概率论与数理统计A知识点

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。

下面将对概率论与数理统计的一些重要知识点进行总结。

一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。

- 概率:用来描述随机事件发生的可能性大小的数值。

2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。

- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。

3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。

- 离散随机变量:取有限个或可列个数值的随机变量。

- 连续随机变量:取无限个数值的随机变量。

4. 期望与方差- 期望:反映随机变量平均取值的数值。

- 方差:反映随机变量取值偏离期望值的程度。

5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。

- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。

二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。

- 抽样分布:指用统计量对不同样本进行计算所得到的分布。

2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。

- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。

3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。

- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。

4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。

- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。

5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0

设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。

下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

概率则是衡量随机事件发生可能性大小的数值。

例 1:抛掷一枚均匀的硬币,求正面朝上的概率。

解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。

知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。

例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。

知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。

二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。

如果一个人的检测结果为阳性,求他真正患病的概率。

解:设 A 表示患病,B 表示检测结果为阳性。

则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。

根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。

再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。

知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。

三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。

以下是对概率论与数理统计主要知识点的详细总结。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

我们通常用大写字母A、B、C 等来表示。

随机事件的关系包括包含、相等、互斥(互不相容)和对立等。

2、概率的定义概率是用来度量随机事件发生可能性大小的数值。

概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。

概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。

3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。

二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。

其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。

2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。

三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。

2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。

2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。

3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。

4.概率的性质:概率具有非负性、规范性、可列可加性等性质。

二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。

2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。

3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。

4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。

三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。

2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。

正态分布在自然界和社会现象中广泛存在。

3.其他分布:包括卡方分布、指数分布、F分布、t分布等。

四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。

2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。

包括点估计和区间估计两种方法。

3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。

包括单样本假设检验、两样本假设检验、方差分析等。

五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。

2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。

2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。

高校统计学专业概率论与数理统计知识点整理

高校统计学专业概率论与数理统计知识点整理

高校统计学专业概率论与数理统计知识点整理概率论是统计学中的基础学科,它研究的是随机现象的数量规律性。

而数理统计则是应用概率论的数学统计方法来进行数据分析、推断和决策的学科。

在高校统计学专业中,概率论与数理统计是学生必须掌握的重要知识点。

本文将对这些知识点进行整理,以帮助学生更好地理解和掌握。

一、概率论1. 随机事件与样本空间随机事件是指在一次试验中可能发生的结果,样本空间是指所有可能结果的集合。

样本空间可以用集合论的概念表示,包括必然事件、不可能事件和其他事件。

2. 事件的概率事件的概率是指该事件发生的可能性大小,可以用频率或理论方法计算。

概率的性质包括非负性、规范性、可列可加性等。

3. 随机变量与概率分布随机变量是指根据随机事件取值而变动的变量,可以是离散型或连续型。

概率分布则是随机变量取值的可能性分布情况,分为离散型分布和连续型分布两种。

4. 期望值与方差期望值是随机变量取值的平均值,可以用来衡量随机事件的中心趋势。

方差是对随机变量取值的分散情况进行度量,方差越大表示随机变量的取值越分散。

5. 常见概率分布常见的离散型概率分布包括伯努利分布、二项分布和泊松分布;常见的连续型概率分布则包括均匀分布、正态分布和指数分布等。

二、数理统计1. 参数估计参数估计是利用样本数据推断总体参数的过程,包括点估计和区间估计两种方法。

点估计是用单个值来估计总体参数,区间估计则是用一个区间来估计总体参数。

2. 假设检验假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某种假设。

其中包括提出原假设和备择假设、选择显著性水平、计算检验统计量和判断拒绝域等步骤。

3. 方差分析方差分析是通过对多个总体的均值进行比较,判断它们是否存在显著差异的统计方法。

方差分析可以用于比较不同处理组之间的平均差异。

4. 回归分析回归分析是建立反映变量间关系的数学模型,利用样本数据对总体模型进行推断和预测的方法。

常用的回归模型包括一元线性回归和多元线性回归。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

概率论与数理统计知识点总结

概率论与数理统计知识点总结




密度函数


分布函数
期望
( EX ) 方差( DX )
均 匀 分
f
(x)
b
1
a
,
a xb
0, x a
0, 其他
F
(
x)
x b
a a
,
a xb
EX a b 2
(b a)2 DX
12

1, x b
记作 X ~U[a,b]
n
n
n
P Ai 1 P(Ai ) 1 (1 P(Ai ))
i1
i1
i1
(4)伯努利概型
伯努利定理:在一次试验中,事件 A 发生的概率为 p(0 p 1) ,则在 n 重伯努利试验中,事
件 A 恰好发生 k 次的概率为: b(k; n, p) Ckn pkqnk ,其中 q 1 p . 在伯努利试验序列中,设每次试验中事件 A 发生的概率为 p ,“事件 A 在第 k 次试验中才首
数 n 有关),如果 n 时, npn ( 0 为常数),则对任意给定的 k ,有
lim
n
b(k; n,
pn
)
k k!
e
.
当二项分布 b(n, p) 的参数 n 很大,而 p 很小时,可以将它用参数为 np 的泊松分布来近
似,即有
b(k; n, p) (np)k enp . k!
4.常用的连续型分布
k
N2 N
nk
.这一近似关系的严格
数学表述是:当 N
时, N1
, N2
,且
N1 N
p,
N2 N
1
p ,则对任意给

SUES概率论与数理统计A复习纲要

SUES概率论与数理统计A复习纲要

SUES概率论与数理统计A复习纲要概率论与数理统计复习纲要第⼀部分:知识点学好⽤好数学的关键是概念清楚,正确使⽤公式和法则,把握基本的解题思路和⽅法。

以下的知识点是基本的,请你结合课本认真复习、总结。

1.随机试验,样本点,样本空间,随机事件。

P1-P22.⼦事件,和事件,积事件,差事件,逆事件。

⼀组事件两两互不相容。

P3-P4 3.和、差、积、逆的运算及其交换律、结合律、分配率、对偶律。

P3-P4 4.概率的⾮负性、规范性、可加性;逆事件的概率,加法公式。

P7-P8 5.等可能概型的概念,等可能概型的概率计算公式。

P9-P10 6.条件概率的意义,条件概率的定义式,乘法定理。

P15-P177.全概率公式,贝叶斯公式。

什么情况下⽤全概率公式,什么情况下⽤贝叶斯公式?P18-P19 8.多个事件相互独⽴。

P22-P249.n 重贝努利试验的概念,概率()n P k 的计算公式。

P27 10.怎样⽤随机变量表⽰随机事件?P4-P511.离散型随机变量的分布律及其性质。

三种常⽤分布:(01),(,),().X X B n p X πλ-Poisson 定理(⽤Poisson 分布近似⼆项分布,条件、近似等式)。

P34-P3812.随机变量的分布函数()F x 的定义,基本性质。

P40 13.怎样利⽤分布函数()F x 求以下随机事件的概率?{},{},{},{}x a a x b x a x a ≤<≤>=.P4114.怎样由离散型随机变量X 的分布律求X 的分布函数()F x ?P4115.连续型随机变量的分布函数()F x 与概率密度函数()f x 之间是什么关系?已知其中⼀个,怎样求出另⼀个?P43-P46 16.连续型随机变量的概率密度函数()f x 都有哪些性质?怎样利⽤概率密度函数()f x 求以下随机事件的概率?{},{},{}x a a x b x a ≤<≤>.{}?P x a == P44-P4617.连续型随机变量的三种常⽤分布:2(,),(),(,).X U a b X E X N λµσ P47-P5018.怎样将⼀般正态分布的概率计算转化并通过标准正态分布来计算?请写出转化公式。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用说明:本知识点参照盛骤等编写,高等教育出版社出版的《概率论与数理统计》制订,适用理工类本科专业,不同的专业可根据需要适当删节处理。

带“*”部分内容可根据不同的专业作选讲。

教学要求由低到高分三个层次,有关定义、定理、性质、概念的内容为“知道、了解、理解”;有关计算、解法、公式、法则等方法的内容按“会、掌握、熟练掌握”。

概率论与数理统计A 知识点
第一章 随机事件与概率
基本要求:了解样本空间的概念,理解随机事件的概念,掌握事件的关系与运算。

理解概率,条件概率的概念,熟练掌握概率的基本性质,会计算古典型概率,熟练掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式。

理解事件的独立性的概念,熟练掌握用事件独立性进行概率计算;理解独立重复试验的概念,熟练掌握计算有关事件概率的方法。

重点:概率的计算。

难点:概率的计算。

教学知识点:
第1、2节:了解随机试验、样本空间,理解随机事件,掌握事件的关系和运算,特别是互斥(也称为互不相容)、对立关系,事件之间的并、交、补运算及其运算规律。

第3节:理解频率与概率的关系,熟练掌握概率的性质,特别是常用的加法公式(特殊的加法公式和一般的加法公式)和减法公式(特殊的减法公式和一般的减法公式)。

第4节:熟练掌握古典概率的计算,难点在于样本空间和所求事件中包含的基本事件个数的计算。

第5节:理解条件概率和由此引申出来的一般的乘法公式,熟练掌握条件概率的计算,会用全概率公式和贝叶斯公式解决概率问题。

第6节:理解事件的独立性,区分事件间的独立关系和互斥、对立关系,掌握特殊的乘法公式,理解独立试验序列概型。

第二章 随机变量及其分布
基本要求:理解随机变量及其概率分布的概念。

理解分布函数)()(x X P x F ≤=的概念及性质。

会计算与随机变量有关的事件的概率。

理解离散型随机变量及其概率分布的概念,熟练掌握0-l 分布、二项分布、泊松(Poisson )分布及其应用。

理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系,熟练掌握正态分布、均匀分布和指数分布及其应用。

会求简单随机变量函数的概率分布。

重点:一维随机变量的概率分布及相关的计算。

难点:一维连续型随机变量的概率分布及相关的计算。

教学知识点:
第1、2节:了解随机变量、离散型随机变量及其概率分布,掌握常见离散型随机变量的分布律。

第3节:理解随机变量的分布函数,熟练掌握分布函数的性质,掌握离散型随机变量的分布律和分布函数之间的关系及相互转化。

第4节:理解连续型随机变量及其概率密度,熟练掌握概率密度的性质及分布函数与密度函数之间的关系,会利用概率密度计算概率问题。

第5节:掌握随机变量的函数的分布,熟练掌握离散型随机变量的函数的分布及掌握求连续型随机变量函数分布的分布函数法,理解求连续型随机变量函数分布的公式法。

第三章 二维随机变量及其概率分布
基本要求:理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及两种基本形式:离散型随机变量的联合概率分布、边缘分布和条件分布;连续型随机变量的联合概率密度、边缘概率密度和条件概率密度。

会利用二维随机变量概率分布求有关事件的概率。

理解随机变量的独立性的概念,掌握离散型和连续型随机变量独立的条件。

掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义。

会求两个独立随机变量的简单函数的分布。

重点:二维随机变量的边缘分布、独立性,及相关的计算。

难点:二维随机变量的概率分布、边缘分布、条件分布和独立性,及相关的计算。

教学知识点:
第1节:理解二维随机变量及其联合分布,掌握联合分布函数的性质。

第2、3节:理解边缘分布,了解条件分布,掌握如何由联合分布确定边缘分布。

第4节:理解随机变量的独立性,掌握如何判断随机变量之间的独立关系。

第5节:掌握求两个离散型随机变量的函数的分布和两个独立的连续型随机变量的简单函数的分布。

第四章 随机变量的数字特征
教学基本要求:理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,熟练掌握常用分布的数字特征。

会根据随机变量X 的概率分布求函数随机变量)(X g 的数学期望))((X g E ;会根据随机变量),(Y X 的联合概率分布求其函数随机变量),(Y X g 的数学期望)),((Y X g E 。

重点:随机变量的数学期望(均值)和方差及相关的计算。

难点:随机变量的数学期望(均值)和方差及相关的计算。

教学知识点:
第1节:理解数学期望的概念,掌握数学期望的性质和计算,熟记常见分布的数学期望。

第2节:理解方差的概念,掌握方差的计算和性质,熟记常见分布的方差。

第3节:理解协方差和相关系数的概念,掌握协方差和相关系数的计算,熟记二维正态分布的协方差和相关系数,正确理解不相关和独立的关系。

第4节:了解各种矩(中心矩和混合矩)和协方差矩阵。

第五章 大数定律和中心极限定理
教学基本要求:了解切比雪夫不等式和切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论。

了解列维-林德伯格定理(独立同分布的中心极限定理)和德莫佛一拉普拉斯定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用相关定理近似计算有关随机事件的概率。

重点: 大数定理和中心极限定理。

难点:大数定理和中心极限定理的理解及相关计算。

教学知识点:
第1节:了解切比雪夫不等式和切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论。

第2节:了解列维-林德伯格定理(独立同分布的中心极限定理)和德莫佛一拉普拉斯定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用相关定理近似计算有关随机事件的概率。

第六章样本及抽样分布
教学基本要求:理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解经验分布函数。

了解分位数的概念并会查表计算。

了解正态总体的某些常用抽样分布。

χ分布、t-分布和F-分布和正态总体的某些常用抽样分布。

重点:2
χ分布、t-分布和F-分布和正态总体的某些常用抽样分布。

难点:2
教学知识点:
第1节:了解总体、简单随机样本,掌握样本具有的遗传性和独立性。

第2节:理解统计量的概念,掌握常用统计量——样本均值、样本方差、样本矩等;掌
χ分布、t-分布、F-分布和正态总体的某些常用抽样分布,了解握常用的抽样分布——2
分位数的概念并会查表计算。

第七章参数估计
教学基本要求:理解参数的点估计、估计量与估计值的概念。

熟练掌握矩估计法(一阶、二阶矩)和最大似然估计法。

了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。

了解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间。

重点:矩估计法、最大似然估计法、估计量的评选标准、均值和方差的区间估计。

难点:最大似然估计法、估计量的评选标准、均值和方差的区间估计。

教学知识点:
第1节:理解参数的点估计、估计量与估计值的概念,熟练掌握矩估计法(一阶、二阶矩)和最大似然估计法。

第2节:了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。

第3节:了解区间估计的概念,会求单个正态总体的均值和方差的置信区间,了解两个正态总体的均值差和方差比的置信区间。

第八章假设检验
教学基本要求:理解假设检验的基本思想,熟练掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

熟练掌握单个及两个正态总体的均值和方差的假设检验。

重点:单个正态总体的均值、方差的假设检验。

难点:单个及两个正态总体的均值、方差的假设检验。

教学知识点:
第1节:了解假设检验及相关的基本概念,尤其是假设检验可能产生的两类错误。

理解假设检验的基本思想,熟练掌握假设检验的基本步骤。

第2节:熟练掌握单个正态总体的均值与方差的假设检验,了解两个正态总体的均值与方差的假设检验。

本课程对学生自学的要求:
1)在掌握课堂所学主要内容的基础上,应广泛地阅读有关的书籍或文献。

2)在自学的过程中,应经常多问几个为什么,多从一些具体的实例出发去帮助理解搞清楚抽象的概念的含义。

3)要求学生化足够多的时间进行复习,认真独立完成作业,适当看一些参考书。

4)同学们应自主归纳各章基本内容,做好小结工作。

相关文档
最新文档