动点问题中的平行四边形.doc
平面直角坐标系。动点问题。好
平面直角坐标系。
动点问题。
好平面直角坐标系动点问题已知平面直角坐标系中,点A(4,0),点B(0,3),点P从点A出发,以每秒1个单位的速度在x轴上向右平移,点Q从B 点出发,以每秒2个单位的速度沿直线y=3向右平移,又P、Q两点同时出发,设运动时间为t秒。
1) 求当t为多少时,四边形OBPQ的面积为8.首先,可以求出四边形OBPQ的坐标:O(0,0),B(0,3),P(4+t,0),Q(2t,3)。
由于四边形OBPQ是平行四边形,所以它的面积可以用它的对角线之积来表示:S(OBPQ) = |OB| × |PQ|× sinθ。
其中,|OB| = 3,|PQ| = √[(4+t-2t)²+3²] = √(t²+16),θ是OB与PQ之间的夹角。
由于OB与PQ平行,所以θ = 0,sinθ = 0,因此S(OBPQ) = 0.所以,四边形OBPQ的面积始终为0,无法等于8,因此无解。
2) 连接AQ,当△APQ是直角三角形时,求Q的坐标。
由于△APQ是直角三角形,所以根据勾股定理,有AP²+PQ² = AQ²。
又因为AP = 4+t,PQ = 3-2t,所以可以列出方程:(4+t)² + (3-2t)² = AQ²。
化简后得到:AQ² = 25-8t+5t²。
又因为Q在直线y=3上,所以可以列出另一个方程:yQ = 3.将Q的坐标表示为(xQ。
yQ),则有xQ² + yQ² = AQ²,代入上面的方程,得到xQ² + 9 = 25-8t+5t²,化简后得到:xQ² = 16-8t+5t²。
因为Q在第二象限,所以xQ<0,因此xQ = -√(16-8t+5t²),yQ = 3.所以Q的坐标为(-√(16-8t+5t²)。
四边形中的动点问题(带答案)
四边形中的动点问题(带答案)四边形中的动点问题1、如图,把矩形ABCD沿 EF翻折,点B恰好落在AD边的B'处,若AE= 2, DE= 6,Z EFB= 60°, 则矩形ABCD勺面积是 _____________________2、如图,在四边形ABCD中对角线ACL BD 垂足为0,点E, F, G, H分别为边AD AB, BC CD 的中点•若AC= 8, BD= 6,则四边形EFGH的面积为3、如图,正方形ABCD勺边长为4,点P在DC 边上,且DP= 1,点Q是AC上一动点,则D® PQ 的最小值为 _____________________4、如图,在Rt△ ABC中,/ B= 90°,AC= 60 cm Z A= 60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D, E 运动的时间是t s(0 < t < 15) •过点D作DF 丄BC于点F,连接DE EF.(1)求证:AE= DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△ DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm射线AG// BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF当EF经过AC边的中点D时,(1)求证:△ ADE^A CDF:6、在菱形ABCD中,/ B=60°,点E在射线BC上运动,/ EAF=60,点F在射线CD上(1)当点E在线段BC上时(如图1)( 1)求证:EC+CF=A; (2) 当点E在BC的延长线上时(如图2),线段EC CFAB有怎样的相等关系?写出你的猜想,不需证明图1 027、如图,在菱形ABC[中, AB=2 / DAB=60 , 点E 是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N 连接MD AN(1)求证:四边形AMDI是平行四边形;(2)填空:①当AM的值为时,四边形AMD是矩形;②当AM的值为时,四边形AMD是菱形.D8 如图,△ ABC中,点0是边AC上一个动点,过0作直线MN BC 设MN交/ BCA的平分线于点E, 交/ BCA 的外角平分线于点F.(1)探究:线段0E与OF的数量关系并加以证明;(2)当点0运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形?(3)当点0在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABC[中, / ABC=60 , AB=8 过线段BD上的一个动点P (不与B、D重合)分别向直线AB AD作垂线,垂足分别为E、F.(1)BD的长是______ ;(2)连接PC当PE+PF+P(取得最小值时,此时PB的长是_______10、如图,/ MON=9°,矩形ABCD勺顶点A B 分别在边OM ON上,当B在边ON上运动时,A随之在OMk运动,矩形ABCD勺形状保持不变,其中AB=2 BC=1运动过程中,点D到点O的最大距离为 __________________ .11、如图,已知矩形ABCD AD=4 CD=10 P是AB上一动点,M N E分别是PD PC CD的中点.(1)求证:四边形PMEI是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEf有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm AC=16cm AC BD相交于点0,若E, F 是AC上两动点,分别从A, C两点以相同的速度向C、A 运动,其速度为0.5cm/s。
四边形中的动点问题(带答案)
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。
中考数学 专题17 函数动点问题中平行四边形存在性(解析版)
专题17 函数动点问题中平行四边形存在性类型一、平行四边形存在性结论:A C B DA CB Dx x x xy y y y+=+⎧⎨+=+⎩类型二、特殊平行四边形存在性1. 矩形存在性常用解题思路:构造一线三直角(借助相似或三角函数求解);利用矩形对角线相等(直角三角形斜边的中线等于斜边的一半)借助勾股定理求解等.2. 菱形存在性常用解题思路:利用菱形四条边相等,对角线互相垂直,借助勾股定理等求解.3. 正方形存在性常用解题思路:兼具矩形和菱形二者.【例1】(2018·郑州预测卷)如图,直线y=334x-+与x轴交于点C,与y轴交于点B,抛物线y= 234ax x c++经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一个动点,当△BEC的面积最大时,求出点E的坐标和最大值;(3)在(2)条件下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使以点P、Q、A、M为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵直线y =334x -+与x 轴交于点C ,与y 轴交于点B ,∴B (0,3),C (4,0),将B (0,3),C (4,0)代入y = 234ax x c ++得: 16303a c c ++=⎧⎨=⎩,解得:383a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为:233384y x x =-++.(2)过点E 作EF ⊥x 轴于F ,交BC 于M ,设E (x ,233384x x -++),则M (x ,334x -+),∴ME =233384x x -++-(334x -+)=23382x x -+∴S △BEC =12×EM ×OC =2EM=2(23382x x -+)=()23234x --+,∴当x =2时,△BEC 的面积取最大值3,此时E (2,3).(3)由题意得:M (2,32),抛物线对称轴为:x =1,A (-2,0),设P (m ,y ),y =233384m m -++,Q (1,n )①当四边形APQM 为平行四边形时,有:212m -+=+,解得:m =-3, 即P (-3,218-); ②当四边形AMPQ 为平行四边形时,有:-2+m =2+1,即m =5 即P (5, 218-); ③当四边形AQMP 为平行四边形时,有:2-2=1+m ,得:m =-1, 即P (-1,158); 综上所述,抛物线上存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标为:(-3,218-),(5, 218-),(-1,158).【变式1-1】(2018·河师大附中模拟)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的解析式与顶点M 的坐标; (2)求△BCM 的面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以点A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请直接写出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (-1,0),B (3,0), C (0,-3)代入y =ax 2+bx +c ,得:9303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得:a =1,b =-2,c =-3,即抛物线的解析式为:y=x2-2x-3,顶点M的坐标为:(1,-4);(2)连接BC,BM,CM,过M作MD⊥x轴于D,如图所示,S△BCM=S梯形ODMC+S△BDM-S△BOC=3,S△ACB=6,∴S△BCM:S△ACB=1:2;(3)存在.①当点Q在x轴上方时,过Q作QF⊥x轴于F,如图所示,∵四边形ACPQ为平行四边形,∴QP∥AC,QP=AC∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x或x=1,∴Q,3)或(1,3);②当点Q在x轴下方时,过Q作QE⊥x轴于E,如图所示,同理,得:△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得:x=2或x=0(与C点重合,舍去),∴Q(2,﹣3);综上所述,点Q的坐标为:,3)或(1,3)或(2,﹣3).【例2】(2018·郑州三模)如图所示,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2所示,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别交于点F、G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(3)点M是(1)中所求抛物线对称轴上一动点,点N是反比例函数y=kx图象上一点,若以点B、C、M、N为动点的四边形是矩形,请直接写出满足条件的k的值.【答案】见解析.【解析】解:(1)将A (-1,0),B (5,0)代入y =ax 2+bx -5得:5025550a b a b --=⎧⎨+-=⎩,解得:14a b =⎧⎨=-⎩, 即抛物线的解析式为:y =x 2-4x -5.(2)在y =x 2-4x -5中,当x =0时,y =-5,即C (0,-5), ∵CE ∥x 轴,则C 、E 关于直线x =2对称, ∴E (4,-5), CE =4,由B (5,0), C (0,-5)得直线BC 的解析式为:y =x -5, 设H (m ,m 2-4m -5), ∵FH ⊥CE , ∴F (m ,m -5),∴FH = m -5-(m 2-4m -5)= -m 2+5m , S 四边形CHEF =12·FH ·CE =12(-m 2+5m )×4 =-2(m -52)2+252,当m =52时,四边形CHEF 的面积取最大值252,此时H (52,354-).(3)设M (2,m ),N (n ,kn),B (5,0),C (0,-5), ①当BC 为矩形对角线时,此时:2+n =5+0,m +kn=0-5,即n =3,设BC 与MN 交于点H ,则H (52,52-),MH =12BC =2,∴222552222m ⎛⎛⎫⎛⎫-++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 解得:m =1或m =-6,当m =1时,k =-18;m =-6时,k =3, ②当BC 为矩形边时,分两种情况讨论:(i )当点M 在直线BC 下方时,即四边形BCMN 为矩形,则∠BCM=90°,2+5=n+0,m=kn-5,过M作MH⊥y轴于H,则由OB=OC知,∠OCB=45°,∴∠MCH=∠CMH=45°,即CH=MH,∴-5-m=2,解得:m=-7,n=7,k=-14;(ii)当点M在直线BC上方时,即四边形BCNM为矩形,则∠CBM=90°,n+5=2,kn=m-5,设对称轴与x轴交于点H,同理可得:BH=MH,∴3=m,n=-3,k=6;综上所述,k的值为:-18,3,-14或6.【变式2-1】(2019·驻马店二模)如图,抛物线y=-x2+bx+c经过A(-1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式.(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N 为直线 PF 上一动点,当以 F ,M ,G ,N 为顶点的四边形是正方形时,请求出点 M 的坐标.【答案】见解析.【解析】解:(1)∵抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,即抛物线的解析式为:y =-x 2+2x +3.(2)由y =-x 2+2x +3知,C (0,3),E (1,0),D (1,4), 可得直线BD 的解析式为:y =-2x +6,设P (m ,-2m +6),由勾股定理得:PE 2=()()22126m m -+-+,PC 2=()22263m m +-+-, 由PE =PC ,得:()()22126m m -+-+=()22263m m +-+-, 解得:m =2,即P (2,2).(3)∵M 在x 轴上,N 在直线PF 上, ∴∠NFM =90°,由四边形MFNG 是正方形,知MF =MG , 设M (n ,0),则G (n ,-n 2+2n +3), MG =|-n 2+2n +3|,MF =|n -2|, ∴|-n 2+2n +3|=|n -2|,解得:n n n n ,故点M 的坐标为:0),0),(12,0),(12-,0).【变式2-2】(2019·大联考)如图1,抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线上,且在x 轴的上方,点P 的横坐标记为t .(1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值.(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C 、D 、E 、P 为顶点的四边形是菱形?若存在,请直接写出菱形的面积.图1 图2【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),∴301640c a b c a b c =⎧⎪++=⎨⎪-+=⎩,解得:39434c b a ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,即抛物线的解析式为:y =34-x 294-x +3. (2)由A (-4,0),C (0,3)得直线AC 的解析式为:y =334x +, ∵点P 的横坐标为t , ∴M (t ,334t +), ∵PN ∥y 轴, ∴∠PMC =∠MCO , ∵MC 平分∠PMO , ∴∠PMC =∠OMC , ∴∠MCO =∠OMC , 即OM =OC =3,∴OM 2=9,即223394t t ⎛⎫++= ⎪⎝⎭,解得:t =0(舍)或t =7225,∴当MC 平分∠PMO 时,t =7225. (3)设P (t , 34-t 294-t +3), ①当CE 为菱形的边时,四边形CEPD 为菱形,则PD ∥y 轴,CD =PD ,则D (t ,334t +),∴PD =34-t 294-t +3-(334t +)=34-t 23-t , 由勾股定理得:CD =54t -,∴34-t 23-t =54t -,解得:t =0(舍)或t =73-, 即PD =3512,菱形面积为:3512×73=24536; ②当CE 为菱形的对角线时,此时P 与D 点关于y 轴对称,则D (-t , 34-t 294-t +3),将D 点坐标代入y =334x +,得: 34-t 294-t +3=()334t -+,解得:t =0(舍)或t =-2, PD =4,CE =3,菱形的面积为:12×4×3=6;综上所述,菱形的面积为:24536或6.1.(2019·南阳毕业测试)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵矩形OBDC 的边CD =1, ∴OB =1,由AB =4,得OA =3, ∴A (﹣3,0),B (1,0),∵抛物线y =ax 2+bx +2与x 轴交于A ,B 两点, ∴a +b +2=0,9a -3b +2=0, 解得:a =23-,b =43-, ∴抛物线解析式为y =23-x 243-x +2; (2)以AC 为边或对角线分类讨论: A (﹣3,0),C (0,2),抛物线y =23-x 243-x +2的对称轴为x =﹣1, 设M (m , y M ),N (-1,n ),y M =23-m 243-m +2 ①当四边形ACMN 为平行四边形时,有:312Mm y n -+=-⎧⎨=+⎩,解得:m =2,y M =103-,即M (2,103-); ②当四边形ACNM 为平行四边形时,有:312Mmy n --=⎧⎨+=⎩,解得:m =-4,y M =103-,即M (-4,103-); ③当四边形AMCN 为平行四边形时,有:312Mm y n -=-⎧⎨=+⎩,解得:m =-2,y M =2,即M (-2,2); 综上所述,点M 的坐标为(2,103-)或(﹣4,103-)或(﹣2,2). 2.(2019·开封模拟)如图,直线y =﹣x +4与抛物线y =﹣12x 2+bx +c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式;(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)在y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,即点A、B的坐标分别为(0,4)、(4,0),将(0,4)、(4,0),代入二次函数表达式,并解得:b=1,c=4,抛物线的解析式为:y=﹣12x2+x+4;(2)∵OA=OB=4,∴∠ABO=45°,∵∠ABP=90°,则∠PBO=45°,若直线PB交y轴于点M,则OM=OB=4,可得直线BP的解析式为:y=x-4,联立:y=x-4,y=﹣12x2+x+4,得:x=4,y=0(即B点);x=-4,y=-8,即P(-4,-8).(3)存在;由y=﹣12x2+x+4知抛物线的对称轴为:x=1,设E(1,m),F(n,﹣12n2+n+4),O(0,0),B(4,0),①当四边形OBEF是平行四边形时,有:EF=4,∴n-1=-4,即n=-3,F点坐标为(-3,72 -);②当四边形OBFE是平行四边形时,有:EF=4,n-1=4,即n=5,F点坐标为(5,72 -);③当四边形OFBE 是平行四边形时,有:410Fn m y =+⎧⎨=+⎩,即n =3,F 点坐标为(3,52);综上所述:点F 的坐标为(5,72-),(﹣3,72-),(3,52). 3.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC ∥x 轴.(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M ,若以M ,A ,C ,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC ∥x 轴 ∴点E 的纵坐标为2, ∵点E 在直线y =﹣x 上, ∴点E (﹣2,2),∵将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+;(2)由224233y x x =--+知,抛物线的对称轴为x =-1,设N (-1,n ),M (m ,224233m m --+),∵A (﹣3,0),C (0,2),(1)当四边形ACNM 是平行四边形时,有:312Mm n y --=⎧⎨=+⎩,得:m =-4,y M = 103-; 即M (-4,103-). (2)当四边形ACMN 是平行四边形时,有:312Mm n y -+=-⎧⎨+=⎩,得:m =2,y M = 103-; 即M (2,103-). (3)当四边形ANCM 是平行四边形时,有:312Mmn y -=-+⎧⎨=+⎩,得:m =-2,y M = 2; 即M (-2,2).综上所述,M 点的坐标是(-4,103-),(2,103-),(-2,2). 4.(2019·名校模考)如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】见解析.【解析】解:(1)将y =0代入y =x +3,得x =﹣3.∴A(﹣3,0).∵抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,∴109310a ba b+-=⎧⎨--=⎩,解得:1323ab⎧=⎪⎪⎨⎪=⎪⎩抛物线的解析式为y=13x2+23x﹣1;(2)点G的坐标为(2,1),(﹣,﹣1),(﹣1),(﹣4,3).①当四边形DCEG是菱形时,CD=CE=EG=4,设E(m,m+3),则G(m,m+7),由C(0,-1),E(m,m+3),得:CE2=m2+(m+4)2=16,解得:m=0(舍)或m=-4,此时G(-4,3);②当四边形DCGE是菱形时,CG2=16,设E(m,m+3),则G(m,m-1),即m2+ m2=16,解得:m=m=-此时,G(1)或G(--1);③当四边形DGCE是菱形时,设E(m,m+3),则G(-m,-m-1),此时E在CD的垂直平分线上,即m+3=1,m=-2,此时G(2,1);综上所述,点G的坐标为:(-4,3)、(1)、(--1)、(2,1).5.(2019·枫杨外国语三模)(2019·枫杨外国语三模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,3),点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求抛物线的解析式;(2)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.【答案】见解析.【解析】解:(1)将(-1,0),(0,3)代入y=﹣x2+bx+c,得:-1-b+c=0,c=3,解得:b=2,c=3,即抛物线的解析式为:y=﹣x2+2x+3.(2)由y=﹣x2+2x+3知,点M(1,4),分两种情况讨论,①当四边形MAPQ是矩形时,过M作MH⊥x轴于H,则MH=4,AH=2,易证得:∠APO=∠MAH,∴tan∠APO= tan∠MAH,即OA MHOP AH=2,∴OP=12,即P(0,-12),由A(-1,0)、M(1,4),P(0,-12)得:点Q坐标为(2,72),∵点T和点Q关于AM所在直线对称,即点Q与点T关于点M(1,4)对称,∴T(0,92 );②当四边形AMPQ是矩形时,同理可得:T(0,12 -);综上所述,点T的坐标为(0,92),(0,12-).6.(2019·焦作二模)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数kyx=(x>0)的图象交于点B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数kyx=(x>0)的图象于点N,若以A,O,M,N为顶点的四边形是平行四边形,求点M的横坐标.【答案】见解析.【解析】解:(1)将A(-2,0)代入y=x+b,得:b=2,即一次函数的解析式为:y=x+2,将B(a,4)代入y=x+2,得:a=2,即B(2,4),将B(2,4)代入kyx=得:x=8,即反比例函数的解析式为:8 yx =.(2)设M(m,m+2),则N(82m+,m+2),由题意知,MN∥OA,则需MN=OA=2时,以A,O,M,N为顶点的四边形是平行四边形,∴82mm-+=2,解得:m=2或m=-2(舍)或m=m=-(舍),∴点M的坐标为:(2,+2).7.(2019·许昌月考)如图1,二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).图1 图2【答案】见解析.【解析】解:(1)∵二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴493034103b cb c⎧⨯++=⎪⎪⎨⎪⨯-+=⎪⎩,解得:834bc⎧=-⎪⎨⎪=-⎩,即抛物线的解析式为:y=43x2﹣83x﹣4;(2)过点D作DM⊥y轴于点M,y =43x 2﹣83x ﹣4 =43(x ﹣1)2﹣163, ∴点D (1,﹣163)、点C (0,﹣4), S △ACD =S 梯形AOMD ﹣S △CDM ﹣S △AOC=12×(1+3)×163﹣12×(163﹣4)×1﹣12×3×4 =4;(3)四边形APEQ 为菱形,理由如下:E 点关于PQ 与A 点对称,过点Q 作QF ⊥AP 于F ,由折叠性质知: AP =EP ,AQ =EQ ∵AP =AQ =t , ∴AP =AQ =QE =EP , ∴四边形AQEP 为菱形, ∵FQ ∥OC ,∴AF FQ AQOA OC AC ==, ∴345AF FQ t ==∴AF =35t ,FQ =45t ,Q (3﹣35t ,﹣45t ),E (3﹣35t ﹣t ,﹣45t ),∵E 在二次函数y =43x 2﹣83x ﹣4上,∴﹣45t =43(3﹣85t )2﹣83(3﹣85t )﹣4,∴t =14564或t =0(舍去), ∴E (﹣58,﹣2916).8.(2018·新乡一模)如图,一次函数122y x =-+分别交y 、x 轴于A 、B 两点,抛物线2y x bx c=-++过A ,B 两点.(1)求这个抛物线的解析式;(2)作垂直于x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N . 求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A ,M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.【答案】见解析【解析】解:(1)在122y x =-+得,当x =0时,y =2;y =0时,x =4,即A (0,2),B (4,0),把A (0,2),B (4,0)代入2y x bx c =-++,得: 21640c b c =⎧⎨++=⎩-,解得722b c ⎧=⎪⎨⎪=⎩, ∴抛物线解析式为2722y x x =-++. (2)由题意知,1(,2)2M t t -+,27(,2)2N t t t -++,∴MN =2712(2)22t t t -++--+=2(2)4t --+, ∴当t =2时,MN 有最大值4.(3)根据平行四边形的性质,得:D 点坐标为:(0,6),(0,-2)或(4,4).9.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH ⊥x 轴于点H ,再过点F 作FG ⊥x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,∴4016440a b a b -+=⎧⎨++=⎩,解得:13a b =-⎧⎨=⎩,即抛物线的解析式为:y =-x 2+3x +4. (2)∵四边形EFGH 是矩形,∴当EF =EH 时,四边形EFGH 是正方形,设E(m, -m2+3m+4),则F(3-m,-m2+3m+4),m>32,∴EF=2m-3,EH=|-m2+3m+4|,∴2m-3=|-m2+3m+4|,解得:m或m(舍)或m或m(舍)∴正方形的边长EF2,综上所述,正方形EFGH的边长为:2.10.(2019·郑州一中模拟)如图所示,平面直角坐标系中直线y=x+1交坐标轴于点A、D两点,抛物线y=ax2+bx-3经过A、C两点,点C坐标为(a,5). 点M为直线AC上一点,过点M作x轴的垂线,垂足为F,交抛物线于点N.(1)求抛物线解析式;(2)是否存在点M,使得以点D、E、M、N为顶点的四边形为平行四边形,如果有,求点M的坐标,如果没有,请说明理由.【解析】解:∵直线y =x +1交坐标轴于点A 、D 两点, ∴A (-1,0),D (0,1),∵点C (a ,5)在直线y =x +1上, ∴a =4,即C (4,5),将A (-1,0),C (4,5)代入y =ax 2+bx -3得:3016435a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩, ∴抛物线的解析式为:y =x 2-2x -3. (2)存在,E (0,-3),∴DE =4, 由题意知:DE ∥MN ,∴当DE =MN =4时,四边形DENM 是平行四边形, 设N (m , m 2-2m -3),则M (m , m +1), ∴| m +1-(m 2-2m -3)|=4,解得:m =0(舍)或m =3或m =或m = ,综上所述,点M 的坐标为:(3,4),,).11.(2019·郑州模拟)如图,已知二次函数23234y ax a x ⎛⎫=--+ ⎪⎝⎭的图象经过点A (4,0),与y 轴交于点B ,在x 轴上有一动点C (m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D .(1)求a 的值和直线AB 的解析式;(2)过点D 作DF ⊥AB 于点F ,设△ACE ,△DEF 的面积分别为S 1,S 2,若S 1=4S 2,求m 的值; (3)点H 是该二次函数图象上第一象限内的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且平行四边形DEGH 的周长取最大值时,求点G 的坐标.【答案】见解析.【解析】解:(1)将A (4,0)代入23234y ax a x ⎛⎫=--+ ⎪⎝⎭得:a =34-,∴抛物线的解析式为:239344y x x =-++,设直线AB 的解析式为:y =kx +b , ∴4k +b =0,b =3,即k =34-,b =3, ∴直线AB 的解析式为:y =34-x +3. (2)∵点C 的横坐标为m ,∴D (m , 239344m m -++),E (m , 34-m +3),AC =4-m ,DE =239344m m -++-(34-m +3)= 2334m m -+,∵BC ∥y 轴, ∴43AC OA CE OB ==,即443m CE -=, ∴CE =()344m -,AE =()544m -, ∵∠DF A =∠DCA =90°,∠DBF =∠AEC , ∴△DFE ∽△ACE , ∵S 1=4S 2, ∴AE =2DE , 即()544m -=2(2334m m -+),解得:m =4(舍)或m =56, 即m 的值为56.(3)如图,过点G 作GM ⊥DC 于M ,设G 、H 点横坐标为n ,由DE =2334m m -+,得GH =2334n n -+,2334m m -+=2334n n -+,得:m =n (舍)或n =4-m ,∴MG =4-2m ,由45MG EG =得:EG =()5424m -, ∴C 四边形DEGH =2()25342344m m m ⎡⎤--+⎢⎥⎣⎦=23102m m -++=23161236m ⎛⎫--+ ⎪⎝⎭,∴当m =13时,C 最大,此时n =113,即G (113,14),E (13,114), 由图象可知当E 、G 互换位置时满足题意,即G (13,114),E (113,14),综上所述,G 点坐标为:(13,114),(113,14).13.(2018·郑州模拟)如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB .(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m . ①当∠MBA =∠BDE 时,求点M 的坐标;②过点M 作MN ∥x 轴,与抛物线交于点N ,P 为x 轴上一点,连接PM ,PN ,将△PMN 沿着MN 翻折,得△QMN ,若四边形MPNQ 恰好为正方形,直接写出m 的值.【答案】见解析.【解析】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,并解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.顶点D(1,4).(2)①过点M作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∵DE⊥x轴,D(1,4),B(3,0),∴∠DEB=90°,DE=4,OE=1,BE=2,∵∠MBA=∠BDE,∴tan∠MBA=tan∠BDE=12,∴2233m mm-++-=12解得:m=12-或m=32-或m=3(舍)∴满足条件的点M坐标(12-,74)或(32-,94-);②∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴OP=1,由∠QPM=∠MPO=45°,得:GM=GP,即|﹣m2+2m+3|=|1﹣m|,解得:m或m或m或m即满足条件的m.14.(2017·信阳二模)如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,点O为对称中心做菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N,试探究m为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣2,0)、B(8,0)代入y=ax2+bx﹣4并解得:a=14,b=32-,即抛物线的解析式为:y=14x232-x-4.(2)由y=14x232-x-4知,C(0,-4),由菱形的性质可知:D(0,4),设直线BD的解析式为:y=kx+n,将点B(8,0)、D(0,4)代入得:k=12-,n=4,即直线BD的解析式为:y=12-x+4,由M(m,12-m+4),Q(m,14m232-m-4).当MQ=DC时,四边形CQMD为平行四边形.∴12-m+4﹣(14m232-m-4)=8,解得m=4或m=0(舍去).∴MD∥CQ,MD=CQ,M(4,2),∴M为BD的中点,∴MD=MB.∴CQ=MB,又∵MB∥CQ,∴四边形CQBM为平行四边形.。
初二数学《平行四边形中的动点问题》(附练习及答案)
四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。
解决这类问题关键是动中求静,灵活运用有关数学知识。
数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。
这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。
解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。
1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
平行四边形的动点问题
平行四边形的动点问题
例1、如图:梯形ABCD中,AD//BC,AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P以2cm/s的速度由点A向点D运动,点Q以1cm/s的速度由点C向点B运动。
(1)运动多少秒时,四边形APQB是平行四边形?
(2)运动多少秒时,四边形APQB的面积和四边形PDCQ的面积相等?
例2.直角坐标系中菱形OABC的位置如图,A点坐标(4,0),∠AOC=60°。
经过点O的一条直线a沿x轴的正方向以每秒1单位长度的速度运动,且始终保持与OC垂直.
(1)求点B的坐标。
(2)设直线运动时扫过的菱形的面积为S,运动时间为t秒,求S与t的函数关系式。
(0≤t≤12)
例3、如图已知 ABCD中,AB=7,BC=4,∠A=30°
(1)点P从点A沿AB边向点B运动,速度为1cm/s,若设运动时间为t(s),连接PC,当t
为何值时,△PBC为等腰三角形?
(2)若点P从点A沿 AB运动,速度仍是1cm/s,当t为何值时,△PBC为等腰三角形?(3)当t>7时,是否存在某一时刻t,使得线段DP将线段BC三等分?
4、如图,在等腰梯形ABCD 中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从 D点出发沿DC以每秒1个单位的速度向终C点运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于;(2)当PQ∥AB时,点P离开D点的时间等于秒;
(3)当P、Q、C三点构成直角三角形时,P点离开D点多少时间?。
特殊平行四边形动点问题
特殊四边形:动点问题题型一:1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为A 、17172B 、17174C 、 17178D 、3 2.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=045,点P 是BC 边上一动点,设PB 长为x.1当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. 2当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.3点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形试说明理由.4.在一个等腰梯形ABCD 中,AD1.t 为何值时,四边形ABQP 为平行四边形2.四边形ABQP 能为等腰梯形吗如果能,求出t 的值,如果不能,请说明理由;6.梯形ABCD 中,AD ∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动;已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动;假设运动时间为t 秒,问:1t 为何值时,四边形PQCD 是平行四边形2在某个时刻,四边形PQCD 可能是菱形吗为什么3t 为何值时,四边形PQCD 是直角梯形4t 为何值时,四边形PQCD 是等腰梯形5 t 为何值时, APQ 是等腰三角形7.如图,在直角梯形ABCD 中,∠B=90°,AD ‖BC,且AD=4cm,AB=8cm,DC=10cm;若动点P 从点A 出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点以每秒5cm 的速度沿CB 向B 点运动;当Q 点到达B 点时,动点P 、Q 同时停止运动;设P 、Q 同时出发,并运动了t 秒; 1直角梯形ABCD 的面积为__________cm 的平方.2当t=________秒时,四边形PQCD 为平行四边形;3当t=________秒时,PQ=DC4是否存在t,使得P 点在线段DC 上,且PQ ⊥DC 如图2所示若存在,列出方程求出此时的t ;若不存在,请说明理由;8.如图,在直角梯形ABCD 中,∠B=90°,AB ‖CD,且AB=4cm,BC=8cm,DC=10cm;若动点P 从点A 出发,以每秒1cm 的速度沿线段AB 、BC 向C 点运动;动点Q 从C 点以每秒1cm 的速度沿CB 向B 点运动;当Q 点到达B 点时,动点P 、Q 同时停止运动;设P 、Q 同时出发,并运动了t 秒; 1直角梯形ABCD 的面积为__________cm 的平方.2当t=________秒时,四边形PBCQ 为平行四边形;3当t=________秒时,PQ=BC.10. 如图,在等腰梯形ABCD 中,AB ∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P 从开始沿AB 边向点B 以每秒3cm 的速度移动,点Q 从开始沿CD 边向点D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止;设运动时间为t 秒; 1求证:当t 为何值时,四边形APQD 是平行四边形;2PQ 是否可能平分对角线BD 若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由; 3若△DPQ 是以PQ 为腰的等腰三角形,求t 的值;11.如图,在直角梯形ABCD 中,AB1求CD 的长;2当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;3在点P,点Q 的运动过程中,是否存在某一时刻,使得ΔBPQ 的面积为20cm 2若存在,请求出所有满足条件的t 的值;若不存在,请说明理由;13. 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .1如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;2如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b 单位:cm ,0ab ≠,已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.14.已知:如图,在梯形ABCD 中,AB ∥DC,∠B=90°,BC=8cm,CD=24cm,AB=26Cm,点P 从C 出发,以1cm/s 的速度向D 运动,点Q 从A 出发,以3cm/s 的速度向B 运 动,其中一动点达到端点时,另一动点随之停止运动.从运动开始.1经过多少时间,四边形AQPD 是平行四边形2经过多少时间,四边形AQPD 成为等腰梯形3在运动过程中,P 、Q 、B 、C 四点有可能构成正方形吗为什么A BC D EF 图10-1 O 图10-2 备用图如图,在梯形ABCD 中,AD ∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间为t 秒.①当t 为何值时,四边形PQDC 是平行四边形;②当t 为何值时,以C,D,Q,P 为顶点的梯形面积等于60cm 2 ③是否存在点P,使△PQD 是等腰三角形若存在,请求出所有满足要求的t 的值,若不存在,请说明理由. 15.如图,在梯形ABCD 中,AD ∥BC,AD=6,DC=10,AB=65,∠B=45°.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.16.1求BC 的长.17.2当MN ∥AB 时,求t 的值.18.3△MNC 可能为等腰三角形吗若能,请求出t 的值;若不能,请说明理由.(4)△MNC 可能为直角三角形吗若能,请求出t 的值;若不能,请说明理由.(5)△MNC 为20时,请求出t 的值.如图,直角梯形ABCD 中,AB ∥CD,∠A=90°,AB=34,AD=4,DC=234 ,点P 从点A 出发沿折线段AD-DC-CB 以每秒3个单位长的速度向点B 匀速运动,同时,点Q 从点A 出发沿射线AB 方向以每秒2个单位长的速度匀速运动,当点P 与点B 重合时停止运动,点Q 也随之停止,设点P,Q 的运动时间是t 秒t >0.1当点P 到达终点B 时,求t 的值;2设△APQ 的面积为S,分别求出点P 运动到AD 、CD 上时,S 与t 的函数关系式;3当t 为何值时,能使PQ ∥DB ;4当t 为何值时,能使P 、Q 、D 、B 四点构成的四边形是平行四边形;16.如图,在等腰梯形ABCD 中,AD ∥BC,AB=DC=60,AD=75,BC=135.点P 从点B 出发沿折线段BA-AD-DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC,交折线段CD-DA-AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC ;3设射线QK 扫过梯形ABCD 的面积为S,分别求出点E 运动到CD 、DA 上时,S 与t 的函数关系式;不必写出t 的取值范围4△PQE 能否成为直角三角形若能,写出t 的取值范围;若不能,请说明理由.17.如图,直角梯形ABCD 中,AD ∥BC,∠ABC=90°,已知AD=AB=3,BC=33,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.1求NC,MC 的长用t 的代数式表示;2当t 为何值时,四边形PCDQ 构成平行四边形3当t 为何值时,射线QN 恰好将△ABC 的面积平分并判断此时△ABC 的周长是否也被射线QN 平分.19.如图,已知直角梯形ABCD 中,AD ∥BC,AB ⊥BC,AD=2,AB=8,CD=10.1求梯形ABCD 的面积S ;2动点P 从点B 出发,以2cm/s 的速度、沿B →A →D →C 方向,向点C 运动;动点Q 从点C 出发,以2cm/s 的速度、沿C →D →A 方向,向点A 运动.若P 、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B →A 上运动时,是否存在这样的t,使得直线PQ 将梯形ABCD 的周长平分若存在,请求出t 的值,并判断此时PQ 是否平分梯形ABCD 的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P 、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.20.在直角梯形ABCD 中,∠C=90°,高CD=6cm,底BC=10cm 如图1.动点Q 从点B 出发,沿BC 运动到点C 停止,运动的速度都是1cm/s .同时,动点P 也从B 点出发,沿BA →AD 运动到点D 停止,且PQ 始终垂直BC .设P,Q 同时从点B 出发,运动的时间为ts,点P 运动的路程为ycm .分别以t,y 为横、纵坐标建立直角坐标系如图2,已知如图中线段为y 与t 的函数的部分图象.经测量点M 与N 的坐标分别为4,5和2, 25.1求M,N 所在直线的解析式;2求梯形ABCD 中边AB 与AD 的长;3写出点P 在AD 边上运动时,y 与t 的函数关系式注明自变量的取值范围,并在图2中补全整运动中y 关于t 的函数关系的大致图象.22.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM 返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒t>0.23.1设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式不必写t的取值范围;24.2当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD 向终点C运动,运动时间是t秒.1D点的坐标为;2当t为何值时,△APD是直角三角形;3如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28如果可能,求出对应的t;如果不可能,请说明理由.在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A8,0,B8,10,C0,4.点D4,7为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.1求直线BC的解析式;2设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;33当t为何值时,△OPD的面积是梯形OABC的面积的8如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A10,0、C0,8,CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.1求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;2动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;3几秒后线段PD将梯形COAB的面积分成1:3的两部分求出此时点P的坐标已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.1求B点坐标;2设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN 的长度也刚好最小,求动点P的速度.如图1,以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A14,0,B11,4,C3,4,点E以每秒2个单位的速度从O点出发沿射线OA 向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.1当t=4秒时,判断四边形COEB是什么样的四边形2当t为何值时,四边形COEF是直角梯形3在运动过程中,四边形COEF能否成为一个菱形若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF 是菱形,并写出改变后的速度及t的值如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A16,0,C0,2.1如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒0≤t≤4.①求当t为多少时,四边形PQAB为平行四边形②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ 的解析式.2如图②,若点P、Q分别是线段BC、AO上的任意两点不与线段BC、AO的端点重合,且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.如图,在平面直角坐标系中,直角梯形ABCO的变OC落在x轴的正半轴上,且AB方形ODEF 的两边分别坐落在坐标轴上,且它的面积等于直角梯形ABCO面积,将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S;(1)求正方形ODEF的边长;(2)求OA所在直线的解析式(3)当正方形ODEF移动到顶点O与C重合时,求S的值(4)设正方形ODEF顶点O向右移动的距离为x,当正方形ODEF的边ED与y轴重合时,停止移动,求重叠部分面积S与x的函数关系式;如图,在△ABC中,∠ACB=90°,AC=BC=6cm,等腰RT△DEF中,∠D=90°,EF=在BC所在直线L上,开始时点F与点C重合,让等腰RT△DEF沿直线L向右以每秒1cm的速度做匀速运动,最后点E和点B重合;(1)请直接写出等腰RT△DEF运动6S时与△ABC重叠部分面积(2)设运动时间为xS,运动过程中,等腰RT△DEF与△ABC重叠部分面积为ycm2①在等腰RT△DEF运动6S后至运动停止前这段时间内,求y与x之间的函数关系式②在RT△DEF整个运动过程中,求当x为何值时,y=1/2.题型二:1.如图,正方形ABCD的边长为4cm,两动点P、Q分别同时从D、A出发,以1cm/秒的速度各自沿着DA、AB边向A、B运动;试解答下列各题:1当P出发后多少秒时,三角形PDO为等腰三角形;2当P、Q出发后多少秒,四边形APOQ为正方形;3当P、Q出发后多少秒时,ABCD PQDSS正方形325=∆.2.如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动;1试判断四边形PQEF 是正方形并证明;2PE 是否总过某一定点,并说明理由;(3)四边形PQEF 的顶点位于何处时,其面积最小,最大各是多少(4)3.已知:如图,边长为a 的菱形ABCD 中,∠DAB=60°,E 是异于A 、D 两点的动点,F 是CD 上的动点;请你判断:无论E 、F 怎样移动,当满足:AE+CF=a 时,△BEF 是什么三角形并说明你的结论;4.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD 不含B 点上任意一点,将BM 绕点B 逆时针旋转60°得到BN,连接EN 、AM 、CM.⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.题型三:1.如图,在直角梯形ABCD 中,AD//BC,∠C =90°,BC =16,DC =12,AD =21;动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P,Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动;设运动的时间为t 秒;(1)设▲BPQ 的面积为S,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形ABPQ 平行四边形3当t 为何值时,以B 、P 、Q 三点为顶点的三角形是等腰三角形4是否存在时刻t,使得PQ ⊥BD 若存在,求出t 的值;若不存在,请说明理由;E A DB C N M2.如图①,在等腰梯形ABCD中,AD边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.1如图25-1,当点M在AB边上时,连接BN.△≌△;①求证:ABN ADN②若∠ABC = 60°,AM = 4,∠ABN =α,求点M到AD的距离及tanα的值;2如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x6≤x≤12.试问:x为何值时,△ADN为等腰三角形.4.在正方形ABCD中,M是边BC中点,E是边AB上的一个动点,MF⊥ME,MF交射线CD于点F,AB=4,BE=x,CF=y1求y关于x的解析式及定义域2当点F在边CD上时,四边形AEFD的周长是否随点E的运动而发生变化请说明理由3当DF=1时,求点A到直线EF的距离;5.如图1,在等腰梯形ABCD中,AD‖BC,E是AB的中点,过点E作EF‖BC交CD于点F;AB=4,BC=6,∠B=60°1求点E到BC的距离;2点P为线段EF上的一个动点,过点P作PM⊥EF交BC于点M,过M作MN‖AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时,△PMN的形状是否发生改变若不变,求出△PMN的周长,若改变,说明理由.②当点N在线段DC上时,是否存在点P,使△PMN为等腰三角形若存在,请求出所有满足要求的x的值,若不存在,说明理由.6.在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD;一动点P从A出发以每秒1cm的速度沿A-B-C的路线做匀速运动,过点P做直线PM,使PM⊥AD;当点P运动2秒时,另一动点Q也从A 出发沿A-B-C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动;过Q做直线QN,使QN∥PM;设点Q的运动时间为t秒0≤t≤10,直线PM与QN截平cm行四边形所得图形的面积为S2①求S关于t的函数关系式;②求S的最大值;7.菱形ABCD中∠A=60°,边长为4CM,动点P从A出发,以1CM/秒的速度沿A-B-C的路线运动,在点P出发1秒后,点Q以同样的速度,沿同样的路径运动,过点P、Q的直线L1、L2互相平行,且都与AB边所在的直线成60°角,设点P运动的时间是X1≤X≤8秒,直线L1、L2在菱形上截出的图形周长为Y厘米1求Y与X的函数关系;2当X取何值时,Y的值最大最大值是多少8.如图,在矩形ABCD中,AB=12cm,BC=8cm,点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G即点F与点G重合时,三个点随之停止移动.设移动开始后第t秒时,△EF G的面积为Scm2.1当t=1秒时,S的值是多少2写出S和t之间的函数解析式,并指出自变量t的取值范围.。
初三数学专题动点问题
因动点产生的平行四边形问题1、如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB 于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.2、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.3、已知平面直角坐标系xOy (如图),一次函数334y x =+的图象与y 轴交于点A ,点M 在正比例函数32y x =的图象上,且MO =MA .二次函数 y =x 2+bx +c 的图象经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+的图象上,且四边形ABCD 是菱形,求点C 的坐标.4、将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2,如图所示.(1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .①当B 、D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.5、如图1,抛物线23y ax ax b =-+经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B 。
有关平行四边形的动点问题
有关平行四边形的动点问题
平行四边形是由两组相邻的平行线和它们之间的四条线段组成的四边形。
在平行四边形中,我们可以考虑一个点在它沿着一个方向移动的同时,沿着另一个方向的轨迹。
这个点被称为“动点”。
如果动点沿着平行四边形的一条边上移动,那么它所相应的高度和底边也会相应地改变。
因此,如果我们将平行四边形分成许多小长方形,并在这些小长方形的顶点处放置动点,则可以形成一条光滑的曲线。
这个曲线被称为平行四边形的“径线”。
如果动点同时沿着两个方向移动,则可以得到一个新的曲线,称为“余弦曲线”。
这个曲线看起来像是一个上下波动的曲线,与平行四边形的一条对角线平行。
有趣的是,这两个曲线都是周期性的,其周期等于平行四边形的面积除以它沿着这个方向的速度。
因此,我们可以通过这些曲线来计算平行四边形的面积和周长。
通过研究这些平行四边形的动点问题,我们能够深入了解其内在的几何性质和性质之间的相互关系。
这不仅有助于帮助我们更好地理解平行四边形,还可以为其他更复杂的几何形状和问题提供有用的洞见和启示。
平行四边形的动点问题
平行四边形的动点问题1. 平行四边形是指具有两对相对平行的边的四边形。
在这个问题中,我们关注一个动点在平行四边形内移动的情况。
2. 首先,让我们定义平行四边形的四个顶点为A、B、C和D,并假设它们按顺时针方向排列。
我们还假设动点记为P,并且它可以在平行四边形内的任意位置移动。
3. 问题的第一部分是,如果动点P从A点出发,按一定路径移动,最后回到A点,那么它经过的路径会是什么样子4. 要回答这个问题,我们需要注意到平行四边形的两对相对边分别是AB和CD,以及AD和BC。
因此,如果动点P从A点出发并回到A 点,它必定会经过平行四边形的另外两个顶点,即C和B。
5. 为了更具体地描述动点P的路径,我们可以进一步假设动点P沿着直线AC移动到顶点C,然后沿着直线CB移动到顶点B,最后沿着直线BA移动回到顶点A。
这样,动点P所经过的路径形成了一个三角形ABC。
6. 需要注意的是,这个路径并不是唯一的。
动点P可以按任意方式从A到C,再从C到B,最后从B到A。
但无论路径如何,最终的路径都是一个三角形ABC。
7. 接下来,让我们来看问题的第二部分。
如果动点P从一个顶点出发,按一定路径移动,最后回到另一个顶点,那么它经过的路径会是什么样子8. 在这种情况下,我们可以假设动点P从顶点A出发,并沿着直线AC移动到顶点C。
然后,它会继续按照平行四边形的形状,沿着直线CB移动到顶点B,并最终沿着直线BA返回到顶点A。
9. 与第一部分类似,这个路径也不是唯一的。
动点P可以从任意顶点出发,按照相应的顺序经过其他两个顶点,最后回到初始的顶点。
10. 总结起来,平行四边形的动点问题涉及动点在平行四边形内移动的路径问题。
无论是从一个顶点出发回到同一个顶点,还是从一个顶点出发回到另一个顶点,最终路径都可以看作是一个三角形。
11. 这个问题的解答可以帮助我们更好地理解平行四边形的形状和特性,以及动点在平行四边形内移动时的可能路径。
它也为我们提供了一种思考和探索几何问题的方式。
第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。
特殊平行四边形中的三种几何动点问题—2023-2024学年九年级数学上册(北师大版)(解析版)
特殊平行四边形中的三种几何动点问题类型一、面积问题 例.如图,在四边形ABCD 中,AB CD ∥,90BCD ∠=,10cm AB AD ==,=8cm BC .点P 从点A 出发,以每秒3cm 的速度沿折线ABC 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动.已知动点P ,Q 同时发,当点Q 运动到点C 时,P ,Q 运动停止,设运动时间为t .(1)直接写出CD 的长(cm );(2)当四边形PBQD 为平行四边形时,直接写出四边形PBQD 的周长(cm );(3)在点P 、点Q 的运动过程中,是否存在某一时刻,使得BPQ V 的面积为215cm ?若存在,请求出所有满足条件的t 的值;若不存在,请说明理由.【答案】(1)16(2)(3)存在,满足条件的t 的值为2512秒或5秒【分析】(1)过点A 作AM CD ⊥于M ,根据题意证明四边形ABCD 是平行四边形,然后根据平行四边形的性质以及勾股定理可得结果;(2)当四边形PBQD 是平行四边形,则点P 在AB 上,点Q 在DC 上,则103BP t =−,2DQ t =,根据平行四边形的性质可得1032t t −=,求解得出平行四边形的各边长,求其周长即可;(3)分两种情况进行讨论:①当点P 在线段AB 上时;②当点P 在线段BC 上时;根据三角形面积列方程计算即可.【详解】(1)解:如图1,过点A 作AM CD ⊥于M ,AM CD ⊥,=90BCD ∠︒,∴AM CB ∥,∵AB CD ∥,∴四边形ABCD 是平行四边形,10cm CM AB ∴==,在t R ADM 中,10cm AD =,8cm AM BC ==,根据勾股定理得,6cm DM =,16cm CD DM CM ∴=+=;(2)当四边形PBQD 是平行四边形,则点P 在AB 上,点Q 在DC 上,如图3,由运动知,103BP t =−,2DQ t =,1032t t ∴−=,2t ∴=,此时,4BP DQ ==,12CQ =,根据勾股定理得,BQ =∴四边形PBQD 的周长为()28BP BQ +=+(3)①当点P 在线段AB 上时,即:1003t ≤≤时,如图2,()1110381522BPQ S PB BC t =⋅=−⨯=,2512t ∴=;②当点P 在线段BC 上时,即:1063t <≤时,如图4,310BP t =−,162CQ t =−,()()113101621522BPQ S PB CQ t t ∴=⋅=−−=,5t ∴=或193t =(舍), 即:满足条件的t 的值为2512秒或5秒.【点睛】本题考查了四边形的动点问题,平行四边形的判定与性质,勾股定理,读懂题意,根据相应图形的性质列出方程是解本题的关键.【答案】(1)①12DP t =−;15BQ t =−;②7.5t =(2)()()()220<12=12<151345 15<1844t S t t t t −≤−≤−−≤⎧⎪⎪⎪⎪⎪⎩【分析】(1)①根据路程等于速度乘以时间列代数式即可;②AP BQ =时,四边形APQB 是平行四边形;(2)求出相关线段的长度,利用三角形面积公式,分情况讨论即可.【详解】(1)解:①由题意可知=cm AP t ,cm CQ t =,∴()12cm DP AD AP t =−=−,()15cm BQ BC CQ t =−=−;②当四边形APQB 是平行四边形时,AP BQ =,即15t t =−,解得7.5t =.故答案为:()12cm t −,()15cm t −(2)解:如图,过点D 作DE BC ⊥于点E ,则90A B DEB ∠=∠=∠=︒,∴四边形ABED 是矩形,∴90ADE ∠=︒,()12cm BE AD ==, ∴()15123cm CE BC BE =−=−=,∵120ADC ∠=︒,∴30CDE ADC ADE ∠=∠−∠=︒,∴()26cm DC EC ==,∴)cm DE ===,∴点P 运动到点D 时,需12秒,点P 到点C 时,需18秒;点Q 从点C 到点B 需15秒,从点B 到点A 需15+秒.故分三种情况讨论:①当012t <≤时,如图,11==(1522S BQ AB t ⋅−−)②当1215t <≤时,如图,过点P 作DH BC ⊥于点H ,()18cm PC AD DC t t =+−=−,易知DE PH ∥∴30CPH CDE ∠=∠=︒, ∴()119cm 22CH PC t ==−,∴())cm PH t ==−,∴211(15))22S BQ PH t t =⋅=−−=;③当1518t <≤时,如图,()15cm BQ t BC t =−=−,()111596cm 22BH BC CH t t ⎛⎫=−=−−=+ ⎪⎝⎭, ∴211113(15)(6)4522244S BQ BH t t t t =⋅=−⋅+=−−,综上,))()220<12=12<15134515<1844t S t t t t ≤−≤−−≤⎧⎪⎪⎪⎪⎪⎩.【点睛】本题考查列代数式、三角形面积公式、平行四边形的判定、勾股定理、矩形的判定与性质、含30度角的直角三角形的性质、四边形上的动点问题等,熟练掌握分类讨论思想是解题的关键.【答案】(1)10(2)12(3)S=18(09)6216(918)t t t t <≤⎧⎨−+<≤⎩(4)t= 4或8或12【分析】(1)当t=4时,AP=8,PD=AD -AP=BC -AP=18-8=10;(2)当四边形ABQP为矩形时,AP=BQ,根据不同的时间段AP的关系式求出t值即可;(3)由(2)中不同时间段AP的关系式得出S的分段函数即可;(4)PQ所在的直线将矩形ABCD分成面积比为1:2的两部分时,可能再两个不同的时间段存在12ABQPPDCQss=四边形四边形和12PDCQABQPss=四边形四边形两种可能,根据(3)中面积的函数关系式分段求t值即可.(1)解:当t=4时,AP=2t=8,∴PD=AD-AP=18-8=10,故答案为10(2)解:当四边形ABQP为矩形时,AP=BQ,若0≤t≤9时,AP=2t,则2t=t,解得t=0(不符合题意,舍去);若9<t≤18时,AP=36-2t,则36-2t=t,解得t=12;故答案为12(3)解:当0<t≤9时,S=12(BQ +AP)⋅AB =12(t+2t)×12= 18t;当9<t<18时,S=12(BQ +AP).AB =- 6t + 216.综上所述,S =18(09)6216(918)t tt t<≤⎧⎨−+<≤⎩(4)解:当0≤t≤9时,若12ABQPPDCQss=四边形四边形,则ABQPs四边形=13ABCDS矩形,∴18t=13×12×18,解得t=4;若12PDCQABQPss=四边形四边形,则ABQPs四边形=23ABCDS矩形,∴18t=23×12×18,解得t=8;当9<t≤18时,若12ABQPPDCQss=四边形四边形,则ABQPs四边形=13ABCDS矩形,∴-6t+216=13×12×18,解得t=24(舍);若12PDCQABQPss=四边形四边形,则ABQPs四边形=23ABCDS矩形,∴-6t+216=23×12×18,解得t=12;综上,当t=4或8或12时,PQ所在的直线将矩形ABCD分成面积比为1:2两部分.【点睛】本题主要考查四边形的综合题型,涉及动点问题,矩形的性质,梯形的面积等知识点,会用分类讨论的思想解决问题是解题的关键.如图,在ABD中,几秒钟后,MON的面积为【答案】(1)见解析(2)5米,24平方米;(3)1秒或4秒【分析】(1)根据题意,用“一组对边平行且相等的四边形是平行四边形”先判定平行四边形,再用邻边相等证明菱形;(2)解方程可得OA 、OB 的长,用勾股定理可求AB ,根据“菱形的面积对应对角线积的一半”计算连线面积;(3)根据点M 、N 运动过程中与O 点的位置关系,分三种情况分别讨论.【详解】(1)证明:AO 平分BAD ∠,AB CD ∥,DAC BAC DCA ∠∠∠∴==, ACD ∴是等腰三角形,AD DC =,又AB AD =,AB CD ∴=,∴四边形ABCD 为平行四边形,又AB AD =,∴四边形ABCD 是菱形;(2)解:解方程27120x x −+=,得,14x =,23x = 4OA ∴=,3OB =,利用勾股定理5AB ==,28,26AC OA BD OB ∴====,∴ABCD S =菱形118622AC BD ⨯=⨯⨯24=平方米.(3)解:在第(2)问的条件下,设M 、N 同时出发x 秒钟后,MON 的面积22m ,当点M 在OA 上时,2x <,MON S =12()()4232x x −−=, 解得1214x x ==, (大于2,舍去);当点M 在OC 上且点N 在OB 上时,23x <<,MON S =12()()3242x x −−=,整理得,2580x x −+=,此时,2=541870∆−⨯⨯=−<,∴原方程无解;当点M 在OC 上且点N 在OD 上时,即34x <≤,MON S =12 ()()2432x x −−=,整理得,2540x x −+=,解得1241x x ==, (小于3,舍去).综上所述:M ,N 出发1秒或4秒钟后,△MON 的面积为22m .【点睛】本题考查了菱形的判定方法,菱形的面积计算方法,分类讨论的数学思想.类型二、几何图形存在性问题 Rt ABC 中, (1)求AB AC ,的长;(2)求证:AE DF =;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)AB=5,AC=10;(2)证明见解析(3)当52t =秒或4秒时,DEF 为直角三角形,理由见解析【分析】(1(2)利用已知用未知数表示出DF ,AF 的长,进而得出AE DF =;(3)利用①当90EDF ∠=︒时;②当90DEF ∠=︒时;③当90EFD ∠=︒时,分别分析得出即可.【详解】(1)解:设AB x =,90B ∠=︒,30C ∠=︒,22AC AB x ∴==.由勾股定理得,()(2222x x −=, 解得:5x =, 5AB ∴=,10AC = ;(2)证明:由题意得AE t =,CD=2t ,则102AD t =−,在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴12DF CD t==.又AE t=,AE DF∴=;(3)解:当52t=秒或4秒时,DEF为直角三角形,理由如下:分情况讨论:①∠EDF=∠DFC=90°时,则DE BC∥,∴∠AED=∠B=90°,∠ADE=∠C=30°,∴AD=2AE,∴10-2t=2t,∴52t=;②∠DEF=90°时,∵AB⊥BC,DF⊥BC,∴AE DF.又∵AE=DF,∴四边形AEFD为平行四边形,∴AD EF,∴∠ADE=∠DEF=60°,∴∠AED=30°,∴12AD AE=,∴1 1022t t−=,∴4 t=;③∠EFD=90°时,此种情况不存在. 当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、菱形的判定与性质、勾股定理、直角三角形的性质等知识.理解相关知识是解答关键. (1)连接PD 、PQ 、DQ ,求当t 为何值时,PQD △的面积为(2)当点P 在BC 上运动时,是否存在这样的t 使得△合条件的t 的值;若不存在,请说明理由.【答案】(1)1秒或4秒(2)存在,43t =秒或4)秒【分析】(1)根据正方形的性质和面积公式,利用割补法即可求解;(2)根据勾股定理、等腰三角形的性质得出一元二次方程,分情况讨论以PD 为腰的等腰三角形即可说明.【详解】(1)解:当P 在BC 上时如图:根据题意,得4AB BC CD AD ====AQ t =,4QB t =−,2BP t =,42PC t =−,7PQD ADQ BPQ DPC ABCD S S S S S =−−−=△△△△正方形,1111642(4)4(42)7222t t t t −⨯⨯−⨯−−⨯⨯−=整理,得2210t t −+=,解得121t t ==.当P 在CD 上时,此时24t <≤4(24)82DP t t =−−=− 1(82)472PQD S t ∴=−⨯=△94t ∴=答:当t 为1秒或94秒时,PQD △的面积为27cm .(2)①当PD DQ =时,根据勾股定理,得2216(42)16t t +−=+,解得143t =,24t =(不符合题意,舍去).②当PD PQ =时,根据勾股定理,得22216(42)(4)(2)t t t +−=−+,整理得:28160t t +−=解得14t =,24t =−(不符合题意,舍去).答:存在这样的43t =秒或4)秒,使得PQD △是以PD 为一腰的等腰三角形.【点睛】本题考查了正方形、一元二次方程、等腰三角形的相关知识,解决本题的关键是分类讨论思想的运用.例3.如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AB =8cm ,AD =12cm ,BC =18cm ,点P 从点A 出发以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以2cm/s 的速度向点B 运动,当点Q 到达点B 时,点P 也停止运动,设点P ,Q 运动的时间为t s .(1)从运动开始,当t 取何值时,PQ ∥CD ?(2)在整个运动过程中是否存在t 值,使得四边形PQCD 是菱形?若存在,请求出t 值;若不存在,请说明理由;(3)从运动开始,当t 取何值时,四边形PQBA 是矩形?(4)在整个运动过程中是否存在t 值,使得四边形PQBA 是正方形?若存在,请求出t 值;若不存在,请说明理由.【答案】(1)4(2)不存在,理由见解析(3)6(4)不存在,理由见解析【分析】(1(2)利用菱形的判定和性质进行求解即可;(3)利用矩形的判定和性质进行求解即可;(4)利用正方形的判定和性质进行求解即可.(1)解:由运动知,AP =tcm ,CQ =2tcm ,∴DP =AD ﹣AP =(12﹣t )cm ,∵AD BC ∥,要PQ CD ∥,∴四边形CDPQ 为平行四边形,∴DP =CQ ,∴12﹣t =2t ,∴t =4,即t =4时,PQ ∥CD ;(2)不存在,理由:∵四边形PQCD 是菱形,∴CQ =CD ,∴2t =10,∴t =5,此时,DP =AD ﹣AP =12﹣5=7(cm ),而DP≠CD ,∴四边形PQCD 不可能是菱形;(3)如图4,∵∠B =90°,AD ∥BC ,∴当AP =BQ 时,四边形ABQP 是矩形,即t =18﹣2t ,解得:t =6,∴当t =6时,四边形PQBA 是矩形;(4)由当t =6时,四边形PQBA 是矩形,∴AP =6cm ,∵AB =8cm ,∴AP≠AB ,∴矩形PQBA 不能是正方形,即不存在时间t ,使四边形PQBA 是正方形.【点睛】本题考查四边形中的动点问题.解题的关键是熟练掌握平行四边形、菱形、矩形和正方形的判定和性质,确定动点的位置. 例4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,且8AC =,6BD =,现有两动点M ,N 分别从A ,C 同时出发,点M 沿线段AB 向终点B 运动,点N 沿折线C D A −−向终点A 运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t (秒).(1)填空:AB = ;菱形ABCD 的面积S = ;菱形的高h = .(2)若点M 的速度为每秒1个单位,点N 的速度为每秒a 个单位(其中52a <),当4t =时在平面内存在点得以A ,M ,N ,E 为顶点的四边形为菱形,请求出所有满足条件的a 的值.【答案】(1)5;24;245(2)1.5或1.94或1.4【分析】(1)先由菱形的性质和勾股定理求得AB ,再跟菱形面积为对角线之积的一半可得S ,最后根据菱形的面积为边长×高,由此可得高h 的长;(2)当4t =,时间固定,AM 的长度也就固定,A 、M 、N 、E 四点要形成菱形,分两大类情况,第一类以AM 为边,这种情况可以画两种菱形;第二类以AM 为对角线,只有一种.因此共三种情况,分别计算.【详解】(1)解:∵四边形ABCD 是菱形,AC 与BD 交于点O ,86AC BD ==,,∴43AO CO BO DO AC BD ====⊥,,,∴AB=5,设菱形的高为h,则菱形ABCD 的面积为186242AB h ⨯⨯=⨯=∴245h =故答案为:5,24,245(2)解:当4t =时,4AM =,①如图2,四边形AMEN 为菱形,4AN AM ∴==,1046ND CD ∴+=−=,46a ∴=,32a =.②如图3,AENM 为菱形,EM 交AN 于点R ,作DP 垂直BC 于P ,菱形面积为24,4.8DP ∴=,75CP ∴=,MAR BCD ∠=∠,AMR PDC ∴∠=∠,AR CP AM CD ∴=,1.12AR ∴=,2.24AN ∴=,()()410 2.244 1.94a ND CD ∴=+÷=−÷=,③如图4,AEMN 为菱形,EN 交AM 于点T ,作BS 垂直CD 于S ,则2AT MT ==,523BT NS ∴==−=,4.8BS =, 1.4CS ∴=,1.43 4.4CN NS CS∴=+=+=,4 4.44 1.1a CN∴=÷=÷=;综上所述,a的取值有1.5或1.94或1.4.【点睛】本题主要考查了菱形的性质、三角函数、勾股定理、面积计算,分类讨论等重要知识点,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,因此综合应用所学知识成为解答本题的关键.类型三、直线位置关系问题(1)直接写出AB的长.(2)当点Q落在AB边上时,用含t的代数式表示【答案】(1)3(2)3523t−或5332t−(3)12、或175(4)920或215【分析】(1)根据勾股定理直接求出AB 的长度;(2)分类讨论Q 在AD 和BD 上的两种情况,DQ AD AQ =−或 DQ AQ AD =−;(3)当平行四边形PQDM 为菱形或矩形时即为轴对称图形,因为PQ AC ⊥,所以当Q 在AB 上时,PQD ∠不可能为直角,平行四边形PQDM 不可能为矩形,只存在菱形的情况,根据PQ DQ =建立等量解出t 值;当Q 在BC 上时,表示出DQ 的长度较为复杂,所以可以表示出2DQ ,利用22PQ DQ =建立方程解出t 值;当Q 点在BC 中点时,平行四边形PQDM 为矩形,可直接求得t 值;(4)因为平行四边形PQDM 的四个顶点顺序已经确定,所以Q 在过点D 的AC 平行线的下方,分类讨论Q 在AD 上和在CN (见详解图)上的两种况下QM 平行于不同边时的情况,注意,根据平行线的定义,当Q 在AB 上时,QM 不可能平行于AB ,当Q 在BC 上时,QM 不可能平行于BC .【详解】(1)解:在Rt ABC 中,222AB AC BC =−,∴3=AB ;(2)解:P 从点A 出发以每秒个单位的速度沿AC 向终点C 运动,∴AP t =,PQ AC ⊥,∴APQ ABC △△∽,::3:4:5AB BC AC =,∴::3:4:5AP QP AQ =, ∴5533AP t AQ ==,点D 是边AB 的中点,∴32AD BD ==, ∴ 3523DQ t =−或5332t −;(3)解:当平行四边形PQDM 为菱形或矩形时即为轴对称图形, ∴ PQ DQ =或平行四边形PQDM 某一内角为90︒,①当Q 在AB 上时,990510t t ⎛⎫≤≤≠ ⎪⎝⎭,由(1)得43PQ t =,3523DQ t =−或5332t −, ∴354233t t −=或534323t t −=, 解得12t =或92, 990510t t ⎛⎫≤≤≠ ⎪⎝⎭,∴12t =;Q 在AB 上时,PQD ∠不可能为90︒,故不存在矩形的情况;②如图,当Q 在BC 上时,955t ≤≤,CPQ CBA △△∽,∴::4:3:5CP QP CQ =,AP t =,∴5CP t =−, ∴()354PQ t =−,()554CQ t =−, ∴()55945444BQ t t =−−=−, ∴222222359254511724416816DQ BD BQ t t t ⎛⎫⎛⎫=+=+−=−+ ⎪ ⎪⎝⎭⎝⎭, 当22PQ DQ =时,平行四边形PQDM 为菱形, ∴()22254511735168164t t t ⎡⎤−+=−⎢⎥⎣⎦,解得t =,955t ≤≤,∴t =;当Q 点在BC 中点时,平行四边形PQDM 为矩形, 此时485255t −=⨯=, 解得175t =;综上所述:当平行四边形PQDM 为轴对称图形时,t 的值为12、或175;(4)解:平行四边形PQDM ,∴Q 在过点D 的AC 平行线的下方, ①如图,Q 在AD 上,9010t ≤<,QM AC ∥时,易得DQM QAP △△∽,平行四边形PQDM ,∴43DM QP t ==, 由(1)得3523DQ t =−, ∴35523443t DQ DM t −==, 解得920t =;②如图,Q 在AD 上,9010t ≤<,QM BC ∥时, 易得DQM QPA △△∽,∴35423453tDQDM t−==,解得8245t=(舍);③过点D的平行线交BC于点N,点Q在CN上移动才可能会出现平行四边形PQDM的对角线QM平行于直角三角形的边,此时1755t≤≤,如图,当QM AC∥时,延长DM交AC于点H,平行四边形PQDM,∴()354DM PQ t==−且DH AC⊥,QM AC∥,∴四边形MQPH为矩形,∴()354MH PQ DM t===−,∴()365245t DH−⨯==,解得215t=;不存在QM AB∥的情况;综上所述:当QM与Rt ABC△的某条边平行时,t的值为920或215.【点睛】本题考查了几何动点问题,涉及到相似、平行线的性质、平行四边形以及特殊的平行四边形的性质和判定,还会用到分类讨论的思想,难度较大,解决本题的关键是能准确找到不同的情况并对问题进行分类讨论.【答案】(1)BD =,9BE cm =(2)PQ AD ⊥,理由见详解(3)存在,t 的值为125或4(4)或【分析】(1)可求出30ADB ∠=︒,根据含30︒的直角三角形的性质可得212AD AB cm ==,BD =,根据平行四边形的性质可得AD BC ∥,则30DBC ∠=︒,即可得12DE BD =,BE =,即可求解; (2)先证四边形DEQP 是平行四边形,可得四边形DEQP 是矩形,即可得出结论;(3)分两种情况讨论,由平行四边形的性质可得AP BQ =,列出方程可求解;(4)分两种情况讨论,由轴对称的性质和等边三角形的性质以及勾股定理可求解.【详解】(1)四边形ABCD 是平行四边形,90ABD Ð=°,60A ∠=︒,6AB cm =,30ADB ∴∠=︒,AD BC ∥,212AD AB cm ∴==,BD ==,30DBC ADB ∠=∠=︒,DE BC ⊥,12DE BD ∴==,BE =,9BE cm ∴==;(2)PQ AD ⊥,理由如下:如图1,动点P 从点D 出发沿DA 以1/s cm 的速度向终点A 运动,同时点Q 从点B 出发,以4/cm s 的速度沿射线BC 运动,∴当95t =时,95PD =,365BQ =, 369955QE BE BQ PD ∴=−=−==, AD BC ,∴四边形DEQP 是平行四边形,DE BC ⊥,∴四边形DEQP 是矩形,PQ AD ∴⊥;(3)存在,当CD 为边时,四边形PQCD 是平行四边形,PD CQ ∴=,124t t ∴=−,125t ∴=;当CD 为对角线时,四边形PCQD 是平行四边形,PD CQ ∴=,412t t ∴=−,4t ∴=,综上所述:t 的值为125或4;(4)如图,当点P 的对称点在线段CD 上时,60ADQ QDC ∴∠=∠=︒,60QDC BCD ∴∠=∠=︒,CDQ ∴是等边三角形,CD CQ ∴=,6124t ∴=−,32t ∴=,过点P 作PH BC ⊥于H ,则PH DE ==,32EH PD cm ==, 60BCD ∠=︒,6CD AB cm ==,DE BC ⊥,13cm 2CE CD ∴==,32QH CQ EH CE cm ∴=−−=,在Rt PQH 中,PQ =; 如图,当点P 的对称点在线段CD 的延长线上时,120CDA ∠=︒,60PDP '∴∠=︒,点P 的对称点在线段CD 的延长线上,1302CDQ PDP '∴∠=∠=︒,BCD CDQ CQD ∠=∠+∠, 30CDQ CQD ∴∠=∠=︒,6CD CQ ∴==,12618BQ ∴=+=,418t ∴=,92t ∴=,过点P 作PH BC ⊥于H ,则PH DE ==,92EH PD cm ==,60BCD ∠=︒,6CD AB cm ==,DE BC ⊥,132CE CD cm ∴==,272QH CQ EH CE cm ∴=++=,在Rt PQH 中,PQ ==;综上所述:点P ,Q 之间的距离为或.【点睛】本题是四边形综合题,考查了平行四边形的性质,直角三角形的性质,等边三角形的判定和性质等知识,利用分类讨论思想解决问题是解题的关键.课后训练1.如图,在四边形ABCD 中,AB CD ∥,90A ∠=︒,24cm DC =,26cm AB =,动点P 从D 开始沿DC 边向C 点以1cm /s 的速度运动,动点Q 从点B 开始沿BA 向A 点以3cm /s 的速度运动,P ,Q 分别从点D ,B 同时出发,当其中一点到达终点时,另一点也随之停止运动,运动的时间为t 秒.(1)t 为何值时,四边形DPQA 为矩形?(2)t 为何值时,四边形PQBC 为平行四边形?【答案】(1)当132t =秒时,四边形DPQA 为矩形(2)当6t =秒时,四边形PQBC 为平行四边形【分析】(1)根据AB CD ∥,矩形的判定和性质,得AQ DP =,求出t ,即可;(2)根据平行四边形的判定和性质,得PC QB =,求出t ,即可.【详解】(1)∵AB CD ∥,∴AQ DP ∥,当AQ DP =时,四边形DPQA 为平行四边形,∵90A ∠=︒,∴平行四边形DPQA 为矩形,∵动点P 从D 开始沿DC 边向C 点以1cm /s 的速度运动,动点Q 从点B 开始沿BA 向A 点以3cm /s 的速度运动, ∴cm DP t =,3cm BQ t =,∴263AQ AB BQ t =−=−,∴263t t =−,解得:261342t ==, ∴当132t =秒时,四边形DPQA 为矩形.(2)∵AB CD ∥,∴QB PC ∥,当PC QB =时,四边形PQBC 为平行四边形,∴24PC t =−,∴243t t −=,解得:6t =,∴当6t =秒时,四边形PQBC 为平行四边形.【点睛】本题考查动点与几何的综合,矩形和平行四边形的知识,解题的关键是掌握矩形和平行四边形的判定和性质. 在ABC 中, 发现:(1)在点O 的运动过程中,OE 与OF 的关系是(2)当=2t 时,=EF ______cm .【答案】(1)OE OF =,详见解析(2)8cm ,探究:3,拓展:=AB 10cm【分析】()1根据角平分线的定义、平行线的性质分别得到OEC ACE ∠=∠,ACF OFC ∠=∠,根据等腰三角形的判定定理得到OE OC =,OF OC =,等量代换证明结论;()2根据直角三角形斜边上的中线的性质解答;探究:根据矩形的判定定理得到=OA OC 时,四边形AECF 是矩形,进而求出OA ,求出t ;拓展:根据正方形的对角线平分一组对角得到45ACE ∠=︒,进而得到90ACB ∠=︒,根据勾股定理计算,得到答案.【详解】(1)解:OE OF =,理由如下:CE 平分ACB ∠,BCE ACE ∴∠=∠,EF BC ∥,BCE OEC ∴∠=∠,OEC ACE ∴∠=∠,OE OC ∴=,同理可得,ACF OFC ∠=∠,OF OC ∴=,OE OF ∴=,故答案为:OE OF =;(2)由题意得,当=2t 时,2cm OA =,则4cm OC AC OA =−=,BCE ACE ∠=∠,GCF ACF ∠=∠,90ECF ∴∠=︒,OE OF =,()28cm EF OC ∴==,故答案为:8; 探究:当=3t 时,四边形AECF 是矩形,理由如下:90ECF ∠=︒,OE OF =,∴当=OA OC 时,四边形AECF 是矩形,此时,3cm OA OC ==,3t ∴=时,四边形AECF 是矩形,故答案为:3;拓展:当四边形AECF 是正方形时,45ACE ∠=︒,CE 平分ACB ∠,290ACB ACE ∴∠=∠=︒,()10cm AB ∴=.【点睛】本题考查的是正方形的性质、矩形的判定、平行线的性质以及直角三角形斜边上的中线的性质,掌握矩形的判定定理、正方形的性质是解题的关键. 3.已知正方形ABCD 中,8AB BC CD DA ====,90A B C D ∠=∠=∠=∠=︒.动点P 以每秒2个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒8个单位速度从B 点出发沿正方形的边BA AD DC CB −−−方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 秒时,点P 与点Q 相遇;(2)当BQ PD ∥时,求线段DQ 的长度;(3)连接PA ,当PAB 和QAD 全等时,求t 的值.【答案】(1)3.2(2)3.2(3)t 为0.8或83【分析】(1)先判断出点P ,Q 相遇时,必在正方形的边BC 上,利用运动路程之和为正方形的正常建立方程即可;(2)先判断出四边形BQDP 是平行四边形,得出BP DQ =,进而表示出BP ,DQ ,用BP DQ =建立方程求解即可;(3)分点Q 在正方形的边AB ,AD ,CD ,BC 上,建立方程求解即可得出结论;【详解】(1)解:点P 的运动速度为2,8BC =,∴点P 运动到点C 的时间为4,点Q 的运动速度为8,∴点Q 从点B 出发沿BA AD DC CB −−−方向顺时针作折线运动到点C 的时间为(888)83++÷=,∴点P ,Q 相遇时在边BC 上,284832t t ∴+=⨯=,3.2t ∴=,故答案为3.2;(2)解:如图1,//BQ PD ,∴点Q 只能在边AD 上,四边形ABCD 是正方形,//AD BC ∴,∴四边形BQDP 是平行四边形,BP DQ ∴=,2288t t ∴=⨯−,1.6t ∴=,288 3.2DQ t ∴=⨯−=;(3)解:①当点Q 在边AB 上时,如图2,AB AD =,ABP DAQ ∠=∠,要使PAB ∆和ΔQAD 全等,只能是PAB QDA ≅,BP AQ ∴=,88AQ t =−,2BP t =,882t t ∴−=,0.8t ∴=,②当点Q 在边AD 时,不能构成QAD ,③当点Q 在边CD 上时,如图3,同①的方法得,要使PAB 和QAD 全等,只能是PAB QAD ≅,BP DQ ∴=,2816t t ∴=−,83t ∴=,④当点Q 在边BC 时,QAD 不是直角三角形,而PAB 是直角三角形,所以,不能全等;即:当PAB 和QAD 全等时,t 的值为0.8或83;【点睛】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会分类讨论. 4.如图,在ABCD Y 中,9034BAC CD AC ∠=︒==,,.动点P 从点A 出发沿AD 以1cm /s 速度向终点D 运动,同时点Q 从点C 出发,以4cm /s 速度沿射线CB 运动,当点P 到达终点时,点Q 也随之停止运动,设点P 运动的时间为t 秒()0t >.(1)CB 的长为______.(2)用含t 的代数式表示线段QB 的长.(3)连接PQ ,①是否存在t 的值,使得PQ 与AC 互相平分?若存在,求出t 的值;若不存在,请说明理由;②是否存在t 的值,使得PQ 与AB 互相平分?若存在,求出t 的值;若不存在,请说明理由.(4)若点P 关于直线AQ 对称的点恰好落在直线AB 上,请直接写出t 的值.【答案】(1)5(2)55404QB t t ⎛⎫=−<≤ ⎪⎝⎭或5454QB t t ⎛⎫=−> ⎪⎝⎭(3)①不存在,理由见解析;②存在,t 的值为53(4)t 的值为12或2【分析】(1)根据平行四边形的性质得3AB DC ==,再根据勾股定理即可求解;(2)根据题意可得4CQ t =,先求出当点Q 与点B 重合时,所花费的时间,再根据题意分两种情况讨论即可:当点Q 在线段BC 上时和当点Q 在线段CB 的延长线上时;(3)①连接PC AQ ,,假设PQ 与AC 互相平分,则可得四边形APCQ 是平行四边形,进而可得AP CQ =,解得即可到答案;②连接PB AQ ,,假设PQ 与AB 互相平分,则可得四边形APBQ 是平行四边形,进而可得AP BQ =,解得即可到答案;(4)根据题意分两种情况讨论即可:当点P 关于直线AQ 对称的点落在点A 下方时和当点P 关于直线AQ 对称的点落在点A 上方时.【详解】(1)∵四边形ABCD 是平行四边形,∴3AB DC ==,∵90BAC ∠=︒,∴5BC =,故答案为:5;(2)在ABCD Y 中,AD BC =,AD BC ∥,由题意得,4CQ t =,当点Q 与点B 重合时,45t =, ∴5s 4t =, 当点Q 在线段BC 上时,54QB BC CQ t =−=−,当点Q 在线段CB 的延长线上时,45QB CQ BC t =−=−, 综上所述,55404QB t t ⎛⎫=−<≤ ⎪⎝⎭或5454QB t t ⎛⎫=−> ⎪⎝⎭;(3)①不存在,理由如下:如图,连接PC AQ ,,若PQ 与AC 互相平分,则四边形APCQ 是平行四边形,∴AP CQ =,∵4AP t CQ t ==,,∴4t t =,解得0=t (不合题意),∴不存在t 的值,使得PQ 与AC 互相平分;②存在,如图,连接PB AQ ,,若PQ 与AB 互相平分,则四边形APBQ 是平行四边形,∴AP BQ =,∴45t t =−, ∴5s 3t =, ∴当5s 3t =时,PQ 与AB 互相平分; (4)当点P 关于直线AQ 对称的点落在点A 下方时,如图,由对称得,PAQ P AQ '∠=∠,∵AD BC ∥,∴PAQ AQB ∠=∠,∴P AQ AQB '∠=∠,即BAQ AQB ∠=∠,∴3BQ AB ==,∴2CQ BC BQ =−=,∴42t =,解得12t =;当点P 关于直线AQ 对称的点落在点A 上方时,如图,由对称得,12∠=∠,∵AD BC ∥,∴13∠=∠,∵24∠∠=∴3=4∠∠,∴3BQ AB ==,∴8CQ BC BQ =+=,∴48t =,解得2t =,综上所述,t 的值为12或2.【点睛】本题考查了平行四边形的判定和性质、勾股定理的应用和动点问题,灵活运用所学知识求解是解决本题的关键. 5.如图,矩形ABCD 中,4CD =,30CBD ∠=︒.一动点P 从B 点出发沿对角线BD 方向以每秒2个单位长度的速度向点D 匀速运动,同时另一动点Q 从D 点出发沿DC 方向以每秒1个单位长度的速度向点C 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P 、Q 运动的时间为t 秒()0t >.过点P 作PE BC ⊥于点E ,连接EQ ,PQ .(1)求证:PE DQ =;(2)四边形PEQD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,PQE V 为直角三角形?请说明理由.【答案】(1)见解析(2)能,83t =(3)当2t =或165,见解析【分析】(1)由垂直得90BEP ∠=︒,在Rt BEP 中,2BP t =,由30CBD ∠=︒,可得PE t =,即可证明结果;(2)先证明四边形PEQD 是平行四边形,82PD t =−,DQ t =,当PD DQ =时,四边形PEQD 为菱形,即可求解;(3)分类讨论:①当90EPQ ∠=︒,②当90PQE ∠=︒,③当90PEQ ∠=︒即可.【详解】(1)证明:∵PE BC ⊥,∴90BEP ∠=︒,在Rt BEP 中,2BP t =,∵30CBD ∠=︒,∴PE t =,又∵DQ t =,∴PE DQ =;(2)解:能,理由如下:∵四边形ABCD 为矩形,PE BC ⊥,90BEP C ︒∠==∠,∴PE DQ ∥,由(1)知,PE DQ =,∴四边形PEQD 为平行四边形,在Rt CBD 中,4CD =,30CBD ∠=︒,∴28BD CD ==,∵2BP t =,∴82PD BD BP t =−=−,若使平行四边形PEQD 为菱形,则需PD DQ =,即82t t −=, ∴83t =, 即当83t =时,四边形PEQD 为菱形; (3)解:①当90EPQ ∠=︒时,四边形EPQC 为矩形,∴PE QC =,∵PE t =,4QC t =−,∴4t t =−,即2t =;②当90PQE ∠=︒时,90DPQ PQE ∠=∠=︒,在Rt DPQ 中,906030PQD ∠=︒−︒=︒,∴2DQ DP =,∵DQ t =,82DP t =−∴()282t t =−,即165t =.③当90PEQ ∠=︒时,此种情况不存在,综上所述,当2t =或165时,PQE V 为直角三角形.【点睛】本题考查动点问题、菱形的判定与性质及矩形的性质,找到动点运动的规律和路线、速度、以及是否停止和有无取值范围是解题的关键.(1)=a ______cm ,b =______cm ;(2)t 为何值时,EP 把四边形BCDE 的周长平分?(3)另有一点Q 从点E 出发,按照E D C →→的路径运动,且速度为1cm /s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,BPQ V 的面积等于26cm .【答案】(1)3,3(2)2s =t(3)3s 2或11s 3或5s【分析】(1)由非负性可求a ,b 的值;(2)先求出18cm BCDE C =四边形,可得9cm BE BP +=,可求4cm BP =,即可求解;(3)分三种情况讨论,由三角形的面积公式可求解.【详解】(1)∵()230a −=,∴30,290a a b −=+−=,∴3,3a b ==;故答案为:3,3;(2)∵3cm,3cm AE DE ==,∴6cm AD BC ==,∴18cm BCDE C BC CD DE EB =+++=四边形,∵EP 把四边形BCDE 的周长平分,∴9cm BE BP +=,∴4cm BP =,点P 在BC 上,∴42s 2t ==;(3)①点P在BC上(03)t<≤,∵12462BPQtS=⨯⨯=V,∴3.2t=;②相遇前,点P在CD上13 (3)3t<≤,∵[]1(4(3)(26)662BPQS t t=⨯−−−−⨯=,∴113t=;③相遇后,点P在CD上13(5)3t<≤,∵[]1(3)(26)4662BPQS t t=⨯−+−−⨯=,∴.5t=;∴综上所述,当3s2t=或11s3或5s时,BPQV的面积等于26cm.【点睛】本题考查了矩形的性质,非负数的性质,一元一次方程的应用等知识,利用分类讨论思想是解本题的关键.角形与DCQ全等.【答案】(1)1(2)54t=或4或232(3) 3.5t=,5.5或10【分析】(1)根据题中条件求出AP 的长即可求解;(2)分三种情况讨论:①当点P 在AB 上时,②当点P 在BC 上时,③当点P 在AD 上时;(3)连接CQ ,要使一个三角形与DCQ 全等,则另一条直角边必须等于DQ ,分类讨论即可.【详解】(1)解:动点P 的速度是2cm/s ,∴当2t =时,224AP =⨯=,∵5cm AB =,∴BP =1cm ;(2)解:①当点P 在AB 上时,CDP △是等腰三角形,∴PD CP =,在长方形ABCD 中,,90AD BC A B =∠=∠=︒,∴()HL DAP CBP ≌,∴AP BP =, ∴1522AP AB ==,∵动点P 的速度是2cm/s , ∴54t =;②当点P 在BC 上时,CDP △是等腰三角形,如图所示,∵90C ∠=︒,∴5CD CP ==,∴3BP CB CD =−=, ∴53422AB BP t ++===;③当点P 在AD 上时,CDP △是等腰三角形.如图所示,∵90D Ð=°,∴5DP CD ==, ∴585523222AB CB CD DP t ++++++===, 综上所述,54t =或4或232时,CDP △是等腰三角形; (3)解:根据题意,如图,连接CQ ,∵5,90,6AB CD A B C D DQ ==∠=∠=∠=∠=︒=,∴要使一个三角形与DCQ 全等,则另一条直角边必须等于DQ .①当点P 运动到1P 时,16CP DQ ==,此时1DCQ CDP △≌△, ∴点P 的路程为:1527AB BP +=+=, ∴72 3.5t =÷=;②当点P 运动到2P 时,26BP DQ ==,此时2CDQ ABP △≌△, ∴点P 的路程为:25611AB BP +=+=,∴112 5.5t =÷=③当点P 运动到3P 时,35AP DQ ==,此时3CDQ BAP △≌△, ∴点P 的路程为:3585220AB BC CD DP +++=+++=, ∴20210t =÷=,④当点P 运动到4P 时,即P 与Q 重合时,46DP DQ ==,此时4CDQ CDP △≌△, ∴点P 的路程为:4585624AB BC CD DP +++=+++=∴24212t =÷=,此结果舍去,不符合题意,综上所述,t 的值可以是: 3.5t =,5.5或10.【点睛】本题考查了动点问题,灵活运用分类讨论思想是解题关键.。
人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)
人教版数学八年级下期第十八章平行四边形动点问题训练1.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在的直线对着得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)当P在BC何处时,点N是MQ的中点.(3)若AB=3,P是BC的三等分点,求QM的长;2.如图,四边形ABCD是正方形,点E是边BC的动点,连接AE,以AE为边在AE的右上侧作Rt△AEF,使得∠AEF=90°,AE=EF,再过点F作FG⊥BC,交BC的延长于点G.(1)求证:∠BAE=∠GEF;(2)求证:CG=FG;(3)填空:若正方形ABCD的边长是2,当点E从点B运动到点C的过程中,点F也随之运动,则点F运动的痕迹的长是______.3.如图,点P是正方形ABCD(在小学,同学们学习过:正方形四边相等,四个角都是直角)对角线AC上一动点,点E在射线BC上,且PB=PE,连结PD,O为AC 中点.(1)如图①,当点P在线段AO上时,猜想PE与PD的关系,并说明理由;(2)如图②,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由.4.如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,(1)求∠BGE的大小;(2)求证:GC平分∠BGD.5.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DPA'=10°时,∠A'PB=______度;(2)如图2所示,当PA'⊥BC时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF 沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.6.如图,边长为8的正方形ABCD的対角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.7.如图,在正方形ABCD中,点E是AD边上的一个动点,连接BE,以BE为斜边在正方形ABCD内部构造等腰直角三角形BEF,连接CF.(1)求证:∠DEF+∠CBF=90°;,求△BEF的面积;(2)若AB=3,△BCF的面积为32(3)求证:DE=2CF.8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NDE≌△MAE;(2)求证:四边形AMDN是平行四边形;(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.9.如图,已知四边形ABCD为正方形,AB=42,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.10.如图,已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≅△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.11.如图,已知矩形ABCD中,AB=5,AD=2+13.菱形EFGH的顶点H在边AD上,且AH=2,顶点G、E分别是边DC、AB上的动点,连结CF.(1)当四边形EFGH为正方形时,直接写出DG的长;(2)若△FCG的面积等于3,求DG的长;(3)试探究点G运动至什么位置时,△FCG的面积取得最小值.12.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=5,点D是边AB上的一个动点,连接CD,过C点在上方作CE⊥CD,且CE=CD,点P是DE的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.14.如图,D、E分别是△ABC的边AB、AC的中点,O是△ABC内一动点,F、G分别是OB、OC的中点.判断四边形DEGF的形状,并说明理由.15.在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,若AB=2,求DG的长.16.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设每秒运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形.参考答案1.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,AB=BC∠ABC=∠CBP=CQ,∴△ABP≌△BCQ(SAS),∴∠BAP=∠CBQ,∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:由折叠的性质得:NQ=CQ,∠BNQ=∠C=90°,∠NBQ=∠CBQ,∴∠BNM=90°,∵点N是MQ的中点,∴NQ=MN,由(1)得:MQ=MB,∴MN=12MB,∴∠MBN=30°,∴∠CBN=60°,∴∠NBQ=∠CBQ=30°,∴CQ=33BC,∴BP=CQ=33BC,即BP=33BC时,点N是MQ的中点.(3)解:∵四边形ABCD是正方形,AB=3,P是BC的三等分点,∴BP=2CP,或CP=2BP,①当BP=2CP时,BP=2,由折叠的性质得:NQ=CQ=BP=2,BN=BC=3,∵∠NQB=∠CQB=∠ABQ,∴MQ=MB,设MQ=MB=x,则MN=x-2,在Rt△MBN中,MB2=BN2+MN2,即x 2=32+(x -2)2,解得:x =134,即MQ =134;②当CP =2BP 时,BP =1,由折叠的性质得:NQ =CQ =BP =1,BN =BC =3,∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB ,设MQ =MB =x ,则MN =x -1,在Rt △MBN 中,MB 2=BN 2+MN 2,即x 2=32+(x -1)2,解得:x =5,即MQ =5;综上所述,若AB =3,P 是BC 的三等分点,QM 的长为134或5.2.解:(1)∵∠AEF =90°,∴∠AEB +∠FEG =90°,∵四边形ABCD 是正方形,∴∠B =90°,∴∠AEB +∠BAE =90°,∴∠BAE =∠GEF ,(2)在△ABE 和△EGF 中,∠ABE =∠EGF ∠BAE =∠GEF AE =EF,∴△ABE ≌△EGF (AAS ),∴BE =GF ,AB =EG ,∴BE =CG ,∴CG =FG ;(3)223.解:(1)当点P在线段AO上时PE=PD且PE⊥PD.理由:当点P在线段AO上时,在△ABP和△ADP中AB=AD∠BAP=∠DAP=45∘AP=AP∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,如图,过点P作PM⊥CD于点M,作PN⊥BC于点N,∵AC平分∠BCD,∴PM=PN,在Rt△PNE与Rt△PMD中,∵PD=PE,PM=PN∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EP N,易得∠MPN=90∘,∴∠DPE=90∘,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)当点P在线段OC上时,(1)中的猜想成立;如图2,当点P在线段OC上时,∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,又PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD,①当点E与点C重合时,PE⊥PD;②当点E在BC的延长线上时,如图2所示,∵△BAP≌△DAP,∴∠ABP=∠ADP,∠CDP=∠CBP,∵PB=PE,∴∠CBP=∠PEC,故∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD,综上所述:PE⊥PD,当点P在线段OC上时,(1)中的猜想成立;4.解:(1)∵四边形ABCD是菱形∴AD=AB,∠BAD=60°∴△ADB是等边三角形∴AD=AB=BD,∠DAB=∠ADB=∠ABD∵AE=DF,∠DAB=∠ADB=60°,AD=BD∴△ADE≌△DBF(SAS)∴∠ADE=∠DBF又∠BGE=∠BDE+∠DBF=∠BDE+∠ADE=∠ADB∴∠BGE=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD5.856.(1)证明:∵ME⊥AO,MF⊥BO,∴∠MEO=90°,∠MFO=90°,∵正方形ABCD的対角线AC,BD交于点O,∴∠EOF=90°,∴四边形OEMF为矩形;(2)解:∵边长为8的正方形ABCD的対角线AC,BD交于点O,∴利用勾股定理可以得到OA=OB=42,当M在AB的中点时,EF有最小值,最小值=OE2+OF2=(22)2+(22)2=4.7.证明:(1)过点F作MN⊥AD于点M,交BC于点N,∴∠MEF+∠EFM=90°,∵∠EFB=90°,∴∠BFN +∠EFM =90°,∴∠MEF =∠BFN ,在正方形ABCD 中,AD ∥BC .∴MN ⊥BC ,∴∠FBN +∠BFN =90°,∴∠FBN +∠MEF =90°,即∠DEF +∠CBF =90°;证法二:在正方形ABCD 中,AD ∥BC ,∴∠DEB +∠CBE =180°,即∠DEF +∠BEF +∠EBF +∠CBF =180°,∵∠EFB =90°,∴∠BEF +∠EBF =90°,∴∠DEF +∠CBF =90°;(2)由(1)得MN ⊥AD ,∴正方形ABCD 的性质得四边形MNCD 是矩形,∴MN =CD =AB =3,在△BFN 与△FEM 中,由(1)得∠MEF =∠BFN ,∠EMF =∠FNB =90°,∵△BEF 为等腰直角三角形,∴BF =EF ,在△BFN 与△FEM 中,∠EMF =∠FNB ∠MEF =∠BFN BF =EF,∴△BFN ≌△FEM (AAS ),∵BC =AB =3,∴S △BCF =12BC ⋅FN =32FN =32,∴FN =1.∴BN =FM =MN -FN =2,在Rt △BFN 中,EF =BN 2+FN 2=12+22=5,∴S △BEF =12BF 2=12×(5)2=52;(3)在△BFN与△FEM中由(2)△BFN≌△FEM,MD=NC,∴BN=FM,EM=FN,∵MN=AB=BC,∴FM+FN=BN+NC,∴FN=NC=MD=EM,∴∠FCN=45°,DE=2MD=2CN,CF,在Rt△FNC中,CN=22∴DE=2×2CF=2CF.28.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE,∠DEN=∠AEM∴△NDE≌△MAE(ASA);(2)∵△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(3)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.9.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∠DNE=∠FME EN=EM∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD=CD∠ADE=∠CDG DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×42=8,∴CE+CG=8是定值.10. (1)∵点F,H分别是BC,CE的中点,∴FH //BE ,FH =12BE ,∴∠CFH =∠CBG .又∵点G 是BE 的中点,∴FH =BG .又∵BF =FC ,∴△BGF ≅△FHC .(2)连接EF ,GH .当四边形EGFH 是正方形时,可知EF ⊥GH且EF =GH .∵在△BEC 中,点G ,H 分别是BE ,EC 的中点,∴GH =12BC =12AD =12a ,且GH //BC ,∴EF ⊥BC .又∵AD //BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴S 矩形ABCD =AB ⋅AD =12a ⋅a =12a 211.解:(1)∵四边形EFGH 为正方形,∴HG =HE ,∠ADG =∠HAE =90°,∵∠DHG +∠AHE =90°,∠DHG +∠DGH =90°,∴∠DGH =∠AHE ,∴△DGH ≌△AHE (AAS ),∴DG =AH =2;(2)如图,作FM⊥DC,M为垂足,连结GE.∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEG-∠HEG=∠MGE-∠FGE,即∠AEH=∠MGF,又∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离恒等于2,∴S▵FCG=1×2⋅GC=3,2解得GC=3,∴DG=2;(3)设DG=x,则CG=5-x,由(2)可知,S△FCG=5-x.要使△FCG的面积最小,须使x最大,∵在Rt△DHG中,DH=13,∴当GH取得最大时,x最大当点E与点B重合时,HE最大,此时,HE=22+52=29,则GH=HE=29,在Rt△DHG中,x=(29)2−(13)2=4,∴当DG=4时,△FCG的面积取得最小值.12.解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,AB=BC∠ABE=∠BCF∴△ABE≌△BCF(AAS),∠AEB=∠BFC∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.13.解:(1)AP=1DE,理由如下:2连接AE.∵CE⊥CD,∴∠ACE+∠ACD=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACE=∠BCD,在△BCD和△ACE中,CE=CD∠ACE=∠BCD,AC=BC∴△BCD≌△ACE(SAS),∴∠EAC=∠B=45°,∴∠EAD=90°,∵P为DE中点,DE.∴AP=12(2)①当Q在边AB上时,连接AE,EQ.∵P 为DE 中点,CE =CD ,∴PC 垂直平分DE ,∴DQ =QD ,∵AB =5,AQ =2,∴BD =3,设BD =AE =x ,则QD =EQ =3-x ,在Rt △AEQ 中,AE 2+AQ 2=QE 2,即x 2+22=(3-x )2解得x =56;当Q 在BA 延长线上时,连接AE ,EQ ,如图,设BD =AE =x ,同理可得AE 2+AQ 2=QE 2,即x 2+22=(7-x )2解得x =4514.综上可得BD =56或4514.14.解析 四边形DEGF 是平行四边形.理由:∵D 、E 分别是△ABC 的边AB 、AC 的中点,∴DE =12BC ,DE //BC ,∵F、G分别是OB、OC的中点,BC,FG//BC,∴FG=12∴DE=FG,DE//FG,∴四边形DEGF是平行四边形15.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,∠GCB=∠FBABC=AB,∠EBC=∠FAB∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=2,∴CE=BC2+EB2=22+12=5,在Rt △CEB 中,由CE •BG =EB •BC 得BG =EB ⋅BC CE =1×25=255,∴CG =455,∵∠DCE +∠BCE =∠BCE +∠CBF =90°,∴∠DCE =∠CBF ,又∵DC =BC =2,∠CHD =∠CGB =90°,在△CHD 与△BGC 中,∠CHD =∠CGB =90°∠DCE =∠CBF DC =BC,∴△CHD ≌△BGC (AAS )∴CH =BG =255,∴GH =CG -CH =255=CH ,∵DH =DH ,∠CHD =∠GHD =90°,在△DGH 与△DCH 中,GH =CH ∠GHD =∠CHD DH =DH,∴△DGH ≌△DCH (SAS ),∴DG =DC =2.16.解:(1)在矩形ABCD 中,∠C =∠B =90°,CD =AB =10,在Rt △BCE 中,CE =CD -ED =10-7=3,根据勾股定理得,BE =BC 2+CE 2=42+32=5,(2)①当以P 为直角顶点时,即∠BPE =90°,则∠C =∠B =∠BPE =90°,∴四边形CBPE 是矩形,∴BP =CE =3,即10-t =3,∴t =7,②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得,BE 2+PE 2=BP 2,过点P 作PF ⊥CD 于F ,则PF=AD=4,DF=AP,设AP=t,则EF=7-t,BP=10-t,PE2=42+(7-t)2,∴52+42+(7-t)2=(10-t)2,,解得,t=53∴当t=7或5秒时,△BPE是直角三角形.3。
鲁教版五四制八年级下册数学第六章 特殊平行四边形 阶段方法技巧训练 利用特殊四边形的性质巧解动点问题
(2)如图②,若∠EAF=60°,求证:△AEF 是等边三角形.
解:连接AC.由(1)知△ABC是等边三角形, ∴AB=AC,∠ACB=∠BAC=∠EAF=60°. ∴∠BAE=∠CAF.∵∠BCD=120°,∠ACB=60°, ∴∠ACF=60°=∠B.∴△ABE≌△ACF. ∴AE=AF.∴△AEF是等边三角形.
3.在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直 平分线EF分别交AD,BC于点E,F,垂足为O. (1)如图①,连接AF,CE.试说明四边形AFCE为菱形, 并求AF的长.
解:∵四边形ABCD是矩形,∴AD∥BC. ∴∠OAE=∠OCF,∠AEO=∠CFO. ∵EF垂直平分AC,垂足为O,∴OA=OC. ∴△AOE≌△COF.∴OE=OF.∴四边形AFCE为平 行四边形.又∵EF⊥AC,∴四边形AFCE为菱形. 设AF=CF=x cm,则BF=(8-x)cm, 在Rt△ABF中,AB=4 cm,由勾股定理得42+(8- x)2=x2,解得x=5,∴AF=5 cm.
证明:连接AC. ∵在菱形ABCD中,∠B=60°,AB=BC=CD, ∴∠BCD=180°-∠B=120°,△ABC是等边三角形. 又∵E是BC的中点,∴AE⊥BC. ∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°. ∴∠CFE=180°-∠FEC-∠BCD=180°-30°- 120°=30°.∴∠FEC=∠CFE.∴EC=CF.∴BE=DF.
LJ版八年级下
第六章 特殊平行四边形源自阶段方法技巧训练(二) 专训2 利用特殊四边形的性质巧解动
点问题
提示:点击 进入习题
1 见习题 2 见习题 3 见习题 4 见习题
答案显示
1.如图,在▱ABCD中,E,F两点在对角线BD上运动(E, F不重合),且保持BE=DF,连接AE,CF.请你猜想AE 与CF有怎样的数量关系和位置关系,并说明理由.
二次函数中动点问题——平行四边形
2018年04月28日187****6232 的初中数学组卷一•解答题(共5小题)1 •如图,已知抛物线y=ax2+bx+c经过点A (- 1, 0),点B (3, 0)和点C (0, 3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形若存在,直接写出点Q、R2•如图,已知抛物线y=af+bx+c过点A (- 3, 0),B (-2, 3),C (0, 3),其顶点为D.(1)求抛物线的解析式;(2)设点M (1, m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△ APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N, E为直线AC上任意一点,过点E 作EF// ND交抛物线于点F,以N, D, E, F为顶点的四边形能否为平行四边形若能,求点E的坐标;若不能,请说明理由.3•如图,抛物线y=X2 - 2x- 3与x轴交于A、B两点(点A在点B的左侧),直线I与抛物线交于A, C两点,其中点C的横坐标为2 .(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点丘,求厶ACE H积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小若存在,求出这个最小值及点M ,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形如果存在,请直接写出所有满足条件的F点坐标;如4. 如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A, C两点,且与x轴交于另一点B (点B在点A右侧). (1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M, F,B,P为顶点的四边形是平行四边形若存在,请求出点P的坐标;若不存在,试说明理由.5. 如图,矩形OABC在平面直角坐标系中,点A在x轴正半轴,点C在y轴正半轴,OA=4, OC=3抛物线经过O,A两点且顶点在BC边上,与直线AC交于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的2018年04月28日187****6232 的初中数学组卷参考答案与试题解析一•解答题(共5小题)1 •如图,已知抛物线y=ax2+bx+c经过点A (- 1, 0),点B (3, 0)和点C (0, 3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形若存在,直接写出点Q、R【分析】(1)将A(- 1, 0)、B(3, 0)、C(0, 3)三点坐标代入抛物线y=af+bx+c 中,列方程组求a、b、c的值即可;(2) 根据勾股定理的逆定理可得:/ BCE=90,可得结论;(3) 分两种情况:①以BC为边时,如图1, R在对称轴的右侧时,BC// RQ四边形CQRB是平行四边形,根据平移规律先得R的横坐标为4,代入抛物线的解析式可得R (4,- 5),由平移规律可得Q (1,- 2);如图2, R在对称轴的左侧,RC// BQ,四边形CRQB是平行四边形,同理可得点Q、R的坐标.②以BC为对角线时,如图3,同理根据平移规律可得结论.r a-b>+e=O【解答】解:(1)由题意,得:二0,c=3 kTt解得:,22 ,3i匸二故这个抛物线的解析式为y= - X2+2X+3,y= -X2+2X+3=-(X- 1) 2+4,•••顶点 E (1, 4);(2) 点C在以BE为直径的圆上,理由是:•- C( 0, 3), B (3, 0), E( 1 , 4),••• BG=32+32=18, C底=12+12=2, B民(3- 1) 2+42=20,••• B G+C E=B W,•••/ BCE=90,•••点C在以BE为直径的圆上;(3) 存在,分两种情况:①以BC为边时,如图1, R在对称轴的右侧时,BC// RQ,四边形CQRB是平行四边形, 由C到B的平移规律可知:Q的横坐标为1,则R的横坐标为4,当X=4时,y=-X2+2X+3=- 42+2X 4+3= - 16+8+3=- 5,•- R( 4 , - 5),•- Q (1 , - 2);如图2, R在对称轴的左侧,RC// BQ ,四边形CRQB是平行四边形, 由C到B的平移规律可知:Q的横坐标为1,则R的横坐标为-2 ,当X=- 2 时,y=-X2+2X+3=- 4+2X( - 2) +3=-5 ,•- R(-2, - 5),•- Q (1, - 8);②以BC为对角线时,如图3 ,由C和Q的平移规律可得:R的横坐标为2 ,当X=2时,y=- 4+4+3=3,•- R( 2 , 3),根据R到B的平移规律可得:Q (1, 0);综上所述,R (4,- 5), Q (1,- 2)或R (-2, - 5), Q (1,- 8)或R (2, 3), Q (1, 0).【点评】本题是二次函数的综合题,考查了待定系数法求解析式,圆周角定理, 勾股定理的应用,平行四边形的判定等,分类讨论的思想是( 3)的关键.2•如图,已知抛物线y=af+bx+c过点A (- 3, 0), B (-2, 3), C (0, 3),其顶点为D.(1)求抛物线的解析式;(2)设点M (1, m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△ APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N, E为直线AC上任意一点,过点E 作EF// ND交抛物线于点F,以N, D, E, F为顶点的四边形能否为平行四边形若能,求点E的坐标;若不能,请说明理由.【分析】(1)根据待定系数法,可得答案;(2)利用轴对称求最短路径的知识,找到 B 点关于直线x=1的对称点B',连接 B'D, B'D 与直线x=1的交点即是点M 的位置,继而求出m 的值.(3) 根据平行于y 轴的直线上两点间的距离是较大的纵坐标减去较小的纵坐标, 可得PE 的长,根据三角形的面积,可得二次函数,根据二次函数的性质,可得 答案;(4) 设出点E 的,分情况讨论,①当点E 在线段AC 上时,点F 在点E 上方,② 当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,根据平行四边形的性 质,可得关于x 的方程,继而求出点E 的坐标.【解答】解:(1)将A ,B, C 点的坐标代入解析式,得9a-3b+c — 0I ■- ■ - ■ 1, c=3解得心-2,t c=3抛物线的解析式为y=- x 2 - 2x+3(2) 配方,得y=-(x+1) 2+4,顶点D 的坐标为(-1, 4)作B 点关于直线x=1的对称点B',则 B' (4, 3),由(1)得 D (- 1 可求出直线DB 的函数关系式为y 当M (1, m )在直线DB 上时,MN+MD 的值最小, 贝U m=-£x 1 + 严=¥ .5 5 5(圍1(3)作PE±x轴交AC于E点,如图2AC的解析式为y=x+3,设P (m, - m2- 2m+3), E (m, m+3),PE=- m2- 2m+3-( m+3) =- m2- 3m& APC^PE|X A|=—(-m2- 3m) x 3=-当口=-3时,厶APC的面积的最大值是2(4)由(1)、(2)得 D (- 1, 4), N(-1, 2)点E在直线AC上,设E (x, x+3),①当点E在线段AC上时,点F在点E上方,则F(x,- x2-2x+3),•••EF=DN•••- x2- 2x+3-( x+3) =4 - 2=2,解得,x=- 2或x=- 1 (舍去),则点E的坐标为:(-2, 1).②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,- x2- 2x+3), •••EF=DN• ( x+3)- (- x2- 2x+3) =2,解得x= 或x=~2即点E的坐标为:(2 2综上可得满足条件的点E为E (-2, 1)或:(I", ;)或(2 ).【点评】本题考查了二次函数的综合题,解(1)的关键是待定系数法,解(2) 利用轴对称求最短路径;解(3)的关键是利用三角形的面积得出二次函数;解(4) 的关键是平行四边形的性质得出关于x的方程,要分类讨论,以防遗漏.3•如图,抛物线y=x2- 2x-3与x轴交于A、B两点(点A在点B的左侧),直线I 与抛物线交于A,C两点,其中点C的横坐标为2 .(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点丘,求厶ACE H积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小若存在,求出这个最小值及点M ,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形如果存在,请直接写出所有满足条件的F点坐标;如【分析】(1)令抛物线y=x2- 2x- 3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;(2)设P点的横坐标为x (- Kx<2),求出P、E的坐标,用x表示出线段PE 的长,求出PE的最大值,进而求出△ ACE的面积最大值;(3)根据D点关于PE的对称点为点C (2,- 3),点Q (0,- 1)点关于x轴的对称点为M (0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-2x+1,进而求出最小值和点M, N的坐标;(4)结合图形,分两类进行讨论,① CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图2,此时可以求出F点的两个坐标. 【解答】解:(1)令y=0,解得x i = - 1或X2=3,••• A (- 1, 0), B (3, 0);将C点的横坐标x=2代入y=x2- 2x- 3得y=- 3,•-C( 2,- 3),•••直线AC的函数解析式是y=-x- 1,(2)设P点的横坐标为x (- Kx<2),则P、E 的坐标分别为:P (x,- x- 1), E (x, x2-2x- 3),I P 点在E点的上方,PE= (- x- 1)-( x2-2x- 3) =- X2+X+2,.••当x丄时,PE 的最大值」,2 4△ ACE的面积最大值丄PE[2-( - 1) ]—PE」,2 2 8(3) D点关于PE的对称点为点C( 2, - 3),点Q (0, - 1)点关于x轴的对称点为K (0 , 1),连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为y=- 2x+1 , 此时四边形DMNQ的周长最小,最小值=|CM|+QD=2 !,+2,求得M (1, - 1) , N (订,0).(4) 存在如图1,若AF// CH,此时的D和H点重合,CD=2,则AF=2,再根据 |HA|=|CF| ,求出 F 4 (4—衙,0), Q ).综上所述,满足条件的F 点坐标为F i (1, 0), F 2 (- 3, 0) , F3如护,°), F 4 (4-一 , 0).【点评】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握 对称的知识和分类讨论解决问题的思路,此题难度较大.4. 如图,在平面直角坐标系中,直线 y=-3x -3与x 轴交于点A ,与y 轴交于 点C .抛物线y=x 2+bx+c 经过A , C 两点,且与x 轴交于另一点B (点B 在点A 右 侧).(1) 求抛物线的解析式及点B 坐标;(2) 若点M 是线段BC 上一动点,过点M 的直线EF 平行y 轴交x 轴于点F ,交抛物如图2,根据点A 和F 的坐标中点和点 C 和点H 的坐标中点相同,线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M, F,B,P为顶点的四边形是平行四边形若存在,请求出点P的坐标;若不存在,试说明理由.【分析】(1)先根据直线的解析式求出A、C两点的坐标,然后将A、C的坐标代入抛物线中即可求出二次函数的解析式.进而可根据抛物线的解析式求出B 点的坐标.(2)ME的长实际是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于ME的长和F点横坐标的函数关系式,可根据函数的性质来求出ME的最大值.(3)根据(2)的结果可确定出F,M的坐标,要使以M, F,B,P为顶点的四边形是平行四边形,必须满足的条件是MP// =BF,那么只需将M点的坐标向左或向右平移BF长个单位即可得出P点的坐标,然后将得出的P点坐标代入抛物线的解析式中,即可判断出是否存在符合条件的P点.【解答】解:(1)当y=0时,-3x- 3=0, x=- 1•-A (- 1, 0)当x=0 时,y=- 3,•-C( 0,- 3),抛物线的解析式是:y=f - 2x- 3.当y=0 时,x2- 2x- 3=0,解得:X1=— 1 , x2=3••• B (3, 0).(2)由(1)知 B (3, 0), C (0,- 3)直线 BC 的解析式是:y=x -3, 设 M (x , x -3) (0<x < 3),贝U E (x , x 2- 2x - 3)••• ME= (x - 3)-( x 2- 2x - 3) =- x 2+3x=-( x -丄)2丄;.••当x 』时,ME 的最大值为—. 2 4(3)答:不存在.•皿亡,BF =O B- OFj 设在抛物线x 轴下方存在点P ,使以P 、M 、F 、B 为顶点的四边形是平行四边形, 贝U BP// MF , BF// PM .• P i (0,- 一)或 P 2 (3,• P 2不在抛物线上.综上所述:在x 轴下方抛物线上不存在点P ,使以P 、M 、F 、B 为顶点的四边形 是平行四边形.【点评】本题着重考查了待定系数法求二次函数解析式、平行四边形的判定和性 质等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法. (2)中弄清线段ME 长度的函数意义是解题的关键. 5. 如图,矩形OABC 在平面直角坐标系中,点 A 在x 轴正半轴,点C 在y 轴正 半轴,OA=4, OC=3抛物线经过O , A 两点且顶点在BC 边上,与直线AC 交于 点D .(1) 求抛物线的解析式;由(2)知ME 取最大值时ME J , E4 15T 当 P i (0, 2 • P i 不在抛物线上. )时,由(1)知 y=“ - 2x - 3=- 3工-当 P 2 (3, )时,由(1)知 y=« - 2x - 3=0工-(2) 求点D的坐标;(3) 若点M在抛物线上,点N在x轴上,是否存在以A, D, M , N为顶点的-2)2+3,将A(4, 0)坐标代入q求出a即可解决问题;(2)求出直线AC的解析式,利用方程组确定交点坐标即可;(3) 分两种情况考虑:①当点M在x轴上方时,如答图1所示;②当点M在x轴下方时,如答图2所示;分别利用待定系数法即可解决问题;【解答】解:(1)设抛物线顶点为E,根据题意OA=4, OC=3得:E (2,3),设抛物线解析式为y=a (x- 2) 2+3,将A (4, 0)坐标代入得:0=4a+3,即a=-二,4则抛物线解析式为y=-[ (x-2) 2+3二-二/+3x;(2)设直线AC解析式为y=kx+b (〜0), 将A (4, 0)与C (0, 3)代入得: f 4Hb=0仏犬,解得:4,故直线AC解析式为y=-[x+3,与抛物线解析式联立得:3y=〒+3y=a (x(3)存在,分两种情况考虑:①当点M 在x 轴上方时,如答图1所示: B/ o M 3 —h四边形ADMN 为平行四边形,DM // AN, DM=AN,由对称性得到 M (3,号),即DM=2,故AN=2,•-N i (2,0),N 2 (6,0);②当点M 在x 轴下方时,如答图2所示:/o\「 ■ 1 迟A 、\过点D 作DQ 丄x 轴于点Q ,过点M 作MP 丄x 轴于点P ,可得△ ADQ ^^ NMP , ••• MP=DQ 卑,NP=AQ=34将y M =-寸代入抛物线解析式得:-亍=-亍x 2+3x ,解得:X M =2 -.厂或 X M =2+::厂 i ,X N =X M - 3=-F F - 1 或曲 i — 1, K=1则点D 坐标为(二N3 (-屮1, o), N4( -1, o).综上所述,满足条件的点N有四个:N i (2, 0), N2 (6, 0), N3 (-W - 1, 0), N4 (衙-1, 0).【点评】此题考查了二次函数综合题、待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
八年级数学下册动点问题构成平行四边形解题技巧(一)
八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。
解决动点问题需要一定的技巧和方法。
动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。
根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。
这些信息有助于我们确定动点的坐标。
•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。
例如,平行四边形的对角线相互平分,对角线长相等等。
通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。
•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。
向量法常用于证明或推导问题,而坐标法常用于具体计算。
具体选择使用哪种方法要根据问题的特点和要求来决定。
•画图辅助解题绘制图形是解决动点问题的重要步骤。
通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。
画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。
•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。
根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。
总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。
通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。
希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。
1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题中的平行四边形
动点问题中的平行四边形
教学内容:动点问题中的平行四边形
教学要求: 1、利用平行四边形的有关知识解决动点中的相关问题
2、领会转化、数形结合、分类讨论的数学思想在动点问题中的应用. 教学过程
一、复习: 1、平行四边形的性质与判定
2、几何作图的关键
二、新课
1、情境引入,探究已知三点确定平行四边形的第四个顶点。
1.1、张大伯家有一个直角三角形的池塘,如图 1 所示,张大伯打算把池塘在
原有的基础上,把面积扩大一倍后变成一个平行四边形,你能帮张大伯找到这
个平行四边形的第四个顶点么?并说出你的理由!
B B y
C A
O A x 图1图2
1.2、小结方法:如何确定平行四边形的第四个顶点,你的依据是什么?
1.3、趁热打铁:
如图 2,在平面直角坐标系中,点 A (1,0) , B( 0, 2),则
平行四边形 AOBC 的顶点 C 的坐标为 __________________
1.4、变式练习:
如图 2,在平面直角坐标系中,点A(1,0)B(0,2),求以 A、O、 B、 C
为顶点的平行四边形的顶点 C 坐标,则点 C 的坐标为 ____________________
________________________________.
小结:如何求点的位置,你的依据是什么?
1.5、举一返三
1、如图 3,在梯形 ABCD 中, AD∥BC, 在 AD边上有一点 P 从点 A 到点 D运动,
速度为每秒 1 个单位,在 CB边上有一点 Q从点 C 向点 B 运动,速度为每秒 2 个
单位,已知 AD=8,BC=12,若 P、Q 同时运动,当四边形ABQP是平行四边形时, P
运动多少秒时 ?
A D
C
B
图 3
2、如图 4,抛物线 y 5 x2 17 1与直线y=1 x 1 交于A、B点,过
4 4 2
点 B 作 BC⊥x 轴,垂足为点 C(3,0).动点 P 在线段 OC 上从原点出发以每秒一个单位的速度向 C 移动,过点 P 作 PN⊥ x 轴,交直线 AB 于点 M ,交抛物线于点 N. 设点 P 移动的时间为 t 秒,MN 的长度为 l 个单位,求 l 与 t 的函数关系式,并写出 t
的取值范围;设在( 2)的条件下(不考虑点 P 与点 O,点 C 重合的情况),连接
CM, BN ,当 t 为何值时,四边形 BCMN 为平行四边形?
N
B
M
A
O P C x
图 4
2.1、再次探究:已知两点确定平行四边形
例:已知,如图 5,点 A(- 1,0)、B(0,-2),在 x 轴上找一点 P, 在直线 y=x
上找一点 Q,使得四边形 AQBP 为平行四边形,并求出点 P 的坐标。
y y=x
A
O x
B
图 5
2.2、变式训练:已知,如图 6,点 A (- 1,0)、 B( 0,- 2),在 x 轴上找一
点P,在直线y=x 上找一点Q,使得以A 、B、Q 、P 为顶点的四边形是平行四边
形,并求出点 P 的坐标。
y
A
O x
B
图 6
2.3、举一返三:
已知,如图 7,点 A(- 1,0)、B(0,-2),在 x 轴上找一点 P,在直线 y=- x2+3 上找一点 Q,使得以点 A 、 B、P、 Q 为顶点的四边形为平行四边形,并求出点
P的坐标。
y
A 三、课堂小结(画龙点睛):O x
B
图 7。