四边形中动点问题的解题策略

合集下载

四边形中动点问题的求解

四边形中动点问题的求解
P + F P + F= FI . 跌P + F E P = E P E 5 纸 E P 娟
AC 的一个 动点 ,点E 盼 别是边 上 ,
解决本题的关键是 熟悉
平行 四 边形 和 等腰 梯 形 的性 质特 征 , 再根 据 它们 的 性 质特 征 列 出方 程 进
行 求解.
最 小值 为 5 .
( ) , 分  ̄ AB, 同 时 出发 2 当P Q qL C
运 动 t 时 ,P 2 , Q t所  ̄P = - t B = tC = , ' C 6 2. s - X 过 点 Q作 Q _B E L C于 点 E. 则 Q E=
以梯形A C 是等 腰梯 形. D B
Se △ s 蚴 代 数 ,  ̄+啪 ÷ 矩 ,入 值即 o S
LMP + P , MP = Q LQ C / Q LMB = 0, _ C6。 所 以 L M = Q C 所 以 △MP B P P. B
.脚A 一 _ s -c Sq 孚 ( e = 6
2) t ( 6 2 )O 3. 2 —t 7 ( < ) 2 + < () 在 时 刻t 线段 把 梯形 3存 , 使
A D分成 两部 分 的 面积 比 为1 5 因 BC :.
/ AD 1 为 s 跏 梯 ∞=—7 Y SA B :— ×3× 2 x-

s ,以 。- ・-O APQC.所 以 所soAP- ・ 啪 = 0E D - +  ̄  ̄ MB=
P .因为 四 边 形A D是 矩 形 ,所 以 F BC
LMB = 0 . M C C 6 。 LD =LMC 6 。 所 B= 0 .
以 AA枷 A D MC 所 vAB DC 所 X = .
角线 相 等且 互相 平 分 可发 现 S A 与 AP O

四边形中的动点问题

四边形中的动点问题

四边形中的动点问题动点问题是初中数学中常见的问题之一。

这种问题涉及到一些物体或点在平面或空间中的运动轨迹,从而引发一系列有趣的问题。

本文将重点讨论四边形中的动点问题。

一、定义四边形是一个拥有四个端点并且每个端点有两条相邻的边相连的图形。

在四边形中,如果一些点在边界或内部移动,我们称这些点是动点。

二、基本问题四边形中的动点问题主要有三个基本问题:1. 四边形内任取一个动点,这个点的移动轨迹是什么?2. 四边形内任取两个动点,它们的运动是否有任何联系?3. 四边形内任取三个动点,它们是否存在特殊的位置关系?三、解决方法1. 关于第一个问题,我们可以采用向量法、坐标法、三角函数法等不同的方式来解决。

其中最常用的方法是向量法,即用向量表示动点在平面内的位置,并利用向量的加减法来求得动点的移动轨迹。

比如,对于任意一边AB,在边AB上取一点C,设动点P的向量表示为向量a,向量AC表示为向量b,则P点在AC向量上的投影可以表示为向量b’。

而向量a’可以表示为由向量b’平移而来的向量,其中平移的大小和方向取决于向量b和a之间的夹角。

2. 第二个问题比较复杂,需要利用向量叉乘、双曲线函数等高深的数学知识来解决。

一般来说,我们需要找到两个动点之间的代数关系式,再根据这个关系式来判断它们是否有联系。

比如,如果我们发现两个动点在一条直线上运动,则它们存在一定的约束条件,这个约束条件可以用向量叉乘来表达。

3. 第三个问题则是考验计算几何能力的问题。

一般来说,我们需要找到一种不变量来描述三个动点之间的特殊位置关系。

比如,如果我们发现这三个动点共线,则我们可以通过向量叉乘或线性方程组来计算它们的位置关系。

如果我们发现这三个点可以构成一个三角形,则我们可以通过三角形的几何性质来判断它们的位置关系。

如果我们发现这三个动点可以构成一个正方形或者矩形,则我们可以通过它们的对角线、边长、面积等几何参数来计算它们的位置关系。

四、典型例题1. 在正方形ABCD中,点E、F分别在边AB、CD上,且AE=CF。

中考数学四边形中的动点问题小结精编

中考数学四边形中的动点问题小结精编

四边形中的动点问题我们常见的四边形中的动点问题可以总结为单动点问题与双动点问题.解决问题的主要策略为以静制动,分类讨论,寻找临界点.【例1】已知如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为(100)△是腰长A,、(04)C,,点D是OA的中点,点P在BC边上运动,当ODP 为5的等腰三角形时,点P的坐标为.【例2】在平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向C、A运动.⑴四边形DEBF是平行四边形吗?请说明理由.⑵若BD=12cm,AC=16cm,当运动时间t为何值时,四边形DEBF是矩形?【例3】如图所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A点坐标为(16,0),C点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为t s()≤≤.04t⑴求当t为多少时,四边形PQAB为平行四边形?⑵求当t为多少时,PQ所在直线将梯形OABC分成左右两部分,其中左部分的面积为右部分面积的一半,求出此时直线PQ的函数关系式.Array题型二:由动点产生的函数关系【例4】⑴如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于的函数图象如图2x=时,点R应运动到()所示,则当9A.N处B.P处C.Q处D.M处图1HFD CA⑵如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀 速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是( )【例5】 正方形ABCD 的边长为2厘米,点E 从点A 开始沿AB 边移动到点B ,点F 从点B 开始沿BC 边移动到点C ,点G 从点C 开始沿CD 边移动到点D ,点H 从点D 开始沿DA 边移动到点A 、它们同时开始移动,且速度均为0.5厘米/秒.设运动的时间为t (秒) ⑴求证:△HAE ≌△EBF ;⑵设四边形EFGH 的面积为S (平方厘米),求S 与t 之间的函数关系式,并写出自变 量t 的取值范围;D C P BAA .B .C .D .x【例6】 如图,已知正方形ABCD 与正方形EFGH的边长分别是它们的中心12O O ,都在直线l 上,AD l ∥,EG 在直线l 上,l 与DC 相交于点M,7ME =-,当正方形EFGH 沿直线 l 以每秒1个单位的速度向左平移时,正方形ABCD 也绕1O 以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变. (1)在开始运动前,12O O = ;(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD 停止旋转,这时AE = ,12O O = ;(3)当正方形ABCD 停止旋转后,正方形EFGH 继续向左平移的时间为x 秒,两正方形重叠部分的面积为y ,求y 与x 之间的函数表达式.【例7】 将一矩形纸片OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴上, 点C 在y 轴上,OA =10,OC =8.⑴ 如图1在OC 边上取一点D ,将△BCD 沿BD 折叠,使点C 恰好落在OA 边上,记 作E 点;① 求点E 的坐标及折痕DB 的长;② 在x 轴上取两点M 、N (点M 在点N 的左侧),且54.MN =,求使四边形BDMN 的周长最短的点M 、点N 的坐标.⑵ 如图2,在OC 、CB 边上选取适当的点F 、G ,将△FCG 沿FG 折叠,使点C 落在OA上,记为H 点,设OH =x ,四边形OHGC 的面积为S .求:S 与x 之间的函数关系式,并指出变量x 的取值范围.图1 图2x题型一 由动点产生的特殊图形 巩固练习【练习1】如图,在矩形OABC 中,已知A 、C 两点的坐标分别为()()4,00,2A C 、,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).⑴ 试证明:无论点P 运动到何处,PC 总与PD 相等;⑵ 当点P 运动到与点B 的距离最小时,求P 的坐标; ⑶ 已知E (1,-1),当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;【练习2】平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(3,0),(3,4).动点M .N 分别从O 、B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥BC ,交AC 于P ,连接MP .已知动点运动了x 秒.请你探索:若P 点坐标为(3-x ,43x )当x 为何值时,△MP A 是一个等腰三角形?有几种情况?写出研究成果并证明.【练习3】如图,在直角梯形COAB 中,OC //AB ,以O 为原点建立平面直角坐标系,A 、B 、C三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. ⑴求直线BC 的解析式;⑵若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面 积的27.题型二 由动点产生的函数关系 巩固练习【练习4】如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(s )随时间(t )变化的图象大致是( )【练习5】P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC上,且PE=PB .⑴求证:① PE=PD ; ② PE ⊥PD ;⑵设AP =x ,△PBE 的面积为y . 求出y 关于x 的函数关系式,并写出x 的 取值范围;A PDEA .。

四边形中的动态问题(动点)

四边形中的动态问题(动点)

四边形中的动态问题图形中的点、线的运动,构成了数学中的一个新问题——动态几何。

它通常分为三种类型:动点问题、动线问题、动形问题。

在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。

例1、Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上。

令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动,直到C点与N点重合为止。

设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,求y与x之间的函数关系式?例练、菱形OABC的边长为4cm,∠AOC=600,动点P从O出发,以每秒1cm的速度沿O-A-B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1cm的速度运动,在AB上以每秒2cm的速度沿O-A--B运动,过P、Q两点分别作对角线AC的平行线,设P点运动的时间为x秒,这两条平行线在菱形上截出的图形的周长为ycm,问当x为多少时,周长y可能为一个定值,定值为多少?四边形动点问题(一)1.(1)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.2.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?3. 如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.4. 如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t=时,四边形MNCD是平行四边形.(2)当t=时,四边形MNCD是等腰梯形6.如图,在ΔABC中,D是BC的中点,BC=10㎝,AD=7㎝,从点A沿着A→D的方向运动,速度是每秒2㎝,连结CE,BE,过点B作BF∥CE,交射线AD于点F,设运动时间为t秒(0<t<3.5)(1)求证:ΔBDF≌ΔCDE(2)当t为何值时,四边形BFCE是矩形,说明理由(3)若四边形BFCE是矩形,当AB和CA满足什么条件时,四边形BFCE是正方形。

四边形动点问题解题技巧

四边形动点问题解题技巧

四边形动点问题解题技巧
四边形动点问题是指在四边形中,指定一个或多个点 (动点) 的运动方式及方向,求其余点 (定点) 在发展过程中的坐标及对应数量关系的问题。

解决四边形动点问题需要掌握以下技巧:
1. 分析题意:认真阅读题干,了解动点的运动方式、方向及限制条件,提取关键信息,确定解题方向。

2. 建立坐标系:通常是在平面直角坐标系中解决这个问题,需要将动点的位置转化为坐标,以便于应用代数方法解决问题。

3. 建立等量关系:通过分析题目中的限制条件和运动方式,建立动点和定点的等量关系,通常可以用行程问题、角度问题等来表示。

4. 列方程解题:根据等量关系,列出代数方程,求解未知数的值,然后根据题意进行画图、分析、总结。

5. 分类讨论:对于存在角度限制或速度限制等问题的题目,需要进行分类讨论,以确保解答的正确性。

6. 注意细节:在解决问题的过程中,需要注意细节,如动点的速度、方向、持续时间等因素,以免出现不必要的错误。

综上所述,解决四边形动点问题需要有清晰的思路和扎实的数学知识基础,需要善于发现问题的本质,善于运用代数方法解决问题,同时需要注意细节和分类讨论。

三角形、四边形中的动点问题

三角形、四边形中的动点问题

§1. 三角形、四边形中的动点问题【解题思路与方法】1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;2.化动为静 (由一般到特殊),以静制动;3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);5.注重分类讨论,通过分别画图与分离图形使问题简单化;6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).◆典例解析一、三角形中的动点问题例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),(1)如图1,当t 为何值时,△PBC 是直角三角形?(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?BCPA QDBCPAQDBCPA已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。

例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图(1)△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 。

初中数学重点模型14 动点在四边形中的分类讨论(基础)

初中数学重点模型14 动点在四边形中的分类讨论(基础)

专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。

动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。

四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。

一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。

而2t也就是这个点所运动的线段长。

进而能表示其他相关线段的长度。

所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。

3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。

4、难点是找等量关系这种题的难点是找到等量关系。

这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。

5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。

【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。

初二数学《平行四边形中的动点问题》(附练习及答案)

初二数学《平行四边形中的动点问题》(附练习及答案)

四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。

解决这类问题关键是动中求静,灵活运用有关数学知识。

数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。

这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。

解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。

1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形中动点问题的解题策略
动点问题集代数、几何知识于一体,有较强的综合性,题型灵活多变,解题方法渗透了分类讨论、数形结合、转化等数学思想.本文以四边形中的动点问题为例,谈谈此类问题的解题策略,供读者参考.
策略一动中寻静
在“静”中探求“动”的一般规律,获得图形在运动过程中具有的某种性质,从而抓住变化中的不变因素.
例1 如图1,在四边形ABCD中,点E、F分别是AP、BP的中点,当点P在线段CD上从点C向点D移动时,线段EF的长度将______.(填“变大”、“变小”或“不变”)
分析当点P在CD上运动时,线段E F始终为△ABP的中位线,所以,总有EF=1
AB,因此线段EF的长度不变.
2
例2 如图2,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D是BC上一动点,以AC为对角线的所有≌ABCD中,DE最小的值为( )
(A)2 (B)3 (C)4 (D)5
分析 当点D 在BC 上运动时,在□ABCD 中总有DE =2OD .易知,OD 取最小值时
OD 上BC ,且此时OD =12AB ,这样,DE 最小值=2·12
AB =AB =3. 注 例1中抓住不变量EF =12AB ,例2中抓住不变量DE =2OD .这些等量关系不随动点位置的改变而改变.
策略二 化动为静
“静”只是“动”的瞬间,化动为静就是抓住动的瞬间,将一般转化为特殊,从而找到动与静的关系.
例3 如图3,已知正方形ABCD 的边长为8,点M 在
DC 上,且DM =2,点N 在线段AC 上运动,求DN +MN
的最小值.
分析 结合正方形的性质和轴对称相关知识,不难找到
DN +MN 取最小值时点N 的位置,如图4.此时,
DN +MN =BN +MN =BM .
在Rt △BMC 中,根据勾股定理,得
22BD BC MC =+
()
()222288210
BC CD DM =+-=+-=
∴(DN +MN)最小值=BM =10.
注 处理好动态几何中的最值问题,不能被动点所迷惑,要通过猜想与证明,确定满
足条件的动点位置,将一般情形转化为特殊情形.
策略三以静制动
当图形中点的位置的改变导致线段间数量关系发生变化时,可寻找变量间的关系,建立函数或方程模型,以不变应万变.
例4 如图5,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿边CB向点B以3cm/s的速度运动,点P、Q同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,四边形PQCD为等腰梯形?
(3)当t为何值时,四边形PQCD为直角梯形?
分析如图6,当PD=QC时,四边形PQCD为平行四边形;
如图7,当QC-PD=2CE时,四边形PQCD为等腰梯形;
如图8,当QC-PD=CE时,四边形PQCD为直角梯形.
所有的关系式都可用含有t的方程来表示,即此题只需解三个方程即可.
由题意,可知
0≤t≤26
3
,PD=24-t,
QC=3t,CE=2.
分别列出方程:
(1)24-t=3t;
(2)3t-(24-t)=4;
(3)3t-(24-t)=2.
解得(1)t=6;(2)t=7;(3)t=6.5.
所以当f=6时,四边形PQCD为平行四边形;
当t=7时,四边形PQCD为等腰梯形;
当t=6.5时,四边形PQCD为直角梯形.
注本例中动点有两个,动点位置的改变会导致图形形状的改变,反过来,找出不同形状下线段之间的关系便能迅速确定动点位置;而不论动点运动到何处,线段长度的表达式不变,列出不同情形下的关系式,便能解决问题.
从以上各例的解题思路来看,处理四边形中的动点问题时,要在变化中抓住不变量,在变化中探求不变的本质,不要被“动”所迷惑,而要在动中求静,化动为静,寻找确定的关系,这样便能找到解决问题的途径.。

相关文档
最新文档