电路分析基础实验
电路的基础与分析实验教案
电路的基础与分析实验教案实验目的:1. 了解电路的基本概念与元件;2. 学习电路分析的基本方法;3. 掌握实验仪器的使用。
实验器材:1. 实验电源、电流表、电压表、电阻箱、导线等实验仪器;2. 电阻、电容、电感等电路元件。
实验原理:1. 电路是由电源、导线和电阻、电容、电感等元件组成的闭合路径;2. 电路中的电流遵循欧姆定律,电压遵循基尔霍夫定律;3. 利用电路分析方法,可以预测电路中各个元件的电流和电压。
实验步骤:1. 实验前准备:- 确保所有电路元件和仪器的连接正确无误;- 检查电路是否正常,是否有短路或开路的情况。
2. 实验一:串联电路的分析- 将两个电阻串联连接;- 接入电路电源,调节电源电压;- 使用电流表测量串联电路中的电流;- 使用电压表测量各个电阻的电压。
3. 实验二:并联电路的分析- 将两个电阻并联连接;- 接入电路电源,调节电源电压;- 使用电流表测量并联电路中的电流;- 使用电压表测量各个电阻的电压。
4. 实验三:混合电路的分析- 构建一个包含串联和并联连接的电路;- 接入电路电源,调节电源电压;- 使用电流表测量混合电路中的电流;- 使用电压表测量各个电阻的电压。
5. 实验四:交流电路的分析- 构建一个交流电路,包含电感、电容和电阻; - 接入交流电源,调节电源频率;- 使用电流表测量交流电路中的电流;- 使用电压表测量各个元件的电压。
实验结果分析:1. 串联电路分析:根据测量结果计算总电阻和各个电阻的电压;2. 并联电路分析:根据测量结果计算总电流和各个电阻的电流;3. 混合电路分析:根据测量结果结合串联和并联分析得出整个电路的电流和电压;4. 交流电路分析:根据测量结果计算交流电路中各个元件的电流和电压,并绘制相位图。
实验注意事项:1. 实验过程中注意仪器的正确使用和安全操作;2. 确保实验电源的稳定性和电压的精确调节;3. 实验结果的测量精度要求高,尽量减小误差。
实验总结:通过本次实验,我们深入了解了电路的基本概念与元件,掌握了电路分析的基本方法,并且熟悉了实验仪器的使用。
电路分析基础实验报告
电路分析基础实验报告引言:电路分析是电子工程领域的基础课程之一,对于理解和掌握电路原理和电子设备的运作机制至关重要。
本实验旨在通过实际操作和测量数据,验证电路分析相关理论,并通过分析实验结果加深对电路分析基础知识的理解。
一、实验目的:本次实验的主要目的是研究并分析欧姆定律、基尔霍夫定律和奥姆定律应用于电路分析中的实际问题。
具体目标包括:1. 熟悉实验仪器的使用方法和测量电路元件的基本原理;2. 验证欧姆定律在恒阻电路中的适用性和准确性;3. 通过实验验证基尔霍夫定律在串联电路和并联电路中的准确性;4. 通过实验探究奥姆定律在复杂电路中的应用和分析方法。
二、实验步骤和数据分析:1. 实验一:验证欧姆定律在恒阻电路中的适用性和准确性。
选取一个电阻为常量的电路,接入电源,通过改变电源电压和测量电流值,验证欧姆定律的准确性。
记录实验数据并制作电流-电压曲线图。
通过实验发现,无论电源电压如何变化,所测得的电流值始终符合欧姆定律的关系:电流等于电压除以电阻。
这验证了欧姆定律在恒阻电路中的适用性。
2. 实验二:验证基尔霍夫定律在串联电路中的准确性。
构建一个简单的串联电路,通过测量电路中各个电阻上的电压值,并结合电源电压和电源电流,验证基尔霍夫定律在串联电路中的准确性。
记录实验数据并计算验证所得的电路中各个电阻的电流值。
实验结果显示,根据基尔霍夫定律计算得到的电流值与测量得到的电流值相符,验证了基尔霍夫定律在串联电路中的准确性。
3. 实验三:验证基尔霍夫定律在并联电路中的准确性。
构建一个并联电路,通过测量电路中各个电阻上的电流值,并结合电源电压和电源电流,验证基尔霍夫定律在并联电路中的准确性。
记录实验数据并计算验证所得的电路中各个电阻的电流值。
实验结果表明,基尔霍夫定律所计算得到的电流值与测量得到的电流值吻合,进一步验证了基尔霍夫定律在并联电路中的准确性。
4. 实验四:探究奥姆定律在复杂电路中的应用和分析方法。
电路分析基础实验讲义完稿
实验一 基本电工仪表的使用与测量误差的计算一、实验目的1.熟悉实验装置上各类测量仪表的布局。
2.熟悉实验装置上各类电源的布局及使用方法。
3.掌握电压表、电流表内电阻的测量方法。
4.熟悉电工仪表测量误差的计算方法。
二、原理说明1.为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态,这就要求电压表的内阻为无穷大;电流表的内阻为零。
而实际使用的电工仪表都不能满足上述要求。
因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值之间出现误差,这种测量误差值的大小与仪表本身内阻值的大小密切相关。
2.本实验测量电流表的内阻采用“分流法”,如图1-1所示。
A 为被测内阻(R A )R 的直流电流表,测量时先断开开关S ,调节直流恒流源的输出电流I 使A 表指针满偏转,然后合上开关S ,并保持I 值不变,调节电阻箱RB 的阻值,使电流表的指针在1/2满偏转位置,此时有I A =I S =2I∴R A =R B ∥R 1R 1为固定电阻器之值,R B 由可调电阻箱的刻度盘上读得。
R 1与R B 并联,且R 1选用小阻值电阻,R B 选用较大电阻,则阻值调节可比单只电阻箱更为细微、平滑。
图1-13.测量电压表的内阻采用“分压法”,如图1-2所示。
图1-2 图1-3V 为被测内阻(R V )的电压表,测量时先将开关S 闭合,调节直流稳压电源的输出电压,使电压表V 的指针为满偏转。
然后断开开关S ,调节R B 阻值使电压表V 的指示值减半。
此时有R V =R B +R 1电压表的灵敏度为 S=R V /U (Ω/V )4.仪表内阻引入的测量误差(通常称为方法误差,而仪表本身构造上引起的误差称为仪表基本误差)的计算。
以图1-3所示电路为例,R 1上的电压为 U K1=21R R R V U ,若R 1=R 2,则U K1=21U现用一内阻为R V 的电压表来测量U R1值,当R V 与R 1并联后,R AB =11R R R R V V +,以此来替代上式中的R 1,则得U,R1=U R R R R R R R R R V V V V 21111+++绝对误差为△U=U ,R1-U R1=U (21111R R R R R R R R R V V V V +++-21R R R V +)化简后得△U=()()21212221212212R R R R R R R R R UR R V ++++-若R 1=R 2=R V ,则得△U=-6U相对误差△U %=11'1R R R UUU-100%=2/6/U U -×100%=-33.31.根据“分流法”原理测定FM-47型(或其它型号)万用电表直流毫安0.5mA 和5mA 档量限的内阻,线路如图1-1所示。
电路分析基础实验报告
电路分析基础实验报告实验名称:电路分析基础实验实验目的:通过对不同电路进行分析,加深对电路原理的理解,并掌握使用基本电路元件搭建电路的技能。
实验器材:电源、电阻、电容、电感、电工万用表、示波器、导线等。
实验原理:电路分析是指对电路中各个元件之间的关系进行定量分析的过程。
在这个实验中,我们将学习使用欧姆定律、基尔霍夫定律和串并联等电路定律进行电路分析。
实验步骤及实验结果:1.首先,我们搭建一个简单的串联电路。
将两个电阻依次连接,连接到电源上。
使用电工万用表测量电源的电压和电阻的电流,并记录测量结果。
根据欧姆定律计算电阻的阻值,并将结果与测量结果进行比较。
实验结果:测量得到电源电压为12V,电阻电流为0.5A。
根据欧姆定律,计算得到电阻的阻值为R=V/I=12V/0.5A=24Ω。
测量结果与计算结果相符。
2.接下来,我们搭建一个并联电路。
将两个电阻分别连接到电源的两个正极,将另外两个端点连接到电源的两个负极上。
使用电工万用表测量电源的电压和电阻的电流,并记录测量结果。
根据欧姆定律计算电阻的阻值,并将结果与测量结果进行比较。
实验结果:测量得到电源电压为12V,电阻电流为1A。
根据欧姆定律,计算得到电阻的阻值为R=V/I=12V/1A=12Ω。
测量结果与计算结果相符。
3.然后,我们搭建一个RC电路,将电阻和电容串联连接到电源上。
使用示波器观察电阻上的电压和电容上存储的电荷的变化情况,并记录结果。
实验结果:观察到电阻上的电压呈指数衰减的变化趋势,电容上的电荷在刚接通电源时迅速充电,然后逐渐达到稳定。
通过测量,我们可以得到RC时间常数,从而计算出电路的时间常数。
4.最后,我们搭建一个RL电路,将电阻和电感串联连接到电源上。
使用示波器观察电阻上的电压和电感上存储的磁场的变化情况,并记录结果。
实验结果:观察到电阻上的电压呈指数增长的变化趋势,电感上的磁场随着时间的增加而增强。
通过测量,我们可以得到RL时间常数,从而计算出电路的时间常数。
电路分析基础实验 (3)
电路分析基础实验实验简介本实验旨在帮助学生掌握电路分析的基础知识和技能,通过实际操作电路,了解电路分析的方法和原理。
本次实验主要包括电压和电流的测量、欧姆定律、基尔霍夫定律等内容。
实验材料•直流电源:提供所需的稳定直流电压源。
•电阻:用于构建电路和测量电流、电压。
•万用表:用于测量电压和电流值。
•连接线:用于连接电阻和电源。
实验步骤1.搭建一个简单的串联电路,包括一个电源和两个电阻。
2.使用万用表测量电源的电压,并记录下来。
3.使用万用表测量两个电阻上的电压,并记录下来。
4.使用万用表测量电阻上的电流,并记录下来。
5.计算电路中的总电阻,可以使用欧姆定律。
6.根据基尔霍夫定律,分析电流和电压的关系。
7.修改电路,搭建一个并联电路,重复上述测量和分析的步骤。
8.总结实验结果,对电路分析的方法和原理进行总结。
实验结果在实验中我们记录了以下数据:•电源电压:10V•电阻1上的电压:5V•电阻2上的电压:3V•电阻1上的电流:0.5A•电阻2上的电流:0.3A根据欧姆定律,我们可以计算出电路的总电阻:总电阻 = 电源电压 / 总电流总电流 = 电阻1上的电流 + 电阻2上的电流在并联电路中,总电流等于各个分支电流之和。
根据基尔霍夫定律,我们可以得到以下等式:电源电压 = 电阻1上的电压 + 电阻2上的电压根据以上数据,我们可以计算出电路的总电阻和各个分支电流。
实验总结通过本次实验,我们了解了电路分析的基础知识和方法。
通过实际操作电路,我们学会了如何测量电压和电流,并应用欧姆定律和基尔霍夫定律分析电路。
我们还通过实验数据计算了电路的总电阻和各个分支电流。
电路分析是电子工程和电路设计的基础,掌握这些基础知识和技能对于今后的学习和工作都非常重要。
希望通过这次实验,学生们能够对电路分析有一个更深入的理解,并能够运用于实际工作中。
参考资料1.《电路分析基础》,作者:张三2.《电子电路基础实验教程》,作者:李四3.《电路分析方法与技巧》,作者:王五。
电路分析实验实验报告
电路分析实验实验报告电路分析实验实验报告引言:电路分析是电子工程领域中的一项基础实验,它通过对电路的结构和性能进行分析,帮助我们了解电路的工作原理和特性。
本次实验旨在通过对不同电路的测量和分析,探讨电路中的电压、电流、功率等基本概念,并通过实验数据验证电路理论模型的正确性。
实验一:欧姆定律的验证欧姆定律是电路分析的基础,它描述了电流、电压和电阻之间的关系。
在本实验中,我们使用直流电源和不同阻值的电阻进行测量,验证欧姆定律的准确性。
实验步骤:1. 连接电路:将直流电源的正极和负极分别与电路中的两端连接,确保电源开关关闭。
2. 测量电阻:使用万用表测量电阻的阻值,并记录下来。
3. 测量电流:将万用表的电流测量端与电路中的一端相连,另一端与电源的负极相连,打开电源开关,并记录下电流值。
4. 测量电压:将万用表的电压测量端依次与电路中的不同位置相连,记录下各个位置的电压值。
实验结果与分析:根据欧姆定律,电流等于电压除以电阻。
通过实验测量得到的电流值与计算得到的电流值进行比较,可以发现它们非常接近。
这说明欧姆定律在实际电路中是成立的。
实验二:串联电路与并联电路的特性比较在实际电路中,电阻可以串联连接或并联连接,这会对电路的总阻值、总电流和总电压产生影响。
本实验旨在通过测量串联电路和并联电路的特性,比较它们之间的差异。
实验步骤:1. 连接电路:使用直流电源、电阻和导线搭建串联电路和并联电路。
2. 测量总电阻:使用万用表测量串联电路和并联电路的总电阻,并记录下来。
3. 测量总电流:将万用表的电流测量端与电路中的一端相连,另一端与电源的负极相连,打开电源开关,并记录下电流值。
4. 测量总电压:将万用表的电压测量端依次与电路中的不同位置相连,记录下各个位置的电压值。
实验结果与分析:通过实验测量得到的数据,我们可以计算出串联电路和并联电路的总电阻、总电流和总电压。
比较这些数据,我们可以发现在串联电路中,总电阻等于各个电阻的和,而总电流和总电压相等;而在并联电路中,总电阻的倒数等于各个电阻的倒数之和,而总电流和总电压相等。
电路分析基础 实验三:二阶电路三要素法实验报告
电路分析基础实验三:二阶电路三要素
法实验报告
实验目的
本实验旨在通过使用二阶电路三要素法来分析和研究二阶电路的特性和性能。
实验装置与材料
1. 直流电源
2. 电阻、电容、电感器
3. 示波器
4. 万用表
5. 手持电源计
实验步骤
1. 连接电路:根据实验电路图,连接直流电源、电阻、电容、电感器以及示波器。
2. 调节参数:设置合适的电压和频率,并记录下实验开始时的初值。
3. 测量电压:使用示波器和万用表测量电阻、电容和电感的电
压值。
4. 记录数据:根据测量结果记录下电压和频率的数值。
5. 分析数据:根据测量结果,通过二阶电路三要素法计算电阻、电容和电感的数值,并进行分析。
6. 写报告:整理实验数据和计算结果,撰写实验报告。
结果与讨论
通过实验测量和计算,我们得到了二阶电路的电阻、电容和电
感的数值,并进行了分析。
根据实验结果,我们可以得出以下结论:
1. 二阶电路的电阻、电容和电感对电路的频率响应具有重要影响。
2. 电路参数的变化会导致电路的稳定性和性能发生变化。
3. 通过改变电路参数,我们可以调节电路的频率响应和滤波特性。
实验总结
通过本次实验,我们研究并掌握了二阶电路三要素法的基本原
理和分析方法。
通过实际操作和数据分析,加深了对二阶电路特性
和性能的理解。
同时,我们也发现在实验过程中需注意测量误差的存在,以提高实验结果的准确性。
参考文献
无。
基础电路实验报告分析
一、实验背景电路分析是电子工程、自动化等专业的重要基础课程。
通过基础电路实验,学生可以加深对电路理论知识的学习,提高实践操作能力。
本报告将分析一次基础电路实验的过程,并对实验结果进行讨论。
二、实验目的1. 熟悉常用电子仪器的使用方法,如示波器、万用表等。
2. 验证基尔霍夫电流电压定律。
3. 学习电路分析方法,掌握电路图绘制技巧。
4. 培养实验操作能力和数据分析能力。
三、实验内容1. 实验一:基尔霍夫电流电压定律验证(1)实验原理:基尔霍夫电流电压定律是电路分析的基本定律之一,用于描述电路中电流和电压的分布情况。
(2)实验步骤:① 使用示波器、万用表等仪器搭建实验电路;② 测量电路中各个节点的电压和支路电流;③ 根据基尔霍夫电流电压定律计算电路中各个节点的电压和支路电流;④ 比较测量值和计算值,验证基尔霍夫电流电压定律。
(3)实验结果:实验结果表明,测量值与计算值基本一致,验证了基尔霍夫电流电压定律的正确性。
2. 实验二:电路分析方法学习(1)实验原理:电路分析方法包括节点法、回路法等,用于求解电路中各个元件的电压和电流。
(2)实验步骤:① 根据电路图绘制等效电路;② 选择合适的电路分析方法,如节点法或回路法;③ 求解电路中各个元件的电压和电流;④ 比较理论计算值和实验测量值。
(3)实验结果:实验结果表明,理论计算值与实验测量值基本一致,验证了电路分析方法的正确性。
四、实验分析1. 实验过程中,学生掌握了常用电子仪器的使用方法,提高了实验操作能力。
2. 通过实验验证了基尔霍夫电流电压定律和电路分析方法的正确性,加深了对电路理论知识的理解。
3. 实验过程中,学生学会了电路图绘制技巧,提高了电路分析能力。
4. 实验过程中,学生培养了严谨的实验态度和实事求是的科学作风。
五、实验总结基础电路实验是电子工程、自动化等专业的重要实践环节。
通过本次实验,学生掌握了常用电子仪器的使用方法,验证了电路理论知识的正确性,提高了实验操作能力和电路分析能力。
电路分析基础类(硬件实验)-实验报告
RL(KΩ)
1.0
2.0
3.0
4.0
5.0
VAB(V)
IAB(mA)
3)在图2.7上绘制诺顿等效电路的外特性曲线。要求:将本实验1、3、4部分要求的含源线性单口网络、戴维南等效、诺顿等效三条外特性曲线画在同一坐标轴中。
图2.7
四、实验结论及总结
实验2含源线性单口网络等效电路及其参数测定
原始数据
b.调节变阻箱RL,当UAB= 0.5UOC时,记录变阻箱的阻值。
R0=
(2)开路电压、短路电流法
3.验证戴维南等效电路
图2.5
1)测量电路如图2.5所示,RL为变阻箱,注意:UOC和R0分别为前面测得的开路电压和等效内阻。
2)调节变阻箱RL,使其阻值依次为表2.2中所列电阻值时,读伏特表的读数,将相应的电压值记录在表格中,并计算通过负载RL的电流值填写在表格中。
3)计算通过被测元件的电流值IAB以及阻抗的模 ,并填入表5.1中相应位置。
4)在图5.2上绘制R、L、C单个元件阻抗频率特性曲线,要求:将三条曲线画在同一坐标轴中。
表5.1
f(KHz)
10
20
30
40
50
US(V)
2
UBC(mV)
R
L
C
IAB(mA)
R
L
C
(KΩ)
R
L
C
图5.2
2.R、L、C单个元件的相位测量
1.测绘R、L、C单个元件阻抗频率特性曲线
1)按照图5.1接好线路。注意:信号源输出电压的幅度须始终保持2V有效值,即每改变一次输出电压的频率,均须监测其幅度是否为2V有效值。
2)改变信号源的输出频率f如表5.1所示,利用示波器的自动测量功能监测2通道信号的电压有效值,并将测量数据填入表中相应位置。
【电路分析基础实验】有源二端网络等效参数的测定
实验三有源二端网络等效参数的测定一、实验目的1.学习有源二端网络的开路电压和入端电阻的测量方法。
2.分析负载获得最大功率的条件。
3.理解戴维南定理。
二、实验原理与方法1.戴维南定理戴维南定理指出,任何一个含源线性二端网络,对其外部而言,都可以用一个电压源与电阻相串联的组合来等效代替。
如图1所示,该电压源的电压等于二端网络的开路电压U,该电阻等于网络内部所有独立电压源短路、独立电流源开路(即成为线性无源二端网络,OC如图2所示)时的入端等效电阻R i。
图1 戴维南定理等效电路图2 含源线性二端网络的开路电压和无源线性二端网络的入端等效电阻2.开路电压UOC的测量方法(1)直接测量法当含源线性二端网络的入端等效电阻R较小,与电压表的内阻相i比较可以忽略不计时,可以用电压表直接测量该网络的开路电压UOC。
较大时,采取直接测量法的误差较(2)补偿法当含源线性二端网络的入端电阻Ri大,若采用补偿法测量则较为准确。
测量方法如图3所示,图中虚线方框内为补偿电路,U为直流电源,滑线变阻器RP接为分压器,G为检流计。
将补偿电路的两端A′、B′与S被测电路的两端A、B相连接,调节分压器的输出电压,使检流计的指示为零,此时电压表所测得的电压值就是该网络的开路电压UOC。
由于此时被测网络相当于开路,不输出电流,网络内部无电压降,所以测得的开路电压较直接测量法准确。
图3 补偿法测量网络开路电压的电路3.入端等效电阻R的测量方法i(1)外加电源法将含源线性二端网络内部的电源去除,且电压源作短路、独立电流源作开路处理,•使其成为线性无源二端网络,然后在其A、B二端加上一合适的电压源US (图4)•,测量流入网络的电流I,则网络的入端等效电阻为R i=US/I。
如果无源二端。
网络仅由电阻元件组成,也可以直接用万用电表的电阻挡去测量Ri因为在实际上网络内部的电源都有一定的内阻,当电源被去掉的同时,其内阻也被去掉了,这就影响了测量的准确性。
电路基础实验
电路基础实验引言电路是电子技术的基础,而电路基础实验则是学习电路理论的必备环节。
通过实践操作电路,我们可以更好地理解电路原理,掌握电路分析和设计的方法。
本文将介绍几个常见的电路基础实验,帮助读者入门电子技术领域。
实验一:串联电路实验目的通过构建串联电路,了解串联电路的特性和基本原理。
实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将一个电阻器和一个电池串联连接,在电路中间连接一个电压表,用来测量电压。
2.将一个电流表与电阻器并联连接,用来测量电流。
3.打开电源,记录电压表和电流表的读数。
4.改变电阻器的阻值,再次记录电压表和电流表的读数。
5.绘制电压-电流曲线图,并分析实验结果。
实验结果与分析通过实验,我们可以得到串联电路中电压和电流之间是成正比关系的。
当电阻器的阻值增大时,电流减小,电压增大;当电阻器的阻值减小时,电流增大,电压减小。
这是因为串联电路中电流在各个元件中是相同的,而电压在各个元件上之和等于电源电压。
实验二:并联电路实验目的通过构建并联电路,了解并联电路的特性和基本原理。
实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将两个电阻器并联连接,并将它们与一个电池串联连接,在并联电路两端连接一个电压表,用来测量电压。
2.将两个电流表分别与电阻器并联连接,用来测量电流。
3.打开电源,记录电压表和电流表的读数。
4.改变电阻器的阻值,再次记录电压表和电流表的读数。
5.绘制电压-电流曲线图,并分析实验结果。
实验结果与分析通过实验,我们可以得到并联电路中电压和电流之间是成反比关系的。
当电阻器的阻值增大时,电流减小,电压不变;当电阻器的阻值减小时,电流增大,电压不变。
这是因为并联电路中电流在各个元件中之和等于电源电流,而电压在各个元件上是相同的。
实验三:电路的欧姆定律实验目的通过测量电阻器的电压和电流,验证欧姆定律的准确性。
实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将一个电阻器与一个电池串联连接,在电路中间连接一个电压表,用来测量电压。
电路分析实验报告
电路分析实验报告引言:电路分析是电子工程领域中的基础实验之一,通过对电路的分析,可以了解电流、电压、功耗等相关参数,从而更好地设计电子产品。
本篇实验报告将介绍我们在电路分析实验中的实验过程、结果和分析。
实验步骤:实验一:串联电路的分析我们首先构建了一个串联电路,该电路由一串电阻构成。
我们使用万用表和电流表测量电阻的阻值和电流的大小。
通过改变电阻的值,我们记录了不同电阻下电流的变化情况,并绘制了相应的电流-电阻关系图。
通过观察图表,我们发现电流和电阻成反比关系。
这一实验结果与基本的欧姆定律相一致。
实验二:并联电路的分析接下来,我们构建了一个并联电路,该电路由多个电阻并联而成。
通过测量并记录电流和电压的值,我们计算了电路的总电阻。
实验结果显示,并联电路的总电阻小于其中任意一个电阻。
这进一步验证了并联电路的特性,即总电阻为电阻的倒数之和。
实验三:交流电路的分析在这个实验中,我们关注的是交流电路的分析。
我们通过感应电阻和电容器构建了一个RLC电路,使用示波器测量了电压信号的幅值和相位。
我们观察到电容的阻抗与频率成反比关系,而电感的阻抗与频率成正比关系。
这些现象进一步揭示了交流电路中的频率依赖性。
实验四:直流电路的分析在最后一个实验中,我们关注的是直流电路的分析。
通过构建一个带有电池、电阻和LED的电路,我们探讨了电流在电路中的流动情况以及LED的亮度与电流的关系。
实验结果显示,当电流增大时,LED的亮度也随之增大。
这为我们设计和控制LED电路提供了重要的依据。
实验结果与分析:通过实验,我们成功地分析了不同类型的电路,并获得了相关的实验数据。
我们得出了串联电路中电流与电阻关系的结论,验证了并联电路的总电阻计算方法,观察到了交流电路中频率依赖性的现象,以及直流电路中电流和LED亮度之间的关系。
这些实验结果对我们深入了解和应用电路分析方法具有重要意义。
结论:通过这次电路分析的实验,我们学习了电路的基本原理和分析方法。
电路分析基础实验报告-电压源、电流源及其电源等效变换
XXX 实验室学生实验报告课程名称电路分析基础实验学院XXX专业XXX班级XXX学号XXX姓名XXX辅导教师XXX实验时间:X 年X 月X 日预 习 实 验 报 告1、 实验名称电压源、电流源及其电源等效变换2、实验目的1.掌握建立电源模型的方法。
2.掌握电源外特性的测试方法。
3.加深对电压源和电流源特性的理解。
4.研究电源模型等效变换的条件。
3、实验内容1.电压源和电流源电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性。
其外特性,即端电压U 与输出电流I 的关系U = f (I ) 是一条平行于I轴的直线。
实验中使用的恒压源在规定的电流范围内,具有很小的内阻,可以将它视为一个电压源。
电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性。
其外特性,即输出电流I 与端电压U 的关系I = f (U ) 是一条平行于U 轴的直线。
实验中使用的恒流源在规定的电流范围内,具有极大的内阻,可以将它视为一个电流源。
2.实际电压源和实际电流源实际上任何电源内部都存在电阻,通常称为内阻。
因而,实际电压源可以用一个内阻R S 和电压源U S 串联表示,其端电压U 随输出电流I 增大而降低。
在实验中,可以用一个小阻值的电阻与恒压源相串联来模拟一个实际电压源。
实际电流源是用一个内阻R S 和电流源I S 并联表示,其输出电流I 随端电压U 增大而减小。
在实验中,可以用一个大阻值的电阻与恒流源相并联来模拟一个实际电流源。
3.实际电压源和实际电流源的等效互换一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个电压源U s 与一个电阻R S 相串联表示;若视为电流源,则可用一个电流源I S 与一个电阻R S 相并联来表示。
若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
实际电压源与实际电流源等效变换的条件为: (1)取实际电压源与实际电流源的内阻均为R S ;(2)已知实际电压源的参数为U s 和R S ,则实际电流源的参数为SS S R UI =和R S ,若已知实际电流源的参数为I s 和R S ,则实际电压源的参数为S S S R I U =和R S 。
电路分析基础实验报告一
电路分析基础实验报告班级: 学号:姓名:课程时间:2014.10.14实验台编号:01实验1 基本元件伏安特性的测绘一、实验内容1、认识实验环境2、了解数字万用表的使用3、用万用表测量电阻、电容、电感、二级管、三极管等元器件参数,并判断其好坏。
4、了解面包板的使用5、用面包板搭接一个调压和调流电路。
二、实验设备1.电器元件盒(电阻、电容、电感、电位器、二极管、三极管、集成电路)2.万用表(台式和手持式)3.面包板三、实验内容1.测出两个色环电阻的阻值,并与所读出的数值进行比较,求出误差。
实验步骤:(1)首先红表笔插入VΩ孔黑表笔插入COM孔(2)量程旋钮打到“Ω”量程档适当位置(3)分别用红黑表笔接到电阻两端金属部分(4)读出显示屏上显示的数据2.测出两个电容的阻值,求出其中CBB电容的误差。
实验步骤:(1)将电容两端短接,对电容进行放电,确保数字万用表的安全。
(2)将功能旋转开关打至电容“F”测量档,并选择合适的量程。
(3)将电容插入万用表CX插孔。
(4)读出显示屏上数字。
3.读出一个电感的度数。
4.测出三个二极管的正向电压。
实验步骤:(1)红表笔插入VΩ孔黑表笔插入COM孔(2)转盘打在( )档(3)判断正负(4)红表笔接二极管正黑表笔接二极管负(5)读出显示屏上数据特殊说明:用万用电表测量二极管得到的示数是二极管的正向导通电压,若是反向就没有示数,说明不导通,把么这些二极管都是好的。
5.测出一个电位器的阻值范围,并分析该电位器的好坏。
实验步骤:(1)红表笔插入VΩ孔黑表笔插入COM孔(2)量程旋钮打到“Ω”量程档适当位置(3)分别用红黑表笔接到电位器两侧之一和中间那根(4)观察显示屏上的数字是否均匀变化,判断其好坏(5)转动调节螺钮,记录电位器的测量范围(6)同样测另一侧的测量范围四、实验数据1.电阻(1)原始数据:棕黑红金1000Ω测量数据:996.14Ω误差:(1000-996.14) /1000=0.386%(2)原始数据:棕黑棕金100Ω测量数据:100.17Ω误差:(100.17-100)/100=0.17%2.电容(1)电解电容测量数据:493.6nF(2)CBB电容原始数据:100000pF 测量数据:105300pF误差:(105300-100000)/100000=5.3%3.电感原始数据:红黑橙银20000uh4.二极管(1)发光二极管测量数据:1.61V(2)稳压二极管测量数据:0.74V(3)整流二极管测量数据:0.55V5.电位器阻值范围0.704Ω——1.447Ω和28.684Ω——3.659KΩ分析:该电位器是坏的,原因是在测量的时候数值不是均匀变化的。
电路分析基础实验
实验一:基尔霍夫定理与电阻串并联一、实验目的学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。
二、实验原理1、基尔霍夫电流、电压定理的验证。
解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。
2、电阻串并联分压和分流关系验证。
解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。
三、实验数据分析1、基尔霍夫电流、电压定理的验证。
测量值验证(1)对于最左边的外围网孔,取逆时针为参考方向得:011.111V -8.889V -20V U -U -U 321== 故满足KVL 。
(2)对于最大的外围网孔,取逆时针为参考方向得:0V 889.8-V 100111.0-V 20U -R I U 2351=⨯+=⨯+)( 故满足KVL 。
(3)对于节点4,取流进节点的电流方向为正得:0A 222.0-A 222.0-A 444.0--I I I -321=++=++)()()( 故满足KCL(4)对于节点7,取流进节点的电流方向为正得:0A 111.0-A 111.0-A 222.0--I I I -543=++=++)()()( 故满足KCL理论计算值V9100V 9250I R U V980V 9420I R U A91A 9221I R R R I I A92A 92-94I -I I A92A 9421I R //R R R //R I A 94A 4520R //R //R R U I R //R //R R I U 2231123433542131432432432111432111=⨯=⨯==⨯=⨯==⨯=⨯+======⨯=⨯+===+=+⨯=)()()()()()()( 用同样的方式计算也可得:(1)0V 9100-V 980-V 20U -U -U 321==(2)0V 9100-V 10091-V 20U -R I U 2351=⨯=⨯+)((3)0A 92-A 92-A 94I -I -I 321==(4)0A 91-A 91-A 92I -I -I 543==理论计算值与实验测量值同样满足基尔霍夫定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验的仪器和设备
双路直流稳压电源 万用表 实验电路板 电阻箱
实验电路板
实验电路
12V
R1
R2
R3
a
IL RL
b
操作步骤
一、按电路连接回路; 二、用电流表测量负载支路的电流IL,将读数填入下表中; 三、测量开路电压Uoc:
断开负载支路,用万用表测量ab两端的电压,此电压既 为该网络开路电压Uoc ; 四、测量输出电阻Ro:
电位,测量时应将电压表的负端接e点,正端依次测量各 点,若电压表正偏读数为正,若电压表反偏,将表笔互换记为负 值。数据填入下表中。 (3)、选c点为参考点,再依次测量各点的电位,方法同上。将 数据填入下表中。
参考点 Va
e点为参考点
C点为参考点 Va
电位(V)
Vb
Vc
Vd
Vf
Vb
Vd
Ve
Vf
实验报告
电路电分析路基分础析实验基础实验
实验内容
电阻的串联、并联和混联 基尔霍夫定律 叠加定律及电位的测量 戴维南定理 一阶电路实验 日光灯电路及功率因素的提高 三相交流电路
实验一
电阻的串联、并联和混联
实验目的
验证电阻的串联、并联的规律; 掌握电阻混联的联接方法; 掌握万用表、直流稳压电源、
电路综合实验板的使用;
将12V电源断开,用导线将电源断开后的缺口连结起来, 用万用表电阻档测量ab两点间的电阻 ,此电阻即为该网络的输 出电阻Ro 。 五、连接戴维南等效电路: 取Us =Uoc ;Rs=Ro; 按下面虚线框中电路连接戴维南等效电路, 六、代回负载支路,等效电路如下图。 七、测量负载支路的电流IL’,将读数填入下表中.根据测量数据, 验证戴维南定理。
实验电路图
I1
R1
I2 12V
R2
R1两端短路为并 联
I3 R3
该支路两端断开为串联
操作步骤
一、按电路连接回路; 二、用万用表在串联电路中测电路中的电流,各电阻两端的电
压,验证各电阻两端的电压与其阻值成正比,等效电阻为 : R=R1+R2+R3 ; 三、用万用表在并联电路中测各支路的电流,验证各支路的电 流与其阻值成反比,等效电阻为:R=1/R1+1/R2+1/R3; 四、用万用表测量混联电路中各电阻两端的电压,电流及总电 路的电流,将读数填入下表中,利用计算结果和串并联公 式验算混联电路的等效电阻。
实验数据
U U1 U2 I1
计算结果R=u/I
I2 I3
作业
实验报告
一、实验目的 二、实验原理 三、实验仪器和设备 四、数据的记录和处理 五、误差的分析
实验二
基尔霍夫定律
基尔霍夫定律
实验目的
验证基尔霍夫定律 加深对基尔霍夫定律的理解
实验原理
一、基尔霍夫电流定律: 在电路的任一节点中,流入、流出该节 点的电流的代数和等于零。
二、基尔霍夫电压定律: 在电路中的任一闭合回路中电压的代数 和等于零。
实验仪器和设备
双路直流稳压电源 万用表 实验电路板
实验电路板
实验电路
a I1 R1
12V R4
f
b
R2
I2
I3
R3
R5 e
c 8V
d
操作步骤
一、按电路连接回路; 二、验证基尔霍夫电流定律:
用万用表分别测出各支路的电流,将数据填入下表中,验 证节点b流入和流出的电流是否相等。 三、验证基尔霍夫电压定律: 用万用表分别测出Uab、Ube、Uef、Uaf两端的电压 、将数据填 入下表中, 验证第一回路的电压定律;再分别测出Ubc、 Ucd、 Ude、Ube 两端的电压、将数据填入下表中,验证第二 回路的电压定律。
实验仪器和設备
双路直流稳压电源 万用表 毫安表 实验电路板
实验电路板
实验原理
一、当几个电阻串联时,电阻中通过的是同一 电流,各电阻上电压的分配与电阻值成 比,其等效电阻为R=R 1+R 2 +R 3 +…..+R n
二、当几个电阻并联时,每个电阻处在同一电 压下,各支路中的电流与电阻成反比,其 等效电阻1/R=1/R 1+1/R 2+1/R 3+……+1/R n
实验仪器和設备
双路直流稳压电源 万用表 毫安表 实验电路板
电压
网孔
V
V1
V2
V3
V4
V5
1
√
√
√
√
2
√
√
√
√
电流 节点
I
I1
I2
I3
I4
I5
b
e
实验报告
实验目的 实验原理 实验仪器和设备 实验数据记录和处理 误差分析
实验三
叠加定理及电位的测量
实验目的
验证叠加定理 加深对叠加定理的理解
掌握电位的测量
实验原理
一、在线性电路中,某一支的电流(或电压)等 于电路中各个电源单独作用时,在该支路所产 生的电流(或电 压)的代数和.
电路电分析路基分础析实验基础实验
实验内容
电阻的串联、并联和混联 基尔霍夫定律 叠加定律及电位的测量 戴维南定理 一阶电路实验 日光灯电路及功率因素的提高 三相交流电路
实验一
电阻的串联、并联和混联
实验目的
验证电阻的串联、并联的规律; 掌握电阻混联的联接方法; 掌握万用表、直流稳压电源、
电路综合实验板的使用;
测量 各支路电流I 1、I 2 、I 3 、将读数填入下表中。 3、E1单独作用: 断开8V电源,将cd短路,测出各支路的电流I1’、 I2’、 I3’,
测量时若电流表指针反偏则对换两表笔,读数记负值, 将所测数据填入下表中。
4、E2单独作用: 拆除短路线,恢复E 2=8V,然后断开12V电源,将ab短
接,测出各支路的电流I1”、I2”、 I 3” ,将数据填入表中。
E 1,E2同时作用
I 1= I 2= I 3=
E1单独作用 I 1’= I 2’= I 3’=
E2单独作用 I 1”= I 2”= I 3”=
根据测量数据验证叠加定理
二、电位的测量: (1)、 断开ab两点短路线,恢复原电路, (2)、选e点为参考点,用万用表电压挡依次测量各点的
实验目的 实验原理 实验仪器和设备 数据的记录和处理 误差分析
实验四 戴戴维维 南南 定定理理
实验目的
验证戴维南定理 加深对戴维南定理的理解和应用
实验原理
线性含源单口网络,就其端口而言,可以等 效为一个电压源与一个电阻串联的支路,电压 源等于该网络开路电压Uoc ,串联电阻等于该 网络中所有独立源为零时所得到网络的等效 电阻Ro。
二、测量或计算电位时,应首先选择一个参考点 为零,电路中某一点的电位是该点与参考点之 间的电压.
实验仪器和设备
双路直流稳压电源 万用表 实验电路板
实验电路板
实验电 路
I1 a
E1 12v
b
R1 f
R2
I3 R3I2 c Nhomakorabea8v
E2
R4 e
R5 d
操作步骤
一、验证叠加定理: 1、按电路连接回路。 2、E1 和E2同时作用: