习题一真空中的静电场习题详解

合集下载

3-1电磁-真空中的静电场 大学物理作业习题解答

3-1电磁-真空中的静电场 大学物理作业习题解答

dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯

r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8

真空中的静电场(1、3)习题难点讲解

真空中的静电场(1、3)习题难点讲解

若球内无空腔,P点的电场为
E1

3 0
r
若空腔内填满体电荷密度为 的电荷,当
其单独存在时,P点的电场为
由电场叠加原理,得
E2


3 0
r
E

E1

E2

3 0
r

r

3 0
a
6.
en E2
h
E1
en
S E dS E1S E2S
(E1 E2 )S
dE 4 0a2 4 0a
dq dl rd sin
dE
1
40r 2

rd sin

d 40r sin
d

4 0a
指向 dq
指向 dq
这一对线元在O点的元 场强等值反向,相互抵 消。故所有电荷在O点 产生的场强为零。
4. 电荷密度为 Ar 的球体的电场
r
dl
R cos 2 R2 sind

40 R3
sin cosd

2 0
dS x d
O
R
E dE

2 sin cosd
2 0 0


1
sin2
2


20 2
0 4 0
3. 两根平行长直线间距为2a一端用半圆形线连起来。全线上均匀 带电。证明在圆心O处的电场强度为零。
0 20a
E2 y

4 0a
(sin 2
sin1 )
1


2
, 2




E2 y 4 0a E2 2 0a

大学物理第6章真空中的静电场课后习题及答案

大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。

试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。

3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。

求该直线段受到的电场⼒。

解:先求均匀带电圆环在其轴线上产⽣的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。

+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。

在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。

电场习题及答案

电场习题及答案

真空静电场(一)一.选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度 [ ](A ) 处处为零 (B )不一定都为零 (C )处处不为零 (D )无法判断2. 设有一“无限大”均匀带负电荷的平面,取X 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标X 变化的关系曲线为(规定场强方向沿X 轴方向为正,反之为负) []3. 下面列出的真空中静电场的场强公式,其中哪个是正确的? [ ](A ) 点电荷Q 的电场: 204QE r πε=(B ) 无限长均匀带电直线(线密度λ)的电场: 302E r rλπε= (C ) 无限大均匀带电平面(面密度σ)的电场:02E σε= (D ) 半径为R 的均匀带电球面(面密度σ)外的电场:230R E r r σε= 4. 将一个试验电荷Q (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F 。

若考虑到电量Q 不是足够小,则 [ ](A) F/Q 比P 点处原先的场强数值大(B) F/Q 比P 点处原先的场强数值小(C) F/Q 与P 处原先的场强数值相等(D) F/Q 与P 处原先的场强数值关系无法确定。

5. 根据高斯定理的数学表达式0s q E dS ε=∑⎰可知下列各种说法中,正确的是 [ ] (A ) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零(B ) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零(C ) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零(D ) 闭合面上各点场强均为零时,闭合面内一定处处无电荷6. 当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心处产生的电场强度E 和电势U 将 [ ](A )E 不变,U 不变; (B )E 不变,U 改变;(C )E 改变,U 不变 (D ) E 改变,U 也改变7. 在匀强电场中,将一负电荷从A 移至B ,如图所示,则: [ ](A ) 电场力作正功,负电荷的电势能减少(B ) 电场力作正功,负电荷的电势能增加(C ) 电场力作负功,负电荷的电势能减少(D ) 电场力作负功,负电荷的电势能增加8. 真空中平行放置两块大金属平板,板面积均为S ,板间距离为d ,(d 远小于板面线度),板上分别带电量+Q 和-Q ,则两板间相互作用力为 [ ](A )2204Q d πε (B )220Q S ε (C )2205k Q S ε+ (D )2202Q S ε 二.填空题1 带有N 个电子的一个油滴,其质量为m ,电子的电量的大小为e ,在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为________________,大小为____________________。

习题一:真空中的静电场习题详解

习题一:真空中的静电场习题详解

dq = ρ ⋅ 4π r 2 dr
5
第 6 页共 6 页
1 真空中的静电场习题详解
习题册-下-1
dq 在球心处产生的电势为
dU =
dq ρr d r = 4πε 0 r ε0
整个带电球层在球心处产生的电势为
U 0 = ∫ dU 0 =
ρ ε0

R2
R1
rdr =
ρ
2ε 0
(R
2 2
− R12 )
3 a ,由点电荷的电势公式得 2
(D)
Q 。 12 πε 0 a
U=
Q Q = 4 πε 0 r 2 3 πε 0 a
二、填空题 1.真空中两平行的无限长均匀带电直线,电荷线密度分别为
+λ 2d
d d −λ
− λ 和 λ ,点P1和P2与两带电线共面,位置如图,取向右为坐
标正方向,则P1和P2两点的场强分别 为 答案: E1 = 和 。
a b r P
a b λ λ λ ln ; (B) E = ,U= ln ; 2πε 0 r 2πε 0 r 2πε 0 r b b λ λ λ ln ; (D) E = ,U= ln 。 2πε 0 a 2 πε 0 r 2πε 0 a
λ
λ ,则 P 点的电势为 2πε 0 r
U = ∫ Edr = ∫ 0dr + ∫
4πε 0 d ( L + d )
q
x O L
dq
(L+d-x) d
P dE
x
解:带电直杆的电荷线密度为 λ = q / L 。设坐标原点
O 在杆的左端,在 x 处取一电荷元 dq = λ dx = qdx / L ,它在 P 点的场强为

题解1-真空中的静电场(已修改)

题解1-真空中的静电场(已修改)

3 2 3 大小: 区:E i i i 2 0 2 0 2 0 2 0 2 区:E i i i 大小: 2 0 2 0 2 0 2 0 2、 E dS Q E 0 S a 0
大小: 2 0
i (i )
杆 0
EP dE
2
i
P
以无穷远处电势为零, P点电势为:
Ld x
U P dU

L
0
(q / L)dx (q / L) L d ln 4 0 ( L d x) 4 0 d 1
2、一电荷面密度为σ 的“无限大”平面,在距离平面 a米远处一点的场强大小的一半是由平面上的一个半径 为R的圆面积范围内的电荷产生的。试求该圆半径的大 小。 解:圆盘在其轴线上P点场强:
根据电势叠加原理,P点处的电势也与电荷在环L上的 分布状况无关,为: dq
UP
4 0 r Nq 4 0 r
L

dq

4 r
0
1
L
R dq
L
r
P

dE
Z
9、C 空间各点处的总场强为:(方法与选择题第5小题 的方法相同)
0 (r R1 ) 2 E Eer er Q1 /(4 0 r ) ( R1 r R2 ) e (Q Q ) /(4 r 2 ) (r R2 ) 2 0 r 1
'
R
dl
R
Rd

d
y
dE
θ位置处的一窄条在轴线上的一点产生的场强为:
' ' dE i sin j cos 2 0 R 2 0 R d d i sin j cos 2 2 2 0 R 2 0 R

7.真空中的静电场 大学物理习题答案

7.真空中的静电场 大学物理习题答案
0
l
xd x
2

k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0

2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为

大学物理第9章《真空中的静电场》习题解答

大学物理第9章《真空中的静电场》习题解答
9-5 一无限长均匀带电细棒被弯成如习题 9-5 图所示的对称形状,试问θ为何值时, 圆心 O 点处的场强为零。 解: 设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场 R 强。 O θ 在圆弧上取一弧元 ds =R dφ 所带的电量为 dq = λds 在圆心处产生的场强的大小为

dE = k
dq λ ds λ = = dϕ 2 2 r 4πε 0 R 4πε 0 R
R1
R2

=
B 点的电势为
ρ ( R22 − R12 ) . 2ε 0


U B = ∫ E ⋅ d l = ∫ Ed r
rB rB
R2
=
rB

3 ρ ( R2 − R13 ) ρ R13 dr (r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2

ρ R13 2 2 = (3 R2 − rB − 2 ) . 6ε 0 rB
4 3 V = π ( R2 − R13 ) 3
包含的电量为 q = ρV 根据高斯定理得可得球壳外的场强为
E=
A 点的电势为
3 q ρ ( R2 − R13 ) ,(R2≦r) = 4πε 0 r 2 3ε 0 r 2


U A = ∫ E ⋅ dl = ∫ Edr
rA rA
3 ρ ( R2 − R13 ) ρ R13 dr = ∫ 0dr + ∫ ( r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2 rA R1
b/2

−σ = ln(b / 2 + a − x ) 2πε 0 =
b/2
−b / 2
σ b ln(1 + ) 2πε 0 a

真空中的静电场(习题课后)22

真空中的静电场(习题课后)22

(真空中的静电场(习题课后作业)(22)1、真空中半径为R 的球体均匀带电,总电量为q ,则球面上一点的电势U=R q 04/πε;球心处的电势U 0=R q 08/3πε 。

(将均匀带电球体微分成球面,利用电势叠加求得结果)2、无限大的均匀带电平面,电荷面密度为σ,P 点与平面的垂直距离为d ,若取平面的电势为零,则P 点的电势Up==-Ed 02/εσd -,若在P 点由静止释放一个电子(其质量为m,电量绝对值为e)则电子到达平面的速率V=0/εσm ed 。

(221mv Ue p=)3.如图,在真空中A 点与B 点间距离为2R,OCD 是以B 点为中心,以R 为半径的半圆路径。

AB两处各放有一点电荷,带电量分别为:+q (A 点)和-q (B 点),则把另一带电量为Q(Q <0)的点电荷从D 点沿路径DCO 移到O 点的过程中,电场力所做的功为=-=)(o D U U Q A R Qq 06/πε-。

4、点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示。

则引入q 前后:( B )(A)曲面S 的电通量不变,曲面上各点场强不变;(B)曲面S 的电通量不变,曲面上各点场强变化;(C)曲面S 的电通量变化,曲面上各点场强不变;(D)曲面S 的电通量变化,曲面上各点场强变化。

5、选择正确答案:( B )(A)高斯定理只在电荷对称分布时才成立。

(B)高斯定理是普遍适用的,但用来计算场强时,要求电荷分布有一定的对称性。

(C)用高斯定理计算高斯面上各点场强时,该场强是高斯面内电荷激发的。

(D)高斯面内电荷为零,则高斯面上的场强必为零。

6、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。

解:利用圆环在其轴线上任一点场强结果2/3220)(4/x R Qx E +=πε任取一细环ρ~ρ+d ρ,ρπρσd dq 2= 2/3220)(4ρπε+=r rdqdE⎰=∞R dE E 222Rr r+=εσ217、真空中一长为L 的均匀带电细直杆,总电量为q ,(1)试求在直杆延长线上距杆的一端距离为a 的p 点的电场强度和电势。

第09章真空中的静电场习题解

第09章真空中的静电场习题解

第9章 真空中的静电场9.1 两个电量都是q +的点电荷分别固定在真空中两点A 、B ,相距2a 。

在它们连线的中垂线上放一个电量为q '的点电荷,q '到A 、B 连线的中点的距离为r 。

求q '所受的静电力,并讨论q '到A 、B 连线的中垂线上哪一点受力最大?若q '在A 、B 的中垂线上某一位置由静止释放,它将如何运动?分别就q '与q 同号和异号两种情况进行讨论。

解: ()12202cos 24qq F F r aαπε'==⨯⨯+()322202qq r r aπε'=+当0dF dr=时,有极值()()()()3222310222222232202302qq r d r a qq r a r r a drr aπεπε⎛⎫'⎪ ⎪ ⎪+'⎡⎤⎝⎭==+-+=⎢⎥⎣⎦+ 即: ()()31222222230r arra+-+=2r ⇒=±受力最大当q 与q '同号沿A B 连线中垂线加速度远离q 直到无穷远。

当q 与q '异号,释放后将以A B 连线的中点为平衡位置,沿A B 连线的中垂线作掁动。

9.7 求半径为R 、带电量为Q 的均匀带电球体内外的场强分布。

解: 高斯定理:0SqE dS ε⋅=∑⎰R r < 33213300413 443rrE r Q Q R Rπππεε⎛⎫⎪⇒==⎪⎪⎝⎭314Rr Q E πε=⇒ 方向沿半径向外R r > 22014E r Q πε⇒⋅=2214rQ E πε=⇒ 方向沿半径向外9.8求半径为R 、面电荷密度为σ的无限长均匀带电圆柱面内外的场强分布。

解: 选取高为h ,同轴封闭圆柱面S,E呈轴对对称分布。

高斯定理:0SqE dS ε⋅=∑⎰214q r R E r πε<=∑=01 0E ⇒= 2122qrh Rh r R Eππσεε==∑>02R rEσε⇒=方向沿半径向外9.9半径分别为1R 和2R (21R R >)的一对无限长共轴圆柱面上均匀带电,沿轴线单位长度的电荷分别为1λ、2λ。

大学物理课后习题答案 真空中的静电场

大学物理课后习题答案 真空中的静电场

第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。

根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。

其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。

3、[D]1、粒子作曲线运动的条件必须存在向心力。

2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。

3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。

4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。

E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。

∑=0q 并不能说明E有任何特定的性质。

8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。

《真空中的静电场》选择题解答与分析

《真空中的静电场》选择题解答与分析

6
进入下一题: 12.5 电场力作功 1. 点电荷-q 位于圆心 O 处,A、B、C、D 为同一圆周上的四点,如图所示.现 将一试验电荷从 A 点分别移动到 B、C、D 各点,则 (A) 从 A 到 B,电场力作功最大. -q A B O (B) 从 A 到 C,电场力作功最大. (C) 从 A 到 D,电场力作功最大. C D (D) 从 A 到各点,电场力作功相等. 答案:(D) 参考解答: 根据静电场力的功与电势差的关系: Aab a q0 E dl q0 (U b U a ) , 点电荷位于圆心 0,则同一圆周上的各点,电势相同。将一试验电荷从 A 点分别 移动到 B、C、D 各点,因为电势差相同,则电场力作功相等。
q (r R) , E 0 (r R) . 4 0 r 2
参考点
E d l 求电势。
U P P E d l P E d r, 当 r > R 时, U P P E d 径向的直线为积分路径,
3
12.3 对称性分布的静电场 1. 图中所示曲线表示某种球对称性静电场的场强大小 E 随 径向距离 r 变化的关系,请指出该电场是由下列哪一种带电 E 体产生的. E 1/ r 2 (A) 半径为 R 的均匀带电球面; (B) 半径为 R 的均匀带电球体; O R r (C) 点电荷; (D) 外半径为 R,内半径为 R / 2 的均匀带电球壳体. 答案:(A) 参考解答: 根据高斯定理,可得均匀带正电球面电场中的场强分布:
答案:(C) 参考解答:
1 n 高斯定理的表达式: S E ds qi . 0 i 1 它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所 包围的电荷电量代数和的 1 / 0 倍。 对高斯定理的理解应注意:高斯定理左端的场强是曲面上的各点的总场强, 它是由全部空间电荷(既包括闭合曲面内的电荷,也包括闭合曲面外的电荷)共同 产生的电场强度的矢量和。高斯定理右端只对闭合曲面内的电荷求和,这说明通 过闭合曲面的电通量只取决于曲面内的电荷。尽管闭合曲面外的电荷对穿过整个 闭合曲面的电通量没有贡献,但对通过闭合曲面上的部分曲面的电通量却是有贡 献的。

大学物理 第十二章 真空中静电场习题解答

大学物理 第十二章   真空中静电场习题解答

第十二章 真空中静电场习题解答(参考)12.6 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s , 在圆心处产生的场强的大小为 2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强. 根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为图12.6RΦe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 13.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`. 在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd ,根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法.(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0,积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明] 球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用高斯定理的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r R rπεπε∞=+⎰⎰230084R rRQQ r R rπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r R πε-=.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强. [解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r , 包含的电量为d q = ρd V = 4πρr 2d r , 在球心处产生的电势为00d d d 4O qU r r r ρπεε==,球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.图12.21(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂。

静电场习题课1

静电场习题课1
2
2.两条无限长平行直导线相距为 0,均匀带有等量异号电荷,电 两条无限长平行直导线相距为r 均匀带有等量异号电荷, 两条无限长平行直导线相距为 .(1) 荷线密度为λ.( )求两导线构成的平面上任一点的电场强度 设该点到其中一线的垂直距离为x);( );(2) (设该点到其中一线的垂直距离为 );( )求每一根导线上 单位长度导线受到另一根导线上电荷作用的电场力. 单位长度导线受到另一根导线上电荷作用的电场力. 分析: 分析 : ( 1 ) 在两导线构成的平面上 任一点的电场强度为两导线单独在 此所激发的电场的叠加. 此所激发的电场的叠加. (2)由F = qE,单位长度导线所受 , 的电场力等于另一根导线在该导线 o 处的电场强度来乘以单位长度导线 所带电的量, 应该注意: 所带电的量,即:F = λE应该注意: 应该注意 式中的电场强度E是除去自身电荷 式中的电场强度 是除去自身电荷 外其它电荷的合电场强度. 外其它电荷的合电场强度.
= r0 λ i 2πε 0 x ( r0 x )
λ
E
E+
λ
p
o
分别表示正, (2)设F+,F-分别表示正,负带电 导线单位长度所受的电场力, 导线单位长度所受的电场力,则有
x
x
r0
λ2 F+ = λE = i 2πε0r0
λ2 F = λE+ = i 2πε0r0
相互作用力大小相等, 相互作用力大小相等,方向相 两导线相互吸引. 反,两导线相互吸引.
b2 x =0 2
2
x=
b , ( 0 ≤ x ≤ b) 2
6
6.在一半径为 的金属球A外面套有一个同心的金属球壳 6.在一半径为R1 =6.0 cm的金属球 外面套有一个同心的金属球壳 在一半径为 的金属球 B.已知球壳 的内,外半径分别为 2 =8.0 cm,R3 =10.0 cm.设 的内, .已知球壳B的内 外半径分别为R , . 带有总电荷Q 球壳B带有总电荷 带有总电荷Q 球A带有总电荷 A= 3.0×10-8C ,球壳 带有总电荷 B= 2.0×10-8C. 带有总电荷 × × . 和球壳B的电势 (l)求球壳 内,外表面上所带的电荷以及球 和球壳 的电势; )求球壳B内 外表面上所带的电荷以及球A和球壳 的电势; 接地然后断开, 接地, 和球壳B (2)将球壳 接地然后断开,再把金属球 接地,求球 和球壳 )将球壳B接地然后断开 再把金属球A接地 求球A和球壳 外表面上所带的电荷以及球A和球壳 的电势. 和球壳B的电势 内,外表面上所带的电荷以及球 和球壳 的电势. 分析:( )根据静电感应和静电平衡 分析:(1) :( 时导体表面电荷分布的规律,电荷Q 时导体表面电荷分布的规律,电荷 A 均匀分布在球A表面 球壳B内表面带 表面, 均匀分布在球 表面,球壳 内表面带 电荷电荷-QA ,

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。

(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。

(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。

(B )通过S 面的电通量不变,P 点的电场强度变化。

(C )通过S 面的电通量改变,P 点的电场强度不变。

(D )通过S 面的电通量改变,P 点的电场强度变化。

6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。

第1章 静电场基本规律 课后习题

第1章 静电场基本规律 课后习题

dq=dx
Ex 40
l l x dx
1 l d l x2
0
(l
x)2 a2 3/2
4 0
( ) 2
0
(l
x)2 a2 3/2
8 0
l d[l x2 a2 ]
0 (l x)2 a2 3/2
l
[ l x 2 a2 ]1/2
[ l x 2 a2 ]1/2 l
a 4 0
2(
3 2
1)a 2
lx
l x2
a2
31 2
2 3 3 2
2( 3 1)a2 2
l
dx
0
l
x2
1
a
2
2
l
lx
l
q
4 0
a
lx
2
a
2
1/
2
0
4 0
a
l2 a2
1/2 4 0a
l2 a2
1/ 2
9.0
109
2.0 10-7 1 (22 12 )1/
1
0
(S)
qi
可得立方体内的电荷为: q 0 1.058.851012 9.291012 (C)
v 总 E 通量的三个无关:
(3) 当R>>L时,该点的场强为:
E y 2 0 R
2 0 R2
L 4R2 L2
L 42 (L / r)2
L
Q
4 0 R 4 0 R
可近似看做点电荷
dE θ
y
M
R
O dx
x
1-11、(附加)电荷以线密度λ均匀分布在长为L的直线段 上。求在棒的延长线,且离棒中心为r 处的电场强度。

大学物理-真空中的静电场习题课和答案解析

大学物理-真空中的静电场习题课和答案解析
真空中的静电场习 题 课
基本要求
1、掌握静电场的电场强度和电势的概念以及电场 强度和电势的叠加原理。
2、掌握静电场强度和电势的积分关系,了解场强 与电势的微分关系,能计算一些简单问题中的 场强和电势。
3、理解静电场的规律:高斯定理和环路定理。掌 握用高斯定理计算场强的条件和方法,并能熟 练应用。
1、基本概念: ① 电场强度矢量
圆环上的电荷分布对环心对称,它在环心处的场强为零。
E
E1
Q
16 0 R2
方向竖直向下。
1、在静电场中,下列说法正确的是:
A)带正电荷的导体,其电势一定是正值。 B)等势面上各点的场强一定相等。
√ C)场强为零处,电势也一定为零。 D)场强相等处,电势梯度矢量一定相等。
四、证明题(10分)
有一带电球壳,内、外半径分别为a 和b ,电荷体密度 ρ = A / r ,
解:先计算细绳上的电荷对中心产生的场强。
3R
选细绳的顶端为坐标原点O。X轴向下为正。
在x 处取一电荷元 dq dx Qdx / 3R
R
它在环心处的场强为:
R/2
dq
Qdx
dE1
4 0 (4R
x)2
12 0R(4R
x)2
整个细绳上的电荷在O点处的场强为:
3R
Qdx
Q
E1 0 12 0R(4R x)2 16 0R2
P
P0
E
d
l
P
微分关系E U
③ 电通量
de E d S
e SE d S
④ 电势能
零点
Wa q0 a E d l q0U a
⑤ 电势差 U U ab U a U b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
2a
x
答案:D
解:由高斯定理知 ΦS = q ε0 。由于面积S1和S2相等且很小,场强可视为均匀。根据场强 叠加原理, E1 = 0, E2 < 0 ,所以 Φ1 = 0, Φ2 > 0 。
3.半径为 R 的均匀带电球体的静电场中各点的电场强度的大小 E 与距球心的距离 r 的关 系曲线为 [ ]
( ) U
=U0
=
ρ 2ε 0
R22 − R12
4.两个带等量异号电荷的均匀带电同心球面,半径分别为 R1 = 0.03 m 和 R2 = 0.10 m 。
已知两者的电势差为 450 V,求内球面上所带的电荷。
答案: 2.14 ×10-9 C 解:设内球上所带电荷为 Q,则两球间的电场强度的大小为
E= Q 4πε 0r2
Rdθ
,则电荷元在中心
O
点产生的场强为
dE0
=
1 4πε 0
dq R2
=
1 4πdEOy = 0 。所以
∫ ∫ ∫ E0 =
dEOx =
dE0
cosθ
=
2
π 0
2
Q 2π 2ε0 R2
cosθ dθ
=
Q π 2ε0R2
(sinθ ) π / 2 0
=
π
Q 2ε 0 R2



答案:
E1
=
λ πε 0 d
ir

E2
=

λ 3πε 0 d
ir

2
−λ
d P2 x
第 3 页共 3 页
1 真空中的静电场习题详解
习题册-下-1
解:无限长均匀带电直线,在空间某点产生的场强 E = λ ,方向垂直于带电直线沿径 2πε 0 a
向向外( λ > 0 )。式中 a 为该点到带电直线的距离。
(B) −QΔL ir, −Q ; 8π 2ε0R2L 4πε0R
(C)
QΔL
r i,
Q

(D)
−QΔL
r i,
−QΔL

O
x
4πε0R2L 4πε0R
4πε0R2L 4πε0RL
答案:A
解:闭合圆环中心场强为 0,则圆弧产生的场强与空隙在圆心处产生的场强之和为 0。由
于空隙 Δl 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为 −QΔL / L ,
由场强叠加原理,P1,P2点的场强为两直线产生的场强的矢量和。在P1点,两场强
方向相同,均沿x轴正向;在P2点,两场强方向相反,所以
E1
=
λ 2πε 0 d
ir
+
λ 2πε 0 d
ir
=
λ πε 0 d
ir

E2
=
λ 2πε0 × 3d
ir

λ 2πε 0 d
ir
=

λ 3πε 0 d
ir
2.一半径为 R,长为 L 的均匀带电圆柱面,其单位长度带有λ。在带电圆柱的中垂面上 有一点 P,它到轴线距离为 r(r > R) ,则 P 点的电场强度的大小:当 r << L 时, E = _____________;当 r >> L 时, E = _____________。
方向沿 − x 方向,即水平向左。
3.图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径 为R1,外表面半径为R2。设无穷远处为电势零点,求该带电系统的场 强分布和空腔内任一点的电势。 答案:
R1 O
R2
(1) E1 = 0
(r
<
R1 )

E2
=
ρ (r3 − R13 ) 3ε0r 2
(R1 < r < R2 ) ,
(r < R)
时, U r
=
q1 4πε 0 r
+
q2 4πε 0 r2
。令 U r
=
0 ,得 r
= 10cm 。
5.已知某静电场的电势分布为U = 8x + 12x2 y − 20 y2 ,则场强分布
r E
=
_______________________________________。
( ) 答案:
−− −Q −


− + + dq
R

dl+ +
+Q
+
小为多少?方向如何?

θ
+
rO
x
dEo
y
4
第 5 页共 5 页
1 真空中的静电场习题详解
习题册-下-1
答案: Q ,方向水平向左。 π 2ε0R2
解:本题运用点电荷公式对电荷连续分布的带电体在空间产生的电场进行计算。
如图所示,取电荷元
dq
=
2Q πR
(C) E = 0, U = λ ln b ; 2πε0 a
答案:C
(B) E = λ , U = λ ln b ;
2πε 0 r
2πε0 r
(D) E = λ , U = λ ln b 。
2πε 0 r
2πε0 a
a
b
rP λ
解:由高斯定理知内圆柱面里面各点 E=0,两圆柱面之间 E = λ ,则 P 点的电势为 2πε 0 r
产生的场强为
QΔL 4πε 0 R 2 L
ir
,所以圆弧产生的场强为
r EO
=
−QΔL 4πε 0 R 2 L
ir
;又根据电势叠加原理
可得 U O
=
−Q 4πε 0 R
. 2.有两个电荷都是+q的点电荷,相距为 2a。今以左边的点电荷所在处为球心,以a为半
径作一球形高斯面。在球面上取两块相等的小面积S1和S2,其位置如图所示。设通过S1和
S2的电场强度通量分别为 Φ1 和 Φ2 ,通过整个球面的电场强度通量为 ΦS ,则[ ]
(A) Φ1 > Φ2 , ΦS = q / ε0 ; (B) Φ1 < Φ2 , ΦS = 2q / ε0 ;
S2
q S1 q
(C) Φ1 = Φ2 , ΦS = q / ε0 ; (D) Φ1 < Φ2 , ΦS = q / ε0 。
( R1 < r < R2 )
两球的电势差
∫ ∫ U12 =
R2 E d r = Q
R1
4πε 0
R2 R1
dr r2
=
Q 4πε 0
⎛ ⎜ ⎝
1 R1

1 R2
⎞ ⎟ ⎠
所以
Q = 4πε0 R1R2U12 = 2.14 ×10-9 C R2 − R1
5.一平面圆环,内外半径分别为R1,R2,均匀带电且电荷面密度为 +σ 。(1)求圆环轴
=
q 4πε0 3l
+
−q 4πε 0l
=
−q 6πε 0l

UO
=
q 4πε 0l
+
−q 4πε 0l
=
0

A
=
Q(U
O
−U
D
)
=

⎛ ⎜ ⎝
0

−q 6πε 0l
⎞ ⎟ ⎠
=
q 6πε 0l
(2)
A′
=
Q′(U D
−U∞ )
=
−1×
⎛ ⎜ ⎝
−q 6πε 0l

⎞ 0⎟

=
q 6πε 0l
4.如图所示,两同心带电球面,内球面半径为 r1 = 5cm ,带电荷 q1 = 3×10−8 C ;外球面半径为 r2 = 20cm , 带电荷 q2 = −6 ×10−8 C 。
C
正电荷从 O 点沿 OCD 移到 D 点,则电场力所做的功为
______________;把单位负电荷从 D 点沿 AB 延长线移 + q
到无穷远,电场力所做的功为_______________。
AO
答案: q ; q 。
2l
6πε0l 6πε 0l
−q
B
D
l
解:电场力做功与路径无关。
(1)U D
r E
=
( −8

24xy
)
ir
+
−12x2 + 40 y
rj
解:电场强度与电势梯度的关系为
r E
=

∂U
iv − ∂U
vj − ∂U
v k
。由此可求得
∂x ∂y ∂z
( ) r
E
=
(
−8

24 xy )
ir
+
−12x2 + 40 y
rj
三、计算题
1.如图所示,真空中一长为 L 的均匀带电细直杆,总电荷为 q,试求在直杆延长线上距
答案: λ ; λL 。 2πε0r 4πε0r2
解:当 r << L 时,带电体可视为无限长均匀带电圆柱面;当 r >> L 时,带电体可视为点 电荷。
3.如图,A 点与 B 点间距离为 2l,OCD 是以 B 为中心,以 l 为半径的半圆路径。 A、B
两处各放有一点电荷,电量分别为+q 和-q。若把单位
,所以选(B)。 (r > R)
4.如图所示,一半径为 a 的“无限长”圆柱面上均匀带电,其电荷线密度为 。在它外面
同轴地套一半径为 b 的薄金属圆筒,圆筒原先不带电,但与地连接。设地的电势为零,
相关文档
最新文档