中考数学第24题精练

合集下载

中考数学复习专题24:圆的有关计算(含中考真题解析)

中考数学复习专题24:圆的有关计算(含中考真题解析)

专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。

天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习思路分析:观察近几年的中考真题可以发现,每年倒数第二题的出题形式,都是将几何图形放在平面直角坐标系中。

但是,由于解析几何要到高中才学,所以坐标系在这里其实只能起到一个确定点的坐标的作用。

当然,如果把直线看成一次函数图像,一次函数解析式就是直线方程,也就可以将直线交点问题,转化为方程组求解问题,但在这道题中通常都不需要这样做。

题目每年都会对几何图形进行变换,近六年的变换规律是:旋转、对称、旋转、对称、旋转、平移,明年应该大概率是旋转。

因为无论是对称变换、旋转变换还是平移变换,图形的大小和形状都不会发生改变,所以每年的题目都会涉及到全等。

由于在图形变换的过程中,全等的判定通常都是比较容易的,所以本题对全等的考察又主要在全等性质的应用上。

题目设问无论是点的坐标、线段的长还是图形的面积,其核心都是求距离。

所有的距离又都可以转化为求两点间的距离或求点到直线间的距离。

任意两点之间的距离公式虽然要高中才学,但我们可以将两点之间的距离转化为求一个直角三角形的斜边长,用勾股定理求解。

因此,我们会发现每年的题目中几乎都会涉及到勾股定理。

任意点到任意直线的距离公式也要到高中才会学习,但对于一些特殊情况,我们现在就可以做了。

每年的第一问,都是送分问,用一次勾股定理基本都可以解决。

第二问和第三问,解题的关键是要抓住全等的性质和特殊三角形。

第三问通常也会和其它知识点结合,但涉及的都是一些基础知识点,基本功扎实的同学,问题都不大。

最后提醒一下,当对图形进行旋转变换时,尤其需要注意其与圆的结合。

在研究点、直线、圆和圆的位置关系时,只需要研究它们和圆心的位置关系即可。

而在旋转变换时,旋转中心自然就是圆心。

真题练习参考答案。

中考数学 第24章 带余数除法复习题 试题

中考数学 第24章 带余数除法复习题 试题

第24章 带余数除法★★24.1 把由1开场的自然数依次写下去,直写到第198位为止:19812345678910111213位,那么这个数被9除的余数是( ).(A)4 (B)6 (C)7 (D)非上述答案★24.2 n 为正整数,302被n (n +1)除所得商数q 及余数r 都是正值,那么r 的最大值与最小值的和是( ).(A) 148 (B) 247 (C) 93 (D) 122★★24.3 把1059、1417和2312每个数各除以d ,假如余数都是r ,其中d 是大于1的整数,那么d -r 等于( ).(A) 15 (B) 179 (C) d -l (D) d -15★24.4 当P 除以D 时,商为Q ,余数为R ;当Q 除以D '时,商为Q ',余数R '.当P 除以DD '时,余数为( ).(A) R +R 'D (B)R '+RD (C) R R ' (D) R★★24.5 当正整数P 和P '〔其中P>P '〕被正整数D 除时,余数分别是R 和R '.当PP '和RR '被D 除时,余数分别为r 和r ',那么( ).(A) r > r ' (B) r < r ' (C) r =r ' (D)r 有时大于r ',有时小于r '★24.6 考虑以下非降的正整数序列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,…其中正整数儿出现n 次,第1993项被5除的余数是( ).(A)0 (B)1 (C)2 (D)3 (E)4★★24.7 盒中原有7个小球,一位魔术师从中任取几个小球,把每一个小球都变成7个小球.将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成7个小球后放回盒中.如此进展,到某一时刻,魔术师停顿取球变魔术时,盒中球的总数可能是( ).(A) 1990个 (B) 1991个 (C) 1992个 (D)1993个★★24.8 设a 、b 都是正整数,a 、b 除以6分别余2、5,那么b 2-3a 除以6所得余数是________.★★24.9 放有小球的1993 个盒子从左到右排成一行,假如最左面的盒子里有7个小球,且每4个相邻的盒里一共有30个小球,那么最右面的盒里有多少个小球?★★24.10 一个两位数除以它的反序书数所得的商恰等于余数,那么这个两位数是________.★★24.11 设N 1990=111个,试问:N 被7除余几?并证明你的结论.★★24.12 a 、b 是整数,a 除以7余3,b 除以7余5.当a 2 >4b 时.求a 2-4b 除以7的余数.★★24.13 某四位自然数A 被9除,得商B ,余1;B 被9除,得商C ,余5;C 被9除,得余数6.又A 的数值在442和452之间,求A .★★24.14 11 +22 +33 +44 +55+66 +77 +88 +99除以3的余数是几?为什么?★★24.15 求证:假如a 和b 是整数,那么a 、b 、a 2 +b 2、a 2—b 2中一定有一个能被5整除. ★★24.16 整数x 、y 、z 满足等式〔x —y 〕(y —z )( z —x ) =x + y +z ,求证:x + y +z 能被27整除.★★24.17 有40个的整数,其中每一个整数都不能被5整除,求证:这些数的40次方之和能被5整除.★★★24.18 设a 1,a 2,…,a n 是自然数,它们之和能被30整除.求证:a 15+ a 25+…+a n 5能被30整除.★24.19 证明:假设两个整数的平方和能被7整除,那么这两个数中每一个都能被7整除.★★24.20 (1)求能使2n—1被7整除的所有正整数n.(2)试证:对任何正整数n,7 ( 2n +1).★★24.21 在一个自然数的十进制表示法中出现数字1、3、7和9.求证:交换数字后.可以得到一个能被7整除的十进制数.★★24.22 假设N是一个任意的自然数,求证:我们总可以找到两个四位数A和B〔A、B是1,9,8,4这四个数码经过适当排列得到的〕,使N+A与N—B都是7的倍数.★★24.23 从小到大排列着的10个自然数1,4,8,10,16,19,21,25,30,43中,相邻假设干项之和是11的倍数的数组一共有多少组?★★★24.24 从自然数1,2,3,…,1989中,最多可取出多少个数,使得所取出的数中任意三个数之和能被18整除?★★24.25 今有n个给定的整数(n>1).现知,其中任何一个数同其余数的和加1的乘积皆可被所有n个数的和整除.求证:所有这些数的平方和可被它们自身的和整除.★★24.26 证明:数列1﹒2﹒3,2﹒3﹒4,3﹒4﹒5,…,(1)(2)n n n++,…的个位上的数字周期性地重复出现.★★24.27 计算由1到109的每一个数的数字之和,得到109个新数,再求每一个新数的数字之和;这样一直进展下去,直到都是一位数为止.那么,最后得到的数中是1多,还是2多?★★★24.28 设N是一个很大的数,N7777=,其中有1992个7,试求N的最后两位数字.★★★24.29 欧拉的一个猜测在1960年被HY数学家推翻,他们证实了有正整数n,使得1335 +1105 +845 +275=n5.求n的值.★★24.30 用1、9、9、0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n l<n2<n3<n4…,试求n l﹒n2之值.★★★24.31 当44444444写成十进制数时,它的各位数字之和是A,而B是A的各位数字之和,求B的各位数字之和〔所有的数都是十进制数〕.★★24.32 李明买了一本一共有96页的练习本,并依次将它的各页编号〔即由第1页一直编到第192页〕.谢清从中任意撕下了24页纸,并将写在它们上面的48个编号相加.试问:他所加得的和数能否为1990?★★★24.33是否能将正整数1,2,…,64分别填人8×8的国际象棋棋盘的64个方格内,使得形如下图〔方向可以任意转置〕的任意4个格内的数之和总能被5整除.★★★24.34有27个国家参加一次国际会议,每个国家有两位代表.求证:不可能将54位代表安排在一张圆桌的周围就座,使得任一国的两位代表之间都夹有9位代表.★★24.35 一个角的大小为180n,其中n是不被3整除的正整数,求证:这个角可以用欧几里得的作图法〔用直尺与圆规〕三等分.★★★24.36 一个正整数假设能表示为两个自然数的平方差,那么称这个正整数为“智慧数〞.比方16 =52 —32,16就是一个“智慧数〞.在正整数列中,从1开场数起,试问:第1990个“智慧数〞是哪个数?并请说明理由.★24.37 47个整数分别除以3,余数都是1,分别除以47,所得的余数都不一样,这47个整数的和的绝对值最小为________.〔要求:余数是小于47的非负整数,如—30除以47,余数为17;—1除以47,余数为46.〕★★24.38 请问:使得n2—n+11有4个质因子〔不必互异〕的正整数n的最小值是多少?★★24.39 t为正整数,假设2t可以表示成a b±1〔其中a,b是大于1的整数〕,请找出满足上述条件所有可能的t值.★★24.40 在1~2021的整数中,有多少个m使2010m—2009m能被11整除?★★★24.41 〔1〕有三个完全一样之大容器,第一个容器内盛有3L的纯糖浆,第二个容器内盛有20L的纯水,而第三个容器那么是空的.可以任意选择以下之操作:1)将某个容器中的溶液全部倒入另一个容器中;2)将某个容器中的溶液全部倒掉;3)任选两个容器将第三个容器中的溶液倒入其中一个容器中,使得所选这二个容器内的溶液的液面一样高.请问:〔1〕如何操作才能得到10L质量分数为30%的糖浆溶液?〔2〕承上题,假设第二个容器内改为盛有n〔n为正整数〕L的纯水,试求可以得到10L质量分数为30%的糖浆溶液的n之所有可能值〔给出所有可能的值并给出例子,同时证明没有其他的值〕.24.42 图中的圆周上放置2021枚棋子,按顺时针方向依次编号为1,2,3,…,2021,2021.首先取走2号棋子,然后按顺时针方向,每隔2枚棋子就取走2枚棋子,…直到圆周上只余下2枚棋子,问:它们的编号是多少?24.43 圆周上有83个空盒,顺时针依次编号为0,1,2,3,…,,82,小明沿顺时针方向按如下规那么向盒中放球:第一次在1号盒子中放一个;第二次隔一个盒子,在3号盒中放一个;第k-个盒子,在下一个盒子中放入一个球.如三次隔两个盒子,在6号中放一个;…第k次向前隔()1此一共放了2021个球.问:有球的盒子中哪个盒子中球数最少?它里面有多少个球?。

2019重庆中考数学第24题专题训练十二((含答案)

2019重庆中考数学第24题专题训练十二((含答案)

2019重庆中考数学第24题专题训练十二2019、11、重庆巴蜀中学初2019届初三上期末试卷MMPN2、重庆市南岸区11中、二外、珊瑚2018-2019学年度上期三校期末联考九年级数学4、2018-2019学年重庆实验外国语学校九年级数学定时练习试题如图△ABC,以AC为斜边向下作等腰直角△ADC,直角边AD交BC于点EBC=+求线段DC的长;(1)如图1,若∠ACB=30°,∠B=45°,BC=2(2)如图2,若等腰R△ADC的直角顶点D恰好落在线段BC的垂直平分线上,过点A作AF⊥BC于点F,连接DF,求证:AB.BB图1图2B6、如图,△ABC中,∠BAC=5°,点D是AB边上一点,且CB=CD,过点B作BH⊥CD于H,交AC于E(1)若CH=4,DH=2,求△BCD的面积;(2)求证:∠BEC=∠A+12∠BCD;(3)用等式表示AE与BD之间的数量关系;并证明。

7、如图1,在五边形 ABCDE 中,∠E=90°,BC=DE 连接AC,AD,且AB=AD,AC ⊥BC (1)求证:AC=AE; (2)如图2,若∠ABC=∠CAD,AF 为BE 边上的中线,求证:AF ⊥CDABB图1 图2方法一:方法二:MN方法三:8、如图①,在等腰Rt △ABC 中,∠ACB=90°,点D 在AC 上(且不与点A,C 重合),以AD 为直角边向外作等腰Rt △ADE,使∠ADE=90°,连接CE,再以CE 、CB 为邻边作平行四边形CBFE (1)已知求线段CF 的长;(2)将Rt △ADE 绕点A 逆时针旋转角a(90°<a<180°),如图②,连接CD 、CE,再以CE 、CB 为邻边作平行四边形CBFE,设线段AB 、CE 交于点G ,求证BECF图① 图②9、已知,在△ABC中,∠ABC=45,高线AD、BE相交于点G,(1)如图,若∠CAD=30°,GE=2,求DG的长(2)如图2,连接DE,过点D作DF⊥DE交BE于点F,连接AF,过点D作DH⊥AF于点H交BE于点M求证:AF=2DM10、如图在ABC中,过点A作AE⊥BC交BC于E,D为△BC外一点且AD⊥DC,AD交BC 于F,连接、D,已知AE=BE,AD= DC.(1) AB=BC=,求DC长度;(2)求证:∠CBD+∠ACE=45B CADEMM11、八中2019级周考1512、如图,平行四边形ABCD 中,过点B 作BE⊥CD 于点E ,点F 是AD 上一点,连接BF 、CF,交BE 于点G.. (1)若CF 平分∠BCD,∠A=60°,BC=8,求线段CG 的长。

2020届中考数学总复习(24)命题与证明-精练精析(1)及答案解析

2020届中考数学总复习(24)命题与证明-精练精析(1)及答案解析

图形的性质——命题与证明1一.选择题(共8小题)1.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形2.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=03.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个5.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形6.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短7.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个8.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形二.填空题(共7小题)9请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= _________ (写出一个x的值即可).10.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________ ,该逆命题是_________ 命题(填“真”或“假”).11.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y= 两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有_________ (只需填正确命题的序号)12.命题“对顶角相等”的逆命题为_________ .13.命题“对顶角相等”的题设是_________ ,结论是_________ .14命题“直角三角形两个锐角互余”的条件是_________ ,结论是_________ .15.请阅读下列语句:①一个数的相反数是它本身,则这个数一定是正数;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;③函数y=kx+b,当k>0时,图象有可能不经过第二象限;④两边一角对应相等的两个三角形全等;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好.其中正确的是_________ (只填序号)三.解答题(共5小题)16.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,_________ .求证:_________ .证明:17.已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.18.已知命题:“P是等边三角形ABC内的一点,若P到三边的距离相等,则PA=PB=PC.”证明这个命题,并写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.19.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.20.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):_________ .结论(求证):_________ .证明:_________ .图形的性质——命题与证明1参考答案与试题解析一.选择题(共8小题)1.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0考点:命题与定理;根的判别式.专题:常规题型.分析:先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.解答:解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选:D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个考点:命题与定理;平行四边形的判定.专题:常规题型.分析:分别利用平行四边形的判定方法判断得出即可.解答:解:(1)两组对边分别相等的四边形是平行四边形,此选项正确;(2)两组对角分别相等的四边形是平行四边形,此选项正确;(3)对角线互相平分的四边形是平行四边形,此选项正确;(4)一组对边平行且相等的四边形是平行四边形,此选项正确.故选:A.点评:此题主要考查了平行四边形的判定,熟练掌握平行四边形的判定是解题关键.5.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形考点:命题与定理.专题:常规题型.分析:根据等腰图形的性质对A矩形判断;根据矩形、正方形和菱形的判定方法分别对B、C、D矩形判断.解答:解:A、等腰梯形是轴对称图形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四边相等且有一个角为90°的四边形是正方形,所以C选项错误;D、有两条相互垂直的对称轴的四边形可以是菱形或矩形,所以D选项错误.故选:A.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.下列命题错误的是()A.所有的实数都可用数轴上的点表示 B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:常规题型.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:常规题型.分析:先对原命题进行判断,再判断出逆命题的真假即可.解答:解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.8.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形考点:命题与定理.分析:利用特殊的四边形的判定和性质定理逐一判断后即可确定正确的选项.解答:解:A、四条边都相等的是菱形,故错误,是假命题;B、菱形的对角线互相垂直但不相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形但不一定是正方形,故错误,是假命题;D、正确,是真命题.故选:D.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.二.填空题(共7小题)9.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).考点:命题与定理.专题:开放型.分析:先进行配方得到x2+5x+5=x2+5x+﹣=(x﹣)2﹣,当x=时,则有x2+5x+5=﹣<0.解答:解:x2+5x+5=x2+5x+﹣=(x﹣)2﹣,当x=时,x2+5x+5=﹣<0,∴是假命题.故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.10.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).考点:命题与定理.分析:交换原命题的题设和结论即可得到该命题的逆命题.解答:解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.点评:本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.11.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y= 两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号)考点:命题与定理.专题:推理填空题.分析:利用菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识分别判断后即可确定答案.解答:解:①每一条对角线都平分一组对角的平行四边形是菱形,故①正确.②当m>0时,﹣m<0,y=﹣mx+1是y随着x的增大而减小,y= 是在同一象限内y随着x 的增大而减小,故②错误.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(﹣,1),故③错误.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为,故④错误,故答案为:①.点评:本题考查了命题与定理的知识,解题的关键是了解菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识,难度一般.12.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:如果两个角相等,那么它们是对顶角.故答案为:如果两个角相等,那么它们是对顶角.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.命题“对顶角相等”的题设是两个角是对顶角,结论是这两个角相等.考点:命题与定理.分析:任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论.解答:解:命题“对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题“对顶角相等”的题设是“两个角是对顶角”,结论是“这两个角相等”.点评:本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.14.命题“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.考点:命题与定理.分析:命题有条件和结论两部分组成,条件是已知的,结论是结果.解答:解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.点评:本题考查了命题的条件和结论的叙述.15.请阅读下列语句:①一个数的相反数是它本身,则这个数一定是正数;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;③函数y=kx+b,当k>0时,图象有可能不经过第二象限;④两边一角对应相等的两个三角形全等;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好.其中正确的是②③(只填序号)考点:命题与定理.分析:利用相反数的定义、根的判别式、一次函数的性质、全等三角形的判定及方差的意义分别判断后即可确定正确的答案.解答:解:①一个数的相反数是它本身,则这个数一定是正数,错误;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根,正确;③函数y=kx+b,当k>0时,图象有可能不经过第二象限,正确;④两边一角对应相等的两个三角形全等,错误;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好,错误,故答案为:②③.点评:本题考查了命题与定理的知识,解题的关键是了解相反数的定义、根的判别式、一次函数的性质、全等三角形的判定及方差的意义,属于基础题,比较简单.三.解答题(共5小题)16.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,在△ABC中,∠B=∠C.求证:AB=AC .证明:考点:命题与定理;等腰三角形的性质.专题:证明题.分析:根据图示,分析原命题,找出其条件与结论,然后根据∠B=∠C证明△ABC 为等腰三角形,从而得出结论.解答:解:在△ABC中,∠B=∠C,AB=AC,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.点评:本题主要考查学生对命题的定义的理解,难度适中.17.已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.考点:命题与定理.分析:根据平行线的性质与判定分析得出即可.解答:解:如图,点B、F、C、E在同一条直线上,则AB∥DE,是假命题,当添加:∠B=∠E时,AB∥DE,理由:∵∠B=∠E,∴AB∥DE.点评:此题主要考查了命题与定理,熟练利用平行线的判定得出是解题关键.18.已知命题:“P是等边三角形ABC内的一点,若P到三边的距离相等,则PA=PB=PC.”证明这个命题,并写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.考点:命题与定理.分析:首先画出图形,由PD⊥AB于D,PE⊥BC于E,PD=PE,根据角平分线的判定得出BP平分∠ABC,由BA=BC,根据等腰三角形三线合一的性质得出BP是AC的垂直平分线,同理,AP是BC的垂直平分线,CP是AB的垂直平分线,那么P是△ABC三边垂直平分线的交点,根据线段垂直平分线的性质即可证明PA=PB=PC;将原命题的题设与结论交换位置即可写出其逆命题;可证明其逆命题成立.先由PA=PB,AC=BC,根据线段垂直平分线的判定得出CP是AB的垂直平分线,根据等腰三角形三线合一的性质得出CP平分∠ACB,同理,BP平分∠ABC,AP平分∠BAC,那么P是△ABC三个角的角平分线的交点,根据角平分线的性质即可得出PD=PE=PF.解答:解:如图,已知P是等边三角形ABC内的一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,PD=PE=PF.求证:PA=PB=PC.证明:∵PD⊥AB于D,PE⊥BC于E,PD=PE,∴BP平分∠ABC,∵BA=BC,∴BP是AC的垂直平分线,同理,AP是BC的垂直平分线,CP是AB的垂直平分线,∴P是△ABC三边垂直平分线的交点,∴PA=PB=PC.逆命题:P是等边三角形ABC内的一点,若PA=PB=PC,则P到三边的距离相等.其逆命题成立.证明:∵PA=PB,∴P在AB的垂直平分线上,∵AC=BC,∴C在AB的垂直平分线上,∴CP是AB的垂直平分线,∴CP平分∠ACB,同理,BP平分∠ABC,AP平分∠BAC,∴P是△ABC三个角的角平分线的交点,∴PD=PE=PF.点评:本题考查了命题与定理,角平分线、线段垂直平分线的判定与性质,等腰三角形的性质,难度适中.利用数形结合是解题的关键.19.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.考点:推理与论证;反证法.专题:推理填空题.分析:用反证法证明就可以代入特殊值来看看,令b=4,c=5可以证明命题①不正确,b=1,c=,可以证明命题③不正确若,命题②正确可证明.解答:解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c>>,c>>0故a2+ab+c=+(c﹣)>0点评:本题考查灵活运用反例的能力以及灵活掌握不等式的能力.20.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.。

初中数学中考第24题压轴题精选

初中数学中考第24题压轴题精选

压轴题精选一、与等腰三角形有关1、如图,已知两直线l l、l2分别经过点A(1,0),B(-3,0),并且当两直线同时相交于y 轴正半轴的点C时,恰好有l l⊥l2,经过A、B、C三点的抛物线的对称轴与直线l l交于点K.(1)求点C的坐标和抛物线的解析式;(2)抛物线的对称轴被直线l l、抛物线、直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,9 2).(1)求抛物线的函数关系式;(2)设抛物线的对称轴与x轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标;(3)若点E是线段AB上的一个动点(与点A、B不重合),分别连结AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.二、与直角三角形有关3、如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线y =x 2+bx +c 经过A 、B 两点,顶点为D .(1)求b 、c 的值;(2)点E 是Rt △ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线,交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.备用图4、如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-49x2+bx+c经过A、C两点,与AB边交于点D.(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式,并求出m为何值时,S取得最大值;②当S最大时,在抛物线y=-49x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形,请直接..写出所有符合条件的点F的坐标;若不存在,请说明理由.备用图5、如图,已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.三、与平行四边形有关6、如图,二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n).(1)求点A、B的坐标(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线y=23x2-13x平移后经过A、C两点?若能,求出平移后经过A、C两点的抛物线的解析式;若不能,说明理由.7、如图,抛物线y=-54x2+174x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点O出发以每秒一个单位的速度向C移动,过点P作PN⊥x 轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O、点C重合的情况),连接CM、BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.四、与面积有关8、如图,已知抛物线y=-x2+bx+9-b2(b为常数)经过坐标原点O,且与x轴交于另一点E,其顶点M在第一象限.(1)求该抛物线所对应的函数关系式;(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.①求矩形ABCD的周长的最大值,并写出此时点A的坐标;②当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断并说明理由.9、如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请直接写出点P的坐标;(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,求点N的坐标;若不存在,请说明理由.10、如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC . (1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝]图1图2(备用)五、与相似有关11、如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M.是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.12、如图,抛物线y=ax2+bx+c经过点O(0,0),A(4,0),B(5,5),点C是y轴负半轴上一点,且tan∠OCB=59.点P是直线OB上一动点,过点P作PQ∥y轴,交抛物线于点Q.(1)求抛物线的解析式;(2)当直线BC平分△PQB的面积时,求点P的坐标;(3)是否存在这样的点P,使得以P、Q、B为顶点的三角形与△OBC相似?若存在,求点P的坐标;若不存在,请说明理由.13、如图,抛物线经过(40)(10)(02),,,,,三点.A B C-(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM x⊥轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得DCA△的面积最大,求出点D的坐标.7),且顶点C的横坐标为4,该图象在x 轴上截14、如图,二次函数的图象经过点D(0,39得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.六、与圆有关15、如图,直径为5的⊙M圆心在x轴正半轴上,⊙M与x轴交于A、B两点,与y轴交于C、D两点,且CD=4,抛物线经过A、B、C三点,顶点为N.(1)求该抛物线的解析式;(2)直线NC与x轴交于点E,试判断直线CN与⊙M的位置关系并说明理由;(3)设点Q是抛物线对称轴上的一点,试问在抛物线上是否存在点P,使得以A、B、P、Q 为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.16、如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.(1)求该抛物线的解析式;(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式;(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.如图,在面直角坐标系内,抛物线y=-x 2+bx+c 与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,且A ,B 两点的横坐标分别是方程x 2-2x-3=0的两个实数根.(1)求抛物线的解析式.(2)若抛物线的顶点为M ,作点M 关于x 轴的对称点N ,顺次连接A ,M ,B ,N ,在抛物线上存在点D ,使直线CD 将四边形AMBN 分成面积相等的两个四边形,求点D 的坐标.(3)在抛物线上是否存在点P ,使△PBC 中BC 边上的高为 2 ?若存在,请直接写出满足条件的所有P 点的坐标;若不存在,请说明理由.xx备用图24.(本题满分12分)如图,抛物线223212--=xxy与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标.(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由.(3)当点M运动到什么位置时,四边形ABMC的面积最大,并求出此时M点的坐标和四边形ABMC的最大面积.第24题图24.(本题满分13分)如图,抛物线y =41x 2-23x -4 与x 轴交于点A 和点B (点B 在点A 的左侧),与y 轴交于点C ,⊙O ′是△ABC 的外接圆,AB 是⊙O ′的直径,过点C 作⊙O ′的切线与x 轴交于点F ,过点A 作AD ⊥CF 于点D . (1)求A 、B 、C 三点的坐标.(2)试判断抛物线的顶点E 是否在直线CD 上,并说明理由.(3)在抛物线上是否存在一点P ,使得S △ACP =S △ACO ,若存在,直接写出所有满足条件的点P 坐标,若不存在,请说明理由.. .26.(本题满分12分)如图,抛物线的顶点为C(-1,-1),且经过点A、点B和坐标原点O,点B的横坐标为-3.(1)求抛物线的解析式;(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为顶点的四边形为平行四边形,请直接写出点D的坐标;(3)若点P是抛物线第一象限上的一个动点,过点P作xPM 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.x23.如图,已知二次函数L 1:y =ax 2-2ax +a +3(a >0)和二次函数L 2:y =-a (x +1)2+1(a >0)图像的顶点分别为M ,N ,与y 轴分别交于点E ,F .(1)函数y =ax 2-2ax +a +3(a >0)的最小值为 ;当二次函数L 1,L 2的y 值同时随着x 的增大而减小时,x 的取值范围是 ;(2)当EF =MN 时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明);(3)若二次函数L 2的图象与x 轴的右交点为A (m ,0),当△AMN 为等腰三角形时,求方程 -a (x +1)2+1=0的解.。

押成都卷第24题 (方程(组)、不等式(组)与函数的实际应用)(原卷版)-备战2024年中考数学

押成都卷第24题 (方程(组)、不等式(组)与函数的实际应用)(原卷版)-备战2024年中考数学

押成都卷第24题押题方向一:方程(组)、不等式(组)与函数的实际应用3年成都真题考点命题趋势2023年成都卷第24题方程组、不等式与一次函数性质从近年成都中考来看,方程、不等式与函数的实际应用考查内容主要以方程、不等式基本应用为主,结合一次函数的增减性解决相关问题,整体难度中等,是很多同学B 卷相对容易拿分的考点;预计2024年成都卷还将重视方程(组)、不等式(组)与函数的实际应用的考查。

2022年成都卷第24题不等式与一次函数2021年成都卷第26题一元一次方程与不等式1.(2023·四川成都·中考真题)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.2.(2022·四川成都·中考真题)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)直接写出当00.2t ≤≤和0.2t >时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?3.(2021·四川成都·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B 型预处置点位进行初筛、压缩等处理.已知一个A 型点位比一个B 型点位每天多处理7吨生活垃圾.(1)求每个B 型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?方程(组)的应用题以实际问题为背景,一般为生活中常见的分析决策问题,且情境真实、贴近学生生活。

中考数学第24题专题训练答案

中考数学第24题专题训练答案

2015年中考数学第24题专题训练-圆1. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC 于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.证明:(1)∵MN⊥AC于点M,BG⊥MN于G,∴∠BGD=∠DMA=90°.∵以AB为直径的⊙O交BC于点D,∴AD⊥BC,∠ADC=90°,∴∠ADM+∠CDM=90°,∵∠DBG+∠BDG=90°,∠CDM=∠BDG,∴∠DBG=∠ADM.在△BGD与△DMA中,,∴△BGD∽△DMA;(2)连结OD.∵BO=OA,BD=DC,∴OD是△ABC的中位线,∴OD∥AC.∵MN⊥AC,BG⊥MN,∴AC∥BG,∴OD∥BG,∵BG⊥MN,∴OD⊥MN,∴直线MN是⊙O的切线.2. 如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.证明:(1)连接OE.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.3. (2014•山东枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.4.如图,在梯形ABCD 中,AD ∥BC ,∠B =900,以AB 为直径作⊙O ,恰与另一腰CD 相切于点E ,连接OD 、OC 、BE .(1)求证:OD ∥BE ;(2)若梯形ABCD 的面积是48,设OD =x ,OC =y ,且x +y =14,求CD 的长.解:(1)证明:连接OE ,∵CD 是⊙O 的切线, ∴OE ⊥CD ,在Rt △OAD 和Rt △OED 中,OA =OE , OD =OD ,∴Rt △OADcR ≌t △OED , ∴∠AOD =∠EOD =21∠AOE , 在⊙O 中,ABE =21∠AOE , ∴∠AOD =∠ABE , ∴OD ∥BE (2)同理可证:Rt △COE ≌Rt △COB .∴∠COE =∠COB =21∠BOE , ∴∠DOE +∠COE =900,∴△COD 是直角三角形,∵S △DEO =S △DAO , S △COE =S △COB ,∴S 梯形ABCD =2(S △DOE +S △COE )=2S △COD =OC ·OD =48,即xy =48,又∵x +y = 14,∴x 2 +y 2=(x +y )2-2xy =142-2×48=100,在Rt △COD 中,101002222==+=+=y x OD OC CD即CD 的长为10. 5.如图,在平面直角坐标系中,⊙P 经过x 轴上一点C ,与y 轴分别交于A 、B两点,连接AP 并延长分别交⊙P 、x 轴于点D 、E ,连接DC 并延长交y 轴于点F ,若点F 的坐标为(0 ,1),点D 的坐标为(6 ,-1).⑴ 求证:DC FC =⑵ 判断⊙P 与x 轴的位置关系,并说明理由.⑶ 求直线AD 的解析式.解:(1)如图1,作DH ⊥x 轴于点H,∵F(0,1),D(6,-1) ∴OF=DH=1,在⊿OCF 和⊿HCD 中,FCO DCO FOC DHC OF DH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩90∴⊿OCF ≌⊿HCD(AAS), DC=FC.(2)如图2,⊙P 与x 轴相切.连接PC,∵DC=FC, PD=PA, ∴CP 是⊿DFA 的中位线,∴PC ∥y 轴, ∴PC ⊥x 轴 , 又C 是⊙P 与x 轴的交点 ,∴⊙P 切x 轴于点C. (3)如图3,作PG ⊥y 轴于点G,由(1)知:C(3,0), 由(2)知:AF=2PC,设⊙P 的半径为r , 则:(r-1)2+32=r 2 , ∴r=5, ∴A(0,-9);设直线AD 的解析式为y ax =-9,把D(6,-1)代入得:a =43, ∴直线AD 的解析式为:y x =-4936. 已知:AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD ⊥CP 于D .(1)求证:△ACB ∽△CDB ;(2)若⊙O 的半径为1,∠BCP=30°,求图中阴影部分的面积.解:(1)证明:∵直线CP 是⊙O 的切线,∴∠BCD=∠BAC ,∵AB 是直径,∴∠ACB=90°,又∵BD ⊥CP∴∠CDB=90°,∴∠ACB=∠CDB=90°∴△ACB ∽△CDB ;(2)解:如图,连接OC ,∵直线CP 是⊙O 的切线,∠BCP=30°,∴∠COB=2∠BCP=60°,∴△OCB 是正三角形,∵⊙O 的半径为1,∴S △OCB =,S 扇形OCB ==π,∴阴影部分的面积=S 扇形OCB ﹣S △OCB =π﹣7,如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.解:(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.8,如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.解:(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;(3)解:连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=3R,在Rt△OCE中,sin∠E===.9,如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在△ABD和△CDB中,,∴△ABD和△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.10,如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.解:(1)证明:连接OC,∵直线CD与⊙O相切于点C,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠OAC=∠DAC,即AC平分∠DAB;(2)连接BC,OE,过点A作AF⊥BC于点F,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC,∵∠DAC=∠BAC,∴△ADC∽△ACB,∴,即,解得:AB=10,∴BC==6,∵点E为的中点,∴∠AOE=90°,∴OE=OA=AB=5,∴AE==5,∵∠AEF=∠B,∠AFE=∠ACB=90°,∴△ACB∽△AFE,∴,∴,∴AF=4,EF=3,∵∠ACF=∠AOE=45°,∴△ACF是等腰直角三角形,∴CF=AF=4,∴CE=CF+EF=7.11,如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.解:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠CAD,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=2﹣2.12,如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.解:(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC,∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(2)解:∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,∴=,∴=,解得:FD=.13,如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.解:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BCD=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB•CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD•cos30°=3,∴S△ODE=OD•DE=×2×=,S△ADE=AE•DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC﹣S△BOD﹣S△ODE﹣S△ADE=4﹣﹣﹣=.14,已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.解:(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴=,∴PC2=PA•PB,∵PA=3,PB=5,∴PC==.15,如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.解:(1)证明:∵DC2=CE•CA,∴=,△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=∴PC=4又∵PC•PD=PB•P A∴P A=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°∴∠FDA+∠BDC=90°∠CBA+∠CAB=90°∵∠BDC=∠CAB∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°∴△AFD∽△ACB∴在Rt△AFP中,设FD=x,则AF=,∴在RT△APF中有,,求得DF=.16,如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.解:(1)证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=DC,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.17,如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.CPAOB解: (1)证明:∵AB 是⊙O 的切直径,∴∠ADB=90°,又∵∠BAD=∠BED ,∠BED=∠DBC , ∴∠BAD=∠DBC ,∴∠BAD+∠ABD=∠DBC+ABD=90°, ∴∠ABC=90°,∴BC 是⊙O 的切线;(2)解:∵∠BAD=∠DBC ,∠C=∠C , ∴△ABC ∽△BDC ,∴=,即BC 2=AC •CD=(AD+CD )•CD=10,∴BC=.在O 的直径切O 于点C ,连结(1)求P ∠的正弦值;(2)若O 的半径r =2cm ,求BC 的长度。

初三中考数学第24题题型及解析

初三中考数学第24题题型及解析

初三中考数学第24题题型及解析第三讲中考数学第24题专练⼀1(14?长沙).如图,四边形ABCD是矩形,把矩形沿对⾓线AC折叠,点B落在点E处,CE 与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB△AOC的⾯积.2.(2015?长沙)如图,在直⾓坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD 交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找⼀点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.3(2016?长沙).如图,四边形ABCD 内接于⊙O ,对⾓线AC 为⊙O 的直径,过点C 作AC的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求CDE ∠的度数;(2)求证:DF 是⊙O 的切线;(3)若AC =,求tan ABD ∠的值.4(17年长沙).如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的⾯积.5(18*长沙)、如图,在ABC 中,AD 是边B C 上的中线,BAD CAD ,CE//AD ,CE 交B A 的延长线于点E,BC 8,A D 3。

(1)求C E 的长;(2)求证:ABC 为等腰三⾓形;(3)求ABC 的外接圆圆⼼P与内切圆圆⼼Q之间的距离。

6.(19*长沙)根据相似多边形的定义,我们把四个⾓分别相等,四条边成⽐例的两个凸四边形叫做相似四边形.相似四边形对应边的⽐叫做相似⽐.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①条边成⽐例的两个凸四边形相似;(命题)②三个⾓分别相等的两个凸四边形相似;(命题)③两个⼤⼩不同的正⽅形相似.(命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,111111AB BC CDA B B C C D ==,求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的⾯积为S 1,四边形EFDE 的⾯积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.第四讲专练⼆1.(18雅礼⼀模)如图,已知AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)若BF=2,tan∠BDF=,求⊙O的半径.2.(19麓⼭三模)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的⾓平分线.以O为圆⼼,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tan D=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.3.(长沙第三次⽉考)如图,△ABC中,AB=AC,点D为BC上⼀点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sin C=,AC=6,求⊙O的直径.4.(长沙第三次⽉考)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上⼀点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.1.(19⼴益三模)如图,?ABCD的两条对⾓线相交于O点,过O点作OE⊥AB,垂⾜为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=,求线段OE的长.2.(19中、南雅⼀模)如图,在矩形ABCD中,P为边CD上⼀点,把△BCP沿直线BP折叠,顶点C的对应点为C′,连接BC′与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)若E为AD的中点,求证:△ABE≌△DEC;(2)连接C′Q,求证:四边形C′QCP是菱形;(3)若AB=12,AD=25,且DE<AE,求菱形的边长.第三讲答案1(14?长沙).如图,四边形ABCD是矩形,把矩形沿对⾓线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB,求△AOC的⾯积.解2.(2015?长沙)如图,在直⾓坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D 在劣弧上,连接BD 交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找⼀点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.解:(1)∵点A(,0)与点B(0,﹣),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂⾜为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°﹣∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB?tan30°=×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三⾓形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA﹣AF=,∴点E的坐标为:(,).3(2016?长沙).如图,四边形ABCD内接于⊙O,对⾓线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求CDE∠的度数;(2)求证:DF是⊙O的切线;(3)若AC=,求tan ABD∠的值.解(1)对⾓线AC为⊙O的直径90ADC∴∠=?90CDE∴∠=?…………………(2分)(2)(⽅法⼀)连接,OF OD,在Rt CDE中,点F为斜边CE的中点DF FC∴=在DOF和COF中DF CFOF OFOD OC===∴DOF≌COF∴90ODF OCF∠=∠=?∴DF OD⊥∴DF是⊙O的切线……………(5分)(⽅法⼆)证明:连接OD,AC为⊙O的直径,CE AC⊥90ADC CDE O∴∠=∠=, 90ACF O∠=⼜在Rt CDE中,点F为斜边CE的中点,DF FC CDF DCF ∴=∠=∠⼜OD OC = ODC OCD ∴∠=∠90ODF ODC CDF OCD DCF ∴∠=∠+∠=∠+∠=? ∴DF 是⊙O 的切线 …………………(5分)(⽅法三)证明:连接OD ,CE AC ⊥,AC 为⊙O 的直径90ADC ADO ODC ∴∠=∠+∠=? 90DAO ACD ∠+∠=?90ACD DCF ∠+∠=?DAO DCF ∴∠=∠⼜OA OD = DAO ADO ∴∠=∠ ADO DCF ∴∠=∠⼜在Rt CDE ?中,点F 为斜边CE 的中点 ,DF FC CDF DCF ∴=∠=∠ADO CDF ∴∠=∠90ODF ODC CDF ODC ADO ∴∠=∠+∠=∠+∠=? ∴DF 是⊙O 的切线 …………………(5分)(3)(⽅法⼀)由圆周⾓定理可得 ABD ACD ∠=∠由题中条件可得 90,ADC CDE CAD ECD ∠=∠=?∠=∠,ADC ∴?∽CDE ? ∴AD DCCD DE= ∴2CD AD DE =? ………………(6分)由于AC = 所以可令 ,,DE a AD b ==则有,AC CD ==在Rt ACD ?中,由勾股定理可得 222)b += 上式两边同时除以2a 并整理后得到 2()200b b a a + -= 解之可得 4b a =或5ba=-(舍去) …………………(8分)tan tan 2AD ABD ACDDC ∴∠=∠==== …………………(9分)(⽅法⼆)设DE x =,AD y =,AC =易证ACD ?∽AED ? ∴2AC AD AE =?2)()y x y =?+(即2220x y yx =+2()200y y x x +-= 解得4y x=或5yx =-(舍去)∴2CD x = ∴4tan tan 22xABD ACD x ∠=∠==(⽅法三)设DE a =,tan ABD m ∠=,则AC =,AC m EC =,CDm DE=∴AC EC m ==,CD mDE ma == 在Rt CDE ?中222CD DE CE +=∴222()ma a += ∴22201m m+= ∴222()200m m +-= ∴22(5)(4)0m m +-= ∴24m =或25m =-(舍去)∴tan 2ABD ∠=4(17年长沙).如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的⾯积.5、如图,在 ABC 中,AD 是边 B C 上的中线,BAD CAD ,CE //AD ,CE 交 B A 的延长线于点 E ,BC 8,A D 3。

2012中考数学第24题专题训练

2012中考数学第24题专题训练

2012年中考数学专题24题 训练(黄石地区)1. 如图△ABC 中,∠BAC=90°,AC=AB,D 为BC 上的动点,若BD=n CD ,AF ⊥AD 交AD 于E 、AC 于F 。

⑴如图1,若n =3时,则AC AF = ⑵如图2,若n =2时,求证:AE DE 32⑶当n = 时,AE=2DE2、如图(1),在直角△ABC 中, ∠ACB=90 ,CD ⊥AB,垂足为D,点E 在AC 上,BE 交CD 于点G,EF ⊥BE 交AB 于点F,若AC=mBC,CE=nEA(m,n 为实数).试探究线段EF 与EG 的数量关系.(1) 如图(2),当m=1,n=1时,EF 与EG 的数量关系是证明:(2) 如图(3),当m=1,n 为任意实数时,EF 与EG 的数量关系是 证明(3) 如图(1),当m,n 均为任意实数时,EF 与EG 的数量关系是 (写出关系式,不必证明)3、已知:△ABC 的高AD 所在直线与高BE 所在直线相交于点F .(1)如图l ,若△ABC 为锐角三角形,且∠ABC =45°,过点F 作FG ∥BC ,交直线AB 于点G ,求证:FG +DC =AD ;(2)如图 2,若∠ABC =135°,过点F 作FG ∥BC ,交直线AB 于点G ,则FG 、DC 、AD 之间满足的数量关系是 ;(3)在(2)的条件下,若AG =25,DC =3,将一个45°角的顶点与点B 重合并绕点B 旋转,这个角的两边分别交线段FG 于M 、N 两点(如图3),连接CF ,线段CF 分别与线段BM 、线段BN 相交于P 、Q 两点,若NG =23,求线段PQ 的长.图3图2图1F A B E D CF A B E D C F E D C BA4、已知:在如图1所示的锐角三角形ABC 中,CH ⊥AB 于点H ,点B 关于直线CH 的对称点为D ,AC 边上一点E 满足∠EDA =∠A ,直线DE 交直线CH 于点F .(1) 求证:BF ∥AC ; (2) 若AC 边的中点为M ,求证:2DF EM ;(3) 当AB =BC 时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.5、已知,如图:∠ABC=60°的菱形ABCD 和等边三角形△BMN 有公共顶点B,连结DM,取DM 的中点G,连CG,NG(1). 如图(1),当BN 在BC 边上时,证明:C G ⊥NG(2).如图(2), 当BM 在AB 延长线上时,求证G(3). 如图(3),DM 交BC 于点E,当AB=2BM=3时,直接写出ME 的长为 .G N M D C B A G N M D C B A G N M E D C B A。

九年级数学下册常考点微专题提分精练(构造直角三角形利用三角函数求边长小题(解析版)

九年级数学下册常考点微专题提分精练(构造直角三角形利用三角函数求边长小题(解析版)

专题24 构造直角三角形利用三角函数求边长小题【典例讲解】Rt△ABC中,△A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且△ACP=30°,则PB的长为_______.【详解】分两种情况考虑:当△ABC=60°时,如图所示:△△CAB=90°,△△BCA=30°.又△△PCA=30°,△△PCB=△PCA+△ACB=60°.又△△ABC=60°,△△PCB为等边三角形.又△BC=4,△PB=4.当△ABC=30°时,(i)当P在A的右边时,如图所示:△△PCA=30°,△ACB=60°,△△PCB=90°.又△B=30°,BC=4,△BCcosBPB=,即2BC448PB===3cosB cos30332=.(ii)当P在A的左边时,如图所示:△△PCA=30°,△ACB=60°,△△BCP=30°.又△B=30°,△△BCP=△B.△CP=BP.在Rt△ABC中,△B=30°,BC=4,△AC=12BC=2.根据勾股定理得:2222AB BC AC4223=-=-=,△AP=AB-PB=23-PB.在Rt△APC中,根据勾股定理得:AC2+AP2=CP2=BP2,即22+(23-PB)2=BP2,解得:BP=433.综上所述,BP的长为4或433或833.【综合演练】1.在△ABC中,BC31,△B=45°,△C=30°,则△ABC的面积为()B1C D1A在Rt△ABD中,△B=45°,.如图,在ABC中,连接BP AP PB+的最小值是()AB C D .2 为斜边向ABC 外作等腰直角三角形,得PD PB =+Rt ABD 中,为斜边向ABC 外作等腰直角三角形, 22PD AP = 在同一直线上时,取得最小值. 中,90D ,AB =sin 60BD AB︒=, 3. 【点睛】本题考查了解直角三角形的应用,构造辅助线得到22PD AP =是解题的关键. 3.如图,有一块三角形空地需要开发,根据图中数据可知该空地的面积为( )A .2B .2C .2D .2【答案】B【详解】解:延长BA,过C作CD△BA的延长线于点D,A.42B.43C.44D.45ADA .13B .4C .11D .【答案】C1△AE=2×2cos30°=2×2×. 1在Rt△AEP 中,. 故选C .6.已知在ABC 中,A ∠、B ∠是锐角,且sin 13B =,tan 2A =,44cm AB =,则ABC 的面积等于 __2cm .过点C作AB的垂线,垂足为点D.5sin13B=设CD=tanCD AAD =可设CD2AD y∴=BD∴=AB AD∴=△AC=5,△ABC的面积为53,Rt ABD中,=60°.是钝角时,如图,过点B作△AC=5,△ABC的面积为53,的值为__________.∠tanAB BAE故答案为:27【点睛】本题考查了解直角三角形.对于此类题目,不是直角三角形,要利用三角函数必须构筑直角三角形,知道三个元素(至少有一个是边),就能求出其余的边和角.进而求面积,在转化时,尽量不要破坏所给条件.10.如图,在ABC ∆中,8AC =,60ABC ∠=︒,45C ∠=︒,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为__________.【点睛】本题考查解特殊直角三角形,关键在于熟练掌握特殊直角三角形的基础性质.AC=米,3020BC=米,请你帮助物业计算出需要改造的广场面积是______平方米.(结果保留根号)【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.在Rt△ACD中,△A=30°,AC=23,的面积是__.△等腰直角△ABC的面积为16,,则AC边上的中线长是_____________.2作△ABC的高AD,BE为AC边的中线..在ABC中,(1)求ABC 的面积;(2)求AB 的值;(3)求cos ABC ∠的值. ,最后利用三角形的面积公式算出ABC 的面积;中利用勾股定理求出的余弦值.△90ADC ADB ∠=∠=︒,Rt ACD ,AD C AC=,sin4AC C=1BC AD=⨯62△ABC的面积为12.(2)DC AD=,=6BC,==-=64BD BC DC△中,在Rt ABD=AB AD【答案】10.5【分析】作AD△BC,根据cosC和AC即可求得AD的值,再根据△B可以求得AD=BD,根据AD,BC即可求得S△ABC的值.【详解】解:过点A作AD△BC,垂足为D.=2,DE S△DEB=4,求四边形ACDE的面积.DH求BD的长.【答案】BD的长是5.【分析】过D作DE△AB于点E,设DE=a,用a表示出AE、BE,在Rt△ABC和Rt△BDE中分别表示出tan△ABC,从而列出方程,解方程后即可求出BE、DE的长,然后用勾股定理即可求出BD.【详解】解:过D作DE△AB于点E,如图所示,△△BAD=45°,.如图,ABC的角平分线c=时,求a的值;(1)当2(2)求ABC的面积(用含a,c的式子表示即可);(3)求证:a,c之和等于a,c之积.1Rt ABE 中,BD =,△点2c =.)答案不唯一可能情形1:过点1Rt ABF 中,CBG △中,ABC ABD S =+△12BD AF ⨯+求△DCB的度数.【答案】△DCB=30°.。

武汉中考数学第24题专题练习

武汉中考数学第24题专题练习

F EA PBCD 图2武汉中考第24题一、内容分析:培养数学逻辑推理能力是新课标的要求,第24题便是近年来考查这种能力的一种新题型,它不仅开阔同学们的视野,而且发展了同学们发散思维,创新探索和逻辑推理能力和动手能力,这种题型考查学生逻辑推理的方式主要注意如下几方面:① 图形由特殊到一般;② 图形的位置由特殊到一般;③ 结论由特殊到一般.解决方法主要由“特殊到一般”的思路,结合旋转,全等或相似的相关性质,以及实践操作,观察猜想加以解决. 二、主要知识考点:1、图形旋转的性质;2、三角形全等或相似;3、实践作图; 三、结论类型: 1、 角度大小关系; 2、 线段大小和位置关系;3、 其它;四、题型变化引例:(08届4月调考题)如图所示,ABCD 为正方形。

(1)如图1,点P 为△ABC 的内心,问:DP 与DA 有何数量关系?证明你的结论; (2)如图2,若点E 在CB 边上(不与点C 、B 重合),点F 在BA 的延长线上,AF=CE ,点P 为△FBE 的内心,则DP 与DF 有何数量关系?证明你的结论; (3)如图3,若点E 在CB 的延长线上(不与点B 重合),点F 在BA 的延长线上,AF=CE ,点P 是△FEB 中与∠FEB 、∠FBE 相邻的两个外角平分线的交点。

完成图3,判断DP 与DF 之间的数量关系(直接写出结论,不证明)。

对照练习:1、如图1,正方形ABCD 中,∠FOE=90°顶点O 于D 点重合,交BC 边于E ,交BA 的延长线于F.(1)求证:OF=OE; (2)若O 点在直线BD 上运动,其它条件不变,上述结论是否仍然成立?试画图直接写出结论。

( (3)如图4,O 为正方形ABCD 对角线的中点,∠FOE=90°交BC 、CD 边于F 、E 点。

求证OE=OF 。

( (4)如图5、6,O 点在直线BD 上运动,OD :OB=1:n ,其它条件不变,(3)中结论是否还成立?若不成立,请直接写出OE :OF= 。

重庆中考数学24题专题

重庆中考数学24题专题

重庆中考几何一、有关几何的基本量:线段、角度、全等、面积、四边形性质1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC 交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:过点H作HI⊥EG于I,∵G为CH的中点,∴HG=GC,∵EF⊥DC,HI⊥EF,∴∠HIG=∠GFC=90°,∠FGC=∠HGI,∴△GIH≌△GFC,∵△EBH≌△EIH(AAS),∴FC=HI=BH=1,∴AD=4-1=3.2、已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD 和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.证明:(1)∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,AC=AE ∠DAC=∠BAE AD=AB ,∴△DAC≌△BAE(SAS),∴DC=BE;(2)如图,作DG∥AE,交AB于点G,由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,∴∠DGF=∠FAE=90°,又∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°,又∵△ABD为等边三角形,∠DBG=60°,DB=AB,∴∠DBG=∠ABC=60°,在△DGB和△ACB中,∠DGB=∠ACB ∠DBG=∠ABC DB=AB ,∴△DGB≌△ACB(AAS),∴DG=AC,又∵△AEC为等边三角形,∴AE=AC,∴DG=AE,在△DGF和△EAF中,∠DGF=∠EAF ∠DFG=∠EFA DG=EA ,∴△DGF≌△EAF(AAS),∴DF=EF,即F为DE中点.3、如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.(1)求证:CF=CG;(2)连接DE,若BE=4CE,CD=2,求DE的长.解答:(1)证明:连接AC,∵DC ∥AB ,AB=BC ,∴∠1=∠CAB ,∠CAB=∠2, ∴∠1=∠2;∵∠ADC=∠AEC=90°,AC=AC , ∴△ADC ≌△AEC , ∴CD=CE ;∵∠FDC=∠GEC=90°,∠3=∠4, ∴△FDC ≌△GEC ,∴CF=CG .(2)解:由(1)知,CE=CD=2, ∴BE=4CE=8,∴AB=BC=CE+BE=10,∴在Rt △ABE 中,AE= AB 2-BE 2 =6, ∴在Rt △ACE 中,AC= AE 2+CE 2 =102 由(1)知,△ADC ≌△AEC , ∴CD=CE ,AD=AE ,∴C 、A 分别是DE 垂直平分线上的点, ∴DE ⊥AC ,DE=2EH ;(8分) 在Rt △AEC 中,S △AEC =21 AE •CE=21AC •EH , ∴EH=AC CEAE ⋅ =10226⨯ =5103∴DE=2EH=2×5103=5106 4、如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于点E ,交BC 于点P ,连接OP ,OQ ;求证:(1)△BCQ ≌△CDP ; (2)OP=OQ .证明:∵四边形ABCD 是正方形, ∴∠B=∠PCD=90°,BC=CD , ∴∠2+∠3=90°,又∵DP ⊥CQ , ∴∠2+∠1=90°, ∴∠1=∠3,在△BCQ 和△CDP 中,∠B=∠PCD BC=CD ∠1=∠3 . ∴△BCQ ≌△CDP . (2)连接OB . 由(1):△BCQ ≌△CDP 可知:BQ=PC , ∵四边形ABCD 是正方形, ∴∠ABC=90°,AB=BC , 而点O 是AC 中点, ∴BO=21AC=CO ,∠4=21∠ABC=45°=∠PCO , 在△BCQ 和△CDP 中, BQ=CP ∠4=∠PCO BO=CO∴△BOQ ≌△COP , ∴OQ=OP .5、在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD,∠ABC=60°,延长AD 到E,使DE=AD,延长DC 到F ,使DC=CF,连接BE 、BF 和EF.⑴求证:△ABE ≌△CFB; ⑵如果AD=6,tan ∠EBC 的值. 解:(1)证明:连结CE , 在△BAE 与△FCB 中,∵ BA=FC ,∠A=∠BCF ,, AE=BC , ∴△BAE ≌△FCB ;(2)延长BC 交EF 于点G ,作AH ⊥BG 于H ,作AM ⊥BG ,∵△BAE ≌△FCB ,∴∠AEB=∠FBG ,BE=BF ,∴△BEF 为等腰三角形,又∵AE ∥BC , ∴∠AEB=∠EBG ,∴∠EBG=∠FBG ,∴BG ⊥EF ,∵∠AMG=∠EGM=∠AEG=90°, ∴四边形AMGE 为矩形,∴AM=EG , 在Rt △ABM 中,AM=AB •sin60°=6×23=33 ,∴EG=AM=33, BG=BM+MG=6×2+6×cos60°=15,∴tan ∠EBC=531533==BG EG 6、如图,在梯形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 的中点,EF ∥AB 交BC 于点F(1)求证:BF=AD+CF ;ABDECF(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.(1)证明:如图(1),延长AD交FE的延长线于N∵∠NDE=∠FCE=90°∠DEN=∠FEC DE=EC∴△NDE≌△FCE ∴DN=CF ∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形∴BF=AD+DN=AD+FC(2)解:∵AB∥EF,∴∠ABN=∠EFC,即∠1+∠2=∠3,又∵∠2+∠BEF=∠3,∴∠1=∠BEF,∴BF=EF,∵∠1=∠2,∴∠BEF=∠2,∴EF=BF,又∵BC+AD=7+1∴BF+CF+AD=8而由(1)知CF+AD=BF∴BF+BF=8∴2BF=8,∴BF=4,∴BF=EF=47、已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF分别交AB于G、H点(1)求证:FG=FH;(2)若∠E=60°,且AE=8时,求梯形AECD 的面积.(1)证明:连接BF∵ABCD为矩形∴AB⊥BC AB⊥AD AD=BC∴△ABE为直角三角形∵F是AE的中点∴AF=BF=BE∴∠FAB=∠FBA∴∠DAF=∠CBF∵AD=BC, ∠DAF=∠CBF ,AF=BF ,∴△DAF≌△CBF∴∠ADF=∠BCF∴∠FDC=∠FCD∴∠FGH=∠FHG ∴FG=FH ;(2)解:∵AC=CE ∠E=60° ∴△ACE 为等边三角形 ∴CE=AE=8 ∵AB ⊥BC ∴BC=BE=CE 21=4 ∴根据勾股定理AB=34 ∴梯形AECD 的面积=21×(AD+CE)×CD=21×(4+8)×34=3248、如图,直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,且CD=2AD ,tan ∠ABC=2,过点D作DE ∥AB ,交∠BCD 的平分线于点E ,连接BE . (1)求证:BC=CD ;(2)将△BCE 绕点C ,顺时针旋转90°得到△DCG ,连接EG .求证:CD 垂直平分EG ; (3)延长BE 交CD 于点P .求证:P 是CD 的中点. 证明:(1)延长DE 交BC 于F ,∵AD ∥BC ,AB ∥DF ,∴AD=BF ,∠ABC=∠DFC . 在Rt △DCF 中,∵tan ∠DFC=tan ∠ABC=2, ∴CFCD=2, 即CD=2CF ,∵CD=2AD=2BF , ∴BF=CF , ∴BC=BF+CF=21CD+21CD=CD . 即BC=CD .(2)∵CE 平分∠BCD ,∴∠BCE=∠DCE , 由(1)知BC=CD , ∵CE=CE ,∴△BCE ≌△DCE , ∴BE=DE ,由图形旋转的性质知CE=CG ,BE=DG , ∴DE=DG ,∴C ,D 都在EG 的垂直平分线上, ∴CD 垂直平分EG . (3)连接BD , 由(2)知BE=DE , ∴∠1=∠2. ∵AB ∥DE ,∴∠3=∠2.∴∠1=∠3.∵AD ∥BC ,∴∠4=∠DBC .由(1)知BC=CD ,∴∠DBC=∠BDC ,∴∠4=∠BDP . 又∵BD=BD ,∴△BAD ≌△BPD(ASA)∴DP=AD . ∵AD=21CD ,∴DP=21CD .∴P 是CD 的中点. 9.(2011南岸二诊)如图,已知点P 是正方形ABCD 的对角线AC 上一点,过点P 作EF ⊥DP ,交AB 于点E ,交CD 于点G ,交BC 的延长线于点F ,连接DF .(1)若23=DF ,求DP 的长; (2)求证:CF AE =.10.如图,正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上(CG >BC ),M 是线段AE 的中点,DM 的延长线交CE 于N . (1)线段AD 与NE 相等吗?请说明理由; (2)探究:线段MD 、MF 的关系,并加以证明.11、如图,梯形ABCD 中,AD ∥BC ,AB=DC=10cm ,AC 交BD 于G ,且∠AGD=60°,E 、F 分别为CG 、AB 的中点.(1)求证:△AGD 为正三角形; (2)求EF 的长度.G 24题图PFEDCBA解答:(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.12、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解答:解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)13.在梯形ABCD中,AD∥BC,AB=CD,且DE⊥AD于D,∠EBC=∠CDE,∠ECB=45°.⑴求证:AB=BE ;⑵延长BE ,交CD 于F .若CE =2,tan ∠CD E =31,求BF 的长. 13.⑴证明:延长DE ,交BC 于G .∵DE ⊥AD 于D ,∴∠ADE =90°又AD ∥BC , ∴∠DGC =∠BGE =∠ADE =90°, 而∠ECB =45°, ∴△EGC 是等腰直角三角形, ∴EG=CG在△BEG 和△DCG 中,EBG CDG EGB CGD EG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEG ≌△DCG (AAS ) ∴BE=CD=AB ⑵连结BD .∵∠EBC=∠CDE ∴∠EBC +∠BCD =∠CDE +∠BCD =90°,即∠BFC =90° ∵CE=2,∴EG=CG=1又tan ∠CDE =31,∴13CG DG =,∴DG =3 ∵△BEG ≌△DCG ,∴BG=DG=3∴2210BE BG EG =+=∴CD=BE=10法一:∵1122BCDSBC DG CD BF ==,11431022BF ⨯⨯=⨯∴6105BF = 法二:经探索得,△BEG ∽△BFC ,∴BE BCBG BF=,∴1043BF = ∴6105BF = 14.如图,直角梯形ABCD 中,,90,45,AD BC ADC ABC AB ∠=∠=∥的垂直平分线EG 交BC 于F ,交DC 的延长线于.G求证:(1)CG CF =;(2).BC DG =AB CDEF证明:(1) ,AB EF ⊥ 45B ∠=904545EFB ∴∠=-=45CFG ∴∠=//,90AD BC ADC ∠=90FCG ∴∠=45,FCG ∴∠= CG CF =∴(2)连接AF , EF 是AB 的中垂线,AF BF FE AB ∴=⊥45=∠=∠∴BFE AFE90=∠∴AFB DCB AFB ∠=∠∴BC AD CD AF //,// ∴,AF DC BF DC ∴=∴=由(1)知CG CF = ,CG DC CF BF +=+∴即:DG BC =二、有关“截长补短”题型1、在ABCD 中,对角线,BD BC G BD ⊥为延长线上一点且ABG ∆为等边三角形,BAD ∠、CBD ∠的平分线相交于点E ,连接AE BD F 交于,连接GE 。

2019重庆中考数学第24题专题训练二(含部分答案)

2019重庆中考数学第24题专题训练二(含部分答案)

2019重庆中考数学第24题专题训练二1、如图,∠ABC=90°,∠DEB=90°,BA=BC,BD=BE,连接AE,CD,AE所在直线交CD于点F,连接BF.(1)连接AD,EC,求证:AD=EC;(2)若BF⊥AF,求证:F点为CD的中点.2.在等腰直角三角形ACB中,∠ACB=90°,AC=BC,点F是AC的中点,过点A作BF的延长线的垂线,垂足为点D,连接CD,过点C作CE⊥CD交BF于点E.(1)如图1,若CE=AD=1,求AC的长;(2)如图2,连接AE,求证:AE=2CF.3、如图,矩形ABCD中,BC=2AB,点E是边AD的中点,点F是线段AE上ー点(点F不与点A,E重合)连接BF,过点F作直线BF的垂线,与线段CE交于点G,点H是线段BG的中点.(1)若CE=2求矩形ABCD的面积;(2)求证:BF=EH.4、如图1,在正方形ABCD中,对角线AC与BD交于点O,H为CD边上一点,连接BH交AC于K,E 为BH上一点,连接AE交BD于点F.(1)若AE⊥BH于E,且CK=,AD=6,求AF的长;(2)如图2,若AE=BE,且∠BEO=∠EAO,求证:AE=2OE.5、如图,在△ABC中,∠BAC=90°,AB=AC,点D为形外一点,BD⊥CD于点D,CD交AB于E. (1)如图1,若∠ABD=15°,BE=6,求BC的长;(2)如图2,连接AD,作AF⊥BC于F,交CD于M,若DA=DB,求证:CE=CM.6.(2017春・垫江县期末)已知,如图1在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,BE与AD交于点F.(1)若BF=5,DC=3,求AB的长;(2)在图1上过点F作BE的垂线,过点A作AB 的垂线,两条垂线交于点G,连接BG,得如图2。

①求证:∠BGF=45°;②求证:AB=AG+AF.2019重庆中考数学第24题专题训练二答案解析。

上海中考数学24题专项训练

上海中考数学24题专项训练

历年中考24题专项训练(08中考)24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图12,在平面直角坐标系中,为坐标原点.二次函数的图像经过点,顶点为.(1)求这个二次函数的解析式,并写出顶点的坐标;(2)如果点的坐标为,,垂足为点,点在直线上,,求点的坐标.yx(09中考)24. (本题满分12分,每小题满分各4分) 在直角坐标平面内,为原点,点的坐标为(1,0),点的坐标为(0,4),直线∥轴(如图7所示).点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结. (1)求的值和点的坐标; (2)设点在轴的正半轴上,若是等腰三角形,求点的坐标; (3)在(2)的条件下,如果以为半径的圆与圆外切,求圆的半径.A O 1 -1 123 4 C M图7(10中考)24.如图8,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l 的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n 的值.图8(11中考)24.(本题满分12分,每小题满分各4分) 已知平面直角坐标系(图9),一次函数的图像与轴交于点,点在正比例函数的图像上,且.二次函数的图像经过点、.(1) 求线段的长;(2) 求这个二次函数的解析式; (3) 如果点在轴上,且位于点下方.点在上述二次函数的图像上,点在一次函数的图像上,且四边形是菱形,求点的坐标.图9O11xy(12中考)24.如图,在平面直角坐标系中,二次函数过点,和,,并与轴交于点,点在线段上,设,点在第二象限,且,,于.①求二次函数的解析式; ②用含的代数式表示和的长;③当时,求的值.xDFEO BACy(13中考)24. 如图9,在平面直角坐标系中,顶点为M 的抛物线经过点A 和轴正半轴上的点B ,AO = BO = 2,∠AOB = 120°. (1)求这条抛物线的表达式;(2)联结OM ,求∠AOM 的大小;(3)如果点C 在轴上,且△ABC 与△AOM 相似,求点C 的坐标.图9MABO(14中考)24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值.(15中考)24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系中(如图6),抛物线与轴的负半轴相交于点,与轴相交于点,.点在抛物线上,线段与轴的正半轴相交于点,线段与轴相交于点.设点的横坐标为.(1)求这条抛物线的表达式;(2)用含的代数式表示的长;(3)当时,求的正弦值.11图6(16中考)24.如图8,抛物线()经过点,与轴的负半轴交于点,与轴交于点,且,抛物线的顶点为;(1)求这条抛物线的表达式;(2)联结、、、,求四边形的面积;(3)如果点在轴的正半轴上,且,求点的坐标;图8。

中考数学24题专题训练(圆及平行四边形)

中考数学24题专题训练(圆及平行四边形)

如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求∠CDE 的度数; (2)求证:DF 是⊙O 的切线; (3)若AC=2DE ,求tan ∠ABD 的值.已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过点D 的直线交AC 于E 点,且△AEF 为等边三角形 (1)求证:△DFB 是等腰三角形;(2)若DA=7AF ,求证上:CF ⊥AB在平面直角坐标中,△ABC 三个顶点坐标为A (﹣,0)、B (,0)、C (0,3).(1)求△ABC 内切圆⊙D 的半径.(2)过点E (0,﹣1)的直线与⊙D 相切于点F (点F 在第一象限),求直线EF 的解析式.(3)以(2)为条件,P 为直线EF 上一点,以P 为圆心,以2为半径作⊙P .若⊙P 上存在一点到△ABC 三个顶点的距离相等,求此时圆心P 的坐标.第25题图ED F CBOA如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E FG H ,将矩形1111E FG H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD 的面积为?(直接写出答案)(3)当△CQD 的面积为,且Q位于以CD为直径的上半圆,CQ>QD时(如图2),求AP 的长.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B()0,2-,点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO。

天津中考数学24专题训练

天津中考数学24专题训练

1.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.2.某工厂出贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,贮存的煤原计划用多少天?每天烧多少吨?解题方案设贮存的煤原计划用x天,用含x的代数式表示:①改进炉灶和烧煤技术后可用天;②原计划每天烧吨;③改进炉灶和烧煤技术后每天烧吨;④根据问题中的相等关系,列出相应的方程;⑤贮存的煤原计划用天,每天烧吨(用数字作答)。

3.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.某公司在A、B两地分别有库存机器16台和12台,现要运往甲、乙两地,其中甲地15台,乙地13台.从A地运一台到甲地的运费为500元,到乙地为400元;从B地运一台到甲地的运费为300元,到乙地为600元.公司应设计怎样的调运方案能使这些机器的运费最省?(Ⅰ) 解:设A地向甲地运x台,总运费为y元。

根据题意,填写下表。

(要求填上适当的代数式,完成表格)x.4.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书。

解题方案:设李明原计划平均每天读书x页,用含x的代数式表示:(Ⅰ)李明原计划读完这本书需用______________天;(Ⅱ)改变计划时,已读了______________页,还剩______________页;(Ⅲ)读了5天后,每天多读5页,读完剩余部分还需________________天;(Ⅳ)根据问题中的相等关系,列出相应方程_________________________________;(Ⅴ)李明原计划平均每天读书___________页(用数字作答)。

专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编

专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编

专题06二次根式(24题)一、单选题1(2024·湖南·中考真题)计算2×7的结果是()A.27B.72C.14D.14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2×7=14,故选:D2(2024·内蒙古包头·中考真题)计算92-62所得结果是()A.3B.6C.35D.±35【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:92-62=81-36=45=35;故选C.3(2024·云南·中考真题)式子x在实数范围内有意义,则x的取值范围是()A.x>0B.x≥0C.x<0D.x≤0【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x在实数范围内有意义,∴x的取值范围是x≥0.故选:B4(2024·黑龙江绥化·中考真题)若式子2m-3有意义,则m的取值范围是()A.m≤23B.m≥-32C.m≥32D.m≤-23【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得2m-3≥0,即可求解.【详解】解:∵式子2m-3有意义,∴2m-3≥0,解得:m≥3 2,故选:C.5(2024·四川乐山·中考真题)已知1<x<2,化简x-12+x-2的结果为()A.-1B.1C.2x -3D.3-2x【答案】B【分析】本题考查了二次根式的性质,去绝对值,熟练掌握知识点是解题的关键.先根据a 2=a 化简二次根式,然后再根据1<x <2去绝对值即可.【详解】解:x -1 2+x -2 =x -1 +x -2 , ∵1<x <2,∴x -1>0,x -2<0,∴x -1 +x -2 =x -1+2-x =1,∴x -12+x -2 =1,故选:B .6(2024·重庆·中考真题)已知m =27-3,则实数m 的范围是()A.2<m <3B.3<m <4C.4<m <5D.5<m <6【答案】B【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m =27-3=12,即可求出m 的范围.【详解】解:∵m =27-3=33-3=23=12,∵3<12<4,∴3<m <4,故选:B .7(2024·江苏盐城·中考真题)矩形相邻两边长分别为2cm 、5cm ,设其面积为Scm 2,则S 在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:S =2×5=10,∵9<10<16,∴9<10<16,∴3<10<4,即S 在3和4之 间,故选:C .8(2024·安徽·中考真题)下列计算正确的是()A.a 3+a 5=a 6B.a 6÷a 3=a 2C.-a2=a 2D.a 2=a【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A、a3与a5不是同类项,不能合并,选项错误,不符合题意;B、a6÷a3=a3,选项错误,不符合题意;C、-a2=a2,选项正确,符合题意;D、当a≥0时,a2=a,当a<0时,a2=-a,选项错误,不符合题意;故选:C9(2024·重庆·中考真题)估计122+3的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵122+3=26+6,而4<24=26<5,∴10<26+6<11,故答案为:C10(2024·四川德阳·中考真题)将一组数2,2,6,22,10,23,⋯,2n,⋯,按以下方式进行排列:则第八行左起第1个数是()A.72B.82C.58D.47【答案】C【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从而可得第八行左起第1个数是第29个数,据此求解即可得.【详解】解:由图可知,第一行共有1个数,第二行共有2个数,第三行共有3个数,归纳类推得:第七行共有1+2+3+4+5+6+7=28个数,则第八行左起第1个数是2×29=58,故选:C.二、填空题11(2024·江苏连云港·中考真题)若式子x-2在实数范围内有意义,则x的取值范围是.【答案】x≥2【详解】根据二次根式被开方数必须是非负数的条件,要使x-2在实数范围内有意义,必须x-2≥0,∴x≥2.故答案为:x≥212(2024·江苏扬州·中考真题)若二次根式x-2有意义,则x的取值范围是.【答案】x≥2【详解】解:根据题意,使二次根式x-2有意义,即x-2≥0,解得:x≥2.故答案为:x≥2.【点睛】本题主要考查使二次根式有意义的条件,理解二次根式有意义的条件是解题关键.13(2024·贵州·中考真题)计算2⋅3的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=2×3=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a⋅b=ab(a≥0,b>0)是解题关键.14(2024·北京·中考真题)若x-9在实数范围内有意义,则实数x的取值范围是.【答案】x≥9【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得x-9≥0,解得:x≥9.故答案为:x≥9【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15(2024·天津·中考真题)计算11-1的结果为.11+1【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式=11-1=10.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16(2024·四川德阳·中考真题)化简:-32=.【答案】3【分析】根据二次根式的性质“a2=a ”进行计算即可得.【详解】解:-32=-3=3,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17(2024·黑龙江大兴安岭地·中考真题)在函数y=x-3x+2中,自变量x的取值范围是.【答案】x≥3/3≤x【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,x-3≥0,且x+2≠0,解得,x≥3,故答案为:x≥3.18(2024·山东烟台·中考真题)若代数式3x-1在实数范围内有意义,则x的取值范围为.【答案】x>1/1<x【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:x-1>0,解得:x>1;故答案为:x>1.19(2024·山东威海·中考真题)计算:12-8⋅6=.【答案】-23【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:12-8⋅6=23-43=-23故答案为:-23.20(2024·黑龙江齐齐哈尔·中考真题)在函数y=13+x+1x+2中,自变量x的取值范围是.【答案】x>-3且x≠-2【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3+x>0 x+2≠0,解得x>-3且x≠-2,故答案为:x>-3且x≠-2.三、解答题21(2024·内蒙古包头·中考真题)(1)先化简,再求值:x+12-2x+1,其中x=22.(2)解方程:x-2x-4-2=xx-4.【答案】(1)x2-1,7;(2)x=3【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)x+12-2x+1=x2+2x+1-2x-2=x2-1,当x=22时,原式=222-1=7;(2)x-2x-4-2=xx-4去分母,得x-2-2x-4=x,解得x=3,把x=3代入x-4=3-4=-1≠0,∴x=3是原方程的解.22(2024·上海·中考真题)计算:|1-3|+2412+12+3-(1-3)0.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:|1-3|+2412+12+3-(1-3)0=3-1+26+2-3(2+3)(2-3)-1 =3-1+26+2-3-1=26.23(2024·甘肃·中考真题)计算:18-12×3 2.【答案】0【分析】根据二次根式的混合运算法则计算即可.本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【详解】18-12×32=18-12×32=18-18=0.24(2024·河南·中考真题)(1)计算:2×50-1-30;(2)化简:3a-2+1÷a+1a2-4.【答案】(1)9(2)a+2【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式=100-1=10-1=9;(2)原式=3a-2+a-2 a-2÷a+1a+2a-2=a+1 a-2⋅a+2a-2a+1=a+2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学第24题精练
1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊙BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且⊙ODB=⊙AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA;
(3)若⊙O的半径为5
2
,sinA=
3
5
,求BH的长.
2.如图,点O是线段AH上一点,3
AH=,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作ABCD
Y.
(1)求证:AD是⊙O的切线;
(2)若
1
3
OH AH
=,求四边形AHCD与⊙O重叠部分的面积;
(3)若
1
3
NH AH
=,
5
4
BN=,连接MN,求OH和MN的长.
3.如图⊙,在⊙ABC中,以AB为直径的⊙O交AC于点D,点E在BC上,连接BD,DE,⊙CDE=⊙ABD.
(1)求证:DE是⊙O的切线.
(2)如图⊙,当⊙ABC=90°时,线段DE与BC有什么数量关系?请说明理由.
(3)如图⊙,若AB=AC=10,sin⊙CDE=3
5
,求BC的长.
4.如图,已知BC⊙AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.
(1)连接OP,证明:⊙ADM⊙⊙APO;
(2)证明:PD是⊙O的切线;
(3)若AD=12,AM=MC,求PB和DM的值.
5.如图:AB是⊙O的直径,C、G是⊙O上两点,且点C是劣弧AG的中点,过点C的直线CD⊙BG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线;
(2)若ED3,求证:3OF=2DF;
(3)在(2)的条件下,连接AD,若CD=3,求AD的长.
6.如图,AB为⊙O直径,BC为⊙O切线,连接A、C两点,交⊙O于点D,BE=CE,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=CD•2OE;
(3)若cos⊙BAD=3
5
,BE=6,求OE的长.
7.如图,AB为⊙ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足
2
PE=P A•PC,连接CE,AE,OE,OE交CA于点D.
(1)求证:⊙P AE⊙⊙PEC;
(2)求证:PE为⊙O的切线;
(3)若⊙B=30°,AP=1
2
AC,求证:D O=DP.
8.如图,已知AB 为O e 的直径,8AB =,点C 和点D 是O e 上关于直线AB 对称的两个点,连接OC 、AC ,且90BOC ∠<︒,直线BC 和直线AD 相交于点E ,过点C 作直线CG 与线段AB 的延长线相交于点F ,与直线AD 相交于点G ,且GAF GCE ∠=∠. (1)求证:直线CG 为O e 的切线;
(2)若点H 为线段OB 上一点,连接CH ,满足CB CH =,
⊙求证:CBH OBC ∆∆∽;
⊙求OH HC +的最大值.
9.如图,⊙ABC内接于⊙O,⊙CBG=⊙A,CD为直径,OC与AB相交于点E,过点E作EF⊙BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若EF
AC
=
5
8
,求
BE
OC
的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
10.如图,在ABC V 中,以AB 为直径的O e 交BC 于点D ,DAC B ∠=∠. (1)判断AC 与O e 的位置关系,并说明理由;
(2)求证:2•CA CD CB =;
(3)在AB 上取一点E ,若BCE B ∠=∠,2AB AC =,求tan ACE ∠的值.
11.如图,AF为⊙O的直径,点B在AF的延长线上,BE切⊙O于点E,过点A作AC⊙BE,交BE的延长线交于点C,交⊙O交于点D,连接AE,EF,FD,DE.
(1)求证:EF=ED.
(2)求证:DF・AF=2AE•EF.
(3)若AE=5DE=5sin⊙DF A的值.
12.如图,AC 为O e 的直径,DA 为O e 的切线,AB 为弦,连接DB ,DC ,DC 交AB
于点E ,交O e 于点F ,连接BF ,BC ,且DA DB =.
(1)求证:DB 为O e 的切线;
(2)若3ADC BDC ∠=∠,求证:2BC BF DC =⋅;
(3)在(2)的条件下,若4CE =,求DE 的长.。

相关文档
最新文档