计量经济学概述
计量经济学要点
第一章绪论计量经济学是由挪威经济学家、第一届诺贝尔经济学奖得主弗里希提出来的。
定义:计量经济学是统计学、经济学、数学相结合的一门综合性学科,是一门从数量上研究物质资料生产、交换、分配、消费等经济关系和经济活动规律及其应用的科学。
时间序列统计资料:指同一统计指标按时间顺序排列的数据列。
在同一数据列中各个数据统计的对象、范围和时间长度必须一致,是同一口径的,具有可比性。
同对象,不同时间。
横截面统计资料:横截面统计资料指在同一时间、不同单位按同一统计指标排列的数据列。
在同一数据列中各个数据也必须是同一口径的,具有可比性。
与时间序列数据的区别在于,横截面数据统计的对象和范围不同,但必须是同一时间截面上的数据。
计量经济学的目的: 结构分析:指应用计量经济模型对经济变量之间的关系作出定量的度量。
预测未来:指应用已建立的计量经济模型求因变量未来一段时期的预测值。
政策评价:指通过计量经济模型仿真各种政策的执行效果,对不同的政策进行比较和选择。
计量经济学研究问题分为四个阶段:建立模型。
根据所研究的问题与经济理论,找出经济变量间的因果关系及相互间的联系。
估计参数。
模型建立以后,首先收集模型中经济变量的统计资料,再应用相应的计量经济方法,估计模型中的待定系数。
检验模型。
模型的参数估计以后,这些参数是否可靠,是否符合经济理论和要求,要通过以下几个方面对模型进行检验。
1.检验估计参数是否符合经济理论和实际经济问题的要求。
2.用数理统计中关于假设检验的原理,对估计参数进行统计检验,对估计模型进行统计检验,对估计方法的假定条件进行检验。
经济预测。
应用估计出的并经过检验的回归模型预测因变量的未来值。
第二章一元线性回归模型回归分析是处理变量与变量之间关系的一种数学方法。
1.变量之间存在确定的函数关系。
2.变量之间存在着非确定的依赖关系。
随机变量误差因素:(1)回归模型中省略的变量。
(2)人们的随机行为。
(3)建立的数学模型的形式不够完善。
计量经济学的概念
K计量经济学的概念。
计量经济学是经济科学领域内的一门应用科学,以一定的经济理论和实际统计资料为基础, 运用数学、统计方法与计算机技术,以建立经济计量模型为主要手段,定量分析研究具有随机特性的经济变量关系。
2>数理经济模型与计;I济模型的区别。
数理:揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
计量:揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、经典计量经济学模型的一般形式。
Yi= f (X li, X 2i,…Xfii, 01, 02,…,J3K)+Ui, I = 1,2,…,门4、计量经济学的:时间序列数据:按时间先后排列的统计数据。
截面数据:一个或多个变量在某一时点上的数据集合。
合并数据(平行数据):既包含时间序列数据又有截面数据。
5、建立计量经济学模型的步骤。
1)理论模型的设计:①确定模型所包含的变量。
②确定模型的数学形式。
③拟定模型中待估计参数的理论期望值。
2)样本数据的收集:①时间序列数据易引起模型随机误差项产生序列相关。
②截面数据易引起模型随机误差项产生异方差。
③样本数据的质量:完整性、准确性、可比性、一致性。
3)模型参数的估计。
4)模型的检验:①经济意义检验。
②统计检验:拟合优度检验、变量的显著性检验、方程的显著性检验。
③计量经济学检验:序列相关、异方差法(随机误差项)、多重共线性(解释变量)④模型预测检验。
6、计量经济学模型的应用。
1)结构分析;2)经济预测;3)政策评价:4)检验与发展经济理论。
7、如何正确选择解释变量。
作为“变量”的原因:1)据经济理论和经济行为分析;2)考虑数据的可得性;3)考虑入选变量之间的关系。
8、回归分析的目的。
1)根据自变量的取值,估计应变量的均值;2)检验建立在经济理论基础上的假设;3)根据样本外自变量的取值,预测应变量的均值。
9、总体回归函数(PRF)和样本回归函数(SRF)各变量系数名称及函数方程。
PRF:Yi = E(Y/Xi) + U = 0o + Q Xi + U 0。
计量经济学1章
计量经济学1章第一章1、什么是计量经济学计量经济学方法与一般经济学方法有什么区别答:计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的经济关系为主要内容,是由经济理论、统计学、数学三者结合而成的交叉性学科。
计量经济学方法揭示经济活动中具有因果关系的各因素间的定量关系,它用随机性的数学方程加以描述;而一般经济数学方法揭示经济活动中各因素间的理论关系,更多的用确定性的数学方程加以描述。
2、计量经济学的研究对象和内容是什么计量经济学模型研究的经济关系有哪两个基本特征答:计量经济学的研究对象是经济现象,主要研究经济现象中的具体数量规律,换言之,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究。
计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学。
无论理论计量经济学还是应用计量经济学,都包括理论、方法和数据三要素。
计量经济学模型研究的经济关系有两个基本特征:一是随机关系,二是因果关系。
3、为什么说计量经济学模型研究是演绎与归纳的结合计量经济学应用研究包含两大基本步骤:设定模型和检验模型。
前者是由一定的前提假设出发,经由逻辑变形而导出可检验的理论假说,并将之形式化为数理模型,属于演绎法的范畴;后者则是依托于样本数据,对模型进行回归估计和统计检验,并根据检验结果作出在一定概率水平上接受或拒绝原理论假说的判断,属于归纳法的范畴。
如果缺少前一个步骤,而仅仅从事经济数据的调查、收集、整理和统计分析,那就不再是计量经济学,而是经济统计学的工作;如果缺少后一个步骤,而仅仅对经济变量之间的逻辑关系进行数理推导,那也不再是计量经济学,而是数理经济学的工作。
计量经济学综合了上述两个步骤,将抽象演绎法和经验归纳法有机结合,或者说,它既是归纳的,又是演绎的。
倘若简单地把计量经济学视为经验归纳法,过度拘泥于计量研究中的模型检验阶段,而不对模型设定给予足够的重视,那么,不论回归方法多么复杂和先进,检验步骤多么精细和准确,得出的结论仍然有可能是没有价值的,甚至是完全错误的。
计量经济学 第四章
100%
统计检验
利用统计量对模型参数进行假设 检验,判断参数是否显著。
80%
计量经济学检验
包括模型的异方差性、自相关性 、多重共线性等问题的检验。
模型的修正方法
增加解释变量
如果模型存在遗漏变量,可以通过增加解释变量来 修正模型。
删除解释变量
如果模型中某些解释变量不显著或存在多重共线性 ,可以考虑删除这些变量。
模型表达式
Y = β0 + β1X + ε
最小二乘法
通过最小化残差平方和来估计参数β0和β1
参数解释
β0为截距项,β1为斜率项,ε为随机误差项
模型的检验
包括拟合优度检验、显著性检验等
多元线性回归模型
01
02
03
04
模型表达式
参数解释
最小二乘法
Y = β0 + β1X1 + β2X2 + ... + βkXk + ε
最小二乘法估计量的性质
线性性
最小二乘法估计量是随机样本的线性组合。
无偏性
最小二乘法估计量的期望值等于总体参数的 真实值。
有效性
在所有无偏估计量中,最小二乘法估计量的 方差最小。
一致性
随着样本量的增加,最小二乘法估计量收敛 于总体参数的真实值。
最小二乘法的计算步骤
构造设计矩阵X和响应向量Y。 计算设计矩阵X的转置矩阵X'。 计算X'X和X'Y。
求解线性方程组X'Xβ=X'Y,得到回归系 数的最小二乘估计β^=(X'X)^(-1)X'Y。
根据β^计算因变量的拟合值Y^=Xβ^。
计算残差e=Y-Y^,以及残差平方和 RSS=e'e。
2024版计量经济学(很好用的完整)ppt课件
贝叶斯计量经济学的定义
基于贝叶斯定理和概率分布理论进行计量分析的经济学分支。
贝叶斯先验分布的设定
根据历史数据、专家经验等因素设定参数的先验分布,作为后续推 断的基础。
贝叶斯计量模型的估计方法
包括马尔科夫链蒙特卡罗方法、变分贝叶斯方法等,用于估计模型 参数和进行统计推断。
机器学习在计量经济学中应用
机器学习算法在计量经济学中的应用场景
广义线性模型介绍
1
定义
广义线性模型是一类用于回归分析的统计 模型,它扩展了线性模型的框架,允许响 应变量遵循非正态分布,并且可以通过一 个链接函数与解释变量建立线性关系。
2
组成
广义线性模型由三部分组成——随机成分、 系统成分和链接函数。随机成分指定响应 变量的分布类型和参数,系统成分描述解 释变量与响应变量之间的线性关系,链接 函数则将随机成分和系统成分连接起来。
06
计量经济学软件应用
EViews软件介绍及操作指南
01
EViews软件概述
EViews是一款功能强大的计量 经济学软件,广泛应用于数据 分析、模型估计和预测等领域。
02
数据导入与预处理
介绍如何在EViews中导入数据、 进行数据清洗和预处理等操作。
03
模型估计与检验
详细讲解EViews中线性回归模 型、时间序列模型等模型的估 计方法,以及模型的检验和诊 断。
THANKS
包括变量选择、模型诊断、预测等。
监督学习在计量经济学中的应用
通过训练数据集学习模型,然后利用测试数据集评估模型性能。
非监督学习在计量经济学中的应用
通过聚类、降维等技术发现数据中的潜在结构和模式。
深度学习在计量经济学中的应用
一、计量经济学基本概念二、计量经济学与相关学科的关系三
一、计量经济学基本概念二、计量经济学与相关学科的关系三一、计量经济学基本概念二、计量经济学与相关学科的关系三、计量经济学的学科体系四、建立计量经济学模型的步骤和要点五、计量经济学的应用第一章计量经济学概述一、计量经济学基本概念1.计量经济学2.计量经济学的产生 3.计量经济学的定义 4.计量经济学的地位计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
在有关的出版物和课程表中出现了“计量经济学”与“经济计量学”两种名称。
“经济计量学”是由英文“econometrics”直译得到的,而且强调该学科的主要内容是经济计量的方法,是估计经济模型和检验经济模型;“计量经济学”则试图通过名称强调它是一门经济学科,强调它的经济学内涵与外延。
什么是计量经济学○1926年挪威经济学家R.Frisch提出Econometrics这一学科名称;○ 1930年成立世界计量经济学会;○ 1933年创刊《Econometrica》;○ 20世纪40、50年代的大发展和60年代的扩张;○ 20世纪70年代以来非经典(现代)计量经济学的发展~~~~计量经济学的产生费里希在Econometrica的创刊辞中这样指出:“用数学方法处理经济学可以有多种形式,其中任何单独的一种都不等同于计量经济学,计量经济学不等同于统计学,计量经济学也不等同于我们称之为的一般经济理论(即使这种理论的大部分具有定量的特点),当然,计量经济学也不是数学在经济学中的应用的同义词。
不用说,统计学、经济理论和数学是理解现代经济生活中的数量关系所不可缺少的必要条件,但是作为充分条件的是这三者的结合,这三者的结合就构成了计量经济学。
”定义计量经济学的地位计量经济学是一门经济学科。
首先,从定义看,计量经济学是统计学、经济理论和数学三者的结合,这种结合说明它是定量化的经济学或者经济学的定量化;其次,从经济学科中的地位看,计量经济学已经在在西方国家的经济学科中占有重要地位,在大多数大学和学院中,计量经济学的讲授已经成为经济学课程表中最有权威的部分。
计量经济学(第四章多重共线性)
06
总结与展望
研究结论总结
多重共线性现象普遍存在于经济数据中,对计量 经济学模型的估计和解释产生了重要影响。
通过使用多种诊断方法,如相关系数矩阵、方差膨 胀因子(VIF)和条件指数(CI),可以有效地识别 多重共线性问题。
在存在多重共线性的情况下,普通最小二乘法 (OLS)估计量虽然仍然是无偏的,但其方差可能 变得很大,导致估计结果不稳定。
主成分分析法的优点
可以消除多重共线性的影响,同 时降低自变量的维度,简化模型。
岭回归法
岭回归法的基本思想
通过在损失函数中加入L2正则化项(即所有自变量的平方和),使得回归系数的估计更加稳定, 从而消除多重共线性的影响。
岭回归法的步骤
首先确定正则化参数λ的值,然后求解包含L2正则化项的损失函数最小化问题,得到岭回归系数的估 计值。
逐步回归法的优点
可以自动选择重要的自变量,同时消除多重共线性的影响。
主成分分析法
主成分分析法的基本思想
通过正交变换将原始自变量转换 为互不相关的主成分,然后选择 少数几个主成分进行回归分析。
主成分分析法的步骤
首先对原始自变量进行标准化处理, 然后计算相关系数矩阵并进行特征值 分解,得到主成分及其对应的特征向 量。最后,选择少数几个主成分作为 新的自变量进行回归分析。
岭回归法的优点
可以有效地处理多重共线性问题,同时避免过拟合现象的发生。此外,岭回归法还可以提供对所 有自变量的系数进行压缩估计的功能,使得模型更加简洁易懂。
05
实证研究与结果分
析
数据来源及预处理
数据来源
本研究采用的数据集来自于公开的统 计数据库,涵盖了多个经济指标和影 响因素的观测值。
数据预处理
计量经济学导论
计量经济学导论计量经济学是一门研究经济现象的量化方法和技术的学科,它运用数学和统计学的工具,帮助我们理解和解释经济现象。
本文将介绍计量经济学的基本概念、研究方法和应用领域。
一、计量经济学的概述计量经济学是经济学与数学、统计学相结合的交叉学科,它通过构建经济模型和运用统计方法,使得经济理论能够得到验证和实证。
计量经济学的发展,不仅丰富了经济学理论,也提供了政策制定和商业决策的重要工具。
二、计量经济学的基本原理1. 线性回归模型线性回归模型是计量经济学最基本的工具,它通过建立变量之间的关系,帮助我们理解经济现象。
线性回归模型假设因变量与自变量之间存在线性关系,并通过最小二乘法来估计模型参数。
2. 假设检验假设检验是计量经济学中常用的统计方法,用来验证经济理论的假设是否成立。
假设检验通常包括设置原假设和备择假设,计算统计量并进行假设验证。
3. 时间序列分析时间序列分析用来研究同一变量随时间推移的变化趋势,包括趋势分析、季节性调整和周期性分析等。
时间序列分析可以帮助我们预测未来经济变化,并进行经济政策的制定。
三、计量经济学的应用领域1. 宏观经济学计量经济学在宏观经济学中具有广泛的应用,可以用来分析国民经济的总体波动、通货膨胀率和失业率等重要经济指标,并帮助政府制定宏观经济政策。
2. 产业经济学计量经济学在产业经济学中可以用来研究市场结构、产业竞争力和企业绩效等问题。
通过计量分析,我们可以评估市场的效率和市场竞争的程度。
3. 金融经济学计量经济学在金融经济学中具有重要的应用,可以用来研究股票价格的波动、资产定价和金融风险管理等问题。
通过计量模型,我们可以预测金融市场的变化和做出投资决策。
四、计量经济学的挑战和局限性尽管计量经济学在解释和预测经济现象方面具有广泛的应用,但它也面临一些挑战和局限性。
例如,计量经济模型通常建立在一些假设前提下,而这些假设在现实经济中并不一定成立。
另外,计量经济模型的选择和参数的估计也需要一定的经验和判断。
计量经济学基本概念和知识
计量经济学基本概念和知识计量经济学基本概念和知识1.计量经济学与经济学、统计学和数学的关系 (3)2.计量经济学三要素 (3)3.计量经济学方法与一般经济数学方法的区别 (3)4.计量经济学研究的对象和核心内容 (4)5.建立与应用计量经济学模型的主要步骤 (4)6.随机误差项包含哪些因素影响 (4)7.多重共线性的概念、后果和补救措施 (5)8.序列相关的概念、后果和补救措施 (5)9.用方差膨胀因子检验多重共线性的检验过程 (5)10.异方差性 (6)11.回归模型中有哪些计量经济学问题 (6)12.滞后变量模型的类型及分布滞后模型使用OLS会存在的问题 (6)13.两个阶段最小乘法估计方法的思路 (7)14.时间序列的单整性 (7)15.相关关系与因果关系的区别与联系 (8)16.建立误差校正模型的步骤 (8)17.计量经济学模型的检验包括哪些方面及其具体含义 (8)18.计量经济学模型研究的经济关系的两个基本特征 (9)19.计量经济学中应用的数据类型及其结构 (9)20.用OLS建立多元线性回归模型的基本假设 (9)21.为什么要计算调整后的可决系数 (10)22.异方差性的概念、后果和补救措施 (10)23.用WHITE检验进行异方差的检验过程 (11)24.用杜宾-沃森DW方法检验序列相关的检验过程 (11)25.多远线性回归模型的回归系数符号与预期不一致时,应该检查什么 (11)26回归模型中引入虚拟变量的作用及基本引入方式 (12)27.对联立方程模型进行估计之前需要先做哪些工作 (12)28.平稳时间序列应满足的条件 (12)29.非平稳变量直接建立ARMA模型 (13)30.协整 (13)31.建立误差校正模型(ECM)的基本思路 (14)1.计量经济学与经济学、统计学和数学的关系计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
计量经济学ppt课件(完整版)
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。
李子奈计量经济学-2024鲜版
假设检验方法
面板数据的假设检验主要包括模型的设定检验、参数的显著性检验和模型的稳定性检验等。常用的假设检验方法 有F检验、LR检验、Hausman检验、Sargan检验等。这些检验方法可以帮助我们判断模型的适用性、变量的重 要性和模型的稳定性。
2024/3/28
22
06 计量经济学在金融领域的 应用
市场有效性检验 利用计量经济学模型和方法,检验金融市场的有效性,即 市场价格是否充分反映了所有可用信息,为市场监管和投 资决策提供依据。
25
计量经济学在风险管理中的应用
风险评估与测量
利用计量经济学方法,如VaR、CVaR等,对金融风险进行评估和测量,帮助金融机构和投资 者了解自身面临的风险水平。
风险对冲与分散
组合预测方法
将确定性预测方法和随机性预测方法相结合,形成组合预测模型,以提 高预测精度和稳定性。
18
05 面板数据分析
2024/3/28
19
面板数据的基本概念
面板数据的定义
面板数据(Panel Data)也称时 间序列截面数据(Time Series Cross-Sectional Data)或混合 数据(Pool Data),是指同时 包含时间序列和截面信息的数据
李子奈计量经济学
2024/3/28
1
目
录
2024/3/28
• 计量经济学概述 • 线性回归模型 • 非线性回归模型 • 时间序列分析 • 面板数据分析 • 计量经济学在金融领域的应用
2 contents
01 计量经济学概述
2024/3/28
3
计量经济学的定义与特点
定义
计量经济学是以经济理论和统计数据为基础,运用数学、统计学和计算机技术, 建立经济模型来分析经济变量之间的关系和预测经济现象的一门学科。
计量经济学概念
计量经济学概念计量经济学是一门应用数学和统计学原理分析经济现象的学科。
它通过建立经济模型和利用经济数据进行实证分析,来研究经济学问题。
这门学科的主要目标是利用经济理论和经济数据来评估经济政策的效果,预测经济变量的动态变化,并提供经济政策的建议。
1. 经济模型经济模型是计量经济学的核心工具。
它是对经济现象的形式化表达,通常用方程组来表示。
经济模型可以用来解释经济理论和分析经济政策的影响。
在建立经济模型时,计量经济学通常会根据经济理论的假设来确定经济模型的结构和参数。
而后,通过对经济数据进行估计,计量经济学可以得到具体的经济模型,从而进行实证分析。
2. 经济数据经济数据在计量经济学中起着至关重要的作用。
经济数据可以分为宏观经济数据和微观经济数据。
宏观经济数据通常包括国民经济核算数据,如国内生产总值(GDP)、物价指数等。
微观经济数据则包括个体经济单位的数据,如企业的销售收入、劳动力市场的失业率等。
计量经济学利用这些经济数据,通过统计方法进行分析和推断,得到经济模型的参数估计和经济政策效果的评估。
3. 线性回归模型线性回归模型是计量经济学中最基础也是最常用的经济模型之一。
它假设因变量和一个或多个自变量之间存在线性关系。
线性回归模型可以用来解释因变量与自变量之间的关系,并估计其参数。
计量经济学通过最小二乘法来估计线性回归模型的参数。
最小二乘法将目标函数的残差平方和最小化,从而得到最优的参数估计。
4. 回归分析回归分析是计量经济学中对经济模型进行实证分析的方法之一。
它通过建立经济模型并利用经济数据进行估计,来评估经济模型的有效性和解释力。
回归分析可以帮助计量经济学家理解经济现象的内在机制,并从中得出对经济政策的建议。
在回归分析中,常常使用假设检验和置信区间等统计工具来评估模型的拟合度和参数的显著性。
5. 工具变量工具变量在计量经济学中被广泛应用,用于处理内生性问题。
内生性是指因变量与自变量之间存在相关性,但并非因果关系。
计量经济学基础知识
内生变量:由模型所决定的变量,是随机变量。 内生变量又称为不可控制变量。
外生变量:决定模型的变量,是非随机变量。 外生变量由称可控制变量。
滞后内生变量、前定变量、虚拟变量、工具变 量。
模型设计阶段具体技术工作:
(1)模型应该包括那些变量?哪些是因变 量?哪些是自变量?
(2)模型包括几个参数,它们的符号(正 负)如何?
(3)模型函数的数学形式,线性的?亦或 是非线性的?
根据凯恩斯(J.M.Keynes)消费理论: “平均说来,当人们收入增多时,他们倾向于消
费,但其增长的程度并不和收入增加的程度一样 多。”设y为消费,x为收入,用数学方程表示为 y=f(x)=b0+b1x+e 其中参数b1=dy/dx为编辑消费倾向,e为随机项, 表明消费的随机性。按照凯恩斯的观点,0<b1<1。
库兹涅茨假设
但是,库兹涅茨对凯恩斯这种边际消费倾 向下降的观点持否定态度。他研究的结论, 消费与国民收入之间存在稳定的上升比例。 因此,上式只是根据凯恩斯消费理论设定 的消费模型。
3.确定变量和函数形式
包括:(1)、数学模型的设定
(2)、计量经济模型的设定
模型应当反映客观经济活动,但是这种反映不 可能也不应该是包罗万象,巨细无疑的。这需 要合理的假设,删除次要关系和因素。
1969年首届诺贝尔经济学奖授予弗里希和 丁伯根。
自1969年设立诺贝尔经济学奖至1989年27 为获奖者中有15位是计量经济学家,其中 10位是世界计量经济学会的会长。
计量经济学应运而生
计量经济学概述
计量经济学概述一、计量经济学定义1. 定义有几个比较权威的定义:(1) 计量经济学是一门发展迅速的经济学分支,其目标是给出经济关系的经验内容。
(2) 计量经济学科定义为实际经济现象的定量分析,这种分析根据的是由适当的推断方法联系在一起的理论和观测的即时发展。
计量经济学运用数理统计知识分析经济数据,对构建与数理经济学基础上的数学模型提供经验支持,并得出数量结果。
(3) 计量经济学是将经济理论、数学和统计推断等工具应用于经济现象分析的社会科学。
综上所述,计量经济学是一门有关经济关系的经验估计的经济学分支。
计量经济学依据经济理论,使用数学和统计推断等工具,用观测数据对经济和商务活动进行实证研究,测度和检验经济变量间的经验关系,从而给出经济理论的经验内容,在经济理论的抽象世界和人类活动的具体世界之间搭建桥梁。
经济理论、数学和统计学知识在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不是充分的,只有结合在一起才行。
因此,一个优秀的计量经济学家必须是合格的数学家和统计学家,还应该是一个经过系统经济学训练的经济学家。
2. 要素经济理论、数学和统计方法3. 目标计量经济学从根本上说,是对经验规律的认识以及将这些规律推广为经济学定律的系统努力,这些定律被用来进行预测,即关于什么可能发生或者什么将会发生的预测。
因此,广义上说,计量经济学可以成为预测的科学。
因为使用统计学的分析方法,所以计量经济学有别于像数学那样的传统的科学,具体在以后我们会涉及到。
4. 发展历程最早是在W.Petty在1690年写的《政治算术》中出现计量经济学。
其观点是尽可能地排除主观因素,强调比较那些用于数据分析的数量,重量以及衡量尺度的重要性。
1911年H.L.Moore在他所著的《工资的法则》中,开始用统计的手法对工资的边界生产力进行了验证。
20世纪20年代末期资本主义世界发生了严重的经济危机,原有的经济理论失灵,产生了所谓的凯恩斯革命。
《计量经济学》ppt课件
04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型
基础计量经济学
基础计量经济学【最新版】目录1.计量经济学的概述2.基础计量经济学的核心概念3.基础计量经济学的方法和应用4.基础计量经济学的发展趋势和前景正文一、计量经济学的概述计量经济学是一门运用数学、统计学和经济学理论相结合来研究经济现象的学科,其目的是通过建立经济模型和进行实证分析,以揭示经济现象之间的关系和规律。
计量经济学的研究方法可以分为理论计量经济学和实证计量经济学,其中,基础计量经济学是实证计量经济学的一个重要分支。
二、基础计量经济学的核心概念基础计量经济学主要涉及以下几个核心概念:1.变量:包括自变量、因变量和控制变量。
自变量是模型中被预测或解释的变量,因变量是模型中被预测的结果,控制变量则是对模型中的其他变量进行控制的变量。
2.函数关系:基础计量经济学研究的重点是经济现象之间的函数关系,即一个或多个自变量对因变量的影响程度和方向。
3.参数:函数关系中的未知常数,需要通过估计来获得。
4.模型:描述经济现象之间函数关系的数学表达式,包括线性回归模型、多元回归模型、时间序列分析模型等。
三、基础计量经济学的方法和应用基础计量经济学的方法主要包括数据收集、数据处理、参数估计和模型检验等。
1.数据收集:通过问卷调查、实验设计、行政记录等方式获取研究所需的数据。
2.数据处理:对收集到的数据进行清洗、整理和转换,以便于进行后续的分析。
3.参数估计:利用统计方法(如最小二乘法、极大似然估计等)来估计模型中的参数。
4.模型检验:检验模型的有效性和假设是否成立,常用的检验方法包括显著性检验、多重共线性检验、异方差检验等。
基础计量经济学在经济学领域具有广泛的应用,如在政策评估、市场预测、企业决策等方面发挥着重要作用。
四、基础计量经济学的发展趋势和前景随着大数据时代的到来和计算机技术的发展,基础计量经济学的研究方法和应用范围不断拓展,呈现出以下发展趋势:1.数据驱动:大数据为计量经济学研究提供了丰富的数据资源,使得研究者可以更加深入地挖掘经济现象之间的关系。
计量经济学第一讲
第一章绪论第一节计量经济学的含义一、计量经济学计量经济学(Econometrics,又译成经济计量学)是应用经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,挪威经济学家弗里希(R.Frish)将它定义为经济理论、统计学和数学三者的结合。
即以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技术,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
二、计量经济学模型模型,是对现实的描述和模拟,对现实的各种不同的描述和模拟方法,就构成了各种不同的模型,例如,语义模型(也称逻辑模型),物理模型、几何模型、数学模型和计算机模拟模型等。
语义模型是用语言来描述现实,例如,对供给不足下的生产活动,我们可以用“产出量是由资本、劳动、技术等投入要素决定的,在一般情况下,随着各种投入要素的增加,产出量也随之增加,但要素的边际产出是递减的”来描述。
物理模型是用简化了的实物来描述现实,例如一栋楼房的模型。
几何模型是用图形来描述现实,例如一个零部件的加工图。
计算机模拟模型是随着计算机技术而发展起来的一种描述现实的方法,在经济研究中有广泛的应用。
数学模型是用数学语言描述现实,也是一种重要的模型方法,由于它能够揭示现实活动中的数量关系,所以具有特殊重要性。
经济数学模型是用数学方法描述经济活动。
根据所采用的数学方法不同、对经济活动揭示的程度不同,构成各类不同的经济数学模型。
在这里,我们着重区分数理经济模型和计量经济模型。
数理经济模型揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述,上述用语言描述的生产活动,可以用生产函数描述如下:Q=f(T,K,L)公式中用Q 表示产出量,T 表示技术,K 表示资本,L 表示劳动。
计量经济模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
例如,上述生产活动中因素之间的关系,用随机数学方程描述为:5606.04645.0)014.01(01.1K L Q T +⨯=该模型是利用我国国有独立核算工业企业1978到1994年的统计资料,使用计量经济方法得到的,该模型定量地描述了我国国有独立核算工业企业中,技术、资本和劳动投入与产出量之间的数量关系;利用这个计量经济模型可以对生产过程做进一步的深入研究,如要素影响分析、要素需求分析、生产预测、成本分析等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学的重要性
△ 在经济学科中占据极重要的地位
克莱因(R.Klein):“计量经济学已经在 经济学科中居于最重要的地位”,“在大多 数大学和学院中,计量经济学的讲授已经成 为经济学课程表中最有权威的一部分”。
萨缪尔森(P.Samuelson ) :“第二次大 战后的经济学是计量经济学的时代”。
Joseph E. Stiglitz 2000 James J Heckman, Daniel L McFadden 1999 Robert A. Mundell 1998 Amartya Sen 1997 Robert C. Merton, Myron S. Scholes 1996 James A. Mirrlees, William Vickrey 1995 Robert E. Lucas Jr.
1994 John C. Harsanyi, John F. Nash Jr., Reinhard Selten
1993 Robert W. Fogel, Douglass C. North 1992 Gary S. Becker 1991 Ronald H. Coase 1990 Harry M. Markowitz, Merton H. Miller,
William F. Sharpe 1989 Trygve Haavelmo 1988 Maurice Allais 1987 Robert M. Solow 1986 James M. Buchanan Jr. 1985 Franco Modigliani 1984 Richard Stone 1983 Gerard Debreu 1982 George J. Stigler 1981 James Tobin 1980 Lawrence R. Klein 1979 Theodore W. Schultz, Sir Arthur Lewis 1978 Herbert A. Simon 1977 Bertil Ohlin, James E. Meade
The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 1969
for having developed and applied dynamic models for the analysis of economic processes
1976 Milton Friedman 1975 Leonid Vitaliyevich Kantorovich
Tjalling C. Koopmans 1974 Gunnar Myrdal
Friedrich August von Hayek 1973 Wassily Leontief 1972 John R. Hicks, Kenneth J. Arrow 1971 Simon Kuznets 1970 Paul A. Samuelson 1969 Ragnar Frisch, Jan Tinbergen
Ragnar Frisch Norway
Jan Tinbergen the etherlands
1.1什么是计量经济学
? R.Frish定义 ? “用数学方法探讨经济学可以从好几个方面着手,但任何一
个方面都不能和计量经济学混为一谈。计量经济学与经济统 计学绝非一码事;它也不同于我们所说的一般经济理论,尽 管经济理论大部分具有一定的数量特征;计量经济学也不应 视为数学应用于经济学的同义语。经验表明,统计学、经济 理论和数学这三者对于真正了解现代经济生活的数量关系来 说,都是必要的,但本身并非是充分条件。三者结合起来, 就是力量,这种结合便构成了计量经济学。”
△诺贝尔经济学奖与计量经济学
? 53位获奖者中10位直接因为对计量经济学发展的贡献而获奖 1969 R. Frish J. Tinbergen(创立,第一模型) 1973 W. Leotief(投入产出) 1980 L. R. Klein(经典) 1984 R. Stone(统计原理) 1989 T. Haavelmo(经典,数学) 2000 J. J. Heckman D. L. McFadden(微观应用) 2003 R. F. EngleC. W. J. Granger(经济史成功应用)
? 近20位担任过世界计量经济学会会长
? 30余位左右在获奖成果中应用了计量经济学
获奖者名单
2003 Robert F. Engle, Clive W. J. Granger 2002 Daniel Kahneman, Vernon L. Smith 2001 George A. Akerlof, A. Michael Spence,
? 提供经济变量间相互影响程度的数量估 计
? 探索理论经济的发展
1.3计量经济学的方法论
一、理论模型的设计 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、计量经济学模型成功的三要素
一、理论模型的设计
? 1.理论或假说的陈述 ? 3.建立数学模型 ? 4.建立计量经济学模型
计量经济学的定义
? 是经济的计量学 ? 运用数理统计知识分析经济数据,对构建于
数理经济学基础上的数学模型提供经验支持, 并得出数量结果 ? 以经济理论为指导,用数学建立经济模型的 基础上,应用数理统计推断理论,研究经济 变量之间的影响关系及影响程度的一门科学。
1.2为什么要学习经济计量学
? 验证定性描述的经济理论命题与假说的 工具(对经济理论给出经验解释)
第一章绪论
计量经济学的特 征(研究范围)
《计量经济学》
?
《Econometrics》
?Hale Waihona Puke 《经济计量学》1.1计量经济学
△ 经济学的一个分支学科 ○1926年挪威经济学家 R.Frish提出Econometrics ○ 1930年成立世界计量经济学会 ○ 1933年创刊《 Econometrica 》 ○ 20世纪40、50年代的大发展和 60年代的扩张 ○ 20世纪80年代以来非经典(现代)计量经济学 的发展