四边形中动点问题的解题策略

合集下载

四边形中动点问题的求解

四边形中动点问题的求解
P + F P + F= FI . 跌P + F E P = E P E 5 纸 E P 娟
AC 的一个 动点 ,点E 盼 别是边 上 ,
解决本题的关键是 熟悉
平行 四 边形 和 等腰 梯 形 的性 质特 征 , 再根 据 它们 的 性 质特 征 列 出方 程 进
行 求解.
最 小值 为 5 .
( ) , 分  ̄ AB, 同 时 出发 2 当P Q qL C
运 动 t 时 ,P 2 , Q t所  ̄P = - t B = tC = , ' C 6 2. s - X 过 点 Q作 Q _B E L C于 点 E. 则 Q E=
以梯形A C 是等 腰梯 形. D B
Se △ s 蚴 代 数 ,  ̄+啪 ÷ 矩 ,入 值即 o S
LMP + P , MP = Q LQ C / Q LMB = 0, _ C6。 所 以 L M = Q C 所 以 △MP B P P. B
.脚A 一 _ s -c Sq 孚 ( e = 6
2) t ( 6 2 )O 3. 2 —t 7 ( < ) 2 + < () 在 时 刻t 线段 把 梯形 3存 , 使
A D分成 两部 分 的 面积 比 为1 5 因 BC :.
/ AD 1 为 s 跏 梯 ∞=—7 Y SA B :— ×3× 2 x-

s ,以 。- ・-O APQC.所 以 所soAP- ・ 啪 = 0E D - +  ̄  ̄ MB=
P .因为 四 边 形A D是 矩 形 ,所 以 F BC
LMB = 0 . M C C 6 。 LD =LMC 6 。 所 B= 0 .
以 AA枷 A D MC 所 vAB DC 所 X = .
角线 相 等且 互相 平 分 可发 现 S A 与 AP O

四边形中的动点问题

四边形中的动点问题

四边形中的动点问题动点问题是初中数学中常见的问题之一。

这种问题涉及到一些物体或点在平面或空间中的运动轨迹,从而引发一系列有趣的问题。

本文将重点讨论四边形中的动点问题。

一、定义四边形是一个拥有四个端点并且每个端点有两条相邻的边相连的图形。

在四边形中,如果一些点在边界或内部移动,我们称这些点是动点。

二、基本问题四边形中的动点问题主要有三个基本问题:1. 四边形内任取一个动点,这个点的移动轨迹是什么?2. 四边形内任取两个动点,它们的运动是否有任何联系?3. 四边形内任取三个动点,它们是否存在特殊的位置关系?三、解决方法1. 关于第一个问题,我们可以采用向量法、坐标法、三角函数法等不同的方式来解决。

其中最常用的方法是向量法,即用向量表示动点在平面内的位置,并利用向量的加减法来求得动点的移动轨迹。

比如,对于任意一边AB,在边AB上取一点C,设动点P的向量表示为向量a,向量AC表示为向量b,则P点在AC向量上的投影可以表示为向量b’。

而向量a’可以表示为由向量b’平移而来的向量,其中平移的大小和方向取决于向量b和a之间的夹角。

2. 第二个问题比较复杂,需要利用向量叉乘、双曲线函数等高深的数学知识来解决。

一般来说,我们需要找到两个动点之间的代数关系式,再根据这个关系式来判断它们是否有联系。

比如,如果我们发现两个动点在一条直线上运动,则它们存在一定的约束条件,这个约束条件可以用向量叉乘来表达。

3. 第三个问题则是考验计算几何能力的问题。

一般来说,我们需要找到一种不变量来描述三个动点之间的特殊位置关系。

比如,如果我们发现这三个动点共线,则我们可以通过向量叉乘或线性方程组来计算它们的位置关系。

如果我们发现这三个点可以构成一个三角形,则我们可以通过三角形的几何性质来判断它们的位置关系。

如果我们发现这三个动点可以构成一个正方形或者矩形,则我们可以通过它们的对角线、边长、面积等几何参数来计算它们的位置关系。

四、典型例题1. 在正方形ABCD中,点E、F分别在边AB、CD上,且AE=CF。

中考数学四边形中的动点问题小结精编

中考数学四边形中的动点问题小结精编

四边形中的动点问题我们常见的四边形中的动点问题可以总结为单动点问题与双动点问题.解决问题的主要策略为以静制动,分类讨论,寻找临界点.【例1】已知如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为(100)△是腰长A,、(04)C,,点D是OA的中点,点P在BC边上运动,当ODP 为5的等腰三角形时,点P的坐标为.【例2】在平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向C、A运动.⑴四边形DEBF是平行四边形吗?请说明理由.⑵若BD=12cm,AC=16cm,当运动时间t为何值时,四边形DEBF是矩形?【例3】如图所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A点坐标为(16,0),C点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为t s()≤≤.04t⑴求当t为多少时,四边形PQAB为平行四边形?⑵求当t为多少时,PQ所在直线将梯形OABC分成左右两部分,其中左部分的面积为右部分面积的一半,求出此时直线PQ的函数关系式.Array题型二:由动点产生的函数关系【例4】⑴如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于的函数图象如图2x=时,点R应运动到()所示,则当9A.N处B.P处C.Q处D.M处图1HFD CA⑵如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀 速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是( )【例5】 正方形ABCD 的边长为2厘米,点E 从点A 开始沿AB 边移动到点B ,点F 从点B 开始沿BC 边移动到点C ,点G 从点C 开始沿CD 边移动到点D ,点H 从点D 开始沿DA 边移动到点A 、它们同时开始移动,且速度均为0.5厘米/秒.设运动的时间为t (秒) ⑴求证:△HAE ≌△EBF ;⑵设四边形EFGH 的面积为S (平方厘米),求S 与t 之间的函数关系式,并写出自变 量t 的取值范围;D C P BAA .B .C .D .x【例6】 如图,已知正方形ABCD 与正方形EFGH的边长分别是它们的中心12O O ,都在直线l 上,AD l ∥,EG 在直线l 上,l 与DC 相交于点M,7ME =-,当正方形EFGH 沿直线 l 以每秒1个单位的速度向左平移时,正方形ABCD 也绕1O 以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变. (1)在开始运动前,12O O = ;(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD 停止旋转,这时AE = ,12O O = ;(3)当正方形ABCD 停止旋转后,正方形EFGH 继续向左平移的时间为x 秒,两正方形重叠部分的面积为y ,求y 与x 之间的函数表达式.【例7】 将一矩形纸片OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴上, 点C 在y 轴上,OA =10,OC =8.⑴ 如图1在OC 边上取一点D ,将△BCD 沿BD 折叠,使点C 恰好落在OA 边上,记 作E 点;① 求点E 的坐标及折痕DB 的长;② 在x 轴上取两点M 、N (点M 在点N 的左侧),且54.MN =,求使四边形BDMN 的周长最短的点M 、点N 的坐标.⑵ 如图2,在OC 、CB 边上选取适当的点F 、G ,将△FCG 沿FG 折叠,使点C 落在OA上,记为H 点,设OH =x ,四边形OHGC 的面积为S .求:S 与x 之间的函数关系式,并指出变量x 的取值范围.图1 图2x题型一 由动点产生的特殊图形 巩固练习【练习1】如图,在矩形OABC 中,已知A 、C 两点的坐标分别为()()4,00,2A C 、,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).⑴ 试证明:无论点P 运动到何处,PC 总与PD 相等;⑵ 当点P 运动到与点B 的距离最小时,求P 的坐标; ⑶ 已知E (1,-1),当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;【练习2】平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(3,0),(3,4).动点M .N 分别从O 、B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥BC ,交AC 于P ,连接MP .已知动点运动了x 秒.请你探索:若P 点坐标为(3-x ,43x )当x 为何值时,△MP A 是一个等腰三角形?有几种情况?写出研究成果并证明.【练习3】如图,在直角梯形COAB 中,OC //AB ,以O 为原点建立平面直角坐标系,A 、B 、C三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. ⑴求直线BC 的解析式;⑵若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面 积的27.题型二 由动点产生的函数关系 巩固练习【练习4】如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(s )随时间(t )变化的图象大致是( )【练习5】P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC上,且PE=PB .⑴求证:① PE=PD ; ② PE ⊥PD ;⑵设AP =x ,△PBE 的面积为y . 求出y 关于x 的函数关系式,并写出x 的 取值范围;A PDEA .。

四边形中的动态问题(动点)

四边形中的动态问题(动点)

四边形中的动态问题图形中的点、线的运动,构成了数学中的一个新问题——动态几何。

它通常分为三种类型:动点问题、动线问题、动形问题。

在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。

例1、Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上。

令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动,直到C点与N点重合为止。

设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,求y与x之间的函数关系式?例练、菱形OABC的边长为4cm,∠AOC=600,动点P从O出发,以每秒1cm的速度沿O-A-B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1cm的速度运动,在AB上以每秒2cm的速度沿O-A--B运动,过P、Q两点分别作对角线AC的平行线,设P点运动的时间为x秒,这两条平行线在菱形上截出的图形的周长为ycm,问当x为多少时,周长y可能为一个定值,定值为多少?四边形动点问题(一)1.(1)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.2.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?3. 如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.4. 如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t=时,四边形MNCD是平行四边形.(2)当t=时,四边形MNCD是等腰梯形6.如图,在ΔABC中,D是BC的中点,BC=10㎝,AD=7㎝,从点A沿着A→D的方向运动,速度是每秒2㎝,连结CE,BE,过点B作BF∥CE,交射线AD于点F,设运动时间为t秒(0<t<3.5)(1)求证:ΔBDF≌ΔCDE(2)当t为何值时,四边形BFCE是矩形,说明理由(3)若四边形BFCE是矩形,当AB和CA满足什么条件时,四边形BFCE是正方形。

四边形动点问题解题技巧

四边形动点问题解题技巧

四边形动点问题解题技巧
四边形动点问题是指在四边形中,指定一个或多个点 (动点) 的运动方式及方向,求其余点 (定点) 在发展过程中的坐标及对应数量关系的问题。

解决四边形动点问题需要掌握以下技巧:
1. 分析题意:认真阅读题干,了解动点的运动方式、方向及限制条件,提取关键信息,确定解题方向。

2. 建立坐标系:通常是在平面直角坐标系中解决这个问题,需要将动点的位置转化为坐标,以便于应用代数方法解决问题。

3. 建立等量关系:通过分析题目中的限制条件和运动方式,建立动点和定点的等量关系,通常可以用行程问题、角度问题等来表示。

4. 列方程解题:根据等量关系,列出代数方程,求解未知数的值,然后根据题意进行画图、分析、总结。

5. 分类讨论:对于存在角度限制或速度限制等问题的题目,需要进行分类讨论,以确保解答的正确性。

6. 注意细节:在解决问题的过程中,需要注意细节,如动点的速度、方向、持续时间等因素,以免出现不必要的错误。

综上所述,解决四边形动点问题需要有清晰的思路和扎实的数学知识基础,需要善于发现问题的本质,善于运用代数方法解决问题,同时需要注意细节和分类讨论。

三角形、四边形中的动点问题

三角形、四边形中的动点问题

§1. 三角形、四边形中的动点问题【解题思路与方法】1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;2.化动为静 (由一般到特殊),以静制动;3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);5.注重分类讨论,通过分别画图与分离图形使问题简单化;6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).◆典例解析一、三角形中的动点问题例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),(1)如图1,当t 为何值时,△PBC 是直角三角形?(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?BCPA QDBCPAQDBCPA已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。

例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图(1)△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 。

初中数学重点模型14 动点在四边形中的分类讨论(基础)

初中数学重点模型14 动点在四边形中的分类讨论(基础)

专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。

动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。

四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。

一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。

而2t也就是这个点所运动的线段长。

进而能表示其他相关线段的长度。

所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。

3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。

4、难点是找等量关系这种题的难点是找到等量关系。

这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。

5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。

【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。

初二数学《平行四边形中的动点问题》(附练习及答案)

初二数学《平行四边形中的动点问题》(附练习及答案)

四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。

解决这类问题关键是动中求静,灵活运用有关数学知识。

数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。

这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。

解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。

1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

四边形中动点问题的求解

四边形中动点问题的求解

四边形中动点问题的求解作者:杨焕荣来源:《数学金刊·初中版》2012年第05期数学中的动点问题,是数学图形上存在一个或两个沿某些线运动的点,利用点的运动特征,寻求题目中某些量之间关系的问题. 这类题目,逐渐成为了考试研究的热点. 下面举例说明四边形中动点问题的解法.如图1,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点E,F分别是边AB,BC的中点,求PE+PF的最小值.利用轴对称的性质,可在CD上找出点F关于AC的对称点F′(即DC的中点),连结F′E交AC于点P,则PE+PF的最小值为线段EF′的长,而E,F′分别为边AB,DC的中点,则F′E的长等于菱形的边长5.作点F关于AC的对称点F′,连结F′E交AC于点P,此时PE+PF取得最小值. 因为点F 是BC上的中点,所以点F′是DC边上的中点. 因为四边形ABCD是菱形,所以DC∥AB. 因为点E是AB边上的中点,所以F′C∥EB,F′C=EB. 所以四边形EBC F′是平行四边形. 所以EF′=BC. 因为菱形ABCD的两条对角线分别长6和8,所以BC==5. 所以EF′=5. 所以PE+PF=PE+PF′=EF′=5. 所以PE+PF的最小值为5.解此类题时,先抓住问题中的“最值”,即题目中的“最小值”,确定动点P的位置,然后利用图形的特征加以解决. 求最小值的常用方法是先作某一点关于某直线的对称点,再利用轴对称性质将线段进行转移,最后利用两点之间线段最短进行求解.如图2,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 cm,BC=26 cm,一动点P 从点A开始沿AD边向点D以1 cm/s的速度运动,动点Q从点C开始沿CB边向点B以3 cm/s的速度运动. P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点也随之停止运动. 设运动时间为t s,则(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?解决本题的关键是熟悉平行四边形和等腰梯形的性质特征,再根据它们的性质特征列出方程进行求解.(1)在直角梯形ABCD中,因为AD∥BC,所以当PD=CQ时,四边形PQCD为平行四边形. 所以24-t=3t,解得t=6. 所以当t=6 s时,四边形PQCD为平行四边形.(2)如图3,作DH⊥BC于点H,PG⊥BC于点G,若四边形PQCD为等腰梯形,则QC=PD+2HC,即QC=PD+2(BC-AD). 因为BC=26,AD=24,所以3t=(24-t)+2(26-24),解得t=7. 所以当t=7 s时,四边形PQCD为等腰梯形.在解答本例题时,根据问题中特殊四边形的性质及特征,构造动点的位置,是动点问题常用的方法.如图4,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于点E,PF⊥BD于点F,求PE+PF的值.在求PE+PF的值时,动点P的位置不固定,根据矩形的对角线相等且互相平分可发现S 与S的和,即S的值是一个固定不变的值,所以,可连结OP,根据S= S+S=S,代入数值,即可求出结果.连结OP,因为S= S+S,所以S=AO·PE+DO·PF. 因为四边形ABCD是矩形,所以AC=BD,∠BAD=90°,AO=AC,DO=BD. 因为AB=3,AD=4,所以AC=BD=5. 所以AO=DO=. 所以S=×PE+×PF=(PE+PF). 因为S=S=×3×4=3,所以(PE+PF) =3. 所以PE+PF=.动点P的位置无法确定,PE,PF无法放到一条直线上,但始终不变的是图形的面积. “面积法”是本类题的解题特点.如图5,在梯形ABCD中,AD∥BC, AD=2, BC=4,点M是AD的中点,△MBC是等边三角形.(1)试说明梯形ABCD是等腰梯形.(2)动点P,Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变,设PC为x,MQ为y,求y关于x的函数解析式.(1)因为△MBC是等边三角形,所以MB=MC,∠MBC=∠MCB=60°. 因为M是AD的中点,所以AM=MD. 因为AD∥BC,所以∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.所以△AMB≌△DMC. 所以AB=DC. 所以梯形ABCD是等腰梯形.(2)因为△MBC是等边三角形,所以∠MBC=∠MCB =60°,MB=MC=BC=4. 因为∠MPC=∠MBC+∠BMP=∠MPQ+∠QPC,∠MPQ=∠MBC=60°,所以∠BMP=∠QPC. 所以△MPB∽△PQC. 所以=. 因为PC=x,MQ=y,所以QC =4-y,PB=4-x. 所以=. 所以 y=x2-x+4.如图6,在梯形ABCD中,AD∥BC,AB=CD=3 cm,∠C=60°,BD⊥CD.(1)求BC,AD的长度.(2)若点P从点B开始沿BC边向点C以2 cm/s的速度运动,点Q从点C开始沿CD 边向点D以1 cm/s的速度运动,当 P,Q分别从B,C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B,C两点的情况).(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1 ∶ 5?若存在,求出t的值;若不存在,请说明理由.(1)在Rt△BCD中,CD=3 cm,∠C=60°,所以∠DBC=30°. 所以BC=2CD=6 cm. 由已知知梯形ABCD是等腰梯形,所以∠ABC=∠C=60°. 所以∠ABD=∠ABC-∠DBC=30°. 因为AD∥BC,所以∠ADB=∠DBC=30°. 所以∠ABD=∠ADB. 所以AD=AB=3 cm.(2)当P,Q分别从B,C同时出发运动t s时,BP=2t,CQ=t,所以PC=6-2t. 过点Q作QE⊥BC于点E,则QE=CQsin60°=t. 所以S =S-S=-t(6-2t)=(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1 ∶ 5. 因为S=,S=×3××3,所以S=S所以五边形ABPQD的面积不可能是梯形ABCD面积的. 所以S ∶ S=1 ∶5,即S=S. 所以(2t2-6t+27)=×,解得t=. 所以当t=s时,PQ把梯形ABCD分成两部分的面积比为1 ∶ 5.总之,数学中的动点问题,是把“动”变为“静”,借助题目的已知条件、所求问题的图形特征、运动规律等,经过观察、大胆猜想、推理、归纳等过程,灵活地把未知转化为已知,从而得出动点问题的答案.。

动点问题解题技巧总结

动点问题解题技巧总结

动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。

第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册

第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。

浙教版八年级数学下册第5章专题十二 特殊四边形中的动点问题

浙教版八年级数学下册第5章专题十二 特殊四边形中的动点问题

专题
∴△ADE≌△CDG. ∴AE=CG. ∴AC=AE+CE=CG+CE. ∵AC= 2AB, ∴CE+CG= 2AB.
专题
∵EM⊥BC,EN⊥CD,∴∠EMC=∠ENC=90°, ∴∠NEC=45°,∴NE=NC, ∴四边形EMCN是正方形. ∴EM=EN,∠NEM=90°. ∴∠MEF+∠FEN=90°. ∵四边形DEFG是矩形,∴∠DEF=90°. ∴∠DEN+∠NEF=90°,∴∠DEN=∠MEF.
专题
在△DEN 和△FEM 中, ∠ END=NEEM=,∠FME, ∠DEN=∠FEM, ∴△DEN≌△FEM. ∴ED=EF, ∴矩形 DEFG 是正方形.
专题
又∵EF⊥AC, ∴四边形AFCE为菱形. ∴AF=CF. 设AF=CF=x cm,则BF=(8-x)cm. 在Rt△ABF中,由勾股定理,得AB2+BF2 =AF2,即42+(8-x)2=x2,解得x=5. ∴AF=5 cm.
专题
(2)动点P,Q分别从A,C两点同时出发 ,沿△AFB和 △CDE各边匀速运动一周,即点P自A→F→B→A停止, 点Q自C→D→E→C停止.在运动过程中,已知点P的 速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s, 当以A,C,P,Q四点为顶点的四边形是平行四边形 时,求t的值.
专题
若以A,C,P,Q四点为顶点的四边形是平行四边形, 则PC=QA. ∵四边形ABCD为矩形, ∴AB=CD=4 cm,AD=BC=8 cm. ∵AF=CF=5 cm,点P的速度为5 cm/s,点Q的速度 为4 cm/s,运动时间为t s,
专题
∴PC=PF+FC=PF+FA=5t cm,QA =(AD+CD)-(QD+CD)=(12-4t)cm. ∴5t=12-4t,解得 t=43. 故当以 A,C,P,Q 四点为顶点的四边 形是平行四边形时,t 的值为43.

动点题的解题技巧

动点题的解题技巧

动点题的解题技巧动点题是数学中常见的一种题型,主要考察学生的空间思维能力和问题解决能力。

解决动点问题需要一定的技巧和策略,以下是一些解题技巧:1. 建立坐标系:首先,为方便分析,我们通常会建立一个坐标系。

根据题目的描述,选择一个合适的点作为原点,确定x轴、y轴的方向。

2. 标记关键点:在动点运动路径上,标记关键的点,如起点、终点、转折点等。

这些关键点在解题过程中可能会起到重要的作用。

3. 找出变量和参数:明确题目中的变量和参数,理解它们之间的关系和变化规律。

这些变量和参数通常与动点的位置、速度、加速度等有关。

4. 运用函数思想:在许多动点问题中,我们需要运用函数的思想来描述和解决。

例如,可以用一次函数、二次函数、三角函数等来表示动点的运动规律。

5. 运用几何知识:动点问题常常涉及到几何图形的形状、大小、位置关系等。

因此,我们需要运用几何知识来分析问题,如平行线、垂直线、角相等、距离相等等等。

6. 寻找等量关系:在解决动点问题时,我们需要寻找等量关系,如时间相等、距离相等、角度相等等等。

这些等量关系可以帮助我们建立方程或方程组。

7. 数形结合:数形结合是解决动点问题的重要方法之一。

通过将数学表达式与几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。

8. 分类讨论:对于一些复杂的动点问题,我们需要进行分类讨论。

根据不同的条件或情况,将问题分解成若干个子问题,然后分别解决。

9. 检验答案:在解决问题后,我们需要对答案进行检验。

检查答案是否符合题目的要求,是否符合实际情况等等。

通过掌握这些解题技巧,我们可以更好地解决动点问题,提高数学思维能力。

初二数学-特殊四边形中的动点问题(教师版)

初二数学-特殊四边形中的动点问题(教师版)

特殊四边形中的动点问题及解题方法1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4、直线y=- 34x+6与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O ⇒B ⇒A 运动. (1)直接写出A 、B 两点的坐标; (2)设点Q 的运动时间为t (秒),△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当S= 485时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.分析:(1)分别令y=0,x=0,即可求出A 、B 的坐标; (2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q 由O 到A 的时间是8秒,点P 的速度是2,从而可求出,当P 在线段OB 上运动(或0≤t≤3)时,OQ=t ,OP=2t ,S=t2,当P 在线段BA 上运动(或3<t≤8)时,OQ=t ,AP=6+10-2t=16-2t ,作PD ⊥OA 于点D ,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案; (3)令S= 485,求出t 的值,进而求出OD 、PD ,即可求出P 的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M 的坐标. 解答: 解:(1)y=0,x=0,求得A (8,0)B (0,6), (2)∵OA=8,OB=6,∴AB=10.∵点Q 由O 到A 的时间是 81=8(秒), ∴点P 的速度是 6+108=2(单位长度/秒). 当P 在线段OB 上运动(或O≤t≤3)时, OQ=t ,OP=2t ,S=t2.当P 在线段BA 上运动(或3<t≤8)时, OQ=t ,AP=6+10-2t=16-2t , 如图,做PD ⊥OA 于点D ,由 PDBO=APAB ,得PD= 48-6t5. ∴S= 12OQ•PD=- 35t2+245t .(3)当S= 485时,∵ 485>12×3×6∴点P 在AB 上 当S= 485时,- 35t2+245t= 485 ∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8 AD= 82-(245)2= 325 ∴OD=8- 325= 85 ∴P ( 85, 245) M1( 285, 245),M2(- 125, 245),M3( 125,- 245) 点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象. 5.已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t 秒.(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;6.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?四边形中的动点问题课后作业1. 如图,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD =CD ,∠ADB =90°,CH ⊥AB 于H ,CH 交AD 于F.(1)求证:CD ∥AB ;(2)求证:△BDE ≌△ACE ;(3)若O 为AB 中点,求证:OF =12BE.2、如图1―4―2l ,在边长为a 的菱形ABCD 中,∠DAB =60°,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足A E +CF=a ,说明:不论E 、F 怎样移动,三角形BEF 总是正三角形.3、在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.4、如图l -4-80,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过点A 作AG ⊥EB ,垂足为G ,AG 交BD 于F ,则OE=OF . (1)请证明0E=OF(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E 在AC 的延长线上,AG ⊥EB ,AG 交 EB 的延长线于 G ,AG 的延长线交DB 的延长线于点F ,其他条件不变,则仍有OE=OF .问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.5、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.FEDCBACE6. 如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动。

四边形动点最值类型总结

四边形动点最值类型总结

四边形动点最值类型总结1. 引言说到四边形动点的最值问题,可能很多小伙伴一听就觉得复杂,其实不然。

想象一下,如果你有一个四边形,里面有一些动点,就像是在玩捉迷藏一样,它们在里面乱跑。

我们要做的,就是找出这些动点的最值,也就是最大的或最小的那个值。

听起来是不是很有趣?今天,我们就来轻松聊聊这个话题,让数学不再是个冷冰冰的数字游戏。

2. 四边形的基本概念2.1 四边形的定义四边形,顾名思义,就是有四条边的图形,简单得很。

你可以想象成一张小桌子,四条腿支撑着桌面。

无论是方形、矩形、菱形还是任意四边形,都是我们要研究的对象。

它们每一个都有自己独特的特点,动点在这些边上自由移动,就像小鸟在天空中翱翔,随意选择自己的栖息地。

2.2 动点的理解动点就是那些可以在四边形的边上或内部随意移动的小点。

它们就像小精灵,今天飞到左边,明天又跳到右边,完全看心情。

不过,这些动点可不是无聊的角色,它们有时候会影响整个四边形的某些性质,比如面积、周长等。

这时候,我们就得好好思考,找出它们能带来的最值。

3. 动点的最值问题3.1 面积的最值首先,我们来聊聊面积的最值。

假设有一个四边形,它的某些动点在不断改变位置,我们就要想办法找出它们所能形成的最大或最小面积。

这就像在做美食,调料多了变得咸,少了则没味,面积也是要拿捏好分寸的。

通常情况下,四边形的面积最大的时候,动点分布得比较均匀,就像大家在聚会上找到了自己的舞伴,热热闹闹,才好玩呢!3.2 周长的最值接下来是周长的最值。

想象一下,你在一块地上围出一个圈,圈的大小决定了你能跑多远。

动点的位置会直接影响到这个圈的周长,改变了动点的位置,周长就会有所不同。

为了获得最小的周长,动点应该尽量靠近,这就像朋友们聚在一起,互相依偎,才能形成一个小圈圈,周长最小又温馨。

4. 总结与思考最后,我们总结一下动点的最值问题。

四边形里的动点就像生活中的许多选择,每一次移动都可能让结果大不同。

在数学上,我们通过公式、定理来帮助自己理解这些变化;而在生活中,我们则通过经验和智慧来应对各种情况。

八年级数学下册动点问题构成平行四边形解题技巧(一)

八年级数学下册动点问题构成平行四边形解题技巧(一)

八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。

解决动点问题需要一定的技巧和方法。

动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。

根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。

这些信息有助于我们确定动点的坐标。

•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。

例如,平行四边形的对角线相互平分,对角线长相等等。

通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。

•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。

向量法常用于证明或推导问题,而坐标法常用于具体计算。

具体选择使用哪种方法要根据问题的特点和要求来决定。

•画图辅助解题绘制图形是解决动点问题的重要步骤。

通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。

画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。

•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。

根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。

总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。

通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。

希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。

1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。

八年级下册数学-平行四边形中动点路径问题、最值问题与存在性问题

八年级下册数学-平行四边形中动点路径问题、最值问题与存在性问题

第14讲 平行四边形中动点路径问题、最值问题与存在性问题知识导航1.最值问题解题依据有:三角形两边之和大于第三边或两边之差小于第三边;点到直线上各点的连线中,垂线段最短;函数式在特定自变量取值范围内存在最值;2.动态点的问题探究时,常先分析起点、终点、中间某一个特殊点,再由特殊到一般的方法求解;3.存在性问题,根据已知条件,结合图形,得出相关结论,列方程求解.【板块一】动点最值问题方法技巧:一动点到两定点的距离和或差,可以作对称点,运用三角形的三边关系,化折为直求最值.题型一 做对称点,运用三角形的三边关系求最值【例1】如图正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( )AB .C .D【例2】如图,在正方形ABCD 中,点E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是 .BA E方法技巧 遇直角三角形求最值,找直角三角形斜边中点,连斜边中线,该中线长等于斜边一半,为定值. 题型二 连斜边中线求最值【例3】如图,∠ACB =90°,BC =8,AC =6,点P 为AC 上一动点,连接BP ,CM ⊥BP 于点M ,求AM 的最小值.C方法技巧通过构造全等三角形,将动线段转化到特定位置,这一位置上能求出最值.题型三 构造全等求最值【例4】如图,△ABC 是等边三角形,AB =4,E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D 运动时,求AF 的最小值.AF方法技巧求四边形周长的最值,或者求三条线段和的最值,两动点间距离一定,另两点为定点,将两动点进行平移,再做一定点的对称点,将问题转化成两线段和问题,然后求解.题型四 平移线段求最值【例5】如图,正方形ABCD 的边长为4,E 在CD 上,DE =1,点M ,点N 在BC 上,且MN =2,求四边形AMNE 的周长的最小值.B E针对练习11.如图,菱形ABCD 中,AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,求PK +QK 的最小值.BD P2.如图,等边△ABC 的边长为6,P 为BC 上的一动点,点P 关于AC ,AB 的对称点分别为点N ,M ,连接MN ,求MN 的最小值.ANMP3.如图,正方形ABCD 中,点E 为边BC 上的一动点,作AF ⊥DE 分别交DE ,DC 与点P ,F ,连接PC .(1)若点E 为BC 的中点,求证:F 点为CD 的中点;(2)若点E 为BC 的中点,PE =6,PC =,求PF 的长;(3)若正方形边长为4,直接写出PC 的最小值为 .B AF4.矩形ABCD 中,AB =3,BC =4,E 为直线BC 上一点.(1)如图1,当E 在线段BC 上,且DE =AD 时,求BE 的长;(2)如图2,点E 为BC 边延长线上一点,且BD =BE 时,连接DE ,M 为DE 的中点,连接AM ,CM ,求证:AM ⊥CM ;(3)如图3,在(2)的条件下,点P ,Q 为AD 边上的两个动点,且PQ =2.5,连接PB ,MQ ,则四边形PBMQ 周长的最小值为 .A D A D A E CC Q P(图1) (图2) (图3)【板块二】动点路径问题【例1】如图,在平面直角坐标系中,点C (8,0),P 为线段OC 上一动点,以OP ,PC 为边在x 轴同侧作正方形OPEF 和正方形PCAD ,若线段OA 的中点为M ,求当点P 从点O 运动到点C 时点M 运动的路径长.x【例2】如图,在平面直角坐标系中,正方形ABCO 的顶点C ,A 分别在x ,y 轴上,A (0,6),点Q 为对角线BO 上一动点,D 为边OA 上一点,DQ ⊥CQ ,点Q 从点B 出发,沿BO 方向移动,若移动的路径长为3,直接写出CD 的中点M 移动的路径长为 .x针对练习21.如图,A (0,4),B (2,0),C 为AB 的中点,动点P 沿A →O 从点A 运动到点O ,CP =CD ,且∠PCD =90°(点P ,C ,D 逆时针排列),则点D 的运动路径长为 .x2.如图,正方形ABCD 的边长为4,点E 从点A 出发,沿AB 运动到点B 停止.(1)如图1,当点E 是AB 的中点,点F 时AD 上的一点,且AF =14AD ,求证:CE 平分∠BCF ; (2)如图2,若点Q 时AD 的中点,连接EQ 并延长交射线CD 于点G ,过Q 作EG 的垂线交射线BC 于点P ,连接PE ,PG .①设AE =x ,△PEG 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; ②若点M 时PQ 的中点,直接写出点M 的运动的路线的长.C(图1) (图2)【板块三】存在性问题【例1】如图,在平面直角坐标系中,AB ∥OC ,A (0,12),(,)B ac ,(,0)C b ,并且a ,b 满足16b =.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,PQC∆是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.x【例2】如图,矩形ABCD中,对角线AC,BD相交于点O,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若3=,P从点A出发.以1/cm秒的速度向点D匀速运动.设点P运动时间为t秒,AD cm=,4AB cm问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.。

动点几何解题五步法口诀

动点几何解题五步法口诀

动点几何解题五步法口诀
1. 观察图形:首先,要仔细观察题目给出的图形,理解图形的特点和性质。

2. 确定动点:确定图形中的动点,理解动点的运动轨迹和规律。

3. 建立关系:根据动点的运动轨迹和规律,建立与动点相关的数学关系或等式。

4. 求解问题:利用建立的数学关系或等式,结合已知条件,求解题目要求的问题。

5. 验证答案:最后,要验证答案是否符合题目的要求和图形的性质,确保答案的正确性。

这五步法口诀可以帮助你在解决动点几何问题时,有一个清晰的解题思路和方向。

当然,具体的解题步骤和方法还需要根据题目的具体情况来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形中动点问题的解题策略
动点问题集代数、几何知识于一体,有较强的综合性,题型灵活多变,解题方法渗透了分类讨论、数形结合、转化等数学思想.本文以四边形中的动点问题为例,谈谈此类问题的解题策略,供读者参考.
策略一动中寻静
在“静”中探求“动”的一般规律,获得图形在运动过程中具有的某种性质,从而抓住变化中的不变因素.
例1 如图1,在四边形ABCD中,点E、F分别是AP、BP的中点,当点P在线段CD上从点C向点D移动时,线段EF的长度将______.(填“变大”、“变小”或“不变”)
分析当点P在CD上运动时,线段E F始终为△ABP的中位线,所以,总有EF=1
AB,因此线段EF的长度不变.
2
例2 如图2,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D是BC上一动点,以AC为对角线的所有≌ABCD中,DE最小的值为( )
(A)2 (B)3 (C)4 (D)5
分析 当点D 在BC 上运动时,在□ABCD 中总有DE =2OD .易知,OD 取最小值时
OD 上BC ,且此时OD =12AB ,这样,DE 最小值=2·12
AB =AB =3. 注 例1中抓住不变量EF =12AB ,例2中抓住不变量DE =2OD .这些等量关系不随动点位置的改变而改变.
策略二 化动为静
“静”只是“动”的瞬间,化动为静就是抓住动的瞬间,将一般转化为特殊,从而找到动与静的关系.
例3 如图3,已知正方形ABCD 的边长为8,点M 在
DC 上,且DM =2,点N 在线段AC 上运动,求DN +MN
的最小值.
分析 结合正方形的性质和轴对称相关知识,不难找到
DN +MN 取最小值时点N 的位置,如图4.此时,
DN +MN =BN +MN =BM .
在Rt △BMC 中,根据勾股定理,得
22BD BC MC =+
()
()222288210
BC CD DM =+-=+-=
∴(DN +MN)最小值=BM =10.
注 处理好动态几何中的最值问题,不能被动点所迷惑,要通过猜想与证明,确定满
足条件的动点位置,将一般情形转化为特殊情形.
策略三以静制动
当图形中点的位置的改变导致线段间数量关系发生变化时,可寻找变量间的关系,建立函数或方程模型,以不变应万变.
例4 如图5,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿边CB向点B以3cm/s的速度运动,点P、Q同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,四边形PQCD为等腰梯形?
(3)当t为何值时,四边形PQCD为直角梯形?
分析如图6,当PD=QC时,四边形PQCD为平行四边形;
如图7,当QC-PD=2CE时,四边形PQCD为等腰梯形;
如图8,当QC-PD=CE时,四边形PQCD为直角梯形.
所有的关系式都可用含有t的方程来表示,即此题只需解三个方程即可.
由题意,可知
0≤t≤26
3
,PD=24-t,
QC=3t,CE=2.
分别列出方程:
(1)24-t=3t;
(2)3t-(24-t)=4;
(3)3t-(24-t)=2.
解得(1)t=6;(2)t=7;(3)t=6.5.
所以当f=6时,四边形PQCD为平行四边形;
当t=7时,四边形PQCD为等腰梯形;
当t=6.5时,四边形PQCD为直角梯形.
注本例中动点有两个,动点位置的改变会导致图形形状的改变,反过来,找出不同形状下线段之间的关系便能迅速确定动点位置;而不论动点运动到何处,线段长度的表达式不变,列出不同情形下的关系式,便能解决问题.
从以上各例的解题思路来看,处理四边形中的动点问题时,要在变化中抓住不变量,在变化中探求不变的本质,不要被“动”所迷惑,而要在动中求静,化动为静,寻找确定的关系,这样便能找到解决问题的途径.。

相关文档
最新文档