高一物理相遇和追及问题(含详解)
高一物理相遇及追及问题
显然,甲车停止后乙再追上甲。
甲车刹车的位移
s甲=v02/2a=152/2=112.5m
乙车的总位移
s乙=s甲+32=144.5m t=s乙/v乙=144.5/9=16.06s
第五页,共18页。
例3、甲乙两车同时同向从同一地点出发,
甲车以v1=16m/s的初速度,a1=-2m/s2的 加速度作匀减速直线运动,乙车以v2=4m /s的速度,a2=1m/s2的加速度作匀加 速直线运动,求两车再次相遇前两车相 距最大距离和再次相遇时两车运动的时 间?
at′=6 t′=6s
在这段时间里,人、车的位移分别为: s人=v人t=6×6=36m s车=at′2/2=1×62/2=18m
△s=s0+s车-s人=25+18-36=7m
第三页,共18页。
例2、甲车在前以15m/s的速度匀速行驶, 乙车在后以9m/s的速度行驶。当两车相距 32m时,甲车开始刹车,加速度大小为
第十七页,共18页。
求解追击问题的常用方法
1、通过运动过程的分析,找到隐含条件,从而顺利列方程求解,例 如:
⑴、匀减速物体追赶同向匀速物体时,能追上或恰好追不上的 临界条件: 即将靠近时,追赶者速度等于被追赶者速度(即当追赶者速度大 于被追赶者速度时,能追上;当追赶者速度小于被追赶者速度时, 追不上) ⑵、初速为零的匀加速物体追赶同向匀速物体时,追上前两者具 有最大距离的条件:追赶者的速度等于被追赶者的速度。
当t=-b/2a时,即t=4s时,两车相距最远
△s=12×4-3×42/2=24m
当两车相遇时,△s=0,即12t-3t2/2=0
∴
t=8s 或t=0(舍去)
第八页,共18页。
高一物理追击和相遇专题(含详解)
追及和相遇问题专题研究一、追及和相遇问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解决追及和相遇问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四.典型例题分析:【例1】一小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行以6 m/s 的速度从车边匀速驶过。
(1)汽车从开动后到追上自行车之前,要经多长时间两者相距最远?此时距离是多少?(2)汽车什么时候追上自行车,此时汽车的速度是多少?【例2】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自行车。
求关闭油门时汽车离自行车多远?【例3】一列客运列车以20m/s 的速度行驶,突然发现同轨前方120m 处有一列货运列车正以6m/s 的速度匀速前进。
于是该客运列车紧急刹车,以0.8m/s 2的加速度匀减速运动,是判断两车是否相撞。
【例4】甲、乙两车同时从同一地点出发,甲以8m/s的初速度、1m/s2的加速度做匀减速直线运动,乙以2m/s的初速度、0.5 m/s2的加速度和甲同向做匀加速直线运动,求两车再次相遇前两车相距的最大距离和再次相遇时两车运动的时间。
高中物理相遇和追及问题(完整版)
高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。
1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。
二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。
解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。
2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。
追及的主要条件是两个物体在追上时位置坐标相同。
3.寻找问题中隐含的临界条件。
例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。
利用这些临界条件常能简化解题过程。
4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。
相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
高一物理追击相遇问题试题答案及解析
高一物理追击相遇问题试题答案及解析1.汽车甲沿着平直的公路以速度做匀速直线运动.当它路过某处的同时,该处有一辆汽车乙开始做初速为0的匀加速运动去追赶甲车.根据上述的已知条件: ()A.可求出乙车从开始起动到追上甲车时所用的时间.B.可求出乙车追上甲车时乙车所走的路程.C.可求出乙车追上甲车时乙车的速度.D.不能求出上述三者中任何一个.【答案】C【解析】甲匀速直线运动有,乙车匀加速有,而且乙车平均速度等于,所以有乙车追上甲车时有,从而可以计算乙车追上甲车时乙车的速度选项C对。
但是不知道乙车的加速度所以无法计算时间和路程选项ABD错【考点】追击相遇问题2.(本题10分)在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在距离停车线多远处汽车追上自行车?追到时汽车的速度是多大?【答案】(1)10s 25m (2)100m 10m/s【解析】(1) 在汽车速度没有达到自行车速度之前,两者的距离是越来越大,当两者速度相等时,两车相距最远,当汽车速度大于自行车速度时,两者距离逐渐减小.设从停车线启动到相距最远所用时间为t,汽车做初速度为0的匀加速直线运动,所以代入数据解得:最远距离(2)汽车追上自行车时,它们相对于停车线的位移相等,设汽车追上自行车所用时间为t′,此时即解得:此时距停车线距离此时汽车速度为:【考点】本题考查追及相遇问题,同时考查匀变速直线运动规律的综合应用.3.甲车以加速度1m/s2由静止开始作匀加速直线运动,乙车落后2s在同一地点由静止出发,以加速度4m/s2作加速直线运动,两车运动方向一致,则乙车追上甲车所用的时间为()A.2s B.3s C.4s D.6s【答案】A【解析】由题意可知,两车机遇时的运动位移相等,运动时间,由运动公式得,,代入数据解得:,故只有A正确。
【考点】追及相遇问题4.如图所示,一辆长为12 m的客车沿平直公路以8.0 m/s的速度匀速向北行驶,一辆长为10 m的货车由静止开始以2.0 m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180 m,则两车错车所用的时间为A.0.4 s B.0.6 sC.0.8 s D.1.2 s【答案】C时两车开始错车,则有其中,【解析】设货车启动后经过时间t1,在数值上有解之可得,设货车从开始运动到两车错车结束所用时间为t2其中,解得故两车错车时间故选C【考点】考查了追击相遇问题点评:本题属于相遇问题,关键抓住位移关系,运用运动学公式灵活求解.5.某汽车以10 m/s的速度匀速前进,若驾驶员立即刹车,汽车做匀减速运动,经过40 s汽车停止运动.该汽车以10 m/s的速度匀速前进时,突然驾驶员发现正前方60 m处有一辆自行车正以4 m/s的速度与汽车同方向匀速行驶,驾驶员立即刹车做匀减速运动,试求:(1)汽车做匀减速运动的加速度大小a;;(2)汽车做匀减速运动过程中所行驶的距离S1(3)通过计算说明汽车与自行车是否会发生相撞.【答案】(1)(2)(3),所以会发生相撞【解析】(1)由:得:(2)由运动学公式得:(3)当汽车速度减为:时,经历时间:此过程中:汽车前进的位移:自行车前进的位移:由于:所以会发生相撞【考点】追及问题点评:分析追及问题时,一定要注意抓住一个条件、两个关系:①一个条件是两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小,是否恰好追上等.②两个关系是时间关系和位移关系.时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后运动等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯。
高一物理追击相遇问题试题答案及解析
高一物理追击相遇问题试题答案及解析1. A与B两个质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同一位置时 ()A.两质点速度相等B.A与B在这段时间内的平均速度相等C.A的瞬时速度是B的2倍D.A与B的位移相同【答案】BCD【解析】设A的加速度为a,B的速度为v,经过时间t,A、B再次位于同一位置,由题意可得,,故此时A的速度,所以A错误;C正确;由题意知A、B在t时间内位移相同,根据平均速度的定义式,可知A与B在这段时间内的平均速度相等,所以B正确;D正确。
【考点】本题考查追击相遇问题,意在考查学生的分析能力。
2.甲乙两车在一平直道路上同向运动,其v-t图象如右图所示,图中△OPQ和△OQT的面积分别为x1和x2(x2>x1),初始时,甲车在乙车前方x处 ( )A.若x0=x1+x2,两车能相遇B.若x0<x1,两车相遇2次C.若x0=x1,两车相遇1次D.若x0=x2,两车相遇1次【答案】BC【解析】由图线可知:在T时间内,甲车前进了,乙车前进了;A、若,即,两车不会相遇。
若,满足,因此两车不会相遇;错误B、若,即,在T时刻之前,乙车会超过甲车,但甲车速度增加的快,所以甲车还会超过乙车,则两车会相遇2次;正确CD、若,即两车只能相遇一次;C正确故选BC【考点】追及问题点评:研究v-t图象时要注意观察:一点,注意横纵坐标的含义;二线,注意斜率的意义;三面,v-t图象中图形与时间轴围成的面积为这段时间内物体通过的位移,研究追及问题最好画出运动轨迹示意图。
3.经检测,火车甲以u甲=20m/s的速度在平直的铁轨上行驶,紧急制动后,需经过200m才能停下。
某次夜间,火车甲以20m/s的速度在平直的铁轨上行驶,突然发现前方仅125m处有一火车乙正以u乙=4m/s的速度同向匀速行驶,司机甲立即制动刹车。
关于能否发生撞车事故,某同学的解答过程是:“设火车甲制动位移为s1=200m所用时间为t,火车乙在这段时间内的位移为s2你认为该同学的结论是否正确?如果正确,请定性说明理由;如果不正确,请说明理由,并求出正确结果【答案】会相撞【解析】不正确,因为火车相撞时,速度不一定为零,紧急制动后,需经过200m才能停下。
高一物理相遇和追及问题(含详解)之欧阳理创编
相遇和追及问题【要点梳理】要点一、机动车的行驶安全问题:1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。
2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。
停车距离的长短由反应距离和刹车距离共同决定。
安全距离大于一定情况下的停车距离。
要点二、追及与相遇问题的概述1、追及问题的两类情况(1)速度小者追速度大者(2)速度大者追速度小者说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.特点归类:(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度.(2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近.2、相遇问题的常见情况(1)同向运动的两物体的相遇问题,即追及问题.(2)相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.【典型例题】类型一、机动车的行驶安全问题例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速为v=120km/h 。
假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要0.50s (即反应时间),刹车时汽车所受阻力是车重的0.40倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离?【答案】156m【解析】v 120km /h 33.3m /s ==匀减速过程的加速度大小为2a kmg /m 4m /s ==。
高一物理追击与相遇问题
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
角形的面积之差最大。
v/ms-1
v-t图像的斜率表示物体的加速度
6 tan 3
t0
t0 2s
当t=2s时两车的距离最大
6
o α t0
汽车
自 行
车 t/s
xm
1 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面
运动。要使两车不相撞,a应满足什么条件?
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
由A、B位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
第一章 匀变速直线运动
追击和相遇问题
一、几种典型追击问题
v
甲
乙
甲的初速度大于乙的速度 o
t
t0
甲一定能追上乙,v甲=v乙的时刻为甲、乙有
最大距离的时刻。
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽 车以3m/s2的加速度开始加速行驶,恰在这时一辆自 行车以6m/s的速度匀速驶来,从后边超过汽车。试 求:汽车从路口开动后,在追上自行车之前经过多长 时间两车相距最远?此时距离是多少?
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的物理量. 注意物理量的正负号。
方法四:二次
v2t x0
追及与相遇问题(详解)
追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。
一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。
a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。
⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。
即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。
⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。
匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
高中物理追击、追及和相遇问题
高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
高一物理追击与相遇问题
问:汽车经过多少时间能追 上自行车?此时汽车的速度 是多大?汽车运动的位移又 是多大?
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度相
等时,两车之间的距离最大。设经 时间t两车之间的距离最大。则
x汽
v汽 at v自
△x
t v自 6 s 2s
x自
a3
xm
x自
x汽
v自t
1 2
at 2
6 2m
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的物理量. 注意物理量的正负号。
方法四:二次函数极值法
列方程 v1t ∵不相撞
1 2
at
2
v2t x0
100
代入数据得
方法二:图象法
v/ms-1
1 2
(20 10)t0
100
20
A
10
B
t0 20 s
o
t/s
t0
a 20 10 0.5m / s2
20
则a 0.5m / s2
方法三:相对运动法
以B车为参照物, A车的初速度为v0=10m/s,以加速度大小a 减速,行驶x=100m后“停下”,末速度为vt=0。
1 2
3 22 m
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是
多大?汽车运动的位移又是多大?
v自T
1 2
aT
2
t 2v自 4s a
v汽 aT 12m / s
s汽
1 2
aT
(完整版)高中物理追击和相遇问题专题(含详解)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =vB两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追击和相遇问题专题(含详解).doc
v1.0可编辑可修改直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0( 3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。
追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。
追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时v1< v 2):1.当 v1< v 2时,两者距离变大;2.当 v1= v 2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇( 即追上 ) 一次。
【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远此时距离是多少(2)小汽车什么时候v1.0可编辑可修改( 二 ) .匀速运动追匀加速运动的情况(开始时v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高一物理追击相遇问题试题答案及解析
高一物理追击相遇问题试题答案及解析1.(8分)如图所示,质点甲以8m/s的速度从O点沿Ox轴正方向运动,质点乙从点Q(0m,60m)处开始做匀速直线运动,要使甲、乙在开始运动后l0s在x轴上的P点相遇,求乙的速度.【答案】大小为10m/s,方向偏向x轴正方向与y轴负方向成53°角。
【解析】质点甲在10s内的位移为 2分因此甲、乙相遇的P点坐标为(80m,0)由图中几何关系可知,在这10s内乙的位移为 2分则乙的速度为 2分方向偏向x轴正方向与y轴负方向成53°角。
2分【考点】运动的合成。
2.(10分)如(1)图所示,在太原坞城路某处安装了一台500万像素的固定雷达测速仪,可以准确抓拍超速车辆以及测量运动车辆的加速度。
一辆汽车正从A点迎面驶向测速仪B,若测速仪与汽车相距355m,此时测速仪发出超声波,同时车由于紧急情况而急刹车,汽车运动到C处与超声波相遇,当测速仪接受到发射回来的超声波信号时,汽车恰好停止于D点,且此时汽车与测速仪相距335m,忽略测速仪安装高度的影响,可简化为如(2)图所示分析(已知超声波速度为340m/s,)。
(1)求汽车刹车过程中的加速度a;(2)此路段有80km/h的限速标志,分析该汽车刹车前的行驶速度是否超速?【答案】(1)a="10" m/s2(2)是合法的【解析】(1)根据题意,超声波和汽车运动过程的示意图,如图所示设超声波往返的时间为2t,汽车在2t时间内,刹车的位移为=20m,(2分)当超声波与A车相遇后,A车继续前进的时间为t,位移为=5m,(2分)则超声波在2t内的路程为2×(335+5)m="680" m,由声速为340 m/s,得t="1" s,(1分),解得汽车的加速度a="10" m/s2(1分)(2)由A车刹车过程中的位移,(2分)解得刹车前的速度m/s=72km/h(1分)车速在规定范围内,是合法的。
(完整版)高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
高中物理追击及相遇问题专题含详解
适用标准文案直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体可否在同样的时辰抵达同样的空间地点的问题。
二、解相遇和追及问题的重点1.画出物体运动的情形图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0v=( 3)速度关系:AB二者速度相等常常是物体间可否追上或(二者)距离最大、最小的临界条件,也是剖析判断的切入点。
三、追及、相遇问题的剖析方法:A. 画出两个物体运动表示图,依据两个物体的运动性质 , 选择同一参照物 , 列出两个物体的位移方程 ;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数目关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加快追速度大者, 速度在靠近,但距离在变大。
追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在靠近,但距离在变小。
追上前在两个物体速度相等时 , 有最小距离 . 即一定在此以前追上 , 不然就不可以追上 .四、典型例题剖析:( 一 ) .匀加快运动追匀速运动的状况(开始时v1< v 2):1. 当 v1< v 2时,二者距离变大;2.当 v1= v 2时,二者距离最大;3.v1>v2时,二者距离变小,相遇时知足x1= x 2+x,全程只相遇( 即追上 ) 一次。
【例 1】一小汽车从静止开始以3m/s2的加快度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车以前经过多长时间二者相距最远?此时距离是多少?(2) 小汽车什么时候追上自行车,此时小汽车的速度是多少?( 二 ) .匀速运动追匀加快运动的状况(开始时 v1> v 2):1.当 v1> v 2时,二者距离变小;2.当 v1= v 2时,①若知足 x1< x 2+x,则永久追不上,此时二者距离近来;②若知足 x1=x2+ x,则恰能追上,全程只相遇一次;③若知足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理追击和相遇问题专题(含详解)
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t 0(2)位移关系:x A x B x0v=( 3)速度关系:AB两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质 , 选择同一参照物 , 列出两个物体的位移方程 ;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。
追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。
追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时 v1< v2):12时,两者距离变大;1. 当 v < v1 =2.当 vv 2 时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇 ( 即追上 ) 一次。
【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以 6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2) 小汽车什么时候追上自行车,此时小汽车的速度是多少?( 二 ) .匀速运动追匀加速运动的情况(开始时 v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足 x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+ x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高中物理相遇及追及问题[(完整版)]
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相遇和追及问题【要点梳理】要点一、机动车的行驶安全问题:1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。
2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。
停车距离的长短由反应距离和刹车距离共同决定。
安全距离大于一定情况下的停车距离。
要点二、追及与相遇问题的概述1、追及问题的两类情况(1)速度小者追速度大者(2)速度大者追速度小者说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.特点归类:(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 2、 相遇问题的常见情况(1) 同向运动的两物体的相遇问题,即追及问题.(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.【典型例题】类型一、机动车的行驶安全问题例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速为v=120km/h 。
假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要0.50s (即反应时间),刹车时汽车所受阻力是车重的0.40倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离?【答案】156m【解析】v 120km /h 33.3m /s ==匀减速过程的加速度大小为2a kmg /m 4m /s ==。
匀速阶段的位移11s vt 16.7m ==, 减速阶段的位移22s v /2a 139m ==,所以两车至少相距12s s s 156m =+=。
【点评】刹车问题实际上是匀变速直线运动的有关规律在减速情况下的具体应用,要解决此类问题,首先要搞清楚在反应时间里汽车仍然做匀速直线;其次也要清楚汽车做减速运动,加速度为负值;最后要注意单位统一。
举一反三【变式】酒后驾车严重威胁交通安全.其主要原因是饮酒会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成制动距离(从发现情况到汽车停止的距离)变长,假定汽车以108 km/h 的速度匀速行驶,刹车时汽车的加速度大小为8 m/s 2,正常人的反应时间为0.5 s ,饮酒人的反应时间为1.5 s ,试问:(1)驾驶员饮酒后的反制距离比正常时多几米?(2)饮酒的驾驶员从发现情况到汽车停止需多少时间?【答案】 (1)30 m (2)5.25 s【解析】 (1)汽车匀速行驶v =108 km/h =30 m/s正常情况下刹车与饮酒后刹车,从刹车到车停止这段时间的运动是一样的,设饮酒后的刹车距离比正常时多Δs ,反应时间分别为120.5 s 1.5 s t t =、=则21()s v t t ∆=-代入数据得30 m s ∆= (2)饮酒的驾驶员从实施操作制动到汽车停止所用时间3(0)/t v a =-解得3 3.75 s t = 所以饮酒的驾驶员从发现情况到汽车停止所需时间23t t t =+解得 5.25 s t =类型二、追及问题一:速度小者追赶同向速度大者例2、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始加速行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。
试求:(1)汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?【答案】2s 6m 【解析】:方法一:临界状态法汽车在追击自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小。
很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。
设经时间t 两车之间的距离最大。
则v t v a ==汽自 ∴ v 6t s 2s 3a ===自22m 11x x x v t at 62m 32m 6m 22∆=-=-=⨯-⨯⨯=自汽自 方法二:图象法在同一个v -t 图象中画出自行车和汽车的速度-时间图线,如图所示。
其中Ⅰ表示自行车的速度图线,Ⅱ表示汽车的速度图线,自行车的位移x 自等于图线Ⅰ与时间轴围成的矩形的面积,而汽车的位移x 汽 则等于图线Ⅱ与时间轴围成的三角形的面积。
两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t =t 0时矩形与三角形的面积之差最大。
此时0t v v a ==汽自,06t s 2s 3v a ===自,011t 26m 6m 22m S v ∆=⨯=⨯⨯=自 方法三:二次函数极值法设经过时间t 汽车和自行车之间的距离x ∆,则222133at 6t (2)6222x x x v t t t ∆=-=-=-=--+自汽自当2s t =时两车之间的距离有最大值x m ∆,且6m.m x ∆=【点评】(1)在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析.(2)分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件.(3)解题思路和方法举一反三【变式1】小轿车在十字路口等绿灯亮后,以1m/s 2的加速度启动,恰在此时,一辆大卡车以7m/s 的速度从旁超过,做同向匀速运动,问(1)小轿车追上大卡车时已通过多少路程?(2)两车间的距离最大时为多少?【答案】98m 24.5m【变式2】甲、乙两车同时从同一地点出发,向同一方向运动,其中甲以10 m/s 的速度匀速行驶,乙以2 m/s 2的加速度由静止启动,求: (1)经多长时间乙车追上甲车?此时甲、乙两车速度有何关系? (2)追上前经多长时间两者相距最远?此时二者的速度有何关系?【答案】(1)10 s 2倍 (2)5 s 相等【解析】(1)乙车追上甲车时,二者位移相同,设甲车位移为x 1,乙车位移为x 2,则x 1=x 2,即21111a 2v t t =,解得12110 s 20 m /s t v at =,==,因此212v v =. (2)设追上前二者之间的距离为x ∆,则21212221Δ 102x x x v t at t t =-=-=- 由数学知识知:当210s 521t s =⨯=时,两者相距最远,此时21v v '=.类型三、追及问题二:速度大者减速追赶同向速度小者例3、火车以速度1v 匀速行驶,司机发现前方同轨道上相距S 处有另一列火车沿同方向以速度2v (对地、且12v v >)做匀速运动,司机立即以加速度a 紧急刹车,要使两车不相撞,a 应满足什么条件?【答案】221()2v v a s-≥【解析】方法一:设两车恰好相撞(或不相撞),所用时间为t ,此时两车速度相等2121212v t at v t s v at v +=++= 解之可得:221()2v v a s -=即,当221()2v v a s-≥时,两车不会相撞。
方法二:要使两车不相撞,其位移关系应为:21212v t at v t s +≤+对任一时间t ,不等式都成立的条件为221=2as 0v v ∆--≤()由此得221()2v v a s-≥【点评】分析解决两物体的追及、相遇类问题,应首先在理解题意的基础上,认清两物体在位移、速度、时间等方面的关联,必要时须画出运动关联的示意图。
这类问题的特殊之处是常与极值条件或临界条件相联系。
分析解决这类问题的方法有多种,无论哪一种方法,分析临界条件、解决相关的临界条件方程或用数学方法找出相关的临界值,是解决这类问题的关键和突破口。
举一反三【变式1】汽车正以10m/s的速度在平直公路上前进,突然发现正前方s 处有一辆自行车以4m/s的速度做同方向的匀速直线运动,汽车立即关闭油门做匀减速运动,加速度大小为6m/s2,若汽车恰好不碰上自行车,则s大小为多少?【答案】3m【变式2】甲、乙两辆汽车在平直的公路上沿同一方向做直线运动,t=0时刻同时经过公路旁的同一个路标.在描述两车运动的v-t图中(如图),直线a、b分别描述了甲、乙两车在0~20 s的运动情况.关于两车之间的位置关系,下列说法正确的是( )A.在0~10 s内两车逐渐靠近B.在10~20 s内两车逐渐远离C.在5~15 s内两车的位移相等D.在t=10 s时两车在公路上相遇【答案】C【解析】由题图知乙做匀减速运动,初速度v乙=10 m/s,加速度大小a乙=0.5 m/s2;甲做匀速直线运动,速度v甲=5 m/s.当t=10 s时v甲=v乙,甲、乙两车距离最大,所以0~10 s内两车越来越远,10~15 s内两车距离越来越小,t=20 s时,两车距离为零,再次相遇.故A、B、D错误.因5~15 s时间内v甲=v乙,所以两车位移相等,故C正确.类型四、相遇问题例4、在某市区内,一辆小汽车在公路上以速度Av向东行驶,一位观光游客正由南向北从斑马线上横过马路。
汽车司机发现游客途经D处时,经过0.7s作出反应紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下,如图所示。
为了判断汽车司机是否超速行驶以及游客横穿马路的速度是否过快,警方派一车胎磨损情况与肇事汽车相当的警车以法定最高速度m 14.0m/sv=行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经14.0m后停下来。
在事故现场测得AB=17.5m,BC=14.0m,BD=2.6m.肇事汽车的刹车性能良好,问:(1)该肇事汽车的初速度Av是多大? (2)游客横过马路的速度是多大?【答案】21m/s 1.53 m/s【解析】(1)警车和肇事汽车刹车后均做匀减速运动,其加速度大小g mmga μμ==,与车子的质量无关,可将警车和肇事汽车做匀减速运动的加速度a 的大小视作相等。
对警车,有as v m 22=;对肇事汽车,有s a v A '=22,则s s v v A m '=22,即0.145.170.1422+=+=BC AB s v v A m ,故 m A v v 0.140.145.17+==21m/s。
(2)对肇事汽车,由s as v ∝=22得0.140.145.1722+=+=BCBC AB v v B A , 故肇事汽车至出事点B 的速度为A B v v 0.145.170.14+==14.0m/s。