几何两大板块。

代数部分主要涉及一元二次方程、实数、二次根式等知识点;几何部分则主要涉及全等三角形、轴对称图形等知识点。

二、知识点详解1、一元二次方程:一元二次方程是八年级数学的重要内容之一,其一般形式为ax²+bx+c=0(a≠0)。

解一元二次方程,需要先确定判别式b²-4ac的值,然后根据该值选择合适的公式进行求解。

2、实数:实数是八年级数学中的一个重要概念,包括有理数和无理数。

有理数包括整数和分数,而无理数则是指无限不循环小数,如π、√2等。

实数的运算遵循有理数的运算法则,但需要注意无理数的运算。

3、二次根式:二次根式是实数的运算基础,其一般形式为√a(a≥0)。

二次根式的性质包括平方与平方根的关系、算术平方根的性质等。

在进行二次根式的运算时,需要注意结果的取值范围。

4、全等三角形:全等三角形是几何学中的重要概念,指两个三角形的形状、大小、方向完全相同。

全等三角形的判定方法有SSS、SAS、ASA、AAS等,需要根据具体情况选择合适的方法进行证明。

5、轴对称图形:轴对称图形是指一个图形关于某条直线对称,其性质包括对称轴两侧的图形全等、对称轴两侧的对应线段相等且平行等。

轴对称图形的应用广泛,如建筑设计、艺术等领域。

三、学习方法建议1、注重基础知识的掌握:数学是一门基础学科,基础知识的掌握是关键。

建议学生在学习八年级上数学时,首先要掌握好基础概念和公式,例如一元二次方程的解法、实数的运算规则等。

2、培养逻辑思维:数学是一门需要逻辑思维的学科,学生在学习八年级上数学时,应该注重培养自己的逻辑思维。

可以通过多做习题、参加数学竞赛等方式来锻炼自己的思维能力。

3、多做练习:数学是一门需要通过大量练习来提高能力的学科,学生应该注重课堂外的拓展学习。

可以通过课后作业、课外辅导等方式进行练习,以巩固所学知识并提高解题能力。

(完整)上海市沪教版八年级数学上下册知识点梳理,推荐文档

(完整)上海市沪教版八年级数学上下册知识点梳理,推荐文档

上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。

2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n =≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ; △=24b ac -≥017.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答 第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等;
3
(3)有特定结构的数,如 0.1010010001…等;
(4)某些三角函数值,如 sin60o 等 二、平方根、算数平方根和立方根
1、算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就
叫做 a 的算术平方根。特别地,0 的算术平方根是 0。
注意: 3 a 3 a ,这说明三次根号内的负号可以移到根号外面。
三、二次根式计算 1、含有二次根号“ ”;被开方数 a 必须是非负数。 2、性质:
(1) ( a )2 a(a 0)
a(a 0)
(2) a 2 a
a(a 0)
(3) ab a • b (a 0, b 0) ( a • b ab(a 0,b 0) )
《数学》(八年级上册)知识点总结
一、实数的概念及分类 1、实数的分类
实数
有理数
无理数
第一章 实数
正有理数 零 负有理数 正无理数
负无理数
有限小数和无限循环小数 无限不循环小数
2、无理数:无限Байду номын сангаас循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
1 开方开不尽的数,如 7, 3 2 等; π
表示方法:记作“ a ”,读作根号 a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的
平方根(或二次方根)。
表示方法:正数 a 的平方根记做“ a ”,读作“正、负根号 a”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
的指数都为 1;⑵被开方数不含分母。这样的二次根式叫做最简二次根式。
将一个二次根式化成最简二次根式,有以下两种情况: ⑴如果被开方数是分式或分数(包括小数),先利用商的自述平方根的性质把它写成分 式的形式,然后再分母有理化; ⑵如果被开方数是整式或整数,先将它分解因式或分解质因数,然后把能开方的因式 或因数开出来,从而将式子化简。
2

1 2
2 。(判断是不是同类二次根式:首
先,要看它们是不是最简二次根式;其次,看这些最简二次根式的被开方数是否相同)
6、二次根式的加法、减法:⑴化简,化成最简二次根式;⑵合并同类二次根(即将被
开方数相同的二次根式的系数进行合并)
7、二次根式的乘法、除法:⑴先完成根号内乘除,再化简二次根式;⑵小数化分数,
(4) a a (a 0, b 0) bb
( a a (a 0,b 0) ) bb
3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外。例:
18 2 32 3 2 。(字母因式由根号内移到根号外时,必须考虑字母因式隐含的符
号) 4、最简二次根式:化简后的二次根式需同时符合以下两个条件:⑴被开方数中各因式
化二次根式为最简二次根式的步骤: ⑴把被开方数分解质因数,化为积的形式;
⑵把根号内能开方的的因数移到根号外;
⑶化去根号内的分母,若被开方数的因数中有带分数要化成假分数,小数化成分数。
5、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几
个二次根式是同类二次根式。例: 18 、 2
2
带分数化假分数;⑶字母需考虑取值范围(不要忽视隐含条件)。 8、分母有理化:把分子和分母都乘以一个适当的代数式,使分母不含根号,这种计算
叫做分母有理化。
第二章 一元二次方程 1、定义:只含有一个未知数,且未知数最高次数是二次的整式方程。
2、一般式: aX 2 bX c 0(a 0)
3、一元二次方程的解法:
开平方:求一个数 a 的平方根的运算,叫做开平方。
a 0 注意: a 的双重非负性:
a 0
3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三 次方根)。
1
表示方法:记作3 a
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
3、由方程的情况求字母系数的值或取值范围 ⑴如果说方程有实数根,那么b2 4ac 0 ;
⑵注意:因为是一元二次方程,不要遗漏隐含条件a 0 。
5、一元二次议程的应用 1、二次三项式的概念:形如(a、b、c 都不为 0)的多项式称为二次三项式。 2、二次三项式的因式分解: ⑴首先考虑能否提取公因式;⑵能否运用十字相乘法;⑶最后考虑用公式法。 3、列一元二次方程解应用题的一般步骤: ⑴审题⑵设元⑶列方程⑷解方程⑸检验⑹写答案 4、根据题意列方程时,必须同时满足以下四个条件: ⑴方程两边意义相同;⑵方程两边单位一致;⑶方程两边数值相等;⑷方程全面地反映了 题中所有数量之间的关系。 5、列一元二次方程解题的类型:
1、开平方法:一般来说,形如 X 2 d 、aX 2 c 0(a 0) 的一元二次方程可以用开平
方法。(三种情况:有两个不相等的实数根,等于 0,没有实数根) 2、因式分解法:提取公因式、公式法(平方差、完全平方公式)、十字相乘法、分组分解 法。 3、配方法:⑴移常数项;⑵化二次项系数为 1;⑶配方,在方程的左右两边同时加上一次 项系数一半的平方;⑷用开平方法求解;⑸结论。 4、公式法:⑴先把方程化为一般形式;⑵写出方程各项的系数 a、b、c 的值(要注意它们 的符号);⑶计算b2 4ac ;⑷当b2 4ac 0 时,将 a、b、c 的值代入求根公式,求出方 程的两个根;⑸当b2 4ac <0 时,方程没有实数根,就不必解了。
(开平方法、因式分解法一般适用于特殊形式的方程,而配方法、公式法是使用最普遍 的方法,适用任意方程,其中:公式法计算较繁琐。) 4、一元二次议程根的判别式
1、定义: b2 4ac 叫做一元二次方程aX 2 bX c 0(a 0) 的根的判别式,通常用符 号“△”来表示,即△= b2 4ac 。 2、一元二次方程aX 2 bX c 0(a 0) 的根的情况与△的关系: ⑴△= b2 4ac0 方程有两个不相等的实数根。 ⑵△= b2 4ac 0 方程有两个相等的实数根。 ⑶△= b2 4ac0 方程没有实数根。
相关文档
最新文档