简单多面体(课堂PPT)
合集下载
高中数学必修课件第一章简单多面体
对多面体的分类和特征理解不 清,容易混淆不同的多面体。
改进建议1
加强对多面体定义和分类的学 习,多观察、多比较不同多面 体的特征,加深对它们的认识 。
易混点2
在计算多面体的顶点数时,容 易忽略欧拉公式的应用条件。
改进建议2
明确欧拉公式的应用条件,即 适用于简单多面体,同时要注 意公式中各个量的含义和计算
章节测试题及答案解析
题目2
一个多面体的面数为8,棱数为15, 求该多面体的顶点数。
答案2
根据欧拉公式,多面体的顶点数V、 面数F和棱数E之间满足关系V+F-E=2 。将已知的F=8,E=15代入公式,得 到V=2+E-F=2+15-8=9,因此该多 面体的顶点数为9。
易错易混点剖析及改进建议
易错点1
多面体的性质
多面体的面、棱、顶点数之间的关系,以及多面体的欧拉公式等。
简单多面体的识别和作图
能够识别常见的简单多面体,并掌握其作图方法。
章节测试题及答案解析
题目1
请列举出五种不同的简单多面体,并简述它们的特征。
答案1
五种不同的简单多面体包括三棱锥、四棱锥、正方体、长方体和五棱柱。它们的特征分别是三棱锥有一个面是三 角形,其余三个面是三角形或四边形;四棱锥有一个面是四边形,其余四个面是三角形;正方体六个面都是正方 形;长方体六个面都是矩形;五棱柱有两个平行的五边形底面,侧面是矩形。
蜂巢
蜂巢是由正六边形组成的 简单多面体结构,这种结 构既节省材料又具有良好 的稳定性。
病毒
一些病毒粒子也呈现出多 面体形态,如二十面体病 毒,这些病毒粒子具有复 杂的对称性和几何结构。
科技创新中简单多面体应用案例
纳米材料
科学家利用简单多面体结构设计出具 有特定功能的纳米材料,如纳米立方 体、纳米球等,这些材料在医药、环 保等领域具有广泛应用。
改进建议1
加强对多面体定义和分类的学 习,多观察、多比较不同多面 体的特征,加深对它们的认识 。
易混点2
在计算多面体的顶点数时,容 易忽略欧拉公式的应用条件。
改进建议2
明确欧拉公式的应用条件,即 适用于简单多面体,同时要注 意公式中各个量的含义和计算
章节测试题及答案解析
题目2
一个多面体的面数为8,棱数为15, 求该多面体的顶点数。
答案2
根据欧拉公式,多面体的顶点数V、 面数F和棱数E之间满足关系V+F-E=2 。将已知的F=8,E=15代入公式,得 到V=2+E-F=2+15-8=9,因此该多 面体的顶点数为9。
易错易混点剖析及改进建议
易错点1
多面体的性质
多面体的面、棱、顶点数之间的关系,以及多面体的欧拉公式等。
简单多面体的识别和作图
能够识别常见的简单多面体,并掌握其作图方法。
章节测试题及答案解析
题目1
请列举出五种不同的简单多面体,并简述它们的特征。
答案1
五种不同的简单多面体包括三棱锥、四棱锥、正方体、长方体和五棱柱。它们的特征分别是三棱锥有一个面是三 角形,其余三个面是三角形或四边形;四棱锥有一个面是四边形,其余四个面是三角形;正方体六个面都是正方 形;长方体六个面都是矩形;五棱柱有两个平行的五边形底面,侧面是矩形。
蜂巢
蜂巢是由正六边形组成的 简单多面体结构,这种结 构既节省材料又具有良好 的稳定性。
病毒
一些病毒粒子也呈现出多 面体形态,如二十面体病 毒,这些病毒粒子具有复 杂的对称性和几何结构。
科技创新中简单多面体应用案例
纳米材料
科学家利用简单多面体结构设计出具 有特定功能的纳米材料,如纳米立方 体、纳米球等,这些材料在医药、环 保等领域具有广泛应用。
多面体PPT教学课件
有一个面是多边形其余各面是 三角形,这个多面体是棱锥吗?
S
顶点
侧棱
高
E
侧面
A
底面
O
D
B
C
侧面:有公共顶点的各三角形面 底面(底):余下的那个多边形 侧棱:两个相邻侧面的公共边 顶点:各侧面的公共点 高:顶点到底面的垂线段(距离)
S
A
B
D
C
棱锥的分类: 按底面多边形的边数,可以分为三棱锥、 四棱锥、五棱锥、……
北美驯鹿是可爱的动物,它们在广阔的 草原上生活。可是,它们经常受到狼的威 胁。于是,人们为保护驯鹿,捕杀草原上 的狼,驯鹿的家族繁盛起来。
可是,过了一些年,人们发现草原被驯 鹿糟蹋的很厉害,而且北美驯鹿有时成批 死亡。是什么原因呢?
科学家研究以后发现,北美驯鹿失去了天 敌狼之后,种群扩大了。草场不足,草原被破 坏,而且那些老弱病残的鹿不能被淘汰,加剧 了草场不足的困难。而且,没有狼的追杀,驯 鹿的运动少了,体质下降,因病而死数量增加。
麻雀啄食和糟蹋农作物,曾被 列为主要害鸟。20世纪50~60 年代,我国开展了一场轰轰烈 烈的“剿灭麻雀”的全民运动。
“成果”:
仅一天,上海就消灭麻雀194432只! 据不完全报道:从3月到11月上旬, 8个月的时间中全国捕杀麻雀19.6亿 只!
通过以上资料的分析,你认为人类能否 随意灭杀某种动物吗?为什么? 人为的破坏动物的种类和数量,会导致 整个生态系统失去平衡
二氧化碳
光 合 作 用
有机物
光 合 作 用
有机物
动物促进生态系统中的物质循环
据估计:在开花植物中,约有84% 的植物是通过昆虫来帮助它们授粉 的
动物和植物的关系
自然界中的动物和植物在长期生存与发 展的过程中,形成了相互适应、相互依存 的关系
S
顶点
侧棱
高
E
侧面
A
底面
O
D
B
C
侧面:有公共顶点的各三角形面 底面(底):余下的那个多边形 侧棱:两个相邻侧面的公共边 顶点:各侧面的公共点 高:顶点到底面的垂线段(距离)
S
A
B
D
C
棱锥的分类: 按底面多边形的边数,可以分为三棱锥、 四棱锥、五棱锥、……
北美驯鹿是可爱的动物,它们在广阔的 草原上生活。可是,它们经常受到狼的威 胁。于是,人们为保护驯鹿,捕杀草原上 的狼,驯鹿的家族繁盛起来。
可是,过了一些年,人们发现草原被驯 鹿糟蹋的很厉害,而且北美驯鹿有时成批 死亡。是什么原因呢?
科学家研究以后发现,北美驯鹿失去了天 敌狼之后,种群扩大了。草场不足,草原被破 坏,而且那些老弱病残的鹿不能被淘汰,加剧 了草场不足的困难。而且,没有狼的追杀,驯 鹿的运动少了,体质下降,因病而死数量增加。
麻雀啄食和糟蹋农作物,曾被 列为主要害鸟。20世纪50~60 年代,我国开展了一场轰轰烈 烈的“剿灭麻雀”的全民运动。
“成果”:
仅一天,上海就消灭麻雀194432只! 据不完全报道:从3月到11月上旬, 8个月的时间中全国捕杀麻雀19.6亿 只!
通过以上资料的分析,你认为人类能否 随意灭杀某种动物吗?为什么? 人为的破坏动物的种类和数量,会导致 整个生态系统失去平衡
二氧化碳
光 合 作 用
有机物
光 合 作 用
有机物
动物促进生态系统中的物质循环
据估计:在开花植物中,约有84% 的植物是通过昆虫来帮助它们授粉 的
动物和植物的关系
自然界中的动物和植物在长期生存与发 展的过程中,形成了相互适应、相互依存 的关系
人教版高中数学必修2《基本立体图形—多面体》PPT课件
(4)棱台 定义及分类
定义:用一个平行于棱锥底面的平面去截
棱锥,底面与截面之间那部分多面体叫做
棱台.
分类:由三棱锥、四棱锥、五棱锥……截
得的棱台分别为三棱台、四棱台、五棱
台……
记作棱台
正棱台
ABCD-A′B′C′D′
例题
将下列各类几何体之间的关系用Venn图表示出来:
多面体、长方体、棱柱、棱锥、棱台、直棱柱、四面体、 平行六面体.
基本立体图形(多面体)
高一年级 数学
立体几何是研究现实世界中物体的形状、大小与 位置关系的数学分支,在解决实际问题中有着广泛的 应用,在小学和初中我们已经认识了一些从现实物体 中抽象出来的立体图形,立体图形各式各样、千姿百 态,本节课我们将从空间几何体的整体观察入手,研 究它们的结构特征,学习它们的表示方法.
我们把棱柱中两个互相平行的面叫做棱柱的底面,它 们是全等的多边形;其余各面叫做棱柱的侧面,它们 都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱, 侧面与底面的公共顶点叫做棱柱的顶点.
记作棱柱 ABCDEFA′B′C′D′E′F′
分类:直棱柱,斜棱柱,正棱柱,平行六面体.
像金字塔这样的多面体,均由平面图形围成,其中一个面 是多边形,其余各面都是有一个公共顶点的三角形,这样 的多面体就是棱锥.
剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何 体的特征.
立体几何中常用割补法解题,将一个不规则的几何体 用一个平面分割成规则的几何体,这种方法蕴含了一 种构造思想,有利于提高同学们的创新思维品质.
如果我们用一个平行于棱锥底面的平面去截棱锥,其 中一部分还是棱锥,那么另一部分又是什么几何体呢? 我们把底面和截面之间的部分多面体就叫做棱台.
高中数学课件-简单多面体
错误,侧面都是矩形,但不一定全等,因为底面边长不一定相等。
(3)侧棱长都相等的棱锥是正棱锥.
(3)错误. 因为不知道底面是否为正多边形.
(4)三棱锥的每一个面都可以作为它
的底面 (4)正确.
.
(5)底面是正多边形,各侧面都是等腰三角形 的棱锥是正棱锥.
(5)错误.反例如图所示. 如图所示的三棱锥中有AB=AD=BD=BC=CD. 满足底面三角形BCD为等边三角形,三个 侧面△ABD,△ABC,△ACD都是等腰三角 形,但AC长度不定,三个侧面不一定全等.
思考
1.棱柱侧棱之间的关系如何?
2.棱柱的两个底面以及平行于底面的截面关系 如何?
3.过不相邻的两条侧棱的截面是什么图 形?
1.棱柱侧棱之间的关系如何?
2.棱柱的两个底面以及平行于底面的截面关系如何?
3.过不相邻的两条侧棱的截面是什么图形?
棱柱的性质
(1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边形;
棱台的分类:由三棱锥、四棱锥、五棱锥…截得的棱台, 分别叫作三棱台,四棱台,五棱台….由正棱锥截 得的棱台叫作正棱台.
问题18:请仿照棱柱、棱锥的表示对棱台进行表示
棱台的表示方法:棱台用表示上、下底面各顶点的字母来 表示,如图四棱台ABCD-A1B1C1D1 .
A1
D1
C1 B1
问题19:判断下列关于棱台的说法是否正确
练习
(2)判断下列命题是否正确: ①有两个侧面是矩形的棱柱是直棱柱; ②有一个侧面垂直于底面的棱柱是直棱柱; ③有一条侧棱垂直于底面的两条边的棱柱是直棱 柱; (3)一个棱柱是正四棱柱的条件是: ①底面是正方形,有两个侧面是矩形; ②底面是正方形,有两个侧面垂直于底面; ③底面是菱形,且有一个顶点处的三条棱两两垂直; ④每个侧面都是全等的矩形的四棱柱
(3)侧棱长都相等的棱锥是正棱锥.
(3)错误. 因为不知道底面是否为正多边形.
(4)三棱锥的每一个面都可以作为它
的底面 (4)正确.
.
(5)底面是正多边形,各侧面都是等腰三角形 的棱锥是正棱锥.
(5)错误.反例如图所示. 如图所示的三棱锥中有AB=AD=BD=BC=CD. 满足底面三角形BCD为等边三角形,三个 侧面△ABD,△ABC,△ACD都是等腰三角 形,但AC长度不定,三个侧面不一定全等.
思考
1.棱柱侧棱之间的关系如何?
2.棱柱的两个底面以及平行于底面的截面关系 如何?
3.过不相邻的两条侧棱的截面是什么图 形?
1.棱柱侧棱之间的关系如何?
2.棱柱的两个底面以及平行于底面的截面关系如何?
3.过不相邻的两条侧棱的截面是什么图形?
棱柱的性质
(1)侧棱都相等,侧面是平行四边形;
(2)两个底面与平行于底面的截面是全等的多边形;
棱台的分类:由三棱锥、四棱锥、五棱锥…截得的棱台, 分别叫作三棱台,四棱台,五棱台….由正棱锥截 得的棱台叫作正棱台.
问题18:请仿照棱柱、棱锥的表示对棱台进行表示
棱台的表示方法:棱台用表示上、下底面各顶点的字母来 表示,如图四棱台ABCD-A1B1C1D1 .
A1
D1
C1 B1
问题19:判断下列关于棱台的说法是否正确
练习
(2)判断下列命题是否正确: ①有两个侧面是矩形的棱柱是直棱柱; ②有一个侧面垂直于底面的棱柱是直棱柱; ③有一条侧棱垂直于底面的两条边的棱柱是直棱 柱; (3)一个棱柱是正四棱柱的条件是: ①底面是正方形,有两个侧面是矩形; ②底面是正方形,有两个侧面垂直于底面; ③底面是菱形,且有一个顶点处的三条棱两两垂直; ④每个侧面都是全等的矩形的四棱柱
北师版高中数学必修第二册精品课件 第6章 构成空间几何体的基本元素 简单多面体——棱柱、棱锥和棱台
⑨为棱柱;⑪ 、⑫为球;⑬、⑯为棱台;⑭、⑮为棱锥.
可以分成七类.分别是棱柱、棱锥、棱台、圆柱、圆锥、圆
台和球.
2.观察问题1中图②⑤⑦⑨⑬⑭⑮⑯中组成几何体的每个面
的特点,以及面与面之间的关系,你能归纳出它们有何共同特
点吗?
提示:组成几何体的每个面都是平面图形,并且都是平面多边
形.
3.观察问题1中图①③④⑥⑧⑩⑪⑫中组成几何体的每个面
(4)平面是空间最基本的图形.在立体几何中,平面是无限延展
的,一般地,用平行四边形表示平面.
当平面水平放置时,通常把平行四边形的锐角画成45°,横边长
画成邻边长的两倍.
平面通常用希腊字母α,β,γ等来表示,如平面α、平面β、平面γ
等;也可以用表示平行四边形顶点的字母表示,如平面ABCD,
还可以用表示平行四边形顶点的两个相对顶点的字母表示,
几何体里面寻找一些点、线、面,并将它们列举出来.
图6-1-1
提示:面可以列举如下:
平面A1A2B2B1,平面A1A2D2D1,平面C1C2D2D1,平面B1B2C2C1,
平面A1B1C1D1,平面A2B2C2D2;
线可以列举如下:
直线AA1,直线BB1,直线CC1,直线DD1,直线A2B2,直线C2D2等;
之间的部分
称为棱台.由
正棱锥截得
的棱台称为
正棱台
图形及表示
相关概念
上底面:截面,
如图,可记作: 下底面:原棱锥的底面,
棱台ABC侧面:其余各面,
A1 B1 C1
侧棱:相邻两个侧面的公共边,
高:上底面、下底面之间的距
离
斜高:正棱台各侧面都是全等
的等腰梯形,这些等腰梯形的
高
可以分成七类.分别是棱柱、棱锥、棱台、圆柱、圆锥、圆
台和球.
2.观察问题1中图②⑤⑦⑨⑬⑭⑮⑯中组成几何体的每个面
的特点,以及面与面之间的关系,你能归纳出它们有何共同特
点吗?
提示:组成几何体的每个面都是平面图形,并且都是平面多边
形.
3.观察问题1中图①③④⑥⑧⑩⑪⑫中组成几何体的每个面
(4)平面是空间最基本的图形.在立体几何中,平面是无限延展
的,一般地,用平行四边形表示平面.
当平面水平放置时,通常把平行四边形的锐角画成45°,横边长
画成邻边长的两倍.
平面通常用希腊字母α,β,γ等来表示,如平面α、平面β、平面γ
等;也可以用表示平行四边形顶点的字母表示,如平面ABCD,
还可以用表示平行四边形顶点的两个相对顶点的字母表示,
几何体里面寻找一些点、线、面,并将它们列举出来.
图6-1-1
提示:面可以列举如下:
平面A1A2B2B1,平面A1A2D2D1,平面C1C2D2D1,平面B1B2C2C1,
平面A1B1C1D1,平面A2B2C2D2;
线可以列举如下:
直线AA1,直线BB1,直线CC1,直线DD1,直线A2B2,直线C2D2等;
之间的部分
称为棱台.由
正棱锥截得
的棱台称为
正棱台
图形及表示
相关概念
上底面:截面,
如图,可记作: 下底面:原棱锥的底面,
棱台ABC侧面:其余各面,
A1 B1 C1
侧棱:相邻两个侧面的公共边,
高:上底面、下底面之间的距
离
斜高:正棱台各侧面都是全等
的等腰梯形,这些等腰梯形的
高
中职数学基础模块7.1.1 简单几何体-多面体 课件
多面体的分类 棱柱 一般地,我们把有两个面互相平行,其余 各面都是四边形,并且相邻两个四边形的公共 边都互相平行,这样的多面体叫作棱柱.
知识导入 知识探究 例题讲解 课堂练习 知识总结
思考 以下哪些多面体是棱柱?
知识导入 知识探究 例题讲解 课堂练习 知识总结
棱柱的分类 按底面的形状分类 底面是三角形、四边形、 五边形……的棱柱
第七单元 空间几何体
7.1.1 多面体
知识导入 知识探究 例题讲解 课堂练习 知识总结
引入
柏拉图多面体 柏拉图多面体并不是由柏拉图所
发明,但是却是由柏拉图及其追随者 对它们所作的研究而得名,由于它们 具有高度的对称性及次序感,因而通 常被称为柏拉图多面体,也称为正多 面体。
你知道什么是多面体吗?
知识导入 知识探究 例题讲解 课堂练习 知识总结
分别叫作三棱柱、四棱柱、五棱柱……
知识导入 知识探究 例题讲解 课堂练习 知识总结
棱柱的命名
通常分别顺次写出两个底面各个顶点的字
母,中间用一条短横线隔开
例,该四棱柱可以记作棱柱ABCD-A‘B’C‘D’
例,该六棱柱可以记作棱柱ABCDEF-A‘B’C‘D’E‘F’
知识导入 知识探究 例题讲解 课堂练习 知识总结
(1)正棱锥的底面是正多边形; (2)正棱锥的侧面都是全等的等腰三角形; (3)正棱锥的侧棱长都相等,斜高长也相等;
知识导入 知识探究 例题讲解 课堂练习 知识总结
例1 对于四棱锥P-ABCD,判断下列说法是否正确. (1)如果底面ABCD是正方形,那么它是正四棱锥; (2)如果过顶点P向底面作垂线,垂足是底面对角线的交点O,那么 这个棱锥是正四棱锥. 解:(1)不正确.
(2)不正确.
知识导入 知识探究 例题讲解 课堂练习 知识总结
思考 以下哪些多面体是棱柱?
知识导入 知识探究 例题讲解 课堂练习 知识总结
棱柱的分类 按底面的形状分类 底面是三角形、四边形、 五边形……的棱柱
第七单元 空间几何体
7.1.1 多面体
知识导入 知识探究 例题讲解 课堂练习 知识总结
引入
柏拉图多面体 柏拉图多面体并不是由柏拉图所
发明,但是却是由柏拉图及其追随者 对它们所作的研究而得名,由于它们 具有高度的对称性及次序感,因而通 常被称为柏拉图多面体,也称为正多 面体。
你知道什么是多面体吗?
知识导入 知识探究 例题讲解 课堂练习 知识总结
分别叫作三棱柱、四棱柱、五棱柱……
知识导入 知识探究 例题讲解 课堂练习 知识总结
棱柱的命名
通常分别顺次写出两个底面各个顶点的字
母,中间用一条短横线隔开
例,该四棱柱可以记作棱柱ABCD-A‘B’C‘D’
例,该六棱柱可以记作棱柱ABCDEF-A‘B’C‘D’E‘F’
知识导入 知识探究 例题讲解 课堂练习 知识总结
(1)正棱锥的底面是正多边形; (2)正棱锥的侧面都是全等的等腰三角形; (3)正棱锥的侧棱长都相等,斜高长也相等;
知识导入 知识探究 例题讲解 课堂练习 知识总结
例1 对于四棱锥P-ABCD,判断下列说法是否正确. (1)如果底面ABCD是正方形,那么它是正四棱锥; (2)如果过顶点P向底面作垂线,垂足是底面对角线的交点O,那么 这个棱锥是正四棱锥. 解:(1)不正确.
(2)不正确.
简单多面体
(1)
(2)
思考:棱柱、棱锥和棱台都是多面 体,它们在结构上有那些相同点和 不同点?三者的关系如何?当底面 发生变化时,它们能否互相转化?
棱柱棱台棱锥变换
空间几何体:
对于空间的物体,如果只考虑它的的形状、大小和 位置,而不考虑物体的其他性质,从中抽象出来的空间 图形叫做空间几何体
柱、锥、台、球的结构特征
D1 A1
C1
B1
A1
C1 A1 B1 B1
E1 D1
C1
D C
A
BA
C A
B B
E
D C
1. 侧棱不垂直于底的棱柱叫做斜棱柱。 2.侧棱垂直于底的棱柱叫做直棱柱。 3. 底面是正多边形的直棱柱叫做正棱柱。
棱柱的底面可以是三角形、四边形、五边 形、……
我们把这样的棱柱分别叫做三棱柱、四棱柱、 五棱柱、……
有一个面是多
边形,其余各面都
是有一个公共顶点
的三角形。
侧棱
A
顶点 S
侧面
D
C
底面
B
棱柱 棱锥 棱台
圆柱 圆锥 圆台
球
结构特征
用一个平行于棱
D’
锥底面的平面去截棱
D
锥,底面与截面之间的 A’
部分是棱台.
A
C’
B’
C
B
棱柱 棱锥 棱台 圆柱
圆锥 圆台
球
结构特征
A’
以矩形的一边所 母 在直线为旋转轴,其 线
不在同一个面上的两个顶点的连线叫做棱柱的 对角线。
与两个底面都垂直的直线夹在两个底面 间的线段长叫作棱柱的高。
E1 A1
D1 C1
B1
A
E DC
§1.1.2简单多面体
A
x
B
空间几何体的斜二测画法
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
Z
C
A
y
M
D
P
O
BQ C N
A
x
B
空间几何体的斜二测画法
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
有一个面是多边形,其余各面是有 一个公共顶点的三角形, 由这些面所围 成的几何体叫做棱锥。
这个多边形面叫做棱锥的底面。 有公共顶点的各个三角形叫做棱 锥的侧面。 各侧面的公共顶点叫做棱锥 的顶点。
相邻侧面的公共边叫做棱锥 的侧棱。
S A
B
D C
2、棱锥的分类: 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
A:大小:长对正(主视图与俯视图),高平 齐(主视图与左视图),宽相等(左视图与俯 视图).
B:虚实:在画图时,看得见部分的轮廓通常画 成实线,看不见部分的轮廓线通常画成虚线.
空间几何体的斜二测画法
空间几何体的直观图是一种平行投影下的图像,一般我们采用斜二测画法来作 空间几何体的直观图。下面就让我们通过一个具体的例子来看下什么是斜二测画法 以及它的作图要点和步骤。
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如四棱锥S-ABCD。
问题:有一个面是多边形,其余
各面都是三角形的几何体是棱锥吗?
F
如图:
E
D
C
A
B
注意棱锥的两个本质特征
正棱锥
S
如果棱锥的底面是正多 边形,且顶点在底面上 的射影是底面的中心, 则这个棱锥叫做正棱锥。 斜高:SM
第1课时简单多面体
(3)(4).
答案:(3)(4)
探究点二
棱锥和棱台的结构特征
[例2] 下列关于棱锥、棱台的说法:
(1)棱台的侧面一定不会是平行四边形;
(2)棱锥的侧面只能是三角形;
(3)由四个面围成的封闭图形只能是三棱锥;
(4)棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是
.
解析:(1)正确,棱台的侧面一定是梯形,而不是平行四边形;
所示,侧棱延长线不能相交于一点,故②③错.故选A.
[备用例2] 下列说法中正确的是(
)
(A)棱锥的侧面不一定是三角形
(B)棱锥的各侧棱长一定相等
(C)棱台的各侧棱的延长线交于一点
(D)用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台
解析:根据定义,棱锥的侧面一定是三角形,故A不正确.在斜棱锥中侧棱
(1)所有的面都是平行四边形;
(2)每一个面都不会是三角形;
(3)两底面平行,并且各侧棱也平行;
(4)被平面截成的两部分可以都是棱柱.
其中正确的序号是
.
解析:(1)错误,棱柱的底面不一定是平行四边形;
(2)错误,棱柱的底面可以是三角形;
(3)正确,由棱柱的定义易知,两底面平行,并且各侧棱也平行;
(4)正确,棱柱可以被平行于底面的平面截成两个棱柱.所以说法正确的序号是
形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.
(2)(2020·广东韶关高一期末)如图代表未折叠正方体的展开图,将其折叠
起来,变成正方体后的图形是(
解析:(2)将平面图形
)
折叠起来,变成正方体后的图形中,相
邻的平面中三条线段是平行线,排除A,C;相邻平面只有两个是空白面,排
答案:(3)(4)
探究点二
棱锥和棱台的结构特征
[例2] 下列关于棱锥、棱台的说法:
(1)棱台的侧面一定不会是平行四边形;
(2)棱锥的侧面只能是三角形;
(3)由四个面围成的封闭图形只能是三棱锥;
(4)棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是
.
解析:(1)正确,棱台的侧面一定是梯形,而不是平行四边形;
所示,侧棱延长线不能相交于一点,故②③错.故选A.
[备用例2] 下列说法中正确的是(
)
(A)棱锥的侧面不一定是三角形
(B)棱锥的各侧棱长一定相等
(C)棱台的各侧棱的延长线交于一点
(D)用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台
解析:根据定义,棱锥的侧面一定是三角形,故A不正确.在斜棱锥中侧棱
(1)所有的面都是平行四边形;
(2)每一个面都不会是三角形;
(3)两底面平行,并且各侧棱也平行;
(4)被平面截成的两部分可以都是棱柱.
其中正确的序号是
.
解析:(1)错误,棱柱的底面不一定是平行四边形;
(2)错误,棱柱的底面可以是三角形;
(3)正确,由棱柱的定义易知,两底面平行,并且各侧棱也平行;
(4)正确,棱柱可以被平行于底面的平面截成两个棱柱.所以说法正确的序号是
形;D折叠后有一个面重合,另外还少一个面,故不能折成正方体.故选A.
(2)(2020·广东韶关高一期末)如图代表未折叠正方体的展开图,将其折叠
起来,变成正方体后的图形是(
解析:(2)将平面图形
)
折叠起来,变成正方体后的图形中,相
邻的平面中三条线段是平行线,排除A,C;相邻平面只有两个是空白面,排
《简单多面体》课件
绘画构图
在绘画构图中,简单多面 体可以作为视觉元素,增 强画面的层次感和立体感 。
装饰设计
简单多面体的几何美感在 室内装饰设计中得到广泛 应用,如墙面、地面、家 具等的设计。
科学实验中的应用
物理实验模型
简单多面体的几何特性使其成为 物理学中某些实验模型的理想选 择,如力学、光学、电磁学等实
验。
材料科学
详细描述
每种类型的多面体都有其独特的几何特征和性质。例如,四面体由四个三角形组成,每 个三角形都与其他三个三角形相连接;八面体则由八个四边形组成,每个四边形都与其 他六个四边形相连接。此外,还有十二面体、二十面体等其他类型的多面体,它们的顶
点、面和边的数量各不相同,具有不同的几何属性和应用场景。
02
建筑结构优化
在建筑结构设计中,简单 多面体的结构稳定性好, 能够提高建筑的抗震性能 和承载能力。
建筑空间利用
简单多面体的空间构成特 点有助于实现建筑空间的 合理利用,提高建筑的使 用效率。
艺术创作中的应用
雕塑造型
简单多面体在雕塑创作中 常被用作基本形体,通过 组合、变形等手法创造出 丰富的艺术形象。
在材料科学实验中,简单多面体可 以作为材料结构的模型,有助于研 究材料的性能和结构之间的关系。
数学研究
简单多面体在数学领域常被用作几 何学、拓扑学等学科的研究对象, 有助于深入探讨数学的基本原理和 规律。
05
简单多面体的制作方法
材料选择
纸张
剪刀、胶水等工具
选择厚度适中、质地良好的纸张,以 保证多面体的结实度和美观度。
详细描述
每个面都是一个正方形 ,所有的面都具有相同 的面积,所有的顶点都
是等角的。
特性
多面体的画法及正多面体-课件(PPT演示)21页PPT
多面体的画法及正多面体-课件(PPT 演示)
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿Fra bibliotek谢谢!
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿Fra bibliotek谢谢!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱台的性质:棱台的上下底面平行,侧棱的延长线交于一点
20
2、棱台的分类:由三棱锥、四棱锥、五棱 锥…截得的棱台,分别叫做三棱台,四棱台, 五棱台…
3、棱台的表示法:棱台用表示上、下底面各
顶点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1 D1
C B1 1
21
❖ 探究1:多面体与旋转体的主要区别是什么? ❖ 提示:多面体是由多个平面多边形围成的
个面的公共边叫作多面体的棱,棱与棱的公共点叫作多 面体的顶点; ❖ 连结不在同一个面内的两个顶点的线段叫作多面体的对 角线。 ❖ 多面体按照它的面数的多少,可以分为:四面体、五面 体、六面体、、、、、
5
棱
面
面 棱 顶点
面 6
一、 观察下列几何体并思考: 它们具有哪些性质?
7
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
二、观察下列几何体,有什么相同点?
14
1、棱锥的概念
有一个面是多边形,其余各面是有一个公 共顶点的三角形, 由这些面所围成的几何体 叫做棱锥。
这个多边形面叫做棱锥的底面。
有公共顶点的各个三角形叫做棱锥 的侧面。
各侧面的公共顶点叫做棱锥的顶点。
相邻侧面的公共边叫做棱锥的侧棱。
15
S
棱锥的顶点
棱锥的侧棱
两个互相平行的平面叫做棱柱的底面,其 余各面叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。
侧面与底的公共顶点叫做棱柱的顶点。
8
底面
侧面 侧棱 顶点
底面
9
2. 观察下列几何体并思考:棱柱(1),(3) 与棱柱(2)的不同之处?
(1)
(2)
(3) 10
❖ 两个特殊的棱柱:直棱柱与正棱柱 把侧棱垂直于底面的棱柱叫作直棱柱; 把底面是正多边形的直棱柱叫作正棱柱;
❖ 答案:B
33
❖ 2.五棱锥是由多少个面围成的( )
❖ A.5个
B.7个
❖ C.6个
D.11个
❖ 解析:五棱锥由五个侧面和一个底面,即六 个面围成.
18
思考题:用一个平行于棱锥底面的平面 去截棱锥,那么所得截面与棱锥底面 之间的几何体会是怎样的一个几何体 呢?
A1
D1 B1C1
A1 D1
C B1
1
19
三、棱台的结构特征
1、棱台的概念:用一个平行于棱锥底面
的平面去截棱锥,底面和截面之间的部分
叫做棱台。
A1 D1
C B1 1
上底面 侧面
侧棱 下底面 顶点
30
❖ 一个棱锥至少有四个面,所以三棱锥也叫四 面体.
31
❖ 1.下列说法正确的是( ) ❖ A.三棱柱有三个侧面、三条侧棱和三❖ C.六棱锥有七个顶点 ❖ D.棱柱的各条侧棱可以不相等
32
❖ 解析:对于A,三棱柱有六个顶点;对于C, 各侧面的公共顶点叫棱锥的顶点,只有1个; 对于D,棱柱的各侧棱相等.
3
❖ 水立方的外观是什么形状?它有什么结构特 征呢?
❖ 水立方的外观是一个长方体,它的结构特征 是:它由六个矩形围成,而且相对的面是互 相平行的,这就符合本节要学习的棱柱的结 构特征.
4
多面体的定义:把由若干个平面多边形围成的空间图
形叫做多面体。 ❖ 自然界有很多的物体都呈多面体的形状 ❖ 其中:把围成多面体的各个多边形叫作多面体的面;两
24
❖ 典例 如图所示,下列几何体中,哪些是 棱柱?
25
❖ 【错解】 ①③④⑥ ❖ 【错因分析】 没有准确把握棱柱的结构特
征.
26
❖ 【正解】 根据棱柱的结构特征:①有 两个面互相平等,②各侧棱都平行,各 侧面都是平行四边形,知①③正确.
27
❖ 易错补练 棱柱的侧棱最少有________条, 棱柱的侧棱长之间的大小关系是________.
几何体,旋转体是由平面图形绕轴旋转而 形成的几何体.
22
❖ 探究2:有两个面互相平行,其余各面都是平 行四边形的几何体一定是棱柱吗?
提示:不一定是棱柱.
23
❖ 探究3:棱锥最少有几个面和几条棱? ❖ 提示:面数最少的棱锥是三棱锥,它具有四
个面,六条棱. ❖ 探究4:棱台的各个侧面是什么图形? ❖ 提示:梯形且两侧棱为梯形的两腰.
29
❖ 2.棱锥是多面体中重要的一种,它有两个本 质特征:(1)有一个面是多边形;(2)其余各面 是有一个公共顶点的三角形.二者缺一不 可.因此棱锥有一个面是多边形,其余各面 都是三角形.但是要注意“有一个面是多边 形,其余各面都是三角形”的几何体未必是 棱锥,如图,此多面体有一面是四边形,其 余各面都是三角形,但它不是棱锥.
D
棱锥的侧面
E A
C 棱锥的底面
B
16
❖ 一个特殊的棱锥:正棱锥 把底面为正多形,侧面是全等的三角形的棱锥叫作 正棱锥
❖ 正棱锥的性质:正棱锥的侧棱长相等;侧面是全等 的等腰三角形;
17
S
A
BC
D
2、棱锥的分类:按底面多边形的边数,可 以分为三棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面的 字母表示。如四棱锥S-ABCD。
❖ 答案:三 相等
28
❖ 1.棱柱是多面体中最简单的一种,对 棱柱的概念应正确理解,准确把握,它 有两个本质特征:(1)有两个面(底面)互 相平行;(2)其余各面(侧面)每相邻两个 面的公共边(侧棱)都互相平行.因此, 棱柱有两个面互相平行,其余各面都是
平行四边形.但是要注意“有两个面互
相平行,其余各面都是平行四边形的几 何体”不一定是棱柱.
❖ 直棱柱的性质:直棱柱的侧面都是矩形; ❖ 正棱柱的性质:正棱柱的侧面是全等的矩
形;
11
2、棱柱的分类:棱柱的底面可以是三角形、四 边形、五边形、 …… 我们把棱柱按照底面多边 形边数的多少,可分三棱柱、四棱柱、五棱 柱、……
三棱柱
四棱柱
五棱柱 12
3、棱柱的表示法(下图)
棱柱用表示两底面多边形的顶点的字母表 示棱柱,如:棱柱ABCDE-A1B1C1D1E1 。 13
§1. 简单几何体
亳州一中高一数学备课时
1
§1.2:简单多面体
2
§1.2:简单多面体
国家游泳中心又被称为“水立方”(Water Cube),位 于北京奥林匹克公园内,是北京为2008年夏季奥运会修建 的主游泳馆,也是2008年北京奥运会标志性建筑物之 一.其与国家体育场(俗称“鸟巢”)分列于北京城市中轴 线北端的两侧,共同形成相对完整的北京历史文化名城形 象.