四边形中的动点问题(带答案)
四边形动点问题
四边形动点问题1、四边形ABCD 中,∠DAB=60°,AB=5,BC=3,点P 从起点D 出发,沿DC 、CB 向终点B 匀速运动,设点P 所走过的路程为x ,点P 所经过的线段与线段AD 、AP 所围成图形面积为y ,y 随x 的变化而变化,在下列图像中,能正确所映y 与x 的函数关系式的是( )2、已知,如图1,矩形ABCD 的两条边在坐标轴上,点D 与原点重合,对角线BD 所在直线的函数关系式为y=3/4x ,AD=8,矩形BCD 沿DB 方向以每秒1个单位长度运动,同时点P 从点A 出发做匀速运动,沿矩形ABCD 的边经过点B 到达点C ,用了14秒。
(1) 球矩形ABCD 的周长.(2) 如图2,图形运动到第5秒时,求点P 的坐标(3) 设矩形运动的时间为t ,当0≤t ≤6时,点P 所经过的路线时一条线段,请求出线段所在直线的函数关系式.3、已知,如图,在等腰三角形ABCD 中,AB ∥DC ,AB=8cm ,CD=2cm ,AD=6cm 。
点P 从点A 出发,以2cm/s 的速度沿AB 向终点A 运动(P 、Q 两点中,有一个点运动到终点时,所有运动即终止).设P 、Q 同时出发并运动了t 秒,当PQ 将梯形ABCD 分成两个直角梯形时,求t 的值。
4.如图,在平面直角坐标系中,O 时原点,A 、B 、C 三点的坐标分别为A (18,0)、B (18,6)、C (8,6),四边形OABC 时梯形,点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位长度,点Q 沿OC 。
CB 向终点运动,当着两点中有一点到达自己的终点时,另一点也停止运动。
设从出发起运动了运动了t 秒,如果点Q 的速度为每秒2个单位长度,试写出点Q 的坐标,并写出此时t 的取值范围 .5.已知,如图,在矩形ABCD 中,AB=1/3AD=3cm ,点Q 从A 点出发,以1cm/s 的速度沿AD 向终点D 运动,点P 从点C 出发,以1cm/s 的速度沿CB 向终点运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t 秒。
二次函数与四边形动点问题(含答案)
72x =B(0,4) A(6,0)E FxyO二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E的坐标;若不存在,请说明理由.A练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O2l 1lx y二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线Px …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.B CPO D QA BPCO DQ Ay32 1 O1 2 x三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.图2OC A Bxy DPE F 图1FE PD y xBA C O例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,xN MQ PHGFEDCBA图11QPN M HGFED CBA图10若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F,分别是1234(1,0),(3,0),(4(4F F F F - 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式27(2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725(326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264(2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--.又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+). (2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的5-4-3-2- 1-1 2 3 4554 3 2 1 AEBC '1- O 2l1lxy对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是 2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。
四边形之动点问题(习题及答案)
四边形之动点问题(习题)➢例题示范例1:如图,直线y = 3x +6 与x 轴、y 轴分别交于点A,B,与直线y =- 3x 交于点C.动点E 从点B 出发,以每秒1 个单位长3度的速度沿BO 方向向终点O 运动,动点F 从原点O 同时出发,以每秒1 个单位长度的速度沿折线OC-CB 向终点B 运动,当其中一点停止时,另一点也随之停止.设点F 运动的时间为t(秒).(1)求点C 的坐标;(2)当3 ≤t ≤6 时,若△BEF 是等腰三角形,求t 的值.13 ⎪ 【思路分析】 1.研究背景图形 由直线表达式 y =3x + 6 , y = - 3x ,可知两直线垂直,3且 OA = 2 3,OB = 6,∠ABO = 30 o , 得到∠COB = 60o ,OC = 3,BC = 3 ;C ⎛ - 3 3 3 ⎫ 同时,联立直线表达式可知, ⎝ 如图,, . 2 2 ⎭2.分析运动过程,分段,定范围①分析运动过程:动点 E 和 F 运动的起点,终点,速度;状态转折点;时间范围;所求目标.根据状态转折点 C 对运动过程进行分段,确定每段对应的时间范围分别为0 ≤ t < 3 和 3 ≤ t ≤ 6 .如图,②分段之后可知,当3 ≤ t ≤ 6 时,点 F 在线段 BC 上;分析 △BEF ,B 是定点,E ,F 是动点.若使△BEF 是等腰三角形, 需要分三种情况考虑:BE =BF ,BE =EF ,BF =EF .3 3 2 2 ⎭⎝ 3 ⎫ 3 3 ⎛ ∴ C - , ⎪3(1)∵直线 y = 3x + 6 与直线 y = -3x 交于点 C 3.分析几何特征、表达、设计方案求解 ①当 BE =BF 时,画出符合题意的图形从动点的运动开始表达,可得 BE =t , BF = 3 + 3 到 t 值. - t ,根据 BE =BF 即可得 此时, t =3 + 3 32②当 BE =EF 时,画出符合题意的图形;从动点的运动开始表达,可得 BE =t ,BF = 3 + 3 - t ,根据 BE =EF 且∠OBA =30°,利用等腰三角形三线合一,过点 E 作 EN ⊥BC 于点 N ,在Rt △BEN 中建立等式即可得到 t 值. 此时,t =3③当 BF =EF 时,画出符合题意的图形;从动点的运动开始表达,可 得 BE =t , BF = 3 + 3 - t , 根据 BF =EF ,且∠OBA =30°,利用等腰三角形三线合一,过点 F 作 FM ⊥ BO 于点 M ,在 Rt △BFM 中建立等式即可得到 t 值. 此时, t = 3【过程书写】3 3(2)当3 ≤t ≤6 时,点F 在线段BC 上,若使△BEF 是等腰三角形,分三种情况考虑:①当BE=BF 时,如图,由题意得,BE=t,BF = 3 + 3 3 -t∴t = 3 + 3 3 -t∴t =3 + 323,符合题意②当BE=EF 时,如图,过点E 作EN⊥BC 于点N ∴BN=NF∵BF = 3 + 3 3 -t∴BN =3 + 3∵BE =t3 + 3 3 -t 3 -t2∴ 2 =t32解得,t=3,符合题意③当BF=EF 时,如图,过点F 作FM⊥BE 于点M ∴BM=ME∵BE=t∴ BM =t2∵BF = 3 + 3 3 -tt∴ 23=3 + 3 3 -t2解得,t = 3 3 ,符合题意综上,若△BEF 是等腰三角形,则t 的值为3 + 3 3,3 或3 3 2➢巩固练习1.如图,在直角梯形ABCD 中,AD∥BC,∠ABC=90°,AD=4,DC=6,BC=7,梯形的高为3 3 .动点M 从点B 出发,沿BC 以每秒1 个单位长度的速度向终点C 运动,动点N 从点C 出发,沿C—D—A 以每秒2 个单位长度的速度向终点A 运动.M,N 两点同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t 秒(t >0).(1)用t 表示△CMN 的面积S;(2)当t 为何值时,四边形ABMN 为矩形?(3)当t 为何值时,四边形CDNM 为平行四边形?2.如图,在直角梯形ABCD 中,∠B=90°,AD∥BC,AD=4 cm,BC=9 cm,CD=10 cm.动点P 从点A 出发,以2 cm/s 的速度沿折线AD-DC 向点C 运动;动点Q 从点C 同时出发,以1 cm/s 的速度沿CB 向点B 运动.当点P 到达点C 时,动点Q 随之停止,设运动的时间为t 秒.(1)当t 为何值时,四边形PQCD 是平行四边形?(2)当t 为何值时,PQ⊥DC?3. 如图1,在Rt△ABC 中,∠C=90°,∠A=60°,AB=12cm.点P 从点A 出发,沿AB 以2cm/s 的速度向点B 运动,点Q 从点C 同时出发,沿CA 以1cm/s 的速度向点A 运动.设运动的时间为t 秒(0 <t < 6 ).(1)直接写出线段AP,AQ 的长(用含t 的代数式表示):AP= ,AQ= ;(2)如图2,连接PC,把△PQC 沿QC 翻折,得到四边形PQP'C,则四边形PQP'C 能否成为菱形?若能,求出相应的t 值;若不能,请说明理由.(3)当t 为何值时,△APQ 是等腰三角形?图1图2备用图➢思考小结1.什么是动点问题?由速度已知的点的运动产生的几何问题称为动点问题.2.我们一般怎样处理动点问题?首先,研究背景图形.把函数信息(坐标或解析式)转化为背景图形的信息其次,分析运动过程,分段、定范围.分析运动过程常借助运动状态分析图:①起点、终点、速度——确定时间范围②状态转折点——决定分段③所求目标——明确方向最后,分析几何特征、表达、设计方案求解.分段画图、表达相关线段长,列方程求解,回归范围进行验证.3.线段长的表达,需要注意的两点是什么?①路程即线段长,可根据s=vt 直接表达已走路程或未走路程;②根据研究几何特征的需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【参考答案】⎧- 3t 2 + 7 3 t (0 < t ≤ 3) 1⎪ 2 2 .(1) S = ⎨⎪- 3 3 t + 21 3(3 < t ≤ 5) ⎪⎩ 2 2 (2) t = 103 (3) t = 133 2.(1) t = 43 (2) t = 2853.(1)2t ,6-t (2)能,相应的 t 值为 4 (3)t =2。
四边形中的动态问题(动点)
四边形中的动态问题图形中的点、线的运动,构成了数学中的一个新问题——动态几何。
它通常分为三种类型:动点问题、动线问题、动形问题。
在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。
例1、Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上。
令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动,直到C点与N点重合为止。
设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,求y与x之间的函数关系式?例练、菱形OABC的边长为4cm,∠AOC=600,动点P从O出发,以每秒1cm的速度沿O-A-B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1cm的速度运动,在AB上以每秒2cm的速度沿O-A--B运动,过P、Q两点分别作对角线AC的平行线,设P点运动的时间为x秒,这两条平行线在菱形上截出的图形的周长为ycm,问当x为多少时,周长y可能为一个定值,定值为多少?四边形动点问题(一)1.(1)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.2.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?3. 如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.4. 如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t= 时,四边形MNCD是平行四边形.(2)当t= 时,四边形MNCD是等腰梯形6.如图,在ΔABC中,D是BC的中点,BC=10㎝,AD=7㎝,从点A沿着A→D的方向运动,速度是每秒2㎝,连结CE,BE,过点B作BF∥CE,交射线AD于点F,设运动时间为t秒(0<t<3.5)(1)求证:ΔBDF≌ΔCDE(2)当t为何值时,四边形BFCE是矩形,说明理由(3)若四边形BFCE是矩形,当AB和CA满足什么条件时,四边形BFCE是正方形。
四边形中的动点问题
四边形中的动点问题动点问题是初中数学中常见的问题之一。
这种问题涉及到一些物体或点在平面或空间中的运动轨迹,从而引发一系列有趣的问题。
本文将重点讨论四边形中的动点问题。
一、定义四边形是一个拥有四个端点并且每个端点有两条相邻的边相连的图形。
在四边形中,如果一些点在边界或内部移动,我们称这些点是动点。
二、基本问题四边形中的动点问题主要有三个基本问题:1. 四边形内任取一个动点,这个点的移动轨迹是什么?2. 四边形内任取两个动点,它们的运动是否有任何联系?3. 四边形内任取三个动点,它们是否存在特殊的位置关系?三、解决方法1. 关于第一个问题,我们可以采用向量法、坐标法、三角函数法等不同的方式来解决。
其中最常用的方法是向量法,即用向量表示动点在平面内的位置,并利用向量的加减法来求得动点的移动轨迹。
比如,对于任意一边AB,在边AB上取一点C,设动点P的向量表示为向量a,向量AC表示为向量b,则P点在AC向量上的投影可以表示为向量b’。
而向量a’可以表示为由向量b’平移而来的向量,其中平移的大小和方向取决于向量b和a之间的夹角。
2. 第二个问题比较复杂,需要利用向量叉乘、双曲线函数等高深的数学知识来解决。
一般来说,我们需要找到两个动点之间的代数关系式,再根据这个关系式来判断它们是否有联系。
比如,如果我们发现两个动点在一条直线上运动,则它们存在一定的约束条件,这个约束条件可以用向量叉乘来表达。
3. 第三个问题则是考验计算几何能力的问题。
一般来说,我们需要找到一种不变量来描述三个动点之间的特殊位置关系。
比如,如果我们发现这三个动点共线,则我们可以通过向量叉乘或线性方程组来计算它们的位置关系。
如果我们发现这三个点可以构成一个三角形,则我们可以通过三角形的几何性质来判断它们的位置关系。
如果我们发现这三个动点可以构成一个正方形或者矩形,则我们可以通过它们的对角线、边长、面积等几何参数来计算它们的位置关系。
四、典型例题1. 在正方形ABCD中,点E、F分别在边AB、CD上,且AE=CF。
四边形中的动点问题(带答案)
四边形中的动点问题(带答案)四边形中的动点问题1、如图,把矩形ABCD沿 EF翻折,点B恰好落在AD边的B'处,若AE= 2, DE= 6,Z EFB= 60°, 则矩形ABCD勺面积是 _____________________2、如图,在四边形ABCD中对角线ACL BD 垂足为0,点E, F, G, H分别为边AD AB, BC CD 的中点•若AC= 8, BD= 6,则四边形EFGH的面积为3、如图,正方形ABCD勺边长为4,点P在DC 边上,且DP= 1,点Q是AC上一动点,则D® PQ 的最小值为 _____________________4、如图,在Rt△ ABC中,/ B= 90°,AC= 60 cm Z A= 60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D, E 运动的时间是t s(0 < t < 15) •过点D作DF 丄BC于点F,连接DE EF.(1)求证:AE= DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△ DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm射线AG// BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF当EF经过AC边的中点D时,(1)求证:△ ADE^A CDF:6、在菱形ABCD中,/ B=60°,点E在射线BC上运动,/ EAF=60,点F在射线CD上(1)当点E在线段BC上时(如图1)( 1)求证:EC+CF=A; (2) 当点E在BC的延长线上时(如图2),线段EC CFAB有怎样的相等关系?写出你的猜想,不需证明图1 027、如图,在菱形ABC[中, AB=2 / DAB=60 , 点E 是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N 连接MD AN(1)求证:四边形AMDI是平行四边形;(2)填空:①当AM的值为时,四边形AMD是矩形;②当AM的值为时,四边形AMD是菱形.D8 如图,△ ABC中,点0是边AC上一个动点,过0作直线MN BC 设MN交/ BCA的平分线于点E, 交/ BCA 的外角平分线于点F.(1)探究:线段0E与OF的数量关系并加以证明;(2)当点0运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形?(3)当点0在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABC[中, / ABC=60 , AB=8 过线段BD上的一个动点P (不与B、D重合)分别向直线AB AD作垂线,垂足分别为E、F.(1)BD的长是______ ;(2)连接PC当PE+PF+P(取得最小值时,此时PB的长是_______10、如图,/ MON=9°,矩形ABCD勺顶点A B 分别在边OM ON上,当B在边ON上运动时,A随之在OMk运动,矩形ABCD勺形状保持不变,其中AB=2 BC=1运动过程中,点D到点O的最大距离为 __________________ .11、如图,已知矩形ABCD AD=4 CD=10 P是AB上一动点,M N E分别是PD PC CD的中点.(1)求证:四边形PMEI是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEf有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm AC=16cm AC BD相交于点0,若E, F 是AC上两动点,分别从A, C两点以相同的速度向C、A 运动,其速度为0.5cm/s。
四边形中的动点问题(带答案)
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。
四边形动点问题及难题
四边形动点问题1如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒, 求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);2.已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;3、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.A B D C O P x y C P Q B A M N。
四边形中的动点问题
1、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC 边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.2、如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).(1)当t=0.5时,求线段QM的长;(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值?若是,试求这个定值;若不是,请说明理由.3、在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处(如图1),绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.(1)探究:在图2中,线段AE与CF之间有怎样的大小关系?试证明你的结论;(2)若将直角三角尺45°角的顶点放在斜边BC边的中点O处(如图3),绕O点顺时针方向旋转,其他条件不变.①试写出y与x的函数解析式,以及x的取值范围;②将三角尺绕O点旋转(如图4)的过程中,△OEF 是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.4、如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积;②当线段BP的长为何值时,△PQR与△BOC相似.。
2023年中考九年级数学高频考点提升练习--四边形的动点(含答案)
2023年中考九年级数学高频考点提升练习--四边形的动点1.如图,在四边形ABCD中,AD//BC,∠C=90°,BC=16,DC= 12,AD=21,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动;动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动;点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t秒).(1)当t=2时,求△BPQ的面积;(2)若四边形ABQP为平行四边形,求运动时间t.(3)当t为何值时,以B、P、Q为顶点的三角形是等腰三角形?2.已知:正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在的直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图1,当点P在对角线AC上时,请你猜想PE与PB有怎样的数量关系,并加以证明;(2)如图2,当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,当点P运动到CA的反向延长线上时,请你利用图3画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)3.如图1,在矩形ABCD中,AD=4,CD=2,点M从点A出发向点D移动,速度为每秒1个单位长度,点N从点C出发向点D移动,速度为每秒2个单位长度.两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.(1)若两点的运动时间为t,当t为何值时,ΔAMB∼ΔDNA?(2)在(1)的情况下,猜想AN与BM的位置关系并证明你的结论.(3)①如图2,当AB=CD=2时,其他条件不变,若(2)中的结论仍成立,则t=.2)中的结论仍成立,则②当ADAB=n(n>1),AB=2时,其他条件不变,若(t=(用含n的代数式表示).4.如图1,正方形ABCD的对角线相交于点O,延长OD到点G,延长OC到点E,使OG=2OD,OE=2OC,以OG,OE为临边做正方形OEFG,连接AG,DE.(1)探究AG与DE的位置关系与数量关系,并证明;(2)固定正方形ABCD,以点O为旋转中心,将图1中的方形OEFG逆时针转n°(0<n<180)得到正方形OE1F1G1,如图2,①在旋转过程中,当∠OAG1=90°时,求n的值;②在旋转过程中,设点E1到直线AG1的距离为d,若正方形ABCD的边长为1,请直接写出d的最大值与最小值,不必说明理由.5.如图,四边形ABCD中,∠A=∠B=90°,AB=AD,BC=7cm,点P,Q同时从点B出发,点P以2cm/s的速度沿B→A→D运动,到点D停止,点Q以3cm/s的速度沿B→C→D运动,到点D停止.设点P的运动时间为t(s),∠PBQ的面积为S(cm2).当点Q到达点C时,点P在AD上,此时S=14(cm2).(1)求CD的长;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.6.如图(1)(问题发现)如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)(拓展探究)如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)(解决问题)如图③,∠ABC和∠ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).7.在矩形ABCD中,AB = 6,AD = 4,点M为AB边上一个动点,连接DM,过点M作MN∠DM,且MN = 32DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:∠ABD∠∠MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.8.正方形ABCD在平面直角坐标系中的位置如图所示,AD//BC//x轴,AD与y轴交于点E,OE=1,且AE,DE的长满足√AE−3+|DE−1|=0.(1)求点A的坐标;(2)若P(−4,−1),求△EPC的面积;(3)在(2)的条件下,正方形ABCD的边上是否存在点M,使S△EPC=2S△CEM?若存在,请直接写出点M的坐标;若不存在,请说明理由.9.已知,如图1,在四边形ABCD中,AD//BC,∠BCD=90°,AD=CD=6,tanB=3,动点P从B出发,以每秒1个单位长度的速度沿BC方向运动,过点P作PE∠BC,交折线BA-AD于点E,以PE为斜边向右作等腰直角三角形PEF,设点P的运动时间为t 秒(t>0)(1)当t为何值时,点F恰好落在CD上?(2)若P与C重合时运动结束,在整个运动过程中,设等腰直角三角形PEF与四边形ABCD重叠部分的面积为S,请求S关于t之间的函数关系式;(3)当F在CD右侧时,是否存在某一时刻,使得重叠部分的面积S与四边形ABCD重叠部分的面积比为1:8?若存在,求出t的值;若不存在,请说明理由;(4)如图2,在点P开始运动时,BC上另一点Q同时从点C出发,以每秒2个单位长度的速度沿CB方向运动,当Q到达B点时停止运动,同时点P也停止运动,过点Q作QM∠BC,交射线CA于点M,以QM为斜边向左作等腰直角三角形QMN,若两个等腰直角三角形分别有一条边恰好在一条直线上,请直接写出t的值.10.如图,在四边形ABCD中,AB// DC,CB∠AB.AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s。
四边形中的动点问题
例5、如图,直角梯形OABC中,AB∥OC,O为坐标原点, 点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2, 2√3 ),∠BCO=60°,OH⊥BC于点H.动点P从点H出发, 沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P运 动的时间为t秒.
APQD是平行四边形.
(1)求a的值; (2)线段PQ是否可能平分对角线BD?若能,求t的值, 若不能,请说明理由;
(3)若在某一时刻点P恰好在DQ的垂直平分线上,求此 时t的值.
例3.在梯形ABCD中, AD∥BC,AB=AD=CD=5cm,BC=11cm,点P从 点D开始沿DA边以每秒1cm的速度移动,点Q从点B开始沿BC边以每 秒2cm的速度移动(当点P到达点A时,点P与点Q同时停止移动), 假设点P移动的时间为x(秒),四边形ABQP的面积为y(cm2). (1)求y关于x的函数解析式,并写出x的取值范围; (2)在移动的过程中,求四边形ABQP的面积与四边形QCDP的面 积相等时x的值; (3)在移动的过程中,是否存在x使得PQ=AB,若存在求出所有x的 值,若不存在请说明理由.
(1)求OH的长; (2)若△OPQ的面积为S,求S与t之间的函数关系式. (3)设PQ与OB交于点M.当t为何值时,△OPM为等腰三 角形?y
A
B
QM
H
P
O
Cx
例7、如图,在平面直角坐标系中,直线y=- x+b(b>0)分别交x轴、 y轴于A、B两点,以OA、OB为边作矩形OACB,D为BC的中点.以M(4, 0)、N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限, 设矩形OACB与△PMN重叠部分的面积为S. (1)求点P的坐标; (2)求S与b的函数关系式; (3)若在直线y=- x+b(b>0)上存在点Q,使∠OQM=90°,求b的 取值范围;
平行四边形中的动点问题含答案
平⾏四边形中的动点问题含答案平⾏四边形中的动点问题⼀、新课导⼊(⼀)学习⽬标学会运⽤数形结合思想,能根据题意结合平⾏四边形的性质、判定列出⽅程,进⾏相关的计算或证明,解决有关平⾏四边形中的动点问题.(⼆)预习导⼊1.在四边形ABCD中,AB∥CD,请添加⼀个条件:_____________,使得四边形ABCD 是平⾏四边形.2.如图,边长为4的正⽅形ABCD中,动点Q以每秒4个单位的速度从点A出发沿正⽅形的边AD-DC-CB⽅向做折线运动,设点Q的运动时间为t秒.当点Q在DC上运动时,DQ=________,QC=________(⽤含t的代数式表⽰).⼆、典型问题知识点:平⾏四边形中的动点问题例如图,在直⾓坐标系中,点O是坐标原点,四边形OABC是平⾏四边形,∠COA=60°,点A的坐标为(6,0),点B的坐标为(10,43).动点P从点O出发,沿射线OA⽅向以每秒1个单位的速度匀速运动;动点Q同时从点A出发,到达点B之后,继续沿射线BC 运动,以每秒2个单位的速度匀速运动,设点P运动的时间为t秒(t>0).(1)当运动2秒时,求△APQ的⾯积;(2)在整个运动过程中,t为何值时,以A,P,Q,C为顶点的四边形是平⾏四边形?分析:(1)作QE⊥x轴于E,BF⊥x轴于F.求出PA,QE即可解决问题;(2)如当点Q在射线BC上,且CQ=PA时,以A,P,Q,C为顶点的四边形是平⾏四边形,由此构建⽅程即可解决问题.三、阶梯训练A组:基础练习1.在矩形ABCD中,AB=6cm,∠ACB=30°,动点P从A出发沿AC向点C以2cm/s的速度运动,运动经过_______秒时,BP 的长度最⼩,最⼩值为_________.2.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停⽌运动时,点Q也随之停⽌运动,当运动时间t 秒时,以点P,Q,E,D为顶点的四边形是平⾏四边形,则t的值为_________.3.如图,菱形ABCD中,对⾓线AC,BD交于点O,E为AD边上的⼀个动点,AC=AD=6,则OE的最⼩值为__________.4.如图,在?ABCD中,AC=8,BD=12,点E,F在对⾓线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F 从点D出发以相同速度向点B运动,到端点时运动停⽌.运动时间为_______秒时,四边形AECF为矩形.5.在平⾯直⾓坐标系中,矩形ABCD 的边BC ∥x 轴,若A 点的坐标为(-1,22),C 点坐标为(3,-22).若动点P 沿矩形ABCD 的边从A →D →C 的路径运动,运动速度为每秒2个单位,运动时间为t 秒.(1)当t=1时,S △BCP =________,当t=4时,求S △BCP =________;(2)当△BCP 的⾯积是矩形ABCD ⾯积的14时,求点P 的坐标.6.如图,?ABCD 的对⾓线AC ,BD 相交于点O ,AB ⊥AC ,AB=3,BC=5,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连接PO 并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)BQ=__________(⽤含t 的代数式表⽰);(2)当点O 在线段AP 的垂直平分线上时,求t 的值.B组:拓展练习7.如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,P为对⾓线AC上⼀动点,则△PBE的周长的最⼩值为_________.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若H从F点出发,沿线段FE以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,设运动时间为t s.①当t=______时,四边形BPHE是平⾏四边形;②是否存在t的值,使四边形PCFH是菱形?若存在,求出t的值,若不存在,说明理由.平⾏四边形中的动点问题答案⼀、新课导⼊预习导⼊1.AB=CD(答案不唯⼀).2.4t-4,8-4t.例(1)作QE⊥x轴于E,BF⊥x轴于F.∵A(6,0),B(10,43),∴OA=6,OF=10,BF=43.∴AF=10-6=4,AB= 2+ 2=8.当t=2时,OP=2,PA=4,AQ=4.∵四边形OABC是平⾏四边形,∴∠BAF=∠COA=60°.∴∠AQE=30°.∴AE=12AQ=2.∴EQ=23.=12PA?QE=43.∴S△PAQ(2)当点Q在射线BC上,且CQ=PA时,以A,P,Q,C为顶点的四边形是平⾏四边形.∴|14-2t|=|t-6|.解得t=203或8.∴t为203或8时,以A,P,Q,C为顶点的四边形是平⾏四边形.1.32,33cm.2.2或3.5.34.2或10.5.(1)82,8;(2)当点P是CD的中点时,△BCP的⾯积是矩形ABCD⾯积的14,则P点坐标为(3,0).6.(1)5-t;(2)如图,过点O作EF⊥AD交AD,BC于点E,F.Rt△ABC中,∵AB=3,BC=5,∴AC=4.∴AO=CO=2.∵S△ABC=12AB·AC=12BC·EF,∴3×4=5×EF,∴EF=125.∴OE=65.∵OE是AP的垂直平分线,∴AE=12AP=t,∠AEO=90°,由勾股定理得AE2+OE2=AO2,∴(12t)2+(65)2=22.∴t=165.∴当t=165时,点O在线段AP的垂直平分线上.7.3+1.8.(1)证明:∵AB=AC,AD⊥BC,∴D为BC的中点.∵E,F分别为AB,AC的中点,∴DE和DF是△ABC的中位线.∴DE∥AC,DF∥AB.∴四边形AEDF是平⾏四边形.∵E,F分别为AB,AC的中点,AB=AC,∴AE=AF.∴四边形AEDF是菱形.(2)①1;②不存在t的值,使四边形PCFH是菱形.理由如下:∵EF∥BC,∴FH∥PC.若四边形PCFH为菱形,则FH=PC=CF.当FH=PC时,2t=10-3t.解得t=2.∴FH=PC=4.∵AB=AC,AD⊥BC,∴BD=CD=12BC=5.∴AC=AD2+CD2=89.∵F是AC的中点,∴CF=12AC=FH=PC≠CF.∴四边形PCFH是平⾏四边形,不是菱形.∴不存在t的值,使四边形PCFH是菱形.。
四边形简单动点问题
3、四边形中的动点问题例1.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q 从点C 开始沿CB 边向B 以3cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts . (1)当t 为何值时,四边形PQCD 为平行四边形? (2)当t 为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQCD 为直角梯形? 分析:(1)四边形PQCD 为平行四边形时PD=CQ . (2)四边形PQCD 为等腰梯形时QC-PD=2CE . (3)四边形PQCD 为直角梯形时QC-PD=EC .所有的关系式都可用含有t 的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD 平行为四边形∴PD=CQ ∴24-t=3t 解得:t=6即当t=6时,四边形PQCD 平行为四边形.(2)过D 作DE ⊥BC 于E则四边形ABED 为矩形∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD 为等腰梯形∴QC-PD=2CE 即3t-(24-t )=4 解得:t=7(s )即当t=7(s )时,四边形PQCD 为等腰梯形. (3)由题意知:QC-PD=EC 时,四边形PQCD 为直角梯形即3t-(24-t )=2 解得:t=6.5(s )即当t=6.5(s )时,四边形PQCD 为直角梯形.例2.如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ······················ 1分在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒==················ 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ············· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥∴MN DG ∥∴3BG AD ==∴1037GC =-= ·············· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△ ∴CN CM CD CG = ······················ 5分 即10257t t -=解得,5017t = ················· 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t = ······· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:(图①) A D C B K H (图②) A D C B G M NA DC B M N (图③) (图④) AD CB M NH E由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC t c NC t-==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t =···· 8分 解法二:∵90C C DHC NEC =∠=∠=︒∠∠,∴NEC DHC △∽△∴NC ECDC HC=即553t t -=∴258t =···················· 8分 ③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-解得6017t = 解法二:∵90C C MFC DHC =∠=∠=︒∠∠,∴MFC DHC △∽△∴FC MC HC DC = 即1102235tt -=∴6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 · 9分练习1、如图,正方形ABCD 的边长是1cm ,E 为CD 的中点.P 为正方形边上的一个动点,动点P 从A 出发沿A →B→C→E 运动,最终到达点E ,若点P 经过的路程为x cm .(1)当x =1cm 时,求△APE 的面积;(2)若△APE 的面积为31,求x 的值.A D C BE备用图AD CBEP x A D CBE备用图(图⑤) A D C B H N MF2、如图,在长方形ABCD中,AB=4,AD=2.P是AB的中点,点Q从点A出发,以每秒1个单位的速度沿A→D→C→B的方向运动,设Q点运动的时间为x(秒).(1)求AP的长.(2)若△APQ的面积为S(平方单位),用含x的代数式表示S(0<x<8).(3)如果点M与点Q同时从点A出发,点M以每秒3个单位的速度沿A→B→C→D的方向运动;当M、Q两点相遇时,它们同时停止运动.在整个运动过程中,△AQM按角来分类可以是什么三角形,请写出相应x的取值范围.3.如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.(图①) A D C B K H (图②) A D C B G M NA DC B M N (图③) (图④) AD C B M NH E。
四边形动点和最值问题
1. 在平行四边形中,对角线,相交于点,若、是上两动点,、分别从、两点同时以的相同的速度向、运动.(1)四边形是平行四边形吗?说明你的理由.(2)若,,当运动时间为多少时,以、、、为顶点的四边形为矩形.2. 在矩形中,点是对角线的中点,,,、是对角线上的两个动点,分别从、同时出发相向而行,速度均为,运动时间为秒,当其中一个动点到达点后就停止运动.(1)若、分别是、的中点,求证:四边形始终是平行四边形.(2)在的条件下,当为何值时,四边形为矩形.(3)若、分别是折线、上的动点,从出发,从出发,与、以相同的速度同时出发,当为何值时,四边形为菱形.3.如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快________后,四边形成为矩形.4.如图,已知长方形的边长,,点在边上,,如果点从点出发在线段上以的速度向点运动,同时,点在线段上从点到点运动.则当与全等时,时间为________.5.如图,在矩形中,,点和点分别从点和点出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,则最快多少秒后,四边形成为矩形?6. 如图,在菱形中,,.动点、分别从点、同时出发,以的速度向点、运动,连接、,取、的中点、,连接、.设运动的时间为.(1)求证:.(2)当为何值时,四边形为菱形.(3)试探究:是否存在某个时刻,使四边形为矩形,若存在,求出的值,若不存在,请说明理由.7. 如图,在菱形中,,.动点、分别从点、同时出发,以的速度向点、运动,连接、,取、的中点、,连接、.设运动的时间为秒.(1)求证:.(2)当为何值时,四边形为菱形.(3)试探究:是否存在某个时刻,使四边形为矩形.若存在,求出的值;若不存在,请说明理由.8.如图,在矩形中,,,是边上一点,于点,于点,求.9. 在矩形中,,、、、分别从、、、出发沿、、、方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止,已知在相同时间内,若,则,,.(1)以、、、为顶点的四边形能否为等腰梯形?如果能,求的值;如果不能,请说明理由.(2)当为何值时,以,为两边,以矩形的边(或)的一部分为第三边构成一个三角形.(3)当为何值时,以、、、为顶点的四边形是平行四边形.10.如图,直线的解析式为,与轴交于点,与轴交于点,点为线段上的一个动点,作轴于点,轴于点,连接,则线段的最小值为________.11.如图,在矩形ABCD中,,点E是AD上一个动点,把沿BE向矩形内部折叠,当点A的对应点恰好落在的平分线上时,的长为多少?12.如图,在中,,,点从点出发,沿方向以每秒的速度向终点运动;同时,动点从点出发沿方向以每秒的速度向终点运动,将沿翻折,点的对称点为点,设点运动的时间为秒,若四边形为菱形,则的值为________.13.如图,,矩形的顶点、分别在边、上,当在边上运动时,随之在边上运动,矩形的形状保持不变,其中,,求运动过程中,点到点的最大距离.14. 已知,、分别在边,上,当在边上运动时,随之在边上运动,且保持.(1)如图,以为底边向外作等腰,使,、运动过程中三角形的形状保持不变,求在运动过程中,点到点的最大距离.(2)如图,若以为边,向外作矩形,,那么在运动过程中,点到点的最大距离为________.参考答案1.(1)【答案】见解析【解析】四边形是平行四边形.理由:四边形是平行四边形,,,、是上两动点,、分别从、两点同时以的相同的速度向、运动,,,四边形是平行四边形.【知识点】对角线互相平分、对角线互相平分的四边形是平行四边形【来源】2017江苏省苏州市常熟市期中测试下学期261.(2)【答案】见解析【解析】根据题意得:,四边形是平行四边形,当时,四边形为矩形.即或,或,解得:或当运动时间为或时,四边形为矩形.【知识点】对角线相等的平行四边形是矩形、图形与几何分类讨论【来源】2017江苏省苏州市常熟市期中测试下学期262.(1)【答案】见解析【解析】证明:四边形是矩形,,,,,,,,分别是,中点,,,,,,在和中,,,,同理:,四边形始终是平行四边形.【知识点】勾股定理、SAS、对边相等、矩形的定义、两组对边分别相等的四边形是平行四边形【来源】2017浙江省宁波市期中测试下学期252.(2)【答案】见解析【解析】解:由得:,,四边形是平行四边形,,当时,平行四边形是矩形,,解得:.【知识点】矩形的定义、动点问题【来源】2017浙江省宁波市期中测试下学期252.(3)【答案】见解析【解析】解:连接、、,如图所示:四边形为菱形,,,,,,四边形是菱形,,设,则,由勾股定理得:,即,解得:,,,即为时,四边形为菱形.但是由于,运动到点后就停止运动,所以应舍去,所以四边形不能为菱形.【知识点】勾股定理、菱形的四条边相等、动点问题、对角线互相平分的四边形是平行四边形、对角线互相垂直的平行四边形是菱形【来源】2017浙江省宁波市期中测试下学期253.【答案】4【解析】解:设最快秒后,四边形成为矩形,由得.解得,故答案为:.【知识点】对边相等、矩形的定义、动点问题【来源】2017山东省东营市广饶县月测试题25; 2015江苏省南通市启东市期中测试4.【答案】或【解析】解:$$\text{∵}$$,,,$$\text{∴}$$,,,当时,则有,即,解得,当时,则有,即,解得,故答案为:或.【知识点】全等三角形对应边对应角相等、四个角都是直角、图形与几何分类讨论【来源】2014江苏省无锡市滨湖区期中测试165.【答案】见解析【解析】解;设最快秒,四边形成为矩形,由得.解得,故答案为:秒.【知识点】矩形的定义、动点问题、四个角都是直角【来源】2015河南省周口市太康县; 2015河南省周口市太康县期末测试6.(1)【答案】见解析【解析】证明:动点、同时运动且速度相等,,四边形是菱形,,,,在与中,,,,,,,.【知识点】两直线平行,内错角相等、同位角相等,两直线平行、SAS、全等三角形对应边对应角相等、菱形的定义、菱形的四条边相等6.(2)【答案】见解析【解析】过作于,连接,,,,,四边形是平行四边形,、是、的中点,,四边形是菱形,,,,,,四边形是矩形,,,,,,,.【知识点】30°锐角的直角三角形、两组对边分别平行的四边形是平行四边形、有三个角是直角的四边形是矩形、菱形的定义、菱形的四条边相等、菱形的对角线互相垂直平分6.(3)【答案】见解析【解析】不存在,假设存在某个时刻,使四边形为矩形,四边形为矩形,,,即,解得,,与原题设矛盾,不存在某个时刻,使四边形为矩形.【知识点】勾股定理、矩形的对角线相等、菱形的定义7.(1)【答案】见解析【解析】证明:动点、同时运动且速度相等,,四边形是菱形,,,,在与中,,,,,,,.【知识点】两直线平行,内错角相等、同位角相等,两直线平行、SAS、全等三角形对应边对应角相等、菱形的定义、菱形的四条边相等【来源】2016江苏省苏州市昆山市7.(2)【答案】见解析【解析】如图,过作于,连接,,,,,四边形是平行四边形,、分别是、的中点,,四边形是菱形,,,,,,四边形是矩形,,,,,,,.故时,四边形为菱形.【知识点】在同一平面内,垂直于同一直线的两直线平行、两组对边分别平行的四边形是平行四边形、矩形的定义、有三个角是直角的四边形是矩形、菱形的对角线互相垂直平分【来源】2016江苏省苏州市昆山市7.(3)【答案】见解析【解析】不存在,假设存在某个时刻,使四边形为矩形,四边形为矩形,,,即,解得,,与原题设矛盾,不存在某个时刻,使四边形为矩形.【知识点】勾股定理、矩形的定义、四个角都是直角、矩形的对角线相等【来源】2016江苏省苏州市昆山市8.【答案】见解析【解析】利用面积法,由即可得.【知识点】矩形的定义、四个角都是直角、矩形的对角线相等、用面积求线段长度9.(1)【答案】见解析【解析】分别过、做,,,点一定在点的左侧,若要以、、、为顶点的四边形是等腰梯形,则点一定在点右侧,当、点重合时即,,即在左侧时,如图,当时,四边形为等腰梯形,,,所以,(舍)或(舍),当时,点到达点,停止运动,当时,即点在点左侧,如图分别过,点作,,同理当时,四边形为等腰梯形,,,(舍)或,由可知,当时,四边形为平行四边形,不能为等腰梯形,综上:以、、、为顶点的四边形不能为等腰梯形.【知识点】动点问题、图形与几何分类讨论、矩形的定义、四个角都是直角、等腰梯形定义【来源】2018广东省广州市越秀区广州市铁一中学(含:亚运城(番禺)校区)24; 2009山东省淄博市中考真题;山东省淄博市;实验班提优训练九年级数学上期中综合提优测试卷9.(2)【答案】见解析【解析】当点与点重合或点与点重合时,以,为两边,以矩形的边(或)的一部分为第三边可能构成一个三角形.①当点与点重合时,由,得,(舍去).因为,此时点与点不重合.所以符合题意.②当点与点重合时,由,得.此时,不符合题意.故点与点不能重合.所以所求的值为.【知识点】三角形的三边关系定理、勾股定理、矩形的定义、四个角都是直角、动点问题、图形与几何分类讨论、一元二次方程的应用-其它问题【来源】2018广东省广州市越秀区广州市铁一中学(含:亚运城(番禺)校区)24; 2009山东省淄博市中考真题;山东省淄博市;实验班提优训练九年级数学上期中综合提优测试卷9.(3)【答案】见解析【解析】由知,点只能在点的左侧,①当点在点的左侧时,由,解得(舍去),.当时四边形是平行四边形.②当点在点的右侧时,由,解得(舍去),.当时四边形是平行四边形.所以当或时,以,,,为顶点的四边形是平行四边形.【知识点】对边相等、一组对边平行且相等的四边形是平行四边形、矩形的定义、四个角都是直角、动点问题、图形与几何分类讨论、两组对边分别相等的四边形是平行四边形【来源】2018广东省广州市越秀区广州市铁一中学(含:亚运城(番禺)校区)24; 2009山东省淄博市中考真题;山东省淄博市;实验班提优训练九年级数学上期中综合提优测试卷10.【答案】【解析】解:一次函数中,令,则,令,则,,.轴于点,轴于点,四边形是矩形,且,为定点,在线段上运动,当时,取得最小值,此时最小,,点坐标为,,,由勾股定理得:,,.故答案为:.【知识点】勾股定理、动点问题、一次函数的实际应用-与几何知识相结合、矩形的定义、有三个角是直角的四边形是矩形【来源】2017浙江省台州市椒江区台州市书生中学期中测试下学期1611.【答案】或【解析】解:过点作,,∴四边形是矩形,平分∴矩形是正方形即或或考点:折叠问题,矩形与正方形的性质【知识点】四个角都是直角、矩形的对角线相等、四条边相等,四个角相等、对角线互相垂直平分且相等、图形翻折【来源】2015江苏省苏州市吴江市吴江市青云中学期中测试上学期2612.【答案】2【解析】解:作于,于,如图,,,,,为等腰直角三角形,,和为等腰直角三角形,,,,四边形为矩形,,,,在中,,在中,,四边形为菱形,,,,(舍去),的值为.故答案为:.【知识点】勾股定理、直角三角形-等腰直角三角形、矩形的定义、菱形的定义、动点问题【来源】2017浙江省宁波市鄞州区期中测试下学期1913.【答案】见解析【解析】解:如图,取的中点,连接、、,,当、、三点共线时,点到点的距离最大,此时,,,,,的最大值为:.【知识点】三角形的三边关系定理、勾股定理、直角三角形斜边中线等于斜边一半、矩形的定义、四个角都是直角【来源】2012山东省济南市14.(1)【答案】见解析【解析】解:如图,取的中点,连接.,.点是边中点,,;连接,,有,当、、共线时,有最大值,最大值是,又为直角三角形,为斜边的中点,,,即.故答案为:.【知识点】三角形的三边关系定理、三线合一、勾股定理、直角三角形斜边中线等于斜边一半、动点问题【来源】2015山东省青岛市14.(2)【答案】【解析】解:如图,取的中点,连接、、,,当、、三点共线时,点到点的距离最大,此时,,,,,的最大值为:.学而思网校——智能题库【知识点】三角形的三边关系定理、勾股定理、直角三角形斜边中线等于斜边一半、矩形的定义、四个角都是直角【来源】2015山东省青岛市第 21 页,共 21 页。
八年级数学四边形之动点问题(框架)(北师版)(含答案)
学生做题前请先回答以下问题问题1:动点问题的处理框架是什么?问题2:在分析运动过程时常借助运动状态分析图,需要关注哪几个要素?四边形之动点问题(框架)(北师版)一、单选题(共9道,每道11分)1.如图,在矩形ABCD中,AB=6,BC=8,动点P以每秒2个单位的速度从点A出发,沿AC 方向向点C移动,同时动点Q以每秒1个单位的速度从点C出发,沿CB方向向点B移动;当P,Q两点中其中一点到达终点时,则停止运动.设运动时间为t秒,则当t为( )秒时,△CPQ是以PQ为底的等腰三角形.A.5B.C.4D.答案:D解题思路:试题难度:三颗星知识点:动点问题2.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发以每秒1个单位的速度沿AD向点D运动,动点Q从点C出发以每秒2个单位的速度沿CB向点B 运动.点P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P的运动时间为t秒,当t为( )秒时,△PDQ≌△CQD.A.4B.6C.8D.12答案:A解题思路:试题难度:三颗星知识点:动点问题3.已知:如图,等边三角形ABC的边长为9.动点P从点A出发沿AB-BC-CA方向以每秒3个单位的速度运动,再次回到点A时停止运动.设点P运动时间为t秒.解答下列问题:(1)运动状态分析图如下空缺处依次所填正确的是( )A.①1/s;②B.①3/s;②C.①3/s;②D.①3/s;②答案:D解题思路:试题难度:三颗星知识点:动点问题4.(上接第3题)(2)当点P沿AB-BC-CA方向运动时,需要分_____种情况来考虑,时间段的划分为( )A.1;B.2;;C.3;;;D.3;;;答案:C解题思路:试题难度:三颗星知识点:动点问题5.(上接第3,4题)(3)当P在BC上运动时,线段CP的长可用含t的式子表示为( )A.3tB.18-3tC.3t-9D.3t-18答案:B解题思路:试题难度:三颗星知识点:动点问题6.(上接第3,4,5题)(4)当点P在CA上运动时,线段PC的长可用含t的式子表示为( )A.18-3tB.3t-18C.27-3tD.3t-9答案:B解题思路:试题难度:三颗星知识点:动点问题7.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发,沿折线段BA-AD-DC以每秒5个单位长度的速度向点C匀速运动;点Q从点C出发,沿线段CB以每秒3个单位长度的速度匀速运动.过点Q向上作射线QK⊥BC,交折线段CD-DA-AB 于点E.点P,Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P,Q运动的时间为t秒().(1)当运动终止时,线段BQ的长为( )A.105B.45C.35D.30答案:D解题思路:试题难度:三颗星知识点:动点问题8.(上接第7题)(2)当点P落在射线QK上时,t的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:动点问题9.(上接第7,8题)(3)当点P运动到AD上时,若PQ∥DC,则t的值为( )A. B.25C. D.答案:A解题思路:试题难度:三颗星知识点:动点问题。
四边形中的动点问题(带答案)
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以 4 cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以 2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时,(1)求证:△ADE≌△CDF;:(2)当t为______s时,四边形ACFE是菱形;6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A 随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
八年级下册四边形动点问题和答案
八年级数学下册四边形动点问题专题1、如图,E 是正方形ABCD 对角线AC 上一点,EF ⊥AB ,EG ⊥BC ,F 、G 是垂足,若正方形ABCD 周长为a ,则EF +EG等于 。
2、如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,若PB=3,则PP′=3、在Rt △ABC 中 ∠C=90° AC=3 BC=4 P 为AB 上任意一点 过点P 分别作PE ⊥AC 于E PE ⊥BC 于点F 线段EF 的最小值是4、如图,菱形ABCD 中,AB=4,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 。
5、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为6、如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .CA BP FE EDCBAPADEPB C7、如图,在菱形ABCD中,对角线AC、BD相交于点O,且AC=12,BD=16,E为AD的中点,点P在BD上移动,若△POE为等腰三角形,则所有符合条件的点P共有个.8、已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为。
9、如图,在边长为10的菱形ABCD中,对角线BD=16.点E是AB的中点,P、Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为_________.(结果保留根号)10、如图所示,在△ABC中,分别以AB.AC.BC为边在BC的同侧作等边△ABD,等边△ACE.等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填满足的条件图所示,在△ABC中,分别以AB.AC.BC为边在BC的同侧作等边△ABD,等边△ACE.等边△BCF.,不需证明)①当△ABC满足_________________________条件时,四边形DAEF是矩形;②当△ABC满足_________________________条件时,四边形DAEF是菱形;③当△ABC满足_________________________条件时,以D.A.E.F为顶点的四边形不存在.11、如图,矩形ABCD中,cm,cm,动点M从点D出发,按折线DCBAD方向以2 cm/s 的速度运动,动点N从点D出发,按折线DABCD方向以1 cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?12、如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发,点P以每秒3cm 的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2?(2)是否存在某一时刻,使PBCQ为正方形?若存在,求出该时刻;若不存在,说明理由.13、已知:如图,菱形ABCD中,∠BAD=120°,动点P在直线BC上运动,作∠APM=60°,且直线PM与直线CD 相交于点Q,Q点到直线BC的距离为QH.(1)若P在线段BC上运动,求证:CP=DQ.(2)若P在线段BC上运动,探求线段AC,CP,CH的一个数量关系,并证明你的结论.14、如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,AB=20 cm,BC=10 cm,DC=12 cm,点P和Q 同时从A、C出发,点P以4 cm/s的速度沿A-B一C-D运动,点Q从C开始沿CD边以1 cm/s的速度运动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).(1)t为何值时,四边形APQD是矩形;(2)t为何值时,四边形BCQP是等腰梯形;(3)是否存在某一时刻t,使线段PQ恰好把梯形ABCD的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由.15、如图,已知ΔABC和ΔDEF是两个边长都为1cm的等边三角形,且B、D、C、E都在同一直线上,连接AD、CF.(1)求证:四边形ADFC是平行四边形;(2)若BD=0.3cm,ΔABC沿着BE的方向以每秒1cm的速度运动,设ΔABC运动时间为t秒,①当t为何值时,□ADFC是菱形?请说明你的理由;②□ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.16、在△ABC中,点O是AC上的一个动点,过点O作MN//BC,设MN交∠BCA的平分线于E,交∠BCA 的外角平分线于F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时,(1)求证:△ADE≌△CDF;:(2)当t为______s时,四边形ACFE是菱形;6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A 随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)点E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由。
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.当AE=AD时,四边形AEFD是菱形,即60-4t=2t. 解得t=10 s,∴当t=10 s时,四边形AEFD为菱形.(3)①当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°. ∵∠A=60°,∴∠AED=300. ∴AD=t,又AD=60-4t,即60-4t=t,解得t=12 s.②当∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠A=60°,则∠ADE=30°.∴AD=2AE,即60-4t=4t,解得t=15/2 s.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=15/2 s或t=12 s时,△DEF为直角三角形.5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时,(1)求证:△ADE≌△CDF;:(2)当t为______s时,四边形ACFE是菱形;试题分析:由题意得:AE=t,CF=2t-6.若四边形ACFE是菱形,则有CF=AE=AC=6,则t=2t-6,解得t=6.所以,当t=6时,四边形ACFE是平行四边形;6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明(1)证明:连接AC,如下图所示:在菱形ABCD中,∠B=60°,∠EAF=60°,△ABC和△ACD为等边三角形,∴,∴△AEC≌△AFD(ASA),∴EC+CF=DF+CF=CD=AB.(2)解:线段EC、CF、AB的关系为:CF-CE=AB.解析分析:(1)已知∠B=60°,不难求出∠ABC,∠DAC的度数为60°,从而进一步求得△ABC,△ACD为正三角形,从而证明△AEC≌△AFD,图1得出EC+CF=AB、(2)图2先证明△ADF≌△ACE,DF=CE,CF=CD+DF=CE+BC,得出CF-CE=AB.7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=12AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.解:(1)OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形;(3)不可能.理由如下:如图,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.故答案为不可能.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A 随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。