机床电气控制线路基本环节概述
常用机床电气控制线路(1)
常用机床电气控制线路(1)随着机械设备技术不断的发展和更新,现今越来越多的机床采用了电气控制系统。
电气控制线路则是机床电气控制系统的核心部分。
下面,我们将讲解一下常用机床电气控制线路相关的知识。
一、机床电气控制系统简介机床电气控制系统一般包含三个部分:输入部分、处理部分和输出部分。
输入部分通常由开关、按钮、传感器等组成,主要用于接收人的指令和反馈机床状态。
处理部分则是电气控制系统的核心部分,主要由PLC等控制器、计算机等控制设备组成。
输出部分则通过输出开关、电磁阀等设备向机床传达指令。
二、常用电气控制线路的分类1. 单相线路和三相线路单相线路适用于功率较小的机床,如电火花放电机等,其控制线路一般只需通过单相电源进行连接。
而三相线路适用于功率较大的机床,如数控车床、剪板机等,其控制线路则需要接入三相电源。
2. 直流电气控制系统和交流电气控制系统直流电气控制系统应用比较广泛,其特点是控制精度高、启动减速平稳。
而交流电气控制系统则具有结构简单易于维护以及成本低的优势。
3. 按钮控制线路和脚踏控制线路按钮控制线路适用于需要较高操作频次的机床,其控制线路中需设置照明开关、启动按钮、停止按钮等。
而脚踏控制线路则适合于对安全性要求较高的机床,如剪板机等。
三、机床电气控制线路的注意事项1. 连线前一定要先查看线路图,并判断各线的方向和位置是否正确。
2. 接线前一定要进行电源和备电源的切断。
3. 在操作中一定要遵循安全规定,避免触电等事故的发生。
4. 定时进行电路检测和维修,以确保机床电气控制线路的长时间稳定运行。
总结起来,机床电气控制线路虽然运行稳定可靠,但是也需要我们在平时的工作中予以充分的关注和维护。
所以,在使用机床时,一定要按照规定的方法进行操作,以确保操作的安全性和机床的稳定性。
电机控制技术 知识点:CA6140车床电气控制线路与原理
3 CA6140车床电气控制线路的原理分析
(3)控制电路分析 通常对控制电路按照由上往下或由左往右的顺序依次阅读,可以
按主电路的构成情况,把控制电路分解成与主电路相对应的几个基本环 节,一个环节一个环节地分析,然后把各环节串起来。
1 机床电气控制线路原理图的基本知识
(5)原理图中,无论是主电路还是辅助电路,各电器元件一般按动作顺序 从上到下,从左到右依次排列,可水平布置或者垂直布置。 (6)原理图中,有直接联系的交叉导线连接点,要用黑圆点表示。无直接 联系的交叉导线连接点不画黑圆点。
1 机床电气控制线路原理图的基本知识
(2)应用电气原理图应注意的事项 ①图面区域的划分
2 CA6140车床电气控制线路的原理图
电源 保护
电源 主轴 开关 电动机
短路 冷却泵 刀架快速 控 制 电 源 保护 电动机 移动电动机 电 压 及 保 护
断电 主轴电动 刀架快 冷却泵 保护 机控制 速移动 控制
信号灯
照明灯
FU L1 U10 L2 V10 L3 W10
PE
1
QF U11 Vห้องสมุดไป่ตู้1 W11
2 CA6140车床电气控制线路的原理图
CA6140型普通车床电气控制系统主要由 电源电路 、 主电路 、 控制电路 和 辅助电路 四部分组成。
其中:电源电路由电源保护器和电源开关组成,主电路由电动机、 电磁铁及其保护电器等组成,控制电路由继电器、接触器和电磁铁的线 圈、灯泡等元件组成,辅助电路由变压器、整流电源、照明灯等低压电 路组成。
符号位置的索引用图号、页次和图区编号的组合 索引法,索引代号的组成如下
机床电气控制线路的设计
三、热继电器的选用
– 作用:用于电动机的过载保护 – 选用依据:根据电动机的额定电流来确定其
型号与规格 IRT=(0.95~1.05)Ied
– 热继电器的整定电流值是指热元件通过的电
流超过此值的20%时,热继电器应当在 20min内动作。
– 选型:
一般情况下可选用两相结构的热继电器。 在电网严重不平衡条件下工作的电机可选用三相结构 的热继电器。 三角形接线电动机可选用带断相保护装置的热继电器。 – 下列情况 IRT=2 Ied以便保护 1.电动机负载惯性转矩非常大,起动时间长 2.电动机所带动的设备,不允许任意停电 3.电动机拖动的为冲击性负载,如冲床、剪床等 – 常用系列: JR1 JR2 JR0 JR16 JR16B:由JR0改进而来,双金属片式,有温度补偿 和断相运转保护装置。适于长期工作或间歇工作的交 流电动机。
第四章 机床电气控制线路的设计 及电气元件的选择
重点:控制线路的设计过程,元器件参数的确定。 难点:如何正确选择控制环节来满足控制要求。
继电器—接触器控制,也称常规控制或传统控制 机床组成: – 机械 – 电气
§2 机床电气设计的一般内容
一、电气设计的基本原则:
– 1.最大限度满足机床和工艺对电气控制的要求。 – 2.在满足控制要求的前提下,设计方案力求简 – 3.把电气系统的安全性和可靠性放在首位,确
数字程序控制——数控机床 – 特点:生产率高、精度高,可加工复杂零件, 发展前景广阔。
–5.明确有关操作方面的要求:
操纵台的设计、测量显示、故障自诊断、 保护措施等的要求。
– 6.设计时应考虑用户供电电网情况
电网容量、电流种类、电压、频率等。
电气控制线路的基本环节
Rd为绕组直流电阻,R为铁损等效电阻,L为等效电感,R、L值与转子 电流频率有关。
变压器降压启动;
按下SB2
KT延时断开的常闭触头断开 KM1线圈断电
切除自耦变压器;
KT线圈得电延时
KT延时闭合常开触头闭合 KM2线圈得电 KM2
主触头闭合 M加全电压(diànyā)运行。
2.停止
按下SB1 KT和KM2线圈断电释放 M断电停止。
特点:在获取同样启动转矩情况下,从电网获取电流相对电阻降压启 动要小得多,对电网冲击小,功率损耗小。但自耦变压器价格高, 主要用于容量较大、正常运行为星形接法的电动机启动.
1 电气控制线路的绘制 表达电气控制系统的结构、原理,便于进行电器元件的安装、调整、使用和维修。 使用统一规定的电气图形符号和文字符号。 1.1 常用(chánɡ yònɡ)电气图形、文字符号 规定从1990年1月1日起,电气控制线路中的图形和文字符号必须采用新标准。 GB4728—1984《电气图用图形符号》 GB6988—1987《电气制图》 GB7159—1987《电气技术中的文字符号制定通则》
电气控制线路(xiànlù)的基本环节
电气控制线路:将各种有触点的继电器、接触器、按钮、行程开关等电器元件, 按一定方式连接起来组成的控制线路。
作用:实现对电力拖动系统的启动、反向、制动和调速控制,实现对拖动系统的 保护,满足生产工艺要求,实现生产加工自动化。
本章内容:主要介绍组成电气控制线路的基本环节,电气控制线路的分析阅读方 法。
第三页,共55页。
电气控制线路的基本(jīběn)环节
竖排时,上面用奇数,下面用偶数。直流控制电路中,电源 正极按奇数标号(biāohào),负极按偶数标号(biāohào)。
机床电气控制线路的分析教材
机床电气控制线路的分析教材1. 引言机床电气控制线路是机床控制系统的核心部分,它负责实现机床的各种运动和功能。
了解和掌握机床电气控制线路的分析方法,对于提高机床的加工精度、提高生产效率具有重要意义。
本教材将介绍机床电气控制线路的基本概念和分析方法,帮助读者深入了解机床电气控制线路并掌握其分析技巧。
2. 机床电气控制线路的基本概念在开始分析机床电气控制线路之前,我们首先需要了解机床电气控制线路的一些基本概念。
例如,机床电气控制线路由电源、控制器、执行器和传感器等组成。
电源提供电能,控制器负责控制机床的运动和功能,执行器将控制信号转化为机床的实际运动,传感器用于感知机床的状态和位置信息等。
此外,我们还需要了解电路图的基本符号和表示方法。
3. 机床电气控制线路的类型机床电气控制线路可以分为直接控制线路和间接控制线路。
直接控制线路是指控制器直接与执行器相连,控制信号直接作用于执行器;间接控制线路是指控制器通过继电器或触发器等中间器件间接控制执行器。
本章将详细介绍和分析这两种类型的机床电气控制线路,并比较它们的优缺点。
3.1 直接控制线路直接控制线路的特点是简单、可靠性高、响应速度快。
本节将通过一些实际例子介绍和分析直接控制线路的电路图和工作原理。
并详细介绍直接控制线路的组成部件、工作原理和常见故障分析方法。
3.2 间接控制线路间接控制线路的特点是使用中间器件进行信号的转化和控制,可以实现复杂的控制功能。
本节将通过一些实际例子介绍和分析间接控制线路的电路图和工作原理。
并详细介绍间接控制线路中常见的中间器件(如继电器、触发器等)的工作原理、应用场景和常见故障分析方法。
4. 机床电气控制线路的分析方法为了准确分析机床电气控制线路的工作原理和故障原因,我们需要掌握一些基本的分析方法。
本章将介绍机床电气控制线路的分析方法,包括电压、电流的测量方法,电路的串并联、电路的等效变换方法等。
同时,我们还将介绍如何使用示波器、万用表等常用仪器进行线路的测试和分析。
车床电气线路分析
车床电气线路分析车床是一种常用的机械设备,用于加工金属和其他材料。
在车床的使用过程中,电气线路是至关重要的系统之一,对车床的正常运行起着重要的作用。
下面将对车床电气线路进行详细的分析。
车床的电气线路由电源系统、控制系统和电机系统组成。
电源系统提供车床所需的电能,包括主电源和控制电源。
主电源是车床的主要电源,通常是交流电。
控制电源是用来供给车床的控制系统和电机系统的低压直流电源。
控制系统是车床的核心部分,通过控制电路来实现车床的各种工作方式和运动控制。
控制系统主要包括主控制电路、操作控制电路和保护电路。
主控制电路是车床的主要控制部分,它通过对电机系统的控制来实现车床的各种工作方式。
主控制电路通常由控制开关、控制按钮和接触器组成。
控制开关用于选择车床的工作方式,如正转、反转和停止等。
控制按钮用于手动控制车床的运动,如快速进给和手动进给。
接触器是控制开关和电机之间的连接,通过控制开关的操作来控制电机的运行。
操作控制电路是通过控制按钮来实现对车床运动的控制。
操作控制电路通常包括按钮开关、继电器和接触器等组件。
按钮开关用于选择车床的运动方式,如手动、自动和急停等。
继电器是控制按钮和电机之间的连接,通过按钮的操作来控制电机的运行。
接触器用于控制车床的转向和速度。
保护电路是用来保护车床和操作人员的安全的电路系统。
保护电路主要包括短路保护、过载保护和接地保护等。
短路保护用于检测车床电气线路中的短路情况,并采取相应的保护措施,如断开电路或切断电源。
过载保护用于检测车床电气线路中的过载情况,并采取相应的保护措施,如断开电路或切断电源。
接地保护用于检测车床电气线路中的接地故障,并采取相应的保护措施,如切断电源。
电机系统是车床的动力系统,通过电动机提供驱动力。
电机系统通常由主电机和辅助电机组成。
主电机是车床的主要驱动力,通过转动主轴来实现工件的加工。
辅助电机用于控制车床的各种辅助装置,如进给机构、冷却系统和刀具升降装置等。
CA6140车床电气控制(4)教程
反接制动控制线路
32
例1: 如果图10-17的控制电路接成如图所示的 那样, 会有什么后果?
SB1 SB1 KM KM SB1
SB1
SB2 KM
SB2 KM
SB2 KM KM
SB2 KM
KM
(a)
(b)
(c)
(d)
33
解:图(a)电路中, KM的辅助常开触头不仅锁住了SB2, 而 且也锁住了SB1。 因此, 在按下SB2使接触器KM线圈通电, 其常开触头KM实现自锁作用后, 再按下SB1时, 线圈KM不会 断电, 即起动电动机后就无法用按钮SB1使它停转, 停止按钮 SB1失去了作用。 图(c)电路中, 接触器KM的常开触头与线圈并联, 按下SB2 时接触器线圈通电, 其常开触头闭合, 造成短路, 会烧断熔 断器中的熔体。 图(d)电路中, 用一个按钮 SB1的常开和常闭两个触头替代 原电路中的起动和停止两个按钮。 当按下按钮SB1时, 由于按 钮的结构特点通常是常闭触头先断开, 常开触头后闭合, 因 此无法使接触器线圈通电, 电动机也就无法起动。
2.逻辑设计法
利用逻辑代数,从生产工艺出发,考虑控制电路中逻辑 变量关系,在状态波形图的基础上,按照一定的设计方法 和步骤,设计出符合要求的控制电路。 该方法设计出的电路较为合理、精练可靠,特别在复杂 电路设计时,可以显示出逻辑设计法的设计优点。
9
二、电气控制线路的绘制与分析
注意:理论部分同学们自学,实际绘制与分析,边设计
原因:三相异步电动机从切除电源到完全停止运转。由
于惯性的关系,总要经过一段时间,这往往不能适应某些 生产机械工艺的要求。如万能铣床、卧式镗床、电梯等, 为提高生产效率及准确停位,要求电动机能迅速停车,对 电动机进行制动控制。
数控机床电气控制基础
按操作方式分有: 电磁接触器、气动接触器和电磁气动接触器;
按灭弧介质分有: 空气电磁式接触器、油浸式接触器和真空接触器等; 按主触头控制的电流性质分有:
交流接触器、直流接触器 ; 按电磁机构的励磁方式分有:
直流励磁操作与交流励磁操作两种 。
1、接触器的结构及工作原理
接触器主要由
电磁系统
触点系统 组成。
常用直流接触器有:CZ18、CZ21、CZ22和 CZ0系列等。
CZ18系列接触器型号含义:
5、接触器的选用
(1)接触器极数和电流种类的确定 (2)根据接触器所控制负载的工作任务来选择相应使用类别的接触器。 (3)根据负载功率和操作情况来确定接触器主触头的电流等级。 (4)根据接触器主触头接通与分断主电路电压等级来决定接触器的额定电压。 (5)接触器吸引线圈的额定电压应由所接控制电路电压确定。 (6)接触器触头数和种类应满足主电路和控制电路的要求。
(3)时间继电器的电气符号
3.1.1低压断路器
低压断路器又称自动开关或空气开关。它相当于刀 开关、熔断器、热继电器和欠电压继电器的组合,是一 种既有手动开关作用又能自动进行欠压、失压、过载和 短路保护的电器。
框架式(万能式) 按结构分为
塑料外壳式(装置式)
1.低压断路器的结构和工作原理
由触点系统、灭弧装置、各种脱扣器、脱扣机构和操作机 构等部分组成。
A.额定参数
B.动作参数
C.整定植
D.返回参数
E.动作时间
3. 电磁式电压继电器与电流继电器
(1)电磁式电压继电器 电压继电器是反映电
压变化的控制电器。线圈与 负载并联,以反映负载电压, 其线圈匝数多而导线细。 分:过电压、欠电压、零电压继电器。
CA车床电气控制线路教案
CA车床电气控制线路教案CA车床是一种常见的数控机床,其电气控制线路是整个机床的核心部分。
掌握CA车床电气控制线路是操作和维护机床的基础,下面我们将介绍一份电气控制线路的教案。
一、电气控制线路的基本原理1.电气控制线路是CA车床的核心部分,负责控制机床的运行和功能。
2.电气控制线路主要包括电源线路、控制线路、接地线路等。
3.电气控制线路的设计需要考虑机床的实际工作需求和安全性。
二、电气控制线路的组成1.主电源线路:包括主电源开关、主控电源输入端子、主控电源接地端子等。
2.控制线路:包括运动控制线路、信号控制线路、驱动控制线路等。
3.机床接地线路:用于保护机床和操作人员的安全。
4.外部控制线路:用于外部设备和机床的连接。
三、电气控制线路的基本操作1.启动电源:打开主电源开关,检查主控电源输入端子和接地端子是否连接正常。
2.运动控制:通过控制面板或外部设备,控制机床的转速、进给速度等参数。
3.故障排查:当机床出现故障时,需要检查电气控制线路是否正常。
四、电气控制线路的维护和保养1.定期清洁:定期清洁电气控制线路,防止灰尘和杂物堵塞线路。
2.定期检查:定期检查电气控制线路,确保连接端子牢固,无松动。
3.定期更换:定期更换老化和损坏的电气元件,保证机床的正常运行。
五、电气控制线路的安全操作1.操作人员必须经过培训,掌握机床的操作规程和安全注意事项。
2.操作时要佩戴防护手套、护目镜等个人防护用品,确保安全操作。
3.禁止在机床运行时触碰电路元件,避免触电危险。
六、电气控制线路的故障处理1.机床无法启动:检查主电源线路、控制线路是否正常连接,排除线路故障。
2.机床运行异常:检查电气元件是否老化或损坏,及时更换。
3.其他故障:根据实际情况进行故障排查,确保机床运行正常。
机床电气控制线路的分析解读
2. 主轴电动机的反接制动控制
E
u31 v32 w33 SB4 KM3 KR1 KR 1 KM4
SB1
K KM3
KM4
BV2 BV1
KM3
KR1
K K K
KM
KM
R
SB2 KM4
M M11 3 3~ ~ BV
K K KM
KM3 KM4
K
图2-9 C650卧式车床反接制动控制线路
4.刀架的快速移动和冷却泵控制
§2.2 Z3040型摇臂钻床的电气控制线路 2.摇臂钻床的电力拖动及控制要求
1)由于摇臂钻床的运动部件较多,为简化传动装置,需使用 多台电动机拖动,主轴电动机承担主钻削及进给任务,摇臂 升降、夹紧放松和冷却泵各用一台电动机拖动。 2)主轴的旋转运动、纵向进给运动及其变速机构均在主轴箱 内,由一台主电动机拖动。 3)为了适应多种加工方式的要求,主轴的旋转与进给运动均 有较大的调速范围,一般情况下由机械变速机构实现,有时 为简化变速箱的结构采用多速笼型异步电动机拖动。 4)加工螺纹时,要求主轴能正、反向旋转,用机械方法来实 现,因此,拖动主轴的电动机只需单向旋转。 5)摇臂的升降由升降电动机拖动,要求电动机能正、反向 旋转,采用笼型异步电动机。
TA
KT
A
快速电动机
KM
KM
SB5
K
KM1 KM2 KR2
ST
图2-5 C650卧式车床点动控制线路
1.主电路
u11 v12 w13
Q1 FU2
FU1
KM1
KM3 KM4 KR2
KM2
A
M2 3~ 冷却电动机
M3 3~ 快速电动机
电气控制电路基本环节
第二章电气控制电路基本环节主要内容:电气控制系统图的基本知识,三相异步电动机的起动、联锁、制动控制和保护环节。
重点:电气原理图的读图和分析方法,电动机的点动控制、连续运转控制、正反转控制、自动循环控制、顺序控制等基本控制电路和控制规律。
在工业、农业、交通运输等部门中,广泛使用着各种生产机械,它们大都以电动机作为动力来进行拖动。
电动机是通过某种自动控制方式来进行控制的,最常见的是继电接触器控制方式。
电气控制线路是把各种有触头的接触器、继电器、按钮、行程开关等电气元件,用导线按一定方式连接起来组成的控制线路。
它的作用是:实现对电力拖动系统的起动、调速、反转和制动等运行性能的控制,实现对拖动系统的保护,满足生产工艺要求,实现生产过程自动化。
优点:电路图直观形象,装置结构简单,价格便宜,抗干扰能力强,广泛应用于各类生产设备及控制、远距离控制和生产过程自动控制。
缺点:由于采用固定的接线方式,其通用性、灵活性较差,不能实现系列化生产;由于采用有触头的开关电器,触头易发生故障,维修量较大等。
第一节电气控制系统图为了清晰地表达生产机械电气控制系统的结构、原理等设计意图,便于电气系统的安装、调试、使用和维护,将电气控制系统中各电气元件及其连接线路用一定的图形符号和文字符号表达出来,这就是电气控制系统图。
常用的电气控制系统图有电气原理图、安装接线图和电器元件布置图三种。
一、电气原理图电气原理图是根据工作原理而绘制的,不反映元器件的实际位置、大小,只反映元器件之间的连接关系,具有结构简单、层次分明、便于研究和分析电路的工作原理等优点。
(一)绘制电气原理图的原则1.电气原理图的组成电气原理图可分为主电路和辅助电路。
主电路是从电源到电动机或线路末端的电路,是强电流通过的电路。
辅助电路包括控制电路、照明电路、信号电路及保护电路等,是小电流通过的电路。
绘制电路图时,主电路用粗线条绘制在原理图的左侧或上方,辅助电路用细线条绘制在原理图的右侧或下方。
第二章-机床电气控制原理图
总目录 章目录 返回 上一页 下一页
机床电气
图3-32 全压启动控制线路结构图 总目录 章目录 返回 上一页 下一页
机床电气
图3-33
全压启动控制线路电气原理图
总目录 章目录 返回 上一页 下一页
2.2.2 电气控制原理图绘制规则 机床电气
总目录 章目录 返回 上一页 下一页
机床电气
9、电路图中触点文字符号下面的数字表示该电器线 圈所处的图区号。 10、需要测试和拆、接外部引线的端子,应用图形符 号“空心圆”表示。电路的连接点用“实心圆”表示。 11、中性线(N)和保护接地线(PE)放在相线之下。
总目录 章目录 返回 上一页 下一页
总目录 章目录 返回 上一页 下一页
机床电气
总目录 章目录 返回 上一页 下一页
机床电气
总目录 章目录 返回 上一页 下一页
机床电气
⑵ 绘制电气元件布置图时,电动机要和被拖动的机械 装置画在一起;行程开关应画在获取信息的地方, 操作手柄应画在便于操作的地方。
⑶ 各电气元件之间,上、下、左、右应保持一定间距, 以利布线和维护。
L1 L2 L3
QS
FU2 FU1
点动按钮
SB
KM
KM
M
3~
工作过程:先接通电源开关QS
按下SB KM线圈得电 KM主触头闭合 电动机M通电起动.
松开SB KM线圈断电 KM主触头复位 电动机断电停转
总目录 章目录 返回 上一页 下一页
2 连续运转控制电路
机床电气
L1 L2 L3 QS
短路 保护
KM
电气控制系统基本环节
如图1-56所示。对中小型普通车床的主电动机 采用接触器直接起动。
起动:合QS 按SB2
KM线圈得电
辅助常开触 主触头KM
头KM(6) (3)闭合
闭合
自锁(保) 电机起动
SB2+KM通常称KM为自锁触头。其作用是当松 开SB2后 ,吸引线圈KM通过其辅助常开触头可以继 续保持通电,此控制电 路称为自(保)锁电路。
图 1 - 7 0 ( a) 是
速开自关动图实图转1现-换17-0的高7(0控低(c)制速b是电)控实路是制现。用。低在、图中高用速,电按路钮图变。换K的M高1、得电低,
当当SA电开动关机打容到量高较速大时时,,时间继电机绕组接成△,低
电若器K直T接得电作,高其速瞬时运动转作触头速 运 转 ; KM2、
图1-61所示为软起动器(Softstarter)原理框图。 软起动设备的功率部分由3对正反并联的晶闸管组成, 它由控制电路调节加到晶闸管上的触发脉冲的导通 角,来控制加到电动机上的电压,使加到电动机上 的电压按某一规律慢慢达到 全电压。通过适当地设置控制 参数,可以使电动机的转矩和 电流与负载要求得到较好的匹 配。软起动器还有软制动、节 电和各种保护功能。
使用软起动器可解决水泵电机起动与停止时管 道内的水压波动问题,其起动电流可降至约(3.5~4) IN,可解决起动时风机传动皮带打滑及轴承应力过 大的问题;可减少压缩机、离心机、搅动机等设备 在起动时对齿轮箱及传动皮带的应力,可解决输送 带起动或停止过程中由于颠簸而造成的产品倒跌及 损坏的问题,可减少起动时皮带打滑引起的皮带磨 损及对齿轮箱的应力。
(1)星-三角(Y-△)降压起动控制电路 这种起动方法仅适用于电机正常运行时绕组为△ 形联接的异步电动机,起动时接成Y形,起动完毕时 再自动换接成△形运行。
机床电气控制线路基本环节
机床电气控制线路基本环节概述机床电气控制线路是机床系统中的重要组成部分,它负责控制机床的各个运动部分,以实现各种加工操作。
本文将介绍机床电气控制线路的基本环节,包括电源输入、电气元件、控制器和传感器等内容。
电源输入机床电气控制线路的第一个环节是电源输入。
机床通常使用三相交流电作为电源。
三相电源具有稳定的电压和较低的失真,能够提供足够的电能以满足机床的工作需求。
在机床电气控制线路中,通常采用三相电源输入方式,以保证机床系统的稳定性和可靠性。
在机床电气控制线路中,常见的电气元件包括接触器、继电器、断路器、变压器和开关等。
这些电气元件用于控制机床的开关动作和电路的连接与断开,保证机床系统的正常运行。
接触器接触器是一种电磁开关,广泛应用于机床电气控制线路中。
接触器能够实现远距离的控制,具有较高的容量和可靠性。
在机床电气控制线路中,接触器常用于控制机床的电动机启停和正反转等动作。
继电器继电器是一种电气装置,用于在电路中实现信号的接通和断开。
继电器能够将小电流信号转化为大电流信号,以控制机床系统的各个动作部分。
在机床电气控制线路中,继电器常用于控制机床的多路切换和信号转换等操作。
断路器是一种保护设备,它能够在电路中检测到过载电流和短路故障时自动断开电源。
断路器能够有效保护机床电气控制线路和设备免受电流过载和短路故障的损害,并提供重要的安全保护。
变压器变压器是一种电气设备,它能够将交流电能转换为不同电压级别的电能。
在机床电气控制线路中,变压器常用于调整电路中的电压和电流,以满足不同电器设备的工作要求。
开关开关是机床电气控制线路中最基本的元件之一,用于控制电路的通断。
开关的种类繁多,常见的有单档开关、双档开关、限位开关和按钮开关等。
开关能够实现机床系统的手动和自动控制,是机床电气控制线路中的核心组件之一。
控制器是机床电气控制线路中负责控制和调节机床工作状态的重要组成部分。
控制器通常由微处理器、存储器、输入输出接口和控制算法等部分组成。
《机床电气控制》教案
《机床电气控制》教案一、教学目标1. 了解机床电气控制的基本概念、原理和组成。
2. 掌握机床电气控制线路的常见故障分析与维修方法。
3. 熟悉典型机床(如车床、铣床、磨床等)的电气控制系统。
4. 能够根据实际需求设计简单的机床电气控制线路。
二、教学内容1. 机床电气控制的基本概念1.1 机床电气控制系统的定义1.2 机床电气控制系统的组成2. 机床电气控制原理2.1 机床电气控制电路的基本环节2.2 机床电气控制电路的逻辑关系3. 机床电气控制线路的常见故障与维修3.1 故障诊断与维修方法3.2 常见故障案例分析4. 典型机床电气控制系统4.1 车床电气控制系统4.2 铣床电气控制系统4.3 磨床电气控制系统5. 机床电气控制线路的设计与调试5.1 设计原则与方法5.2 调试与验收三、教学方法1. 讲授:讲解基本概念、原理、故障分析与维修方法。
2. 案例分析:分析典型机床电气控制线路案例,引导学生学会分析与解决问题。
3. 实验操作:安排实验室实践,让学生动手操作,提高实际操作能力。
4. 小组讨论:分组讨论设计任务,培养学生的团队协作能力。
四、教学资源1. 教材:《机床电气控制》2. 实验室设备:机床电气控制实验台、故障模拟装置等。
3. 网络资源:相关论文、案例、设计软件等。
五、教学评价1. 课堂参与度:考察学生课堂提问、讨论、实验操作等情况。
2. 课后作业:布置相关题目,检验学生对知识的掌握程度。
3. 实验报告:评估学生在实验过程中的操作技能与问题解决能力。
4. 课程设计:评价学生对机床电气控制线路设计与调试的能力。
六、教学安排1. 课时:共计32课时,包括理论讲授16课时,实验操作10课时,小组讨论4课时,课程设计2课时。
2. 教学计划:第1-8课时:讲解机床电气控制的基本概念、原理和组成。
第9-16课时:学习机床电气控制原理,分析典型机床的电气控制系统。
第17-20课时:学习机床电气控制线路的常见故障与维修方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 电气控制系统图中,电气元件必须使用国家统一规定 的图形符号和文字符号。国家规定从1990年1月1日起, 今后电气系统图中的图形符号和文字符号必须符合最新 的国家标准。(见课本表2-1)
• 二、电气控制线路图的绘制
• (一)电气原理图
•
• 电气原理图是为了便于阅读和分析控制线路, 根据简单清晰的原则,采用电气元件展开的形式 绘制成的表示电气控制线路工作原理的图形。在 电气原理图中只包括所有电气元件的导电部件和 接线端点之间的相互关系,但并不按照各电气元 件的实际布置位置和实际接线情况来绘制,也不 反映电气元件的大小。下面结合下图所示 CW6132机床的电气原理图说明绘制电气原理图 的基本规则和应注意的事项。
• ⑹原理图中,无论是主电路还是辅助电路,各电 气元件一般应按动作顺序从上到下,从左到右依 次排列,可水平布置或垂直布置。
• (7).区域划分
用途栏:说明相对应电路的用途 分区栏:便于看图,查找元器件触点
垂线左边为常开触点,右边为常闭触点
• (二) 电气元件布置图
•
• 电气元件布置图主要用来表示各种电气设备在机 械设备上和电气控制柜中的实际安装位置,为机 械电气控制设备的制造、安装、维修提供必要的 资料。各电气元件的安装位置是由机床的结构和 工作要求来决定的,如电动机要和被拖动的机械 部件在一起,行程开关应放在要取得信号的地方, 操作元件要放在操作台及悬挂操纵箱等操作方便 的地方,一般电气元件应放在控制柜内。
串电阻降压起动控制线路动画演
示
电动机的定子加上了降低了的电压进行起动,起动 后再将电压恢复至额定值,目的是减少较大的起动电流 以减少对电网的冲击。
2、Y-△降压起动 在正常运行时,电机定子绕组 联成△形,起动时联结成Y形,起动完毕后再恢复为△ 形。
问题:
电机定子绕组有接成Y形和△形,正常工作接成Y 形的电机是否可以采用Y-△降压起动? Y-△降压起动
的特点?
u1
w2 u2 v2
u1 v1 w1
u2 w2 v2
v1
w1
u1 w2
u1 v1 w1 w2 u2 v2
u2 v2 w2
I lY
I PY
UY Z
v1 u2
Il
IlY UY 1 Il 3U 3
v2 w1
3I P
3U Z
u1 v1 w1
U 3UY 380V
TY
UY
2
1
T U 3
§2.2 三相异步电动机的控制线路
一、启动控制 启动基本要求:
1、足够的起动转矩以加快起动过程。
2、起动电流要小。 起动方法有全压起动和降压起动
起动方法要根据电网容量的大小,电动机的功率 大小和种类以及工作特性和要求等因素决定。 (一)直接起动控制线路
利用闸刀开关或接触器直接把电动机接到电网上。 优点:起动设备简单,成本低,起动时间短,起动方 便可靠 。 缺点:起动电流大,对电动机和电网有一定的冲击。
• ⑴原理图一般分主电路和辅助电路两部分画出:主电路 就是从电源到电动机绕组的大电流通过的路径。辅助电 路包括控制回路、信号电路及保护电路等,由继电器的 线圈和触点、接触器的线圈和辅助触点、按钮、照明灯、 控制变压器等电器元件组成。一般主电路用粗实线表示, 画在左边(或上部);辅助电路用细实线表示,画在右 边(或下部)。
• ⑷原理图中所有电器的触点,都按没有通电或没 有外力作用时的开闭状态画出。如:继电器、接 触器的触点,按线圈未通电时的状态画;按钮、 行程开关的触点按不受外力作用时的状态画出; 控制器按手柄处于零位时的状态画等。
• ⑸原理图中,有直接电联系的交叉导线的连接点, 要用黑圆点表示。无直接电联系的交叉导线,交 叉处不能画黑圆点。
要求2:在电动机转速接近于零时,及时切断反相序电源, 以防止反向再起动。
(1)单向反接制动控制电路
(为反接制动作好准备)
(2)可逆运行反接制动控制电路
2、能耗制动控制
原理:在电动机脱离三相交流电源之后,在电动机定子绕 组上立即加一个直流电压,利用转子感应电流与静止磁场 的作用以达到制动的目的。
1、△/YY接法
低速--△接法:3个电 源线连接在接线端U、V、 W每根绕组的中点接出的接 线端空着不接,此时磁极为 4,电机同步转速为1500 r/min
高速--YY接法:接线端 U、V、W短接,U″、V″、 W″三个接线端接上电源,此 时磁极为2,同步转速为 3000 r/min
注:为保证转向一致,两种接法切换时,应将电源相序反过来。
• ⑵原理图中,各电器元件不画实际的外形图,而采用国 家规定的统一标准来画,文字符号也要符合国家标准。 属于同一电器的线圈和触点,都要用同一文字符号表示。 当使用相同类型电器时,可在文字符号后面加注阿拉伯 数字序号来区分。
• ⑶原理图中,各电器元件的导电部件如线圈和触点的位 置,应根据便于阅读和发现的原则来安排,绘在它们完 成作用的地方。同电器元件的各个部件可以不画在一起。
交—交变频器的特点是属于一次换能,效率较高,但整 个装置元件数较多,调频范围仅为电网频率的1/3~1/2, 适用于低速大功率拖动。交一直一交变频器是二次换能,效 率略低,装置元件数较少,频率调节范围较宽,适用于各种 拖动装置。
(二)、交一直一交变频器 1、单相交一直一交变频器
晶闸管整流器将交流电整流为幅值可调的直流电U d , 直流电压U。通过电容C滤波,以减小波纹 。
(二)间接起动控制线路
目的:限制启动电流,减少起动电流对电网及电动机等设 备的冲击。
1、定子绕组串联电阻降压起动
电动机起动时,在三相定子电路上串接电阻,使加在电动 机绕组上电压降低,起动后再将电阻短接,电动机仍然在 额定电压下正常运行。
特点:起动方式不受电动机接线形式的限制,设备 简单 。
电机及机床电气控制
• 第二章 机床电气控制线路基本环节
• §2.1 电气控制线路的绘制
• 电气控制系统是由许多电气元件按一定要求连接而 成的。为了便于电气控制系统的设计、分析、安装、使 用和维修,需要将电气控制系统中各电气元件及其连接, 用一定的图形表达出来,这种图形就是电气控制系统图。
• 电气控制系统图有三类:电气原理图、电器元件布置图 和电气安装接线图。
工作台自动往返控制
SQ3和SQ4为超程 限位开关 除去SQ1是怎样一 个工作过程??
机床电气控制 正反转自动循环线路动画演示
三、多地点控制电路
四、顺序起、停控制电路
五、 三相异步电动机的制动控制线路
停机制动有两种类型:一是电磁铁操纵机械进行 制动的电磁机械制动;二是电气制动使电动机产生一 个与转子原来转动方向相反的力矩来进行制动,常用 的电气制动有反接制动和能耗制动。
优点:停车准确可靠, 制动平稳、能耗小。对 电网无冲击,缺点:需 要直流电源。
在一些重型机床中, 常常将能耗制动与电磁抱 闸配合使用,先进行能耗 制动,当转速降至某值时, 令抱闸动作,可以有效地 实现准确快速停车。
(为制动作好准备)
在制动要求
不高,电动机功 率在10KW以下时 可采用无变压器 的单管能耗制动 电路。它是无变 压器的单管采用 半波整流器作为 直流电源,这种 电源体积小,成 本低。
(二)、控制电路 KMY与KMΔ不能同时通电
机床电气控制
丫-△降压起动控制线路动画演示 •
二、正反转控制
机械互锁
电气互锁
从主电路上看KM1和KM2同时通电会造成主电路电源短路 注意:KM1和KM2不能同时通电或闭合
电气互锁的作用:防止接触器主触点熔焊或机械结构失
灵使主触点不能断开。若另一接触器动作会造成事故。
• (三) 电气安装接线图
•
• 电气安装接线图是为了安装电气设备和电气元件时进行 配线或检查维修电气控制线路故障服务的。在图中要表 示各电气设备之间的实际接线情况,并标注出外部接线 所需的数据。在接线图中各电气元件的文字符号、元件 连接顺序、线路号码编制都必须与电气原理图一致。
• 图1-23是根据图1-22电气原理图绘制的接线图。图中表 明了该电气设备中电源进线、按钮板、照明灯、行程开 关、电动机与电气安装板接线端之间的关系,也标注了 所采用的包塑金属软管的直径和长度以及理解导线的根 数、截面积与颜色。如按钮板与电气安装板的连接,按 钮板上有SB1、SB2、HL1与HL2四个元件,根据电气 原理图SB1与SB2有一端相连为“地”,其余的2、3、 4、6、7、15、16通过7根1mm的红色线接到安装板上
(二)、双速电动机△/YY接法控制电路
二、变频器(变频调速)
(一)变频器的基本类型 对交流电动机实现变频调速的装置叫变频器。变
频器按其结构可分为两种基本类型:交—交变频器和 交—直—交变频器
交—交变频器没有明显的中间滤波环节,电网交流电被 直接变成可调频调压的交流电。而交—直—交变频器先将电 网交流电变换为直流电,经中间滤波环节之后,再进行逆变 转换为变频变压的交流电。
断电制动型电磁抱闸的结构示意图 如下:
2.断电制动控制电路
工作原理: 上电源开关 QS ,按
下起动按钮 SB2 后,接触 器 KM 线圈得电自锁,主 触点闭合,电磁铁线圈 YB 通电,衔铁吸合,使 制动器的闸瓦和闸轮分开, 电动机 M 起动运转。停车 时,按下停止按钮 SB1 后, 接触器 KM 线圈断电,自 锁触点和主触点分断,使 电动机和电磁铁线圈 YB 同时断电,衔铁与铁心分 开,在弹簧拉力的作用下 闸瓦紧紧抱住闸轮,电动 机迅速停转。
六、三相异步电动机的调速电路
调速方法以下几种: 1、改变转差率 2、改变电动机磁极对数 3、改变供电电源频率
一、双速电动机控制电路(变极调速) (一)变极原理
方法1:在定子上装两套各具有不同极数的独立绕组 方法2:在一个绕组上用改变绕组的连接方式来改变磁